公务员期刊网 精选范文 量子力学重要概念范文

量子力学重要概念精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的量子力学重要概念主题范文,仅供参考,欢迎阅读并收藏。

量子力学重要概念

第1篇:量子力学重要概念范文

本书的主要目的,就是要证明这样的替代物是存在的,它与50年前人们讨论的所谓唯象随机量子力学以及随机零点场理论密切相关。这是一种涨落场,属于经典Maxwell方程的解,但是在零温下有非零平均能。作者们认为量子化源于经典物理与这种零点场涨落紧密联系的深刻随机过程,而量子力学的基本理论建筑在第一原理的基础上,这个原理揭示从更深层次的随机过程引发的涌现(Emergency,或译突现)现象的量子化。

作者们在本书所呈现的理论观点是经过长时间的努力寻找而获得的答案。长期以来,科研人员试图寻找答案的以下问题:哪些概念对量子力学的发展起重要作用;是什么为这些概念提供了物理基础;量子力学背后的物理学的最新发现中,有哪些对这些问题的回答形成了综合的和自洽的新的理论框架。

作者认为任何物质系统都是一个开放系统,它们永久地接触随机零点辐射场,并与其达到平衡状态。从这个基础出发,导出量子力学形式体系的核心以及非相对论QED的相对论修正,同时揭示了基本的物理机制。本书打开了通向进一步探索并揭示物理的新大门。读者会看到,这一任务远没有结束,仍存在很多问题没有考察到,期待进一步研究。

本书阐明了量子理论一些核心特点的根源,诸如原子的稳定性,电子自旋,量子涨落、量子非定域性和纠缠。这里发展的理论重新确认了诸如实在性、因果性、局域性和客观性等基本的科学原理

全书内容共分10章:1.量子力学:某些问题;2.唯象随机方法:通向量子力学的简捷途径;3.普朗克分布,涨落零点场的一个必然推论;4.通向薛定谔方程的漫长旅途;5.通向海森伯量子力学之路;6.超越薛定谔方程;7.解开量子纠缠; 8.量子力学的因果性、非定域性和纠缠; 10.零点场波(和)物质。

本书适合熟悉量子力学的最基本概念和结果的读者阅读。其内容适用于从事理论物理、数学物理、实验物理、量子化学和物理哲学的研究人员、研究生和教师参考。

丁亦兵,教授

(中国科学院大学)

Ding Yibing,Professor

(The University,CAS)Ignatios Antoniadis et al

Supersymmetry After the

Higgs Discovery

2014

http:///book/

10.1007/978-3-662-44172-5

第2篇:量子力学重要概念范文

量子力学不同于以往力、热、光、电这些经典物理,它有自己独特而全新的理论框架体系,初次接触该课程的学生很难接受,量子力学的创建者之一波尔就曾说过“如果谁在第一次学习量子概念时不觉得糊涂,他就一点也没有懂”。本人从2011年开始讲授《量子力学》课程,先后教过5届学生,对于如何教好普通地方工科院校的学生,有一些体会。

1 讲授量子力学建立背景很重要

对于任何一门课程,只掌握书本里相关的公式、定律,能熟练地做课后题是不够的,这些只能让学生知其然而不知所以然。更何况正如波尔所说,初次接触量子力学的人本身就很困惑,如果刚开学直接讲授物质波、波函数的统计解释、不确定性原理,用薛定谔方程计算能级和波函数,学生会一头雾水,不知道这些知识是什么,有什么用?如果我们回顾一下量子力学产生过程:开尔文的“两朵乌云”、普朗克解释“黑体辐射”、爱因斯坦解释“光电效应”(包括康普顿散射实验的验证)、波尔的氢原子理论,物理学的发展还是有规可循的,有这些前期成果作铺垫,德布罗意物质波理论、薛定谔方程、波函数的统计解释容易被接受,再告诉学生势阱看做简化的原子模型,得到的能级与原子发光机理相联系,学生学起来就会明白一些。这样适当增加量子力学建立背景,使学生明白它不是凭空产生的,是人类认识世界到了微观层次,由实验和理论相互促进的必然结果,教学效果会好很多。

2 讲授数学知识储备和课本的组织框架很重要

量子力学中微观体系的状态用波函数来描述,每一个状态可以看成数学中的希尔伯特空间的一个矢量,线性代数中所学的矢量运算法则(如矢量的加法、数乘、内积等)成了量子力学中基本运算。在矩阵力学中,态和力学量又可以用一个矩阵来表示,矩阵的运算法则及相关概念也是掌握量子力学所必须的。薛定谔方程本身就是一个偏微分方程,量子力学中的期望值也需要与概率相关的知识。《量子力学》课程一般开设在本科大三年级,所有数学知识都已学过,同时学生也有所遗忘,如果在正式授课前带领学生复习一下相关数学知识,不仅使学生学习更轻松,也有助于一些考研同学的复习,起到事半功倍的效果。

学生在接触一门新课时,随着学习的深入很容易陷入“只见树木不见森林”的困境,所以讲授一些书本的理论框架也比较重要。我们使用的是周世勋的《量子力学教程》,该书浅显易懂,逻辑清晰,适合普通地方工科院校的学生作为量子力学的入门课本。如果学生明白课本的安排,包括这么几部分:描述一个状态及状态随时空的演化法则、状态中物理量的获取、微扰理论、自旋及多体,外加一独立成章的矩阵力学,学习起来会清晰许多,明白自己的学习进度,前后章节的联系,教学效果自然会得到提升。

3 讲授名人轶事,联系学科最新进展

和其他理论课程一样,《量子力学》抽象难懂、推导过程复杂,讲授会枯燥乏味。所幸量子力学建立的年代是上世界物理学发展的黄金时代,英雄辈出,群星璀璨。量子力学的缔造者如普朗克、爱因斯坦、波尔、德布罗意、薛定谔、海森堡、狄拉克、泡利等人身上都充满了传奇,从他们身上不仅可以学到知识、启迪智慧,每一个物理规律发现背后的故事、名人之间的师承门派还可以作为调节课堂氛围的资料,让学生感受到量子力学也是有血有肉的活生生的诞生在现实社会中,而不是如天外飞仙那般突然现世。学生有了这种亲近感,学习起来也会有动力。

尽管量子力学理论框架于20世纪30年代已经基本建立,成功的解释了很多实验现象,也影响了诸如化学、生物、材料等诸多学科的发展,但围绕量子力学基本概念、原理、物理图像的理解一直争论不断,随着实验手段的进步,诸如量子通讯、量子计算、拓扑绝缘体、量子霍尔效应、外尔半金属等许多新成果不断涌现,成为当今世界一个又一个的研究热点,不断提升人类认识物质世界的高度和深度。课堂上介绍这些学科的前沿进展,让学生感受量子力学的魅力和生命力,能极大的促进学生学习的兴趣。

4 合理实用多媒体课件教学

随着网络和计算机应用的发展,多媒体课件丰富了教学手段和内容,为教学带来了诸多便利。在讲授氢原子的量子理论时,公式繁琐、推导冗长,如果一一板书讲授,学生很容易听到后面忘了前面,如果提前做好课件,推导过程以幻灯片的形式播放,重点讲授推导逻辑和几个关键点,这样学生学习起来会省力很多。还有如果把电子衍射图像形成过程用动画演示的方式播放,学生对波函数统计解释的理解会加深很多。

多媒体教学会加强课堂上教学的交流、提高学生信息获取量,激发学生学习的积极性,但事物都具有两面性,多媒体课件能为教学引入很多便利,也有一些不足。如过分的使用多媒体课件,一张张的过幻灯片,除了信息量太多,学生还会被课件中动画、视频所吸引,忽视其中公式推导,及和老师的交流,这样学习层次很容易流于表面,不能深入;反之如果教授板书讲授,物理过程仔细推导,关键处点评交流,学生有时间去思考和参与讨论,能够加深对知识的理解,有利于构建他们的知识体系。总之“尺有所短寸有所长”,只有传统板书教学与多媒体教学有机结合,才能达到提高教学效果这一根本目标。

《量子力学》在物理专业的课程体系中占有重要的地位,对学生的发展更为重要,让学生更容易的认识、接收、理解、应用相关知识,让学生在学习过程中加深对物理学的热爱,是我们教学的最终目标,也是我们教师的责任。希望这些粗浅的思考能为其他地方工科院校的教学提供一些参考。

【参考文献】

第3篇:量子力学重要概念范文

关键词:量子力学 教学改革 物理思想

“量子力学”作为学习“固体物理”、“材料科学”、“材料物理与化学”和“激光原理”等课程的重要基础,同时也是物理学专业及相关工科专业最核心的基础课程之一。20世纪,“量子学说”被作为物理科学研究和人类文明进步的标志性贡献,引起了广泛地重视。通过对量子学说的学习,能够使学生充分利用到所学的理论知识,对问题进行分析和寻求解决方法,提高学生的科学素质和培养其创新能力。尽管如此,但该门课程所涉及的内容较为空洞、抽象,对学生学习造成阻碍,使学生丧失了学习的兴趣,学生也很难熟练掌握量子学说课程的要点。因此,培养学生的学习兴趣是提高教学质量和教学水平的关键,但是如何调动学生课堂学习的积极性,成为了广大教师很棘手的问题。笔者根据近几年的教学模式,综合长江大学(以下简称“我校”)的教学现状,在“量子学说”教学方面,整理出一套符合我校教学实际的改革和尝试,并取得了较好的效果。

1.“量子力学’’教学内容的改进。量子学说的理论与以往所学的传统物理体系大有不同,重点表现在处理问题的方式上,但是却又与传统物理有着不可分割的关系,可以说,量子学说中很多的概念和理论都来源于传统的物理学说。这就要求在学习量子学说的同时,既要摒弃以往学习物理形成的固有思考方式,又要遵循某些与传统物理中相通之处的原理和学习法则。然而,这种思维上的反差必然导致学生在学习时的困惑,除此之外,量子学说较强的理论性也误导学生陷于数学公式推导的烦恼中,从而使学生丧失了学习兴趣。根据这些教学中存在的问题,笔者提出了以下相应的有益改进。

(1)知识条理化,强化知识背景,增强趣味性。量子学说从诞生到最终建立,每一步的发展都经过了缜密、细致、实事求是的分析,并不断地完善和改进。通过介绍量子学说的发展背景,引起学生的学习兴趣,并有利于学生明确量子学说与传统物理之间的区别,同时让学生在发展历程中寻找合适的学习方法,有利于培养学生的科学思维能力。在解释某些理论和原理时,可以穿插讲述其历史背景,方便学生理解。通过这种方式,既能让学生掌握理论知识,又有利于学生区分量子学说与传统物理的区别[1]。

(2)重在物理思想,压缩数学推导。数学在其相关学科的运用,所起到的作用只是一种辅助工具。在物理研究中也不例外,如果过分强调数学的地位和作用,只会本末倒置。因此,在教学过程中,教师应着重加强基本概念和蕴含的区里实质,而不能将物理思想埋没在数学公式之中,应把重点放在物理意义和实际运用上,只有这样,学生才能保持较好的学习热情。

2.教学方法改革。传统的教学模式使学生一直处于被动接受知识的状态下,抑制了学生自主学习的主动性,不仅不利于学生对知识的获取,更阻碍了其创新思维的培养,而且量子学说的理论抽象,很难被学生理解,传统的教学方法,无法被学生接受,并会引起学生的反感,甚至厌学。如此一来,必然打击学生学习的主动性,更降低了学习效率。为了促进学习效率,提高学生学习兴趣,培养其科学素养,笔者在教学模式上,探索出一些有效的措施。

(1)发挥学生主体作用。教师在课堂学习中有着举足轻重的作用,除了传授学生知识以外,还有着更重要的引导作用。在讲解完规定的教学任务之外,还应设定教师与学生的互动环节,通过创设问题情景,引导学生进行思考和分析,使学生对所学的知识进行归纳总结。另外,还可以通过以问题的形式结束未讲授的内容,引起学生的兴趣,并鼓励学生课下利用课外资源寻求答案;还可以以小组的形式,让学生团结合作,对感兴趣的物理理论进行探讨分析,并完成相关的小组论文。

(2)注重构建物理图像。由于物理理论都比较抽象,不利于理解,所以构建图像很重要,它不仅能够完整地表达所要传达的信息,而且能够方便学生理解和记忆。图像简洁、清新的特点,使学生更熟练地掌握物理图像的构建能力,对培养学生的创新思维也有促进作用。

3.教学手段和考核方式改革。(1)用多种先进的教学模式。采用小组讨论课,可安排小组内讨论,然后是小组之间进行辩论,最后由教师对辩论进行点评和更正。例如,在讲到微观粒子的波函数时,有的学生认为是全部粒子组成波函数,有的学生认为是经典物理学的波。这些问题的讨论激发了学生的求知欲望,从而进一步激发了学生对一些不易理解的概念和量子原理进行深入理解,直至最后充分理解这些内容。另外布置课外论文和邀请知名专家进行讲座都是不错的方式。

(2)坚持研究型教学方式。教学中不再单一地只讲授课堂知识,而是把科研融入到课堂学习之中,结合最新的科研动态,向学生介绍所学的原理在其相关领域中的运用,以引起学生的兴趣。

(3)将人文教育与专业教学相结合。量子概念诞生于1900年,它首次由德国物理学家普朗克引入;1905年,爱因斯坦进一步完善了量子的概念;1913年,玻尔将量子化概念引入到原子中;1924年,德布罗意通过量子的概念提出微观粒子具有波粒二象性;由此可见,物理学史上,力学从诞生到发展所蕴含的创新思维是迄今为止任何一门学科都难以比拟的,教师和学生一起回顾量子力学的发展之路,让学生了解到量子力学的魅力所在,启发学生的创新思维。

第4篇:量子力学重要概念范文

关键词:量子力学;教学探讨;能力提高

1 引言

生产力的发展客观需要,推动人们探索微观世界的奥妙,掐指算来,量子概念的诞生已经超过整整100年。但随着科技日新月异的发展,可以毫不夸张地说,没有量子物理,就没有人们今天的生活方式。量子物理的应用已经渗透到现代化生产的许多方面,如半导体材料与器件,磁性材料与器件,原子能技术、激光技术等等。《量子力学》课程的学习已成为国内高等理工科院校“应用物理”“电子科学与技术”“光信息科学与技术”等专业的必修学科基础课。通过该课程的学习,培养学生辩证唯物主义世界观,独立分析问题和解决问题的科学素养,并为“固体电子导论”“光电子学”等后续课程的学习打下良好的基础。

2 对《量子力学》课程的探讨

《量子力学》涵盖了基础物理、数学物理方法、概率论、线性代数、矩阵等多个学科领域的内容,特别是基本概念、规律与方法与经典物理截然不同,不能凭借我们所熟悉的经典概念去证明。这些现状导致学生在该课程学习中感觉到难度更大。传统的课堂教学容易陷入纯粹的数学推导而忽略物理情景的建立。

种种现象表明,现存的“单纯授课式”教学方式不符合本课程的教学规律,无法实现其预定的教学目标,必须在各方面加以充分改进。目前,国内外对《量子力学》课程的教学方法已经作了大量的尝试和研究,提出了多种教学方法,如开发生动的多媒体课件、课堂分组讨论、模块化教学等。如何让学生在偏微分方程为主线的教学体系中,理解抽象的量子物理基本框架,并激发和保持学生的学习兴趣,是任课教师需要探索和实践的重要课题,值得花力气去研究。此外,随着时代的发展,量子物理所带来的新技术又层出不穷,大量前言研究成果脱颖而出,如量子通信,量子纠缠,量子密码等。如何将这些最近量子应用技术融入到日常课堂教学中,无疑对教师的教学能力、教学方法和综合素质以及学生的课程学习方式等都提出了更高要求。

问题既是学习的起源,也是选择知识的依据,又是掌握知识的手段,因此在教学实践的基础上,可以尝试以“问题导向”作为切入口,将案例教学、视频教学、科研成果等融入《量子力学》的教学过程,克服抽象的物理图景给学生带来的困扰,增强学生利用所学知识解释现实、分析问题、解决问题的能力,培养学生主动思考和实践创新能力,进而提高教学效果。鼓励学生根据自己的兴趣与基础,在教师的指导下进行专题研究,用现有的专业实验室条件,针对课程理论知识带着问题和专业的实践应用问题,在科研实践中加深知识的理解和运用,逐步提高其创新能力。

3 《量子力学》课程问题导向型教学实施建议

3.1 学习状态的调查与分析

量子力学可谓无处不数学,因此需要以无记名答卷调查和课间交谈方式,对学生的之前数学物理知识基础,学习兴趣等进行统计和分析,从而为制定合适的教学计划、选取恰当的教学内容和教学方式打下基础。如果没有对具体问题进行严格的数学推导,就无法真正深刻理解基本原理,量子物理的实际应用也就更无从谈起。课程系统学习之前,教师应该把知识点中可能运用到的数学知识梳理后作为参考资料发给学生,便于学生在平时练习中使用。

3.2 建立“问题为导向的交互式教学模式”

第5篇:量子力学重要概念范文

这只猫生活在一个不透明的盒子里,在这个盒子中放有猫喜欢吃的食物,还有一个毒药瓶。毒药瓶上有一个锤子,锤子由一个电子开关控制,电子开关由放射性原子控制。如果原子核衰变, 则放出阿尔法粒子, 触动电子开关, 锤子落下, 砸碎毒药瓶, 释放出里面的毒气, 此猫必死无疑。如果原子核未衰变,则不会激发这一系列的连锁反应,猫就不会被毒死。这个残忍的装置由大物理学家薛定谔所设计, 所以此猫便叫做薛定谔猫。

原子核的衰变是随机事件,我们所能精确知道的只是放射性原子的半衰期——衰变一半所需要的时间。但是, 我们却无法知道, 它在什么时候衰变。因为原子的状态不确定,所以猫的状态也不确定。我们只有在揭开盖子的一瞬间,才能确切的知道此猫是死是活。如果没有揭开盖子进行观察,我们永远也不会知道此猫是死是活,它将永远处于半死不活的状态。这与我们的日常经验严重相违,要么死,要么活,怎么可能不死不活,半死半活呢?

其实,薛定谔的猫是关于量子理论的一个理想实验。量子力学是描述原子、电子等微观粒子的理论,它所揭示的微观规律与日常生活中看到的宏观规律很不一样。量子力学认为一切微观粒子既有波动性又有粒子性,既所谓的波粒二象性。所有的微观粒子诸如电子、质子、光子等都有一个奇怪的性质:它们在同一个时刻可以既在这里,又在那里,既是粒子又是波,就像有分身法术一样。微观粒子是粒子和波两象性矛盾的统一。为了描述微观粒子的状态,人们引入了波函数,微观粒子的波动呈现出它运动的一种统计规律,因此称此波动为概率波或概率波幅(即量子态)。概率波幅是量子力学世界里最基本最重要的概念,微观世界千奇百怪的特性就起源于这个量子态。微观粒子的量子态可以是线性叠加的,比如电子的轨道叠加。“叠加态”就是有几种本征态叠加在一起的粒子状态,这时这个粒子的状态是不确定的,只有当一个“测量”被进行的时候,才会呈现一个被测量到的状态,可能是该粒子的任何一种本征态。

在薛定谔的猫实验中,放射源何时放射粒子是不确定的,按量子力学解释是处于0和1的叠加态,那么在未打开盒子进行观察前,按量子力学解释这只猫也应处于死猫和活猫的叠加态,我们只有在揭开盖子的一瞬间,才能确切地知道此猫是死是活。此时,猫的波函数由叠加态立即收缩到某一个本征态。量子理论认为:如果没有揭开盖子,进行观察,我们永远也不知道此猫是死是活,它将永远处于半死不活的叠加态。

第6篇:量子力学重要概念范文

一、凝聚态物理的重要性

凝聚态物理主要从两个方面体现其重要性:一方面体现为与相邻学科(如粒子物理学)之间在概念、方法、技术等方面的渗透,促进材料科学、能源科学、环境科学等交叉学科的发展,并日益显现出其强大的发展潜力。另一方面为研发和制备新型材料提供了强有力的理论数据和实验支持,同时也为开发和拓展新领域提供了极具实用性的科学理论依据。

二、凝聚态物理的主要研究方向

随着交叉学科的发展和技术需求的提高,凝聚物理的研究范围更加广阔,技术要求更加精密。凝聚态物理的主要研究方向有以下几种。

1.软物质物理学

软物质概念于1991年提出,也称为复杂液体。软物质一般是由大分子或基团组成的,介于固体和液体之间的物相。一些常?的物质,如液晶、胶体、膜,生命体系物质诸如蛋白质、DNA、细胞等,都属于软物质。和由内能驱动的硬物质不同,软物质的组织结构变化主要由熵驱动,变化过程中内能的变化很微小。

2.宏观量子态

宏观量子态是指用量子力学来描述宏观体系的状态,如超导中的电子库珀对。宏观量子态具有典型的量子力学性质,当前宏观量子态领域研究的重点为耗散现象和退相干现象。

3.介观物理与纳米结构

介观是指介于宏观和微观之间的体系。介观物理学所研究的物质大小与纳米科技的研究尺度有很大重合,所以这一研究方向也常称之为“介观物质和纳米科技”。

4.固体电子论中的关联区

凝聚态物理的前身――固体物理学研究的核心问题,就是固体中的电子行为。固体中的电子行为可根据电子间相互作用的大小分为三个区域,分别是强关联区、中等关联区和弱关联区。现今研究固体电子论的大部分学者研究方向都是强关联系统。

三、凝聚态物理的主要研究现象及其理论依据

目前凝聚态物理的主要研究现象有超导、光谱、弱相互作用、磁性研究(微磁学、铁磁学、相图、磁阻、巨磁阻抗效应等)、多向异性、子晶格、态密度、能隙、强关联、激发态、量子通信、冷原子、霍尔效应等。

凝聚态物理所用的理论依据主要源于相变与临界现象的理论,成熟完备的量子力学则是其坚定可靠的理论基石,在这两种理论之下,凝聚态物理根植于相互作用的多粒子理论。凝聚态物理的前身――固体物理学中的一个重要理论依据是能带理论。目前来说一些常用的理论方法有很多,比如蒙特?卡洛方法、波尔茨曼模型、分子动力学模拟、伊辛模型、有效场、平均场,等等。

四、目前凝聚态物理研究取得的一些成就

第7篇:量子力学重要概念范文

1 力学

经典物理的理论力学按照研究方法不同可分为:牛顿力学、分析力学.牛顿力学与分析力学是两套平行的力学理论体系,他们用不同的数学语言表达了机械运动的同一客观规律.

1.1 牛顿力学

牛顿力学把系统中每个质点或刚体作为研究对象,然后根据研究对象的不同,分别建立不同形式的动力学方程.系统中各研究对象的位置和运动之间的联系则通过附加方程来体现.当力学体系受有约束时,还需补充约束方程,约束越多,需要求解的方程越多.

1.2 分析力学

分析力学把系统作为一个整体来处理,所以动力学方程描述了整个系统的运动规律.动力学方程的形式不随广义坐标的选取而发生变化.

1.3 分析

从理论上看,牛顿力学是从物体受力的角度导出其动力学方程的,分析力学则是从能量的角度来导出其动力学方程的.力仅是力学范围内的一个物理量,而能量则是整个物理学的一个基本物理量.分析力学通过虚位移原理、拉格朗日方程、最小作用原理,把全部力学建立在能量不灭原理基础之上,从而为现代力学奠定了基础.同牛顿力学相比,分析力学的表述方法具有更大的普遍性,在解决许多复杂的力学问题时具有独特的优越性.哈密顿原理更是深刻揭示了客观事物之间的紧密联系,把力学原理归结成了一般的形式,不仅给出了解决力学问题的统一的观点和方法,而且成为新的科学研究的起点,为自然科学的发展提供了新的思路.分析力学在量子力学和相对论力学中都有重要应用.分析力学特性充分表明了它的重要性和生命力.分析力学架起了通往近代物理的桥梁,成为处理整个物理学领域的方法.

2 热力学第二定律

2.1 克劳修斯表述

不可能把热量从低温物体传到高温物体而不产生其它影响.

2.2 开尔文的表述

不可能从单一热源吸热,使之完全变成有用功而不产生其它影响.

2.3 熵增加定律

任何物理过程中各个参与者的总熵必定不会减少.

2.4 微观表述

一切自然过程总是沿着分子热运动的无序性增大的方向进行的.

2.5 分析

热力学第二定律的克劳修斯表述和开尔文表述,从表面上看互不相干,其实是等效的.它们表述了功变热和热传导两种典型的热现象的不可逆性.自然中一切不可逆过程都存在内在联系,可以从一个不可逆过程推导另一个不可逆过程,而且这些不可逆过程完全是等效的,可以任选一种不可逆过程作为热力学第二定律的表述,所以热力学第二定律有多种表述方式,不论采用何种表述方式,其实质都是揭示热现象过程的不可逆性.

3 黑体辐射规律

科学家对黑体辐射的能量密度分布实验研究得知:当黑体热平衡时,其辐射能量密度按波长分布的曲线形状和位置,仅与黑体的绝对温度有关,而与空腔的形状和组成物质无关.

3.1 瑞利-金斯公式(经典公式)

1900年,英国物理学家瑞利利用统计力学与经典电磁理论推导出一个经典分布公式,后由美国物理学家金斯于1905年对它作了修改,即瑞利-金斯公式.与实验图线的对比,显示瑞利-金斯公式仅在长波部分与实验相符,而在短波部分与实验极其不符.并且在波长较短时,能量密度趋向无穷大,这即是物理学史上的“紫外区灾难”.

3.2 维恩公式(经典公式)

1896年,德国物理学家维恩通过热力学的讨论,得出一个半经验的能量密度分布公式.与实验曲线对比,显示维恩公式仅在短波部分与实验结果相符.

3.3 普朗克黑体辐射公式

1900年,德国物理学家普朗克引进能量子概念提出了与实验结果符合得很好的黑体辐射公式——普朗克黑体辐射公式.

3.4 分析

普朗克黑体辐射公式,当辐射频率较低时,可简化为瑞利-金斯公式;当辐射频率较高,可简化为维恩公式.

从黑体辐射规律的研究过程可以看出,如果在科学研究中,对同一现象的描述不能得到符合整体的结论,那结论只是近似的、经验的结论.由于自然的简单性、统一性,如果我们研究得出的结论不能简单地、统一地解释自然现象,说明结论不能反映自然现象的内在联系,还需建立新的概念体系,才可能找到符合物理规律的正确理论.

4 波粒二象性

4.1 光的波粒二象性

牛顿提出了光的微粒说;托马斯?扬利用“双缝”实验观察到光的干涉图案,证明光具有波动性.爱因斯坦在普朗克的量子假说基础上,提出光量子假说,得出光的波粒二象性结论.

4.2 实物粒子的波粒二象性

德布罗意从几何光学与经典力学的相似性出发,根据类比的方法,提出微观粒子具有波粒二象性.实物粒子都是粒子性和波动性的对立统一体.

4.3 分析

20世纪前的光的微粒说、波动说与现代物理学的光具有波粒二象性,只是概念的名称相同而已.现在我们知道:光既不是经典的机械波,也不是经典的实物粒子,更不是两者的混合.实物粒子具有波动性,这里说的波也不是经典的机械波,是物质波,是具有新物理含义的全新物理概念.实物粒子的波粒二象性(包括光子)是在新概念建立后更高层次上、赋予新内涵的对立统一规律.

5 量子力学

量子力学有两种表述方式,即波动力学表述方式和矩阵力学表述方式.

第8篇:量子力学重要概念范文

天体物理学属于应用物理学的范畴,是研究天体的形态、结构、化学组成、物理状态和演化规律的天文学分支学科。由于天体物理学是一门很广泛的学问,天文物理学家通常应用很多不同学术领域的知识,包括力学、电磁学、统计力学、量子力学、相对论、粒子物理学等。

本书作者Leonard S Kisslinger是美国卡内基梅隆大学教授,他意在使任何学科的学生对于近几十年天体物理学取得的那些令人兴奋和感到神秘的发展有一些了解。本书解释了宇宙从早期到现在的演化过程,运用通俗易懂的讲述方式使任何一个拥有高等数学基础的大学生都能够理解。

全书由10章组成:1.天体物理学的物理概念:速度、加速度、动量和能量的基本概念,温度(作为一种能量形式),力和牛顿运动学定律;2.力和粒子:基本粒子的标准模型,原子、原子核、重子等;3.哈勃定律―宇宙膨胀:首先定义和讨论了光的多普勒频移和红移,然后从星系中光的多普勒频移的测量回顾了哈勃定律,最后讨论了宇宙的膨胀;4.恒星、星系等:地球怎样绕着太阳旋转,太阳(作为一个熔炉)的特性,大质量恒星由于引力坍塌导致脉冲星和黑洞形成的过程;5.中微子振荡、对称性和脉冲星冲击:称为中微子振荡的中微子相互转化的三种标准模型的重要属性,怎样利用中微子振荡来测量宇称性、电荷共轭和时间演化对称性,通过中微子发射来解释脉冲星冲击的可能原因;6.爱因斯坦狭义和广义相对论:狭义相对论中的重要假设,以及由此产生的长度收缩和时间膨胀,由洛伦兹变换得到的附加速度的爱因斯坦方程与假设的相一致性,利用相对动量和张量简单讨论了广义相对论;7.从广义相对论得到的宇宙的半径和温度:宇宙的弗里德曼方程、宇宙膨胀的引力辐射和重力波,以及引力量子场理论;8.宇宙微波背景辐射:宇宙微波背景辐射相关的一些概念,重点是温度和时间的相关性;9.电弱相变(Electroweak phase Transition):定义了量子力学的相变和潜伏热,重点讨论了电弱理论和电弱相变,电弱相变和其产生的重力波间磁场的建立过程;10.量子色动力学相变:量子色动力学相变和银河系和星系团之间磁场的关系,由于相对论性的重离子碰撞量子色动力的产生。

本书的目的是使大学生理解描述宇宙演化的基本物理概念,并基于此讲述早期到现在宇宙演化背后的天文物理学理论。本书不要求学生有太深的数学基础,适用于所有对科学尤其是天文科学感兴趣的大学生,同时也适合于对这些话题感兴趣的读者。

第9篇:量子力学重要概念范文

1物理学的发展过程

1.1 宏观低速阶段

研究宏观低速的理论是牛顿力学,研究对象为宏观低速运动的物体。例如:汽车、火车的运动,地球卫星的发射。在牛顿力学中,牛顿认为:质量、时间、空间都是绝对的。也就是说,对于时间来讲不存在延长和收缩的问题,即时间是在一秒钟,一秒钟地或一个小时,一个小时地均匀流失。对于空间和质量来讲也不存在着变大或变小的问题。牛顿力学的三大定律,就是在这样的基础上建立的。

1.2 宏观高速阶段

研究宏观高速的理论是爱因斯坦的相对论力学,爱因斯坦在1905年发表了论文相对论力学。爱因斯坦认为空间、质量、时间都是相对的。并且找出了动质量和静质量之间的关系:其中m0为静质量;m为动质量。

1.3 微观低速阶段

其理论是薛定谔,海森堡两个创立的量子力学。研究对象为分子、原子、电子、粒子等肉眼所看不见的物质。

1.4 微观高速阶段

理论是量子场论,研究对象为宇宙射线,放射性元素。例如:“镭”。量子场论就是粒子通过相互作用而被产生,湮灭或相互转化的规律。例如:通过对天外射线射向地球宇宙射线的研究发现“反粒子”,即电子的反粒子正电子。负电子与正电子相互作用湮没—— 转化为二个γ光子,例如“闪电”。

2物理学与工程技术的关系

物理学与工程技术有着密切的关系,他们之间是相互促进共同发展的。我们平时常说科学技术,实际上科学和技术是两个不同的概念。科学解决理论问题,而技术解决实际问题。科学是发现自然界当中确实存在的事实,并且建立理论,把这些理论和现象联系起来。科学主要是探索未知,而技术是把科学取得的成果和理论应用于实际当中,从而解决实际问题。所以技术是在理论相对比较成熟的领域里边工作。科学与工程技术相互促进的模式主要有以下两种。

2.1 技术—— 物理—— 技术

例如:蒸汽机的发明和蒸汽机在工业当中的应用形成了第一次工业革命—— 热力学统计物理—— 蒸汽机效率的提高,内燃机,燃气轮机的发明。这一次主要是这样:由于蒸汽机的发明,在当初工业应用上,出现了很多应用技术的问题。例如蒸汽机发明的初期热效率很低,大概不到5%。这样,就对物理提出了很尖锐的问题。那就是热机的效率最高能达到多少?热机的效率有没有上限?上限是多少?再一个就是通过什么样的方式来提高热机的效率?由于这些问题就促进了物理学的发展,正是在这些问题解决的过程当中,逐渐形成和建立了热力学统计物理。而热力学统计物理很好地回答了提高热机效率的途径,以及提高热机效率的限度等等这些理论上的问题。

2.2 物理—— 技术—— 物理

例如:(1)电磁学—— 发电机,电力电器,无线电通信技术—— 电磁学;电磁学从库仑定律的发现,以及法拉第发现电磁感应定律,直到1865年麦克斯韦建立电磁学基本理论,这些都是科学家在实验室里边逐渐形成的,这都是理论建立的过程,而这些理论应用于实际就发明了电动机、发电机等其它电器以及无线电通信技术,而这些实用技术的进一步发展又给电磁学提出来了许多需要解决的实际问题。正是这些问题的逐步解决,使得电磁学更加的完善和在理论上进一步得到了提高。(2)量子力学,半导体物理—— 晶体管超级大规模集成电路技术,电子计算机技术,激光技术—— 量子力学,激光物理;量子力学是20世纪初期为了解决物理上的一些疑难问题而建立起来的一种理论,这种理论应用于解决晶体的问题就形成了半导体技术,而半导体技术的进一步发展就发明了大规模集成电路和超大规模集成电路,而超大规模集成电路的发明是产生电子计算机的主要物质基础,而正是由于电子计算机技术的发展又向量子力学提出了一些其他更加深刻需要解决的问题,而这些问题的解决就促进了量子力学的进一步发展和完善。(3)狭义相对论,质能关系E=mc2,E=mc2—— 原子弹及核能的利用—— 核物理,粒子物理,高能物理;狭义相对论是20世纪初期爱因斯坦建立的一种理论,他是为了解决电磁学等其他物理学科上的一些经典物理当中理论上的一些不协调和不自恰这样一种矛盾而提出的一种理论,这种理论当中有一个很重要的理论结果,那就是质能关系E=mc2,E=mc2。而这种质能关系被我们称为打开核能宝库的钥匙,这一理论结果的应用直接导致了或者指导了核能的应用,而对于核能的进一步应用又提出了许多新的问题,而这些新问题的进一步解决使得理论更加完善而得到进一步提高,从而形成像核物理,粒子物理,以及高能物理等等,那么实际技术上问题的解决又进一步促进了物理学的发展。

3结语

应该说物理和技术有着密切的联系,物理原理及理论的初创式开发和应用都形成了当时的高新技术,物理学仍然是当代高新技术的主要源泉。所有新技术的产生都在物理学中经历了长期酝酿。例如:1909年卢瑟福的粒子散射实验—— 40年后的核能利用;1917年爱因斯坦的受激发射理论—— 1960年第一台激光器的诞生等,整个信息技术的产生、发展,其硬件部分都是以物理学为基础的。

参考文献

[1] 张启仁.经典场论[M].北京:科学出版社,2003.

[2] 井孝功.量子力学[M].哈尔滨:哈尔滨工业大学出版社,2004.

[3] 关洪.空间:从相对论到M理论的历史[M].北京:清华大学出版社,2004.

[4] 保罗·贝内特[著],苏福忠[译].时间[M].上海:上海人民美术出版社,2003.

[5] G.司蒂文逊,C.W.凯尔密司特.狭义相对论[M].上海:上海科学技术出版社,1963.

[6] 赵展岳.相对论导引[M].北京:清华大学出版社,2002.

相关热门标签