公务员期刊网 精选范文 海洋测绘发展范文

海洋测绘发展精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的海洋测绘发展主题范文,仅供参考,欢迎阅读并收藏。

海洋测绘发展

第1篇:海洋测绘发展范文

关键词:海洋测量;多波束测深系统;数据处理;现状分析;发展趋势

一、多波束测深系统理论概述分析

多波束测深是水声技术、计算机技术、导航定位技术和数字化传感器技术等多种技术的高度集成。测深时,载有多波束测深系统的船,每发射一个声脉冲,不仅可以获得船下方的垂直深度,而且可以同时获得与船的航迹相垂直的面内的几十个水深值。多波束测深系统一般由窄波束回声测深设备(换能器、测量船摇摆的传感装置、收发机等)和回声处理设备(计算机、数字磁带机、数字打印机、横向深度剖面显示器、实时等深线数字绘图仪、系统控制键盘等)两大部分组成。

二、多波束测深的工作原来和技术概况

1.多波束测深工作原理

多波束测深声纳是一种大型组合设备,除其系统本身外,还包括定位、罗经、船姿传感器、声速剖面仪、数据采集工作站和绘图仪等配套设备。多波束系统和传统的单波束回声测深仪从原理上讲没有本质的区别,只是多波束系统的换能器是由多个换能器单元组成的阵列,工作时能同时发射多个波束和接收多个波束,对海底进行条带式测量。

2.多波束测深技术概况

多波束条带测深系统是一种高效的海底地形测绘设备,它是在单波束回声测深仪的基础上发展起来的。多波束测深系统是利用安装于船的龙骨方向上的一条长发射阵,向海底发射一个与船龙骨方向垂直的超宽声波束,并利用安装于船底的与发射阵垂直的接收阵,经过适当处理形成与发射波束垂直的许多个预成接收波束,从而当测深系统在完成一个完整的发射接收过程后,形成一条由一系列窄波束测点组成的,在船只正下方垂直航向排列的测深剖面。

由于各波束空间上呈扇形排列,波束指向角自中央波束向边缘波束逐渐增大,因此回波信号自中央波束开始主要为反射波,向两侧逐渐过渡到散射波。如上所述,振幅检测法在单波束测深仪中是一种成功的海底信号探测方法,其原因是单波束测深仪的回波信号主要是反射波。在多波束测深系统中,当波束指向角不断增大时,回波的反射波振幅将迅速减小,反射波的尖脉冲形态也将随之趋于模糊。当波束指向角还不十分大时,减小了的反射波振幅还可以用变振幅强度处理方法来检测,但当波束指向角足够大时,微弱的反射波信号在背景噪声中将变得无法检测。因此在多波束系统的回波信号检测方法中除了使用振幅检测法外,一般还使用相位检测法。相位检测法利用相干原理,通过比较换能器两个给定接收单元之间的相位差的方法来检测波束的到达角。

二、多波束测深系统发展阶段

1.SEABEAM 1000系列为代表的第一代产品,它的波束数少、扫幅宽度仅6O度,集成度低,水深数据不能实时处理。

2.SEABEAM 2000 系列、ATLASHYDROSWEEP和SIMRAD EM12为代表的第二代产品,采用了P30大规模集成电路和DSP技术,波束数达到121个,波束角宽2。,数据实时和后处理软件成熟。

3.SIMRADEM 120和RESON SeaBm 8150深水多波束测深系统为代表的第三代产品,采用了超大规模集成电路和速度更快的DSP板,波束数达到191个或更多,波束角宽0.5―1度,实现全姿态稳定,数据实时和后处理软件更加成熟。

4.近年刚出现的SIMRAD EM122深水多波束测深系统和EM710被称为第四代产品,采用宽带技术、近场自动聚焦和水体显示等技术,提高了声呐性能,波束数更多,测深点更密,集成度也更高。相比较EM120系统EM122系统标称指标覆盖宽度最大37 km,单次发射形成两行共576个波束,可加密至864个测深点,波束角宽最小可达0.5×1度,该系统目前正在推广阶段。

四、多波束测深系统数据处理的发展趋势

1.声速及声线跟踪

现有的声速经验模型比较多,这为深度的计算精度提高提供了宝贵的理论依据。但由于这些模型均为特定情况下的声速计算模型,计算所得声速彼此之间也存在着一定的差异,对波束脚印的归位计算带来了一定的困难。考虑多波束系统的应用范围广,涉及海域的水文因素变化复杂等特点,为此寻求一种适合多波束的最优声速经验模型已成为首要课题。

2.多波束辅助参数的测定和滤波

多波束是一个由多传感器组成的复杂系统,最终测量成果质量不但取决于系统自身的测量数据质量,还取决于辅助传感器测量参数的精度,因此,开展诸如导航定位技术、声速改正技术、潮汐改正技术以及换能器吃水改正技术等与多波束测深相关的专项技术研究,也是多波束数据处理未来面临的主要任务。

3.深度数据滤波

测量过程中白噪声和海况的影响以及参数设置的不合理等,都将会导致测量数据中出现假信号,形成虚假地形,从而使绘制的海底地形图与实际地形存在差异。为了提高测量成果的可靠性,必须消除这些假信号,因此需不失时机地展开测深异常数据的定位研究,对数据进行必要的编辑,剔除假信号,为后处理成图做好准备。深度测量误差不仅包含粗差和随机误差,还包含了系统误差,某些情况下,系统误差的影响还相当显著。

4.图像处理

反向散射强度是多波束系统中又一类重要测量参数,由于数据量庞大,国内许多用户很少采集这方面的数据,对其图像的研究也少有文献。其实,多波束声纳图像与遥感图像、雷达图像等除形成机理存在差异外,图像的处理思想基本相同。多波束图像由于形成机理、环境噪声等与其它图像还存在着很大的差异,因此,在现有的图像处理方法中研究适合多波束声纳图像处理的最优方法是图像数据处理研究中的一个重要问题。

5.多波束数字信息与侧扫声纳图像信息的融合

同多波束系统一样,侧扫声纳也可对海底进行全覆盖式测量。两类设备的应用,对实现海底地形地貌的认识起着十分重要的作用。多波束系统既可获得高密度、高精度的测点位置信息,又可获得海底图像信息,但由于分辨率的限制,一般情况下,成像质量较差;而侧扫声纳则以成像为主,可获得高分辨率的海底影像,但仅能给出描述海底地貌、地物的概略位置。多波束能够给出海底地物的位置、大小等定量分析数据,但在对海底的定性分析方面还存在不足;而侧扫声纳则可根据图像的明暗程度反演海底地质组成,并在此基础上,进行地质分类和定性分析,但却难以利用概略的位置信息进行精确的量化分析。

总结:多波束测深声纳系统通过在指定空间预成多个波束,当目标回波信号入射到线列阵时,通过多个波束响应向量对基阵接收信号进行相位或时延加权补偿,即可确定出信号的入射方向,并里用能量中心收敛法对回波信号进行处理、计算,继而判断出目标的方位。从以上工作原理部分的介绍可以看出, 多波束条带测深技术是一种综合水声、卫星通讯、仪器仪表、计算机等多学科的复杂系统。通过对多波束测深现状和数据处理等方面的分析,希望对我国未来海洋多波束测深做出贡献。

参考文献

[1]黄谟涛.多波束测深技术研究进展与展望[J].海洋测绘,2000,78(3):2―7.

[2]赵会滨,徐新盛,吴英姿.多波束条带测深技术发展动态展望[J].哈尔滨工程大学学报,2001, 22(2)

第2篇:海洋测绘发展范文

[关键词]导航 卫星 海洋测绘

[中图分类号] P229 [文献码] B [文章编号] 1000-405X(2013)-11-139-1

我国作为领土面积世界第三的大国,其水域面积更是达到了270550平方公里。在这样辽阔的一片海域中,有着大量的岛屿,还有约1.8万公里的漫长海岸线。

因此海洋测绘工作便成为了维护我国安全和开发海洋资源的一项重要任务。

不管是海上交通、建设,还是针对海洋环境的保护等等,海洋测绘都发挥着不可替代的作用。

1海洋测绘的方法

海洋测绘是以海洋水体和海底为对象所进行的测量和海图编制工作。

海洋测绘主要包括海道测量、海洋大地测量、海底地形测量、海洋专题测量,以及航海图、海底地形图、各种海洋专题图和海洋图集等的编制,测量方法主要包括海洋地震测量、海洋重力测量、海洋磁力测量、海底热流测量、海洋电法测量和海洋放射性测量。

在海洋调查中,广泛采用无线电定位系统和卫星导航定位系统。

随着导航卫星技术的不断发展,高精度、广覆盖、全天候、方便可靠的卫星定位技术的应用越来越广泛,在海洋测绘中发挥着越来越重要的作用。

2导航卫星的发展和应用

2.1子午卫星导航系统

伴随着人类历史上第一颗人造卫星的发射成功,人类开创空间技术迎来了崭新的时代。而卫星多普勒定位也应运而生,根据卫星发射的无线电信号,我们可以很明确的确定地面观测站中心的坐标。

而后经过不断的实验,在1963年第一颗子午工作卫星成功升空,而后又相继发射了5颗子午工作卫星,在我们的上空形成了一个子午卫星星座。在子午工作卫星的信号覆盖下,我们可以精确的导航定位海洋上的任何运动载体,还能用于地心坐标、海洋大地等测量。我国于20世纪70年代中期引进卫星多普勒接收机,在1987年形成了覆盖我国整个陆地海洋的定位网,为海洋测绘带来了极大的便利。

2.2GPS和GLONASS卫星导航系统

GPS卫星定位系统和随后发展的GLONASS卫星定位系统作为多普勒定位的升级版,24颗工作卫星覆盖全球,基本做到随时随地高精度定位。

由于GPS和GLONASS卫星定位系统比之前的多普勒定位更加的精密准确,因此在海洋大地的测量和水下地形测量、海界划分、航道渔业测量、海上资源开发利用等都起到了普遍的应用。而双星系统的存在,更好的保障了导航卫星的可靠性。

2.3北斗卫星导航系统

继美国的GPS和俄罗斯的GLONASS全球定位系统之后,我国也着手自主研发并实施了北斗卫星导航系统。

北斗卫星导航系统是由5颗静止轨道卫星和30颗非静止的轨道卫星组成,分为空间端、地面端、和用户端三个重要部分,在2011年12月27日开始为我们提供连续的导航定位与服务。

除了可在全球范围内全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并独具短报文通信能力。

北斗卫星导航系统是独立自主、技术先进的导航系统,已经成为我国重要的空间和信息化基础设施,在交通、通信、电力、金融、气象、海洋、国防等领域发挥重要作用。

2.4卫星导航差分系统

随着卫星定位技术的发展,差分技术被广泛应用。卫星定位精度也从最初的米级、分米级到最近的厘米级,使得导航卫星的应用更加广泛。

从1995年开始,中国海事局等15个单位联合在我国各海域建立了一系列航海无线电信标播发台,构成了一个中国沿海RBN-DGPS系统,GPS定位精度达到亚米级。对于海域定位、航道测量、船舶进出港等导航定位,以及海上资源的调查、海上救助、渔业等都有着深远的影响和帮助。而最近几年建设的CORS系统更是将GPS定位的精度提高到了厘米级,极大得提高了海洋测绘的能力和效率。

3展望

我国在GPS应用水平和产业化水平与发达国家还有很多差距,虽然中国也有自己的卫星定位――北斗卫星导航系统,但只能定位自己国家及周边国家和地区,而且民用化程度不高,定位精度也有待进一步提高。GPS系统占据了我国95%的卫星导航产业,其系统体系和产品体系都十分成熟,对我国北斗系统的应用和推广都有着一定的抑制作用。

但是伴随着北斗系统的发展和完善,GPS新技术如单点精密定位、网络RTK等技术的实现和应用,使得我们能够真正的在广阔的海域实现快速而又高精度的动、静态定位测量,海洋测绘将会进入一个新的里程,也将在我国建设海洋强国的道路上发挥巨大作用。

4结束语

由于我国海岸线漫长,海域辽阔,因此岛屿也异常众多。在众多岛屿之中,大约有四百多个岛屿是有人居住的。而且在幅员辽阔的海域下面还包含了大量的石油、天然气等资源,并且我国大部分经济发达城市都处于沿海线上,这众多因素综合在一起令我们不得不重视海域的测绘与管理,也给海洋测绘赋予了更为重大的意义。

而今伴随着信息技术、空间技术的发展,导航卫星定位的精度和可靠性进一步提高,我国自主研发的北斗卫星导航系统全面运行。我国的海洋测绘发展将会迎来一个崭新的局面。

参考文献

[1]翟国君,黄谟涛,欧阳永忠等.海洋测绘的现状与发展[J].测绘通报,2001(6):7~9.

[2]陈俊勇.全球导航卫星系统进展及其对导航定位的改善[J].大地测量与地球动力学,2009.

[3]张淼艳,张军,朱衍波.卫星导航系统HDOP和VDOP的研究[C].遥测遥控,2009.

第3篇:海洋测绘发展范文

关键词:多波束测量;海洋测绘;调整策略

多波束测深是当代海洋基础勘测技术中的一项高新技术,是计算机技术、导航定位技术和数字化传感器技术等多种技术的高度集成。在各种海洋调查测量中,如海道测量、海洋工程(包括水下钻探、海底管道、电缆、疏浚、填海工程测量)、地质编图(包括矿物探查、研究、电子海图制作)、军事应用(包括扫雷)、其它调查任务(沉船考古、生物栖息地的地形研究)等领域,多波束勘测技术都有着巨大的优势,并得到了广泛的应用。

1.多波束测深系统

1.1多波束测深系统是利用多波束原理进行海底测图和测量海底地貌的宽条带回声测深系统,是水声技术、计算机技术、导航定位技术和数字化传感器技术等多种技术的高度集成。其工作原理通过声波发射与接收换能器阵进行声波广角度定向发射、接收,在与航向垂直的垂面内形成条幅式高密度水深数据,能精确、快速地测出沿航线一定宽度条带内水下目标的大小、形状和高低变化,从而精确可靠地描绘出海底地形地貌的精细特征。与单波束回声测深仪相比,多波束测深系统具有测量覆盖范围大、测量速度快、精度和效率高、记录数字化和实时自动绘图等优点。

1.2测深时,载有多波束测深系统的船,每发射一个声脉冲,不仅可以获得船下方的垂直深度,而且可以同时获得与船的航迹相垂直的面内的几十个水深值。多波束测深系统一般由窄波束回声测深设备(换能器、测量船摇摆的传感装置、收发机等)和回声处理设备(计算机、数字磁带机、数字打印机、横向深度剖面显示器、实时等深线数字绘图仪、系统控制键盘等)两大部分组成。

1.3测深系统的回声处理设备较多。计算机可按预先给定的程序对各种数据和参数在船上实时处理;数字磁带机按规定的格式记录时间、导航数据、罗经航向、纵横摇摆以及各波束测得的水深和相对于船的横向距离等有关数据,以便后期处理;数字打印机可根据需要对所有记录数据进行监控;显示器对系统的模拟输出进行监视,直观显示横向深度剖面(海底轮廓线图);数字绘图机沿校正过的航迹标绘出等深线图,实时判读海底地貌的轮廓。

1.4多波束测深系统同单个宽波束的回声测深仪相比,具有横向覆盖范围大(为深度的几倍),波束窄(约为3°~5°),效率高等优点。适用于海上工程施工区和重要航道的较大面积的精确测量,也可以用于精确测定航行障碍物的位置、深度。它能绘出海底三维图形,消除了使用侧扫声呐时判读的困难。有的系统还可在冰覆盖区使用。

2.目前的多波测量技术与海洋测绘工序技术体系

海洋测量、数据库和产品化是海洋测绘体系的三个核心环节,它们相互依存,相互影响,共同发展。目前海洋测绘体系已完成了数字化技术改造,目前由控制、水深、地形等的测量到海图的编辑、加工和出版,全部实现了数字化。可是与纸质海图的工序相比,目前的海洋测绘的供需变化却不大,根本原因是由于整个技术的改造是参照纸质海图的工序实施的。

水深测量是海洋测绘的核心技术,目前由于单波束到多波束测量方式的改变,水深测量技术发生了重大的变革,实现了垒覆盖的海底地形测量。可是,如果不考虑改变目前的测量工序和要求,不仅不会减少海图产品化的时间和扩大海洋测绘产品的多样性。相反,由于数据量太大,却会增加海图出版机构的负担。

3.多波柬测量技术与海洋测绘工序的技术调整

多波束测量系统是计算机、导航定位与数字化传感器技术等多种技术的高度集成。通过安装在测船底部的探头发射和接收声波信号,由声波在水体中的传播时间与声速乘积即可计算出水深。探头由发射探头和接收换能器组成,有多达126个相互独立的接收换能器(定向旋转发射126个波束);接收信号通过声纳处理器再传到计算机。

多波束系统彻底改变了传统测深方法,在波束形成理论、勘测技术、校正与处理方法上形成了自身复杂的特点,在测量中需要加以注意,否则将严重影响勘测精度。

3.1多波束测量技术的影响因素

多波束测深系统采取多组阵和广角度发射与接收,形成条幅式高密度水深数据,是计算机、导航定位与数字化传感器技术等多种技术的高度集成。由于多波束系统横向、纵向测点都十分密集,这就需要由高精度GPS定位系统与之相配套。否则将造成测点位置错位,失去多波束系统勘测的意义,井使海底地形失真或畸变。因此,必须严格测量各个坐标定位数据,保证测量精度,以实现最佳(下转第82页)(上接第80页)的测量结果。

对多波束精度的影响因素主要包括:不同水域环境的音速对波束传播的影响、GPS定位对--坐标精度的影响、测船中换能器的相对位置,以及潮位改变对水深的影响等等。以坐标系的影响为例,由于多波束测深采用广角度定向发射、多阵列信号接收和多个波束的形成及处理等技术,为了更好的说明波束的空间关系和波束海底投影点的空间位置,首先必须定义好多波束测船参考坐标系。多波束系统的换能器不论是固定还是便携式安装,其相对测量船的位置总是不变的,因此测量船是多波束勘测最现实的参考工作平台。考虑到波束空间角度表达的便利,一般测量船参考坐标系原点选择在换能器对称中心,船只横向左舷方向为x轴,船只纵向船头方向为Y轴,船只铅垂向下为z轴。另外,运动传感器要严格安装在与船中轴平行的地方。多波束船参考坐标系是一种三坐标轴与船固定并随着船只运动而运动的坐标系,它使得多波束各测深点的相对位置与测量船只定位系统的大地空间位置建立了联系,同时也为进行传只补偿提供了空间关系和基本方法。因此,以上的坐标定位数据必须严格准确的测量。

通过实践试验可知,利用多波束测深系统,对声速、导航系统的定位、参考坐标系及潮位等影响因子加以注意,采用合理的测量方法以及对数据进行精细处理,完全能够测得准确可靠的水下地形图,发现水下地形的细微变化。

3.2海洋测绘工序的技术调整

由于技术工序的调整和测量重点的改变,必然导致海洋测绘方法和技术的变革,大量的成熟技术需要攻克,部分理论和方法需要修正。

多波束测量具有全覆盖、数据量大的特点,不改变目前的水深测量工序,要由多波束测量的源数据形成一个符合海图要求的水深数据是特别困难的,会极大地增加由水深测量到海图产品的时间差。结合Ns(航海表面)和H-Cell(按海图综合的方法由NS抽取的水澡点和等深线,同时叠加障碍物等要素组成的海图出版中的重要工序)的概念,同时参考NOAA(美国国家海洋大气管理局)的方式,调整了目前的水深测量工序。具体修测体系:

(1)水深测量数据改正和计算误差,形成网格化的NS。

(2)按照自动综合方法,由NS形成水深点和等深线H-Cel;

(3)障碍物探测数据改正,形成一个障碍物H-Cdll;

(4)不同的H-Cell叠加,嵌入海图的数据库,完成海图数据的修铡。

第4篇:海洋测绘发展范文

[关键词]近岸海洋;水深测量;研究

中图分类号:P229 文献标识码:A 文章编号:1009-914X(2015)36-0337-01

海洋勘察测绘是建设海洋强国的基础性工作,也是开发利用海洋自然资源与空间资源的根本保障工作。尽管相关的规范对于水深测量数据误差规定可以0.2m范围内,但水深测量的误差控制直接影响近海工程尤其是疏浚工程的经济效益,控制水深测量误差对于减少工程建设时的人力物力浪费现象进而达到提高工程效益的目的是相当重要的。

一、水深测量误差的原因分析及措施

1、水深测量误差原因分析

测量数据的误差一般由系统误差和人为误差共同影响而成的。对于改正水深测量误差,主要是关注其系统误差,系统误差影响因素一般包括仪器因素、声速因素、海况因素和船只因素等;而人为误差则是由不同的操作人员的技术水平及职业道德所决定的。

仪器因素主要指的是测深仪的相关的性能以及与其相配套的系统所造成的误差引起的水深测量误差,往往是引起水深测量误差的主要因素。某些型号的测深仪接受自身反射声波的精度不一样,当测深船在航行过程中,水中存在的障碍物会影响声波的反射情况,而测深仪对这类假声波不能做出正确的区分,从而影响水深测量的数据结果;另外测深仪可能由于使用时间超过其额定使用寿命导致其内部的元器件松动或老化,从而造成发出的波束以及仪器运转速度出现不规则的变化,从而对水深测量数据的精度造成直接影响。

通常采用的走航式水深测量方法,对声波的灵敏度依赖较大,因此,声波因素也是影响水深测量误差大小的重要因素。对于不同情况的海水环境、气候条件,水深测量之前声速设置精度对测量结果的影响是直接的。声速的设置准确与否需考虑海水盐度大小、含例、气压以及海水的温度等因素。一般认为当海水温度升高一摄氏度时,声波的传播速度增加约4.5m/s。例如所测水深为10米时,其声速按1490m/s和1500m/s两种情况设置,所得水深结果一般相差达10厘米,误差达1%,声速对水深测量的精度影响较为明显。

影响水深测量数据精度的海况因素包括海浪的大小和潮位观测的精度。海浪的起伏对于水深测量结果影响一般在10cm-20cm之间。潮位观测的精度受潮位站的位置条件和观测者的技术水平有关,应选择在风浪较小的区域进行潮位观测,观测读数应取波峰、波谷读数的平均值。

船只因素主要指的是船只的型号和测深仪换能器的安装使用对水深测量误差的影响。在海洋工程水深测量工作时选择合适的船只型号很重要。一般在水深较浅、风浪较小的海域进行水深测量时,建议选用船体较短小、活动灵活的船只;在水深较深,风浪较大海域进行水深测量工作时,建议选择吃水较深,稳性较好的船只。测深仪换能器安装于测深船只上时,需保证其处于垂直状态,建议用重锤进行检查,否则影响水深测量数据结果,倾斜角度越大,水深测量数据误差也越大。

2、减少水深测量误差的措施

要减少水深测量过程中的误差应注意以下几个方面:选择对测量工作有利的气象条件,尽量选择风力小、无浪的天气;需尽量选用精度高、耐用性好、稳定性能好的水深测量仪器;根据测区环境选择合适的测量船,测深仪换能器尽量安置测量船重心位置,如使用大型测量船应在测量前对船舶动吃水值进行测定。

二、无验潮模式与潮位改正模式的优缺点与误差分析

随着全球定位技术以及RTK技术的发展,RTK测量技术在沿海近岸以及内河航道的水深测量中的优越性日益凸显。RTK高程信号和Heave信号融合还可以提高最终测量成果的精度。RTK用于海洋测绘有两种方式:架设基站方法和网络RTK方法,架设基站发射功率高、信号强,一般不会发生信号中断的情况,但是需要多一台GPS接收机作为基准站,还需要有专人看守,比较麻烦;CORS网络RTK高程测量的中误差为0.022米,只需要一张手机卡,在手机有信号的地方就可以实现测量,缺点是:有时会因为网络原因导致信号中断,信号一旦中断就会造成数据的丢失,必须及时发现,测量船掉头重新测量,这样严重影响了施测效率。

潮位改正模式一般是用信标机定位,用验潮仪采集水面高程或直接读取潮位数据。信标机定位精度较低但对于海洋测绘精度足够,网络稳定。

测量船在海上受涌浪的影响会发生倾斜,由于无验潮模式用来计算水下高程的测量值是GPS椭球高经过似大地水准面精化后推算的85高程,而潮位改正模式使用的是海水面,二者受测船倾斜影响而产生的高程误差不同,如图1所示:测船受涌浪的影响而倾斜,图上三角形的斜边是声线,根据相似三角形原理有:

(1)

其中H水:水面到海底的垂直高度,S水:测量水深记录值,HG:GPS接收机到海底的高度,SG:GPS接收机到海底的测量记录值。接收机为了得到良好的信号需要离开测船一定高度,所以SG>S水。

(SG―HG)>(S水―H水)(2)

从以上分析可知:记录值与真实值的差距(误差),无验潮模式大于潮位改正模式,船舶横摇纵摇对无验潮模式测深精度影响更大。

三、验证潮位改正精度的一种方法

海洋测绘是测量船在海面上测量海底相对于海水面的深度,而海水面由于日月引力的影响周而复始地做固定周期的升降运动,因此必须确定一个固定的深度基准作为参考(如85高程基准),一般选择当地理论深度基准面,将瞬时测量的水深值归算到当地理论深度基准面就需要设立验潮站测量海面的瞬时高程值进行潮位改正。潮位改正的目的是尽可能地消除测深数据中的海洋潮汐影响,将测深数据转化为以当地理论深度基准面为基准的水深数据。 在实际测量中不可能观测测区内每一时刻的潮汐变化值,所以,水位观测通常以“点”代“面”的改正方法。潮位改正方法主要有单站潮位改正法、线性内插法、水位分带法、时差法和参数法等,每种方法都有自己的假设条件,所以在水位改正时存在一定的误差。

目前,我国对于水位改正的精度还没有给出具体的规定,但是GB12327―1998《海道测量规范》给出了“相邻验潮站之间的距离应满足最大潮高差不大于1m,最大潮时差不大于2h,且潮汐性质基本相同”的规定。考虑到现在高速发展的海洋测绘技术以及仪器条件比颁布《海道测量规范》时要高许多,可以用外推法或者内插法对潮位数据的精度进行一定的评估,具体方法是:在确立验潮站布设方案之后,在呈三角形设置的验潮站中间位置投放一自容式验潮仪(或者人工在测区内的几个小岛上不同时间不同位置分别观测7h)与水位分带法计算的该位置的潮位值比较,以确定分带法潮位改正的精度。

结论

海洋测绘是一门多传感器协同作业的数据采集与处理技术,集GPS空间定位、海洋声学测深、声速测量、潮位测量等于一体,要提高海洋测绘数据精度必须从施测的每一个环节入手分析。换能器船舷安装时测线方向应该尽量设计与波向涌向一致;测船横摇纵摇对无验潮测深模式的影响较验潮模式更大;潮位的内插改正精度是可以通过多余观测来实现评定的。

参考文献

第5篇:海洋测绘发展范文

英文名称:Acta Geodaetica et Cartographica Sinica

主管单位:中国科学技术协会

主办单位:中国测绘学会

出版周期:双月刊

出版地址:北京市

种:中文

本:大16开

国际刊号:

国内刊号:

邮发代号:

发行范围:国内外统一发行

创刊时间:1957

期刊收录:

CBST 科学技术文献速报(日)(2009)

EI 工程索引(美)(2009)

中国科学引文数据库(CSCD―2008)

核心期刊:

中文核心期刊(2008)

中文核心期刊(2004)

中文核心期刊(2000)

中文核心期刊(1996)

中文核心期刊(1992)

期刊荣誉:

Caj-cd规范获奖期刊

联系方式

第6篇:海洋测绘发展范文

摘要:

多波束水柱数据携带了波束从换能器到海底的完整声学信息,可用于探测海面至海底的声照射目标。通过对多波束原始水柱数据文件(*.all,*.wcd)解析,分析提取水柱数据绘制其航向剖面图、垂直剖面图和波束阵列图。利用水柱影像分析工具可清晰判断水体中目标物的形状、大小和位置,获得传统多波束深度测量无法探测到的细小特征。实例分析表明,研发的水柱影像分析工具在水柱成像及水体目标探测识别中有着重要应用价值。

关键词:

海洋测量;多波束测深;水柱影像;水柱数据;目标探测

1引言

多波束声纳水柱影像在水下目标探测中应用广泛[1],可反映声波穿透区整个水体中目标物反射信息[2]。在探测航道碍航物[3]、沉船[4-5]、水雷和潜艇等民用和军事目标,监测海底热液喷口、气层泄露[6]、海洋内波[7]等海洋环境活动中有着重要作用和应用前景。随着多波束技术研究和硬件设备的发展,大部分多波束测量系统拥有测量水深数据同时记录水柱数据的能力。国外研究者开始发掘其中的重要价值,Marques[8]研究表明多波束水柱影像可用于识别和精确定位海水中悬浮目标,用于海洋学研究、海事搜救和打捞、军事应用以及地质活动跟踪。Auke[3]使用水柱数据分析了沉船桅杆等物体的成像和跟踪能力。HugeClarke[4-5]等提出使用多波束水柱数据成像并改进精化沉船的最浅深度。多波束水柱信息尚是一个新生事物,在目前国际上还未推广应用,国内学者对其研究甚少。同时,许多厂商采集的水柱信息采用自定义的格式存储,成像、处理与分析软件极其缺乏。本文对KongsbergSimrad公司生产的EM系列多波束声纳系统采集的原始水柱数据文件(*.all和*.wcd)进行结构分析、数据提取和水柱成像分析工具的设计与开发。将水体目标以不同视野清晰显示,辅助测量人员对目标物的形状、大小以及位置等信息进行判断,获取传统多波束深度测量无法探测的详尽水体中目标信息。

2水柱影像分析工具设计实现

分析工具基于MicrosoftVisualStudio2010MFC平台进行界面设计和程序实现,分为显示和分析两个模块。显示模块主要对航向、垂向以及波束阵列方式进行影像显示;分析模块则提供在时间序列和角度序列上的数据变化信息,主要用于后续研究。为了使图像能更清晰完整地反映水体中目标特征,引入了图像插值和灰度变换技术,进一步提高了目标识别率和成像效果。

2.1水柱成像原理

多波束声纳工作时,换能器发射基元阵列持续发射声波,声波从水体至海底经过反向散射后,再由接收换能器对回波信号进行接收。对于传统的深度测量,仅探测代表波束脚印中心处的平均往返时间或相位变化[9];而水柱数据则是采集沿探测波束方向上反向散射强度的时序观测量,其采样个数是同时水深测量的成百上千倍。在不考虑声速、水深环境、海底起伏等因素下,随着测量船的行进,每条测线可获得一个三角柱体,见图1。水柱数据采集为等时间采样模式,根据仪器设定的脉冲宽度和采样频率决定当前水深环境下波束序列的采样点个数,结合声波在水中传播速度以及波束入射角可计算当前采样点在换能器坐标系下的位置,见公式(1)。R=n×ssf(1)式中,R为当前采样点到换能器的距离;n为波束采样点点号;ss为声波在海水中传播速度;f为采样点的采样频率。

2.2显示模块设计

根据不同视角将水柱影像成像设计为航向、垂向和波束阵列3个显示模块,分别与其水柱影像图对应显示。测量船沿测线方向连续采样时,将当前测线下采集到的所有水柱采样点按照其反向散射强度大小堆叠投影至YOZ平面(图1),即生成水柱影像航向图(图2(a));每一瞬时发射接收周期(Ping)下所有反向散射强度采样点进行归位计算后全部绘制到XOZ平面(图1),即为水柱影像垂向图(图2(b));将当前Ping下所有采样点按照其所在波束角和采样点号依次平行排列则生成波束阵列图(图2(c))。航向显示模块中可查看在当前测线较长时间间隔下水柱中央内部的变化,对水体中存在的连续目标物及其走势进行整体观察和判断;垂向显示模块对采集的每Ping数据进行检查,可查看每一瞬时切面下水体内部及海底信息;波束阵列图则是将每Ping采集到的全部采样点数据尽数展绘,可避免数据的遗漏。3个显示模块相互辅助可提高水柱影像目标查找准确性。

2.3分析模块

为准确判断水体目标物的位置和反向散射强度等信息,需要对其所在角度波束的时间序列以及其相同旅行时处的角度序列进行分析。时间序列以波束传播时间为横坐标,角度序列以波束角为横坐标,纵坐标均为反向散射强度(图3)。通过垂向显示模块初步判断目标物存在,选择目标物所在同范围曲线,根据角度序列图中峰值位置判断目标物所在波束角,选择目标所在角度的时间序列图,精确判断目标物位置。

3关键技术及主要功能

3.1八邻域插值

采集的原始水柱文件中,反向散射强度数据是按照波束角和采样点号依次排列的,当归算到直角坐标系时,波束边缘出现空值,导致影像显示不完整,极大影响影像识别。因此,须对在波束角范围内的采样空值点进行插值。数据解析中已知强度值区间为-64~0dB,空值区为0。定义一个3×3插值算子,算子中心O处灰度值为f(O),如果出现空值点,f(O)=0,此时取与空值点邻近的8个采样点中非空值的平均值作为f(O)的值(图4)。此方法可将待插值点和其周边采样点值相关联,符合坐标转化后的角度空值区的填补规律,十分便捷有效。插值前后细节区域对比效果见图5。

3.2影像增强

3.2.1灰度变换

水柱数据成像时,将反向散射强度数据与灰度数据相关联,即可生成原始水柱影像(图6(a))。此时影像直方图中目标灰度较为集中,且其灰度值总体较小,所成影像目标与背景较为相近,难以区分,目标成像不清晰。为使提升影像识别和细节表征能力,对原始影像进行如下灰度变换:灰度取反(图6(b))、灰度增加(图6(c))、灰度减小(图6(d))、线性增强(图6(e))、直方图均衡化(图6(f))。取反变换是对原影像中的灰度进行取反操作,实现底片效果;灰度增加和减小两种变换是对影像加上或减去一定灰度值对其进行再现;线性变化是对所有灰度值乘上固定的系数,使灰度覆盖范围扩大或缩小;直方图均衡变换是通过使用累积分布函数见公式(2)对灰度值进行“调整”,把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。Sk=255×∑kj=0njn(2)式中,k=0,1,2,...,L-1;Sk为均衡化后的灰度值;n为影像像素总数;nj为影像中某个灰度色阶j的像素数量;j的范围为0~k;L为影像可能的灰度级数。

3.2.2变换效果分析

通过图6中各种灰度变换后的水柱影像图及其灰度直方图,可以直观看到灰度变换的效果。虽然灰度取反、增加和减小对影像可见度有部分改善,但线性增强和直方图均衡化对影像优化更加明显。线性增强可根据用户设定的缩放参数对图像进行灰度缩放,调整至最优视图。直方图均衡化则表现了更优秀的成像能力,增强对比度,大大减少对弱回声目标的遗漏现象。综合比较后,直方图均衡变换方法是适合水柱二维影像灰度变换较为理想的方法。分析工具提供了以上各种变换,用户可根据需要选择适宜的灰度变换方法。

4实例分析

本次实验对象为1991年被作为休闲潜水设施沉没的货船MVG.B.Church,它沉没区域的水深约为24~27m,船身长54m,甲板上绳索齐全,桅杆和吊艇架均完整存在。实验对象在沉没前被测量并拍照记录,其突起物大小、特征和位置均有据可查。实验多波束设备为EM3002型号,同时采集测深数据和水柱数据,原始水柱文件记录数据类型为*.all格式。读入文件后可在水柱影像分析工具的主界面看到航向和垂向两个显示模块。航向显示模块中可观察到沿航迹线方向上有疑似沉船目标物的存在,并能看到其桅杆、绳索等细部特征物。在航向显示窗口中选择目标Ping后即在下方窗口中显示其垂向图。本例为桅杆所在Ping,此时可在右侧波束信息显示区域得知桅杆所在Ping号为58131,其波束开角为129.66°,波束数为160个,当前声速值为1477.2m/s,采样频率为7146.5Hz,海底深度为26.7m。根据设计的深度拾取功能还可查看桅杆最浅点的深度值约为4.1m。若使用波束阵列显示模块,则可得到目标Ping的波束阵列图(图2(c))。使用分析模块对水柱影像进一步分析时,可选择指定波束角和相同范围曲线,即得到相应的时间序列图和角度序列图(图3)。通过分析,可进一步确定沉船细节部分所在波束角、相对于换能器的位置以及目标物反向散射强度等重要信息。由于桅杆目标较为细长,传统的多波束测深时未能将其作为底部采样值记录或者将其作为噪声点过滤,此时不能得到此区域正确的最浅深度,危及航行安全。而在水柱影像中能够清晰观察到桅杆的存在,并可通过分析工具判断桅杆所在位置的最浅点。水柱影像图中还可观察到将环境噪声和旁瓣噪声的存在,如径向噪声、镜面回波和第一回波。由于海底反射较为强烈,导致海底所在相同范围曲线上所有采样点反向散射强度值增加,继而会掩盖部分区域真实目标。因此在水柱数据采集时,为保证水体目标物拥有较好的可视度,应使其分布在最小斜距范围以内。

5结束语

水柱影像提供了水体中目标物更丰富的细节信息,可用来辅助多波束测深数据处理。但由于其数据量较大以及其格式的不统一,给研究者带来了困难。本文介绍了一种多波束声纳水柱影像分析工具,可对*.all和*.wcd格式的原始水柱数据解析成图。并使用八邻域插值法以及直方图均衡等灰度变换法对水柱影像可视度和目标可见度进行较大改善。同时,可对影像图、时间序列和角度序列等原始数据进行提取保存,为进一步的分析研究奠定基础。通过实例验证了分析工具的功能性以及水柱影像的更为详尽的细节记录和重现能力,可作为辅助多波束测深以及水体目标探测分析的有效工具。

参考文献:

[1]阳凡林,韩李涛,王瑞富,等.多波束声纳水柱影像探测中底层水域目标的研究进展[J].山东科技大学学报:自然科学版,2013,32(6):75-82.

[2]丁继胜,董立峰,唐秋华,等.高分辨率多波束声纳系统海底目标物检测技术[J].海洋测绘.2014,34(5):62-64.

[9]赵建虎.多波束测深及图像数据处理方法[M].武汉:武汉大学出版社,2006.

[10]丁继胜,周兴华,吴永亭,等.多波束回声测深系统测量数据的分离提取方法[J].海洋测绘,2006,26(4):33-35.

[11]王煜,赵英俊,阳凡林,等.EM300X系列多波束ALL数据格式解析[A].山东科技大学学报:自然科学版,2009,28(5):16-22.

第7篇:海洋测绘发展范文

一、测绘学的现展

空间技术,各类对地观测卫星使人类有了对地球整体进行观察和测绘的工具,好象可以把地球摆在实验室进行观察研究一样方便。由空间技术和其它相关技术,如由计算机、信息、通讯等技术发展起来的3S技术(GPS、RS、GIS)在测绘学中的不断出现和应用,使测绘学从理论到手段都发生了根本的变化。测绘生产任务也由传统的纸上或类似介质的地图编制、生产和更新发展到地理空间数据的采集、处理和管理。GPS的出现革新了传统的定位方式;传统的摄影测量数据采集技术已由遥感卫星或数字摄影获得的影像所代替,测绘人员在室内借助高速高容量计算机和专用配套设备对遥感影象或信号记录数据进行地表(甚至地壳浅层)几何和物理信息的提取和变换,得出数字化地理信息产品,由此制作各类可供社会使用的专用地图等测绘产品。我国960万平方公里国土的国家基本地图的成图或更新周期可望从十几年,几十年缩短到几年或更短,测绘业的体力劳动得到解放,生产力得到大的提高。今天,光缆通讯、卫星通讯、数字化多媒体网络技术可使测绘产品从单一纸质信息转变为磁盘和光盘等电子信息,产品分发可从单一邮路转到"电路"(数字通讯和计算机网络传真),测绘产品的形式和服务社会的方式由于信息技术的支持发生了很大变化,进入了信息化的发展。当前,随着我国经济的高速发展和经济所有制成份和运行体制的改革,需要开放民用国家测绘产品;从技术方面看,西方国家卫星测地技术可制作全球几乎任一地区1米分辨率(相当1∶1万比例尺)的地图,卫星上的GPS又可将这种地图纳入全球参考框架和转换为他们的国家坐标系,中、小比例尺国家地图的保密价值已大大降低;对于军事敏感的重力数据,卫星重力技术所发展的低阶全球重力场模型已足够用于他们的远程战略导弹发射。目前全球高阶重力场模型(如EGM96)分辨率已达50公里,已接近我国现有重力数据的分辨率,其保密价值也需要重新评估。这一形势使绝大部份测绘产品可以作为普通商品服务于全社会,测绘业从单一国家事业逐渐转变为社会主义市场经济的产业,这无疑为测绘学的发展注入了新的活力和扩大了发展空间,这也是一个有重要意义的历史性转变。

综上所述,由于以空间技术、计算机技术、通讯技术和信息技术为支柱的测绘高新技术日新月异的迅猛发展,测绘学的理论基础、测绘工程的技术体系、其研究领域和学科目标,正在适应新形势的需要发生着深刻的变化,表现为正在以高新技术为支撑和动力,进入市场竞争求发展,测绘业已成为一项重要的信息产业。它的服务范围和对象也在不断扩大,不仅是原来的单纯从控制到测图,为国家制作基本地形图的任务,而是扩大到国民经济和国防建设中与空间数据有关的各个领域。它必将随着21世纪更加成熟的信息化社会的到来向更高层次发展,在未来数字地球的概念和技术框架中占据重要的基础性地位。

二、数字地球和现代测绘学

地球上一切事件都发生在一定的空间位置,人类社会经济活动所需要的信息绝大部分(约80%)都与地理位置相关。中国21世纪议程62个优先发展项目中,约有40个需要建立或应用地理信息系统。数字地球是利用海量地理信息(即地球空间数据)对地球所做的多分辨率、三维的数字化描述的整体信息模型,便于人类最大限度地实现信息资源的共享和合理使用,为人类认识、改造和保护地球提供一种新的手段,这里在数字地球的概念中突出显示了地理坐标的框架作用,因此NSDI是数字地球的基础设施,要求提供(地球)空间数据框架,包括大地测量控制框架(国家定位网和重力控制网)、数字正射影像、数字高程模型、道路、水系、行政境界、公共地藉等基础地理数据集。在此框架上加载各类地球自然信息和人类社会经济活动等一切所需要和感兴趣的人文信息。为数字地球提供上述地球空间数据框架是测绘业本身的"专职",但又对测绘学提出了更高层的技术要求。

NSDI要建立在NII上,要在因特网上运行,要求开发功能强、效率高的因特网GIS软件。这表明还要大力发展测绘产品的计算机网络技术,它的技术基础是宽带、高速图形图象网络,当然其中宽带高速问题需要国家投资在NII中解决。数字地球构想的另一个高技术特点是虚拟现实模型。目前发展起来的全数字化摄影测量就能够利用功能强大的计算机系统或工作站,对数字化影象进行处理,建立立体地形或地物虚拟模型。但如何将这一技术用在因特网上对多种测绘产品和普通用户提供虚拟模型甚或虚拟现实模型,则是要进一步研究和发展的。数字地球是对真实地球及其相关现象的多分辨率、统一性的三维数字化整体表达,这里强调了统一性和整体性,要求全球多源数据无缝无边的连结和整合。从空间数据框架来说,其统一性和整体性是由大地测量来实现和给予保证的。大地测量是传统测绘的基础,对当前信息化测绘和构建未来数字地球更是基础的基础,即空间数据框架的框架。它要求全球采用统一的参考椭球模型和相应的地心坐标参考框架(如ITRF);全球统一的高程基准,即统一定义和使用的大地水准面;全球统一的重力测量基准(重力基本网);全球统一的地图投影系统。一切原有的测绘成果,特别是国家基本地图都要转换到上述全球统一的参考系中。数字地球对全球大地测量提出了更高更紧迫的要求。GPS配以少量SLR和VLBI站是各国保持和维护各自的地心参考框架的基本技术,但局部坐标到全球坐标的转换目前还难于达到优于米级的精度;全球高程系统的统一问题,大地测量学家经过几十年的研究,目前还是一个未能解决的难题,最终要通过全球重力数据,特别是新一代卫星重力计划和卫星海洋测高计划在国际大地测量协会的统筹和协调下实现。

海洋占全球面积的70%,海洋将是21世纪资源开发的主要竞争空间,海洋动力环境的变化(如厄尔尼诺现象)又是决定全球气候变化的主要控制"阀门"。数字地球向海洋测绘提出了挑战。从全球来说,目前海洋的精细测绘基本上还是空白,多波束测深技术的发展加速了各国领海海底地形的测绘,但要将陆地坐标参考框架以相近的精度扩展到海洋仍存在困难,海上GPS定位精度还低于5米;由于陆地高程基准不能用水准测量传递到海洋,在卫星测高技术的支持下用某种去掉潮汐影响的平均海面作深度基准,精度可达米级,和多波束测深精度相当。但广大的开阔深海的海底地形测绘不可能用船载测深仪完成,用卫星测高结合重力数据(低阶或中阶重力场模型)反演海底地形,目前试验精度可达10-100米。数字地球将要求海洋测绘技术有新的突破。

测绘学由于其技术的突破已日益向相关地学领域渗透。大地测量更成为研究地球动力学(包括海洋动力甚至大气动力)的重要技术手段,GPS监测已能提供全球板块运动和地壳形变精密数据,可用于研究地学灾害(地震、滑坡和火山爆发等)的预测;GPS已可以和VLBI相近的精度和频谱分辨率监测地球自转的变化,由此研究地球深部结构和动力过程及全球变化;专题GIS也成为环境灾害问题分析预测工具。数字地球最重要的功能之一是为解决21世纪人类面临的环境和灾害问题提供一个可供观察、分析、模拟和预测的全球信息系统,以期协调人与自然的关系。

我们赞成活数字地球或动态数字地球的提法,因为人类是生活在不断运动变化的地球上。现在在全球性的观测中,各种对地观测新技术已可能连续快速获取地球表面(或浅层)随时间变化的几何和物理信息,了解地球上各种现象及其变化。因此测绘学或者说测绘业则应当利用3S技术结合合成孔经雷达干涉技术(INSAR)以及其他新技术(如卫星重力探测技术等)对地进行观测,为构建活数字地球提供描述地球动态变化的地理信息产品。

数字地球构想是推动人类大踏步跨进信息社会的重大战略步骤,有挑战也有风险。测绘是数字地球的基础,测绘工作者也将是构造数字地球的"尖兵",也要求测绘学有新的发展和突破。

三、测绘学和地球空间信息学

在本文第一部分已谈及测绘学在新的技术进步推动下的现展趋势。从现代信息论的观点看,测绘学本质上就是一门关于地球空间信息的学科,传统的测绘受地面测量技术、时空尺度和精度水平以及投入的局限,其产品主要是单一的地形图和在地形图基础上编绘的专用地图。它不能反映、至少不能及时反映地球表面形态的变化,特别是大范围和全球变化。其产品制作周期长,已不能满足地区经济和全球经济高速发展的多种需要。信息技术加快了人类社会的运行速度。测绘学应该是提供人类生存空间自然环境及其变化信息的学科,它的学科内涵发生了巨大的变化,因此如何界定测绘学的含义,已是世界各国测绘工作者所关注的问题。于是从90年代开始,国际上将测绘学(SurveyingandMapping)更改为一个新词,以准确反映学科实质,Geomatics一词由此应运而生。随后,有关Geomatics的提法在我国学术界,主要是地学界成为热门话题,由于对其含义理解不同,其中文译名也是五花八门,现在将它译成"地球空间信息学",已基本得到认同。不管人们对Geomatics的含义如何理解,但根据ISO的标准定义和国际测绘联合会(IUSM)对"测绘学"的定义,两者的含义是基本类同的,只不过Geomatics所涉及的地球空间信息的范围更宽一些。Geomatics更准确地描述了测绘学在现代信息〖CD2〗通讯社会中的地位和作用,适应了现代社会对地球空间信息的极大需求的特点,因而发展和提高了测绘学的研究和工作领域,符合现代测绘学发展的实际。现代测绘工程的核心技术是空间技术,包括GPS、卫星遥感和航测,测绘的范围扩展到整个近地空间,例如近地空间航天器的导航定位,近地空间重力场的测定,大气层甚至电离层的信息;其支撑技术是信息技术,主要处理电磁波信息和影像信息,加之通讯、计算机网络等信息技术,使地球空间信息学科的理论和技术体系比传统的测绘学有了很大的发展和更新,由此,Geomatics适合于纳入数字地球的理论和技术框架。

随着数字地球构想的实施,测绘学面临一个历史性的发展新机遇,传统的或现代测绘学将以地球空间信息学的新面目立于地球科学分支学科之林,以更强的活力向前发展,前景良好。

四、建议

本文漫谈了测绘学的发展及其与数字地球构想的关系。为在21世纪加速建设我国空间数据基础设施,发展我国的测绘学科和测绘事业,以迎接"数字地球"的挑战,根据我国目前测绘事业发展的现状,从一个侧面(主要是大地测量方面)提出以下建议:

1.尽快统一我国大地定位参考框架的建设,对近年来由各个部门独立建立的各等级GPS定位网进行必要的联测和统一整体平差,此举可望进一步加强国家级的大地定位框架;

2.将沿海各部门100多个验潮站统一组织GPS联测,精密确定各验潮站水位标尺零点的大地高,填补陆海相接地带重力测量空白。此举为统一陆海大地水准面,建立海洋高程基准,研究海平面变化至关重要;

3.研究将陆地GPS定位框架向我国领海扩展的方案,着手建立我国包括海域的广域差分GPS定位系统;

4.尽快完成重建我国重力基本网,发展航空重力测量系统,加密西部地区重力测量和GPS水准,加大力度支持对卫星测高数据的利用,为下世纪确定我国亚分米级或厘米级大地水准面作好数据储备,建立可在因特网上运行的新的重力数据库;

第8篇:海洋测绘发展范文

关键词:海洋测绘水下地形 平面定位 水深测量

中图分类号:P24 文献标识码:A

1 概述

同陆地一样,海洋与江河湖泊开发的前期基础性工作也是测绘。不同的是,海洋测绘是测量水下地形图或水深图。兴建港口、水上运输、海上采油、海底探矿、海洋捕捞,发展水产、海域划界,海战保障、监测海底运动,研究地球动力等任务都需要各种内容的水下地形测量。 水下地形测量主要包括定位和测深两大部分。定位的作用是不言而喻的,目前的水上定位手段有光学仪器定位、无线电定位、水声定位、卫星定位和组合定位。[1]平面位置的控制基础主要是陆上已有的国家等级控制点,卫星定位如采用差分方式,其岸台亦多采用已知控制点,以求坐标系统的统一。水上定位同时, 测量水的深度是确定水下地形的重要内容。测深与定位是必须瞬时同步进行的工作,都是描述水底地形的要素。但规范规定的测深中误差要求却不是一个定值,而是随着使用方法不同、所测深度不同以及是否感潮水域而有不同的精度要求。

2 水下地形测量技术

2.1 水下地形测量的发展历史

水下地形测量的发展是与测深手段的不断完善紧密相连的。在回声测深仪问世之前,主要的测深工具是测深铅锤和测深杆。这种测深方法不仅精度很低,费时费力,而且对于测量现场的要求很高,例如为了保证精度测量的水深不能过深,测量只能在测船停泊的时候进行定点测量,风浪对测量精度的影响非常大。20世纪60年代, 出现了侧扫声纳, 可探测船一侧( 或两侧) 一定面积海域内的水下障碍物和水底地貌,可以取得类似于航摄效果的水底表面声学图像。20世纪70年代, 又出现了多波束测深系统, 它能一次给出与航线垂直的平面内几十个甚至百余个海底被测点的水深值, 形成一定宽度的全覆盖的水深条带, 可以比较可靠地反映出水下地形的细微起伏, 比单一测线的水深测量确定水下地形更真实。目前,多波速测深系统正向小型化发展,适用浅水海域和简易船只的新产品已经有售。20世纪80年代以后, 又推出了高效率的机载激光测深系统, 激光光束的高分辨率能获得海底传真图像, 从而可以详细调查海底地貌和底质。美国国防制图局于1990年研制的ABS机载水深测量系统, 除包括一台激光测深仪外, 还有一台多光谱扫描仪和一台电磁剖面仪, 能够在各种环境条件下, 在飞机上利用激光、光谱和电磁测量几种方法互补快速测制沿海的水下地形图。这些手段一般可测深30~50m,精度在±0.3m左右。目前, 还可以利用卫星上安装合成孔径雷达(SAR)等设备对海面遥感摄影, 通过对照片处理确定水深。需要强调的是,以上水深测量得到的瞬时值存在着仪器、潮汐等因素的影响。因此,需在数据后处理中加入相关改正,并归算至统一的高程基准面。为了与陆上地形图实现拼接,水下地形图宜采用与陆地统一的高程基准。而为航海服务的海图通常采用理论深度基准面, 它和平均海面相差一个常数。国外少数国家,在水下工程施工前, 还利用潜水器携带水下立体摄影机获取水下地形的立体相片,或者利用高分辨率声学系统采取全息摄影技术测量水下地形。在特殊地区还可利用水下经纬仪、水下激光测距仪、水下气压水准仪和水下液体比重水准仪、水下电视摄影系统测量水下地形。

2.2 水下地形测量方法

2.2.1 测深仪的选择

当前常见测深主要靠回声测深仪进行。利用水声换能器垂直向下发射声波并接收水底回波, 根据回波时间和声速来确定被测点的水深, 通过水深的变化就可以了解水下地形的情况。[2]为提高发射功率,改善方向性,回声测深仪的换能器从单个发展到多个;为扩大探测面积,从单波束发展为多波束,他能一次给出与航线相垂直的平面内几十个海底被测点水深值,或者测出航线一定宽度的全覆盖的水深条带。并应用了计算机和数字显示技术,提高了精确度,扩大了使用范围。

测深仪的测深精度与测深仪的固有误差、水温、水深、河床类型等因素有关,而与比例尺无关。实际测深精度为:

δ2深度比例误差=h深度 * 1/100

δ实际定位=[(δ2测深仪固有误差+δ2深度比例尺误差+δ2湿度+δ2盐度+…)/n]1/2

从公式可以看到,测深精度的主要误差源在于深度比例误差,因而在选择设备时,应尽量选择大量程、高灵敏度的测深仪。测深仪机型可分为单频测深仪和双频测深仪。单频测深仪可满足一般的深度测量需求,但对于兼有淤积、土方计算类型的测量就变得困难,因后者水深测量需要测定两个深度,一个为表层深度,另一个为积岩深度,故只有用具有两个不同探测频率的双频测深仪才可实现。[3]

2.2.2 常规水下地形测量

常规水下地形测量的工作包括测深、定位和水位观测三部分内容。首先在河道两岸建立一定密度的控制点,布设一定数量的水位站,要考虑到水位站的控制范围与测深精度、瞬时水位差、水位改正模型之间的关系,水位站的密度必须满足控制范围内内插后的水位精度。具体作业时运用GPS和导航软件对测深船进行定位,并指导测深船在指定测量断面上航行,导航软件或测深系统每隔一个时间段自动记录观测数据。测量数据处理主要包括坐标转换、声速改正、水位改正、时间同步改正、地形图生成等。

2.2.3 无验潮模式下GPS-RTK水深测量

常规的水下地形测量是用GPS测定水底点的平面位置,利用测深仪测定水深,通过对潮位、测船吃水等参数的改正,得到定位点高程。但是由于水面比降、潮汐等影响,使验潮站之间与待测位置之间的距离受到一定的限制,必须设置验潮站测量水位,推算潮汐传播规律。由于快速逼近整周模糊度技术的出现和不断改进,整周未知数可以迅速确定,从而保证了GPS实时载波相位差分(RTK)可以在动态环境下,实时地以厘米级的精度给出用户站的三维坐标。采用RTK技术可实时精确求得测定两点之间的相对高差,通过该高差可反算出流动站GPS相位中心的高程,该高程同基准站具有相同的高程基准面。但RTK得到的是WGS84坐标系中的高程,属于大地高程系统。如果能将该大地高转换成正常高或正高,就可以直接确定水下地形点的高程而无需进行验潮,因此称之为免验潮的水下地形测量。该测量方法摈弃了传统水下地形测量对潮位观测的严格需求,直接获得水底点高程,操作和实施方便、快捷。但上述方法同传统的测量方法一样,存在着船体姿态对测量成果精度的影响。在水面条件平稳情况下,姿态对测量精度影响较小;反之,影响较大时,必须进行测量和补偿。[4]

3 结语

随着计算机技术、空间技术和通讯技术的飞速发展,水下地形测量装备正在朝着系统功能更加集成化,系统外观更加小型化和轻便型方向发展。随着测量理论研究和测量手段的变化,测量精度将明显提高。具有面状测量功能的多波速测量系统将被广泛应用,各种水声校准设备的使用也将提高声纳设备的测量精度。数据采集和处理软件将得到进一步的发展,功能将满足不同用户的特殊要求。整个系统的简化和发展,使水下地形测量有着更加光明的未来。[5]

参考文献:

[1] 梁开龙. 水下地形测量[J]. 测绘通报, 2001,(06):16.

[2]于岱峰,李良良,李登富. 新旧水下地形测量方法浅析[J]. 山东建材, 2008,(02):63~65.

[3] 周军根. 水下地形测量技术方案的探讨[J]. 四川测绘, 2003,(03):137~140.

[4] 路武生. 水下地形测量原理与方法研究[J]. 科技创新导报, 2009,(26):191.

第9篇:海洋测绘发展范文

关键词:信息化;测绘技术;信息化测绘

Abstract: with the development of economic society and the information technology rapid progress, people not only to the demand of information of surveying and mapping in rapid ascension, but also directly promote the surveying and mapping technology with the integration of information technology with the union. Therefore, in the current informationization background, discusses the application and development of surveying and mapping technology, have important practical significance.

Keywords: information; Surveying and mapping technology; Informatization surveying and mapping

中图分类号:TU74 文献标识码:A 文章编号

0引言

随着经济社会的发展和信息化技术的飞速进步,不仅人们对测绘信息的需求在迅猛提升,而且也直接推动了测绘技术同信息技术的接轨与结合。当今世界各国都把加速信息化进程视为新型发展战略,因而测绘信息服务的方式和内容在国家信息化的大环境下发生了深刻变化,由此促进了测绘信息化的发展,推动测绘事业优化升级,充分发挥测绘在国家经济建设和社会发展中的作用,继而催生了信息化测绘的新概念。信息化测绘体系建设是当前和今后一个时期我国测绘事业发展的战略任务。因此,在当前的信息化背景下,探讨测绘技术的应用和发展,具有重要的现实意义。

1信息化背景下测绘技术的具体应用

1、电子政务中的测绘技术

电子政务的最终目标是建立信息时代下的政府管理和服务机制。随着信息化、网络化的迅速发展,电子政务也迅速发展,并将因此简化政府与企业、政府与个人的互动联系,提高政府的服务效率,降低政府工作成本。目前使用的各种比例尺和地形数据库还远没有达到电子政务和国家宏观决策分析使用的需要,但只要各级政府、各经济部门加强对电子政务的普及和发展,加强对政府地理信息及其应用系统的信息内容、标准、安全、运行机制的培训和监管,政府电子政务的建设与应用将展现广阔的前景。

2、电子商务中的测绘技术

近几年,电子商务在互联网的普及下形成并快速发展,逐渐形成了B2B(企业对企业)和B2C(企业对消费者)两种网上销售模式,这两种模式节省了企业和企业、客户和企业的时间和空间,大大提高了交易效率。政府、企业、个人家庭之间完全可以通过互联网联结起来,并通过网上购物、电子银行和物流派送等形式实现,人们的购物和生活模式都有了全新的改变。可以说,电子商务加快了经济和社会信息化的进程。但是,所有这些要想实现,都必须有一个覆盖一个地域地理空间信息基础平台的支持。

2信息化背景下测绘技术的发展

在如今,随着各种信息化工具的诞生,工程测量更多的是以GPS、地理信息系统等信息化工具为依托,不断地磨合、丰富与完善。目前信息化的工程测量也逐渐成为一种发展趋势了。

2.1信息化测绘对于测绘技术来说,如今已是走向信息化时代了。信息化测绘实际上是多种测绘技术在多学科交叉、融合后所逐渐形成的。它采用数字化测绘,实行智能化处理、一体化管理。利用信息化工具来为社会提高多方面、多尺度的服务。信息化彩绘技术主要包括GNSS、SG、SA、RS、GIS、虚拟现实技术等等。在这样一个信息化时代信息测绘体系也必须建立在公共产品、公共服务、公共平台等。

2.2 3S技术(GPS,RS,GIS)在测绘学中的出现和应用,使测绘学从理论到手段都发生了根本的变化。“空间技术,各类对地观测卫星使人类有了对地球整体进行观察和测绘的工具,好象可以把地球摆在实验室进行观察研究一样方便”。

测绘生产任务也由传统的纸上或类似介质的地图编制、生产和更新发展到地理空间数字数据的采集、处理和管理。GPS的出现革新了传统的定位方式;传统的摄影测量数据采集技术已由遥感卫星或数字摄影获得的影像所代替,测绘人员在室内借助高速高容量计算机和专用配套设备对遥感影像或信号记录数据进行地表(甚至地壳浅层)几何和物理信息的提取和变换,得出数字化地理信息产品,由此制作各类可供社会使用的专用地图等测绘产品。

2.3 目前发展起来的全数字化摄影测量就能够利用功能强大的计算机系统或工作站,对数字化影像进行处理,建立立体地形或地物虚拟模型。但如何将这一技术用在因特网上对多种测绘产品和普通用户提供虚似模型甚或虚拟现实模型,则是要进一步研究和开发功能强、效率高的因特网和GIS软件。这表明还要大力发展支撑测绘产品的计算机网络技术,它的技术基础是宽带、高速图形图像网络,从全球来说,目前海洋的精细测绘基本上还是空白,由于陆地高程基准不能用水准测量传递到海洋,在卫星测高技术的支持下用某种去掉潮汐影响的平均海面作深度基准,精度可达米级。但广大的开阔深海的海底地形测绘不可能用船载测深仪完成,用卫星测高结合重力数据(低阶或中阶重力场模型)反演海底地形,目前试验精度可达10~100m。数字地球将要求海洋测绘技术有新的突破。

3 结束语