公务员期刊网 精选范文 生物医学工程概念范文

生物医学工程概念精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物医学工程概念主题范文,仅供参考,欢迎阅读并收藏。

生物医学工程概念

第1篇:生物医学工程概念范文

生物医学工程(biomedicalengineering,BME)是20世纪50年代形成的一门独立的边缘科学,现代医疗器械则是这一新兴学科的产品形式。它是工程技术向医学科学渗透的必然结果。20世纪50年代以来,心脑血管疾病、癌症、糖尿病等现代文明流行病开始威胁人类健康。因此,医学科学的进一步完善和发展不是以定性观察、现象归纳为方法学特征的医学本身所能解决的,它必须和以定量观测、系统分析为方法学特征的工程科学相结合,并综合运用各种已有的和正在发展的高新技术,才有可能逐步解决这些问题。生物医学工程学科应运而生。当前生物医学工程已成为生命科学的重要支柱,是21世纪最具有潜在发展优势的领先科技之一[1]。

1、什么是生物医学工程?

1.1含义

生物医学工程是一个新兴的多学科交叉领域,其内涵是:工程科学的原理和方法与生命科学的原理和方法相结合以认识生命运动的“定量”规律,并用以维持、改善、促进人的健康。“生物医学工程”这个词汇蕴含了三个专业领域的相互影响:生物学、医学和工程学。生物医学工程是综合生命科学和工程技术的理论、方法、手段,研究人类及其他生命现象结构功能的理、工、医相结合的新兴交叉学科,是多种工程技术学科向生命科学渗透和相互交叉的结果,并已成为生命科学的重要支柱。生物医学工程是应用基础科学,主要服务于人类疾病的诊断、预防、监护、治疗及保健、康复等方面;生物医学工程的主要研究任务是利用工程技术手段解决医学诊断、治疗和信息化管理等问题,为医学提供高技术含量的现代医疗装备。

1.2内容与领域

生物医学工程的研究内容可分为基础研究和应用研究两个方面。基础研究,包括生物力学、生物控制、生物效应、生物系统的质量和能量传递、生物医学信息的提取与处理、生物材料学、生物系统的建模与仿真、各种物理因子的生物效应等;应用研究,直接为医学服务,包括生物医学信号检测与传感技术,生物医学信息处理技术,医学成像与图像处理技术,人工器官、医用制品和仪器,康复与治疗工程技术等。后者是医学工程研究领域中最主要的内容之一,它的成果直接推动医疗卫生事业的发展,效果最明显、最迅速,所以特别受医学工程人员和医生的重视。

2课程安排

根据我国《生物产业发展“十一五”规划》,生物医学工程高技术专项将按照当代生物医学工程技术和产业发展的方向,重点发展医疗影像设备、医疗监护系统及设备、肿瘤物理治疗设备等11大类产品,强化新型医用植入器械和人工器官、数字化与智能化医疗装备、可生物降解医用高分子及药物控释载体、医疗监护和远程诊疗系统等领域的创新能力。针对这一方向,我们将设定14次课,分别介绍各项技术产品或领域的现状和发展,让学生对生物医学工程学科有个整体的了解和认识。课程设置如下[2]:

1.生物医学工程概况:介绍生物医学工程学科概况、发展历程、学科内容、工程分支,以及国内外高校建设发展生物医学工程学科的情况。

2.组织工程学:应用细胞生物学和工程学的原理,吸收现代细胞生物学、分子生物学、材料与工程学等学科的科研精华,在体内或体外构建组织和器官,以维持、修复、再生或改善损伤组织和器官功能,是继细胞生物学和分子生物学之后,生命科学发展史上又一新的里程碑,标志着医学将走出器官移植的范畴,步入制造组织和器官的新时代。目前组织工程已经成为再生医学研究和发展的核心与主要方向。

3.生物材料学:研究与生物体(特别是人体)组织、血液、体液相接触或作用时,不凝血、不溶血、不引起细胞突变、畸变和癌变,不引起免疫排异和过敏反应,无毒、无不良反应的特殊功能材料。许多重点院校和科研单位都成立了相应的研究机构,从事生物材料及制品的开发研究,在天然高分子和合成高分子、无机和金属生物材料研究方面均取得了举世公认的成果。

4.人工器官:主要研究人体组织与器官的再生、修复与替代。人工器官在临床上的应用,挽救了不少垂危的生命,为临床医学的发展开拓了新途径。目前人工器官的研究和应用已基本遍及人体全身。

5.生物传感器技术:使用固定化的生物分子结合换能器,用来侦测生物体内或体外的环境化学物质或与之起特异互作用后产生响应的技术。目前,生物传感器正朝着以下几个方面发展:①向高性能、微型化、一体化方向发展;②生化检测的智能化系统;③仿生生物学的发展。

6.生物系统的建模与仿真:对生物体在细胞、器官和整体等各层面的参数及其相互关系建立数学模型,并用计算机求解该模型以分析和预测各种条件下生物系统运行的机制和状态。研究领域涵盖生物力学、复杂生物医学系统的建模与仿真等领域,主要采用计算力学、图形图像分析和数学建模等方法,对生物医学中的科学问题进行计算机建模和分析。

7.生物医学信号检测与处理技术:生物医学信号的检测与处理几乎成为了生物医学工程学科共同的研究方向。从生物体中获取各种生物医学信息,并将其转换为易于检测和处理的电信号。

8.医学成像与图像处理技术:研究如何将人体有关生理、病理的信息提取出来并显示为直观的图像、图形方式,或对已有的医学图像进行分析处理,为疾病的早期诊断和治疗提供了可能性,也为临床诊断引入了新的概念

9.数字化X射线影像技术及设备:数字化X射线影像技术现已成为临床诊断的最主要手段。涉及的关键技术包括:直接数字化平面X射线影像技术;数字化X射线三维影像技术;低剂量CT、容积CT等。

10.磁共振影像技术及设备:磁共振影像是检测人体解剖、生理和心理信息的多因素、多层面和多对比度成像设备。

11.核医学成像技术及设备:核医学成像是对放射性核素标记化合物的体内生化过程成像的装备,是目前能够在临床应用的最主要的分子成像手段。涉及的关键技术:单光子断层成像(SPECT)技术和系统、正电子发射(PET)影像技术和系统、PET与CT融合技术等。

12.数字化超声波成像技术及设备:超声成像设备在四大影像设备中使用最为广泛。目前重点发展技术包括:多波束成像技术、谐波成像技术、多角度复合成像技术、三维成像技术、电容式微机械超声换能器、彩色超声成像设备系统、数字黑白超声影像设备等。#p#分页标题#e#

13.医学纳米技术和纳米材料:可运载肿瘤标志物分子的特异性抗体、肿瘤治疗药物以及造影剂等新的高效药物(基因)载体;发展纳米尺度的显微探针成像技术;发展用于组织再生修复的纳米生物材料;建立用于纳米材料健康与安全评价的技术与方法,都是当前重点发展方向。

14.康复工程技术:重点发展假肢仿生智能控制技术、低成本假肢矫形、适应不同功能障碍者工作和学习的环境控制系统与远程交流、认知功能康复、人工电子耳蜗汉语识别、电子助视、老年人室内安全监护等技术。

3教学模式的探索

针对课程本身的特点和学生认知的特点,设想从以下几个方面探索课程的教学:

3.1多媒体教学

多媒体教学具有直观、生动、易于理解的特点,并可节约教学时间,提高效率。由于每次课针对的是某项技术领域相关理论知识和行业动态的介绍,涉及的知识点多且泛,采用多媒体教学课件进行教学,形象直观,趣味性强,可以使学生印象深刻,降低了抽象知识的理解难度和记忆难度,激发了学生的学习兴趣。

3.2优化课程内容,加强实践教学

在教学中注意把握课程的整体体系,强调课程知识点和适用性。教学重点清晰,适当补充行业最新动态作为课外知识。课堂授课的重点应放在概念的理解和相关模型的建立。同时,应创造条件充实参观和实验内容,让复杂的理论实物化、形象化、简单化。跟有教学合作基础的医院联系,安排学生到相应科室参观相关设备和操作系统,开展现场教学和尽可能多的实验课,提高学生的学习兴趣。如果条件允许,还可以让学生参与到实际操作中。通过这种实践教学,使学生觉得取得临床上的应用成就并不是遥不可及,从而增强他们对理论知识学习的兴趣。

第2篇:生物医学工程概念范文

关键词:生物医学工程;电子竞赛;职业能力

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)15-0233-02

生物医学工程学(Biomedical Engineering,BME)是一门理学、工学和医学高度综合的交叉学科。应用现代自然科学和工程技术的理论和方法,从工程学角度,研究人体的结构、功能及其相互关系,揭示其生命现象;研究人体系统的状态变化,并运用工程技术手段去控制这类变化;研究解决医学防病、治病的新技术手段,保障人民健康的一门新兴的边缘科学。这门学科培养学生具备生命科学、电子技术、计算机技术及信息科学有关的基础理论知识以及医学与工程技术相结合的科学研究能力,能在生物医学工程领域、医学仪器以及其他电子技术、计算机技术、信息产业等部门从事研究、开发、教学及管理的高级工程技术人才。

一、生物医学工程专业需求分析

学科的交叉融合决定了就业选择的多样性,主要有教学科研型、医疗设备型、电子通信型。(1)教学科研型,主要在国内外高校或科研院所就业,从事人才培养和科学研究,属于科研型人才,工作稳定,有较高的社会地位。教学科研型单位入门门槛高,通常要求具有硕士、博士学位,要求有良好的教育素养和较高的专业知识水平,创新能力强,有强烈而持久的进取心精神。(2)医疗设备型主要分为三大类:第一类在医院设备、影像、放疗、临床工程、信息中心等相关科室,从事医疗设备和软件的安装、维修和管理等工作;第二类是去各大跨国以及国内医疗器械企业,比如GE、SIEMENS、迈瑞、安科等,从事研发、测试、销售、售后服务等;第三类进入国家医疗器械司及各级医疗器械检测所。医疗设备型需要实干型人才,能够将所学的专业知识应用到工作中。(3)电子通信型,主要从事与生物医学无关的纯电子、通信以及计算机等相关工作。

目前,毕业生从事的工作按百分比排序依次为:医疗器械公司32.7%,医院20.9%,高校和科研院所19.1%,与专业相关的其他公司7.3%,工厂2.8%,政府机关1.1%,其他单位16.1%。

二、我国生物医学工程专业的学习现状

生物医学工程专业开设的专业基础课程有:电路原理、模拟与数字电子技术、C语言程序设计、信号与线性系统、生物医学传感器与测量等。实验课包括大学物理实验、医学实验、电工实验等。这些专业基础课程既有丰富的理论体系,又有很强的实践性,是一门抽象、难懂的学科。学生的兴趣和动手能力是学好这些课程的关键。传统的教学模式是教师讲、学生听;先理论、后验证。这种模式不利于培养学生的操作能力和激发学生的求知欲,往往造成学生理论有余而实践不足,极大地妨碍了学生发挥学习的主动性和积极性,不利于培养他们的职业素质和实际工作能力。在学校里学习的医疗设备特别是大型医疗设备,如CT机、核磁共振、螺旋CT等都是纸上谈兵,无法将课本中的理论知识与现实中的医疗设备有机结合起来[1]。

三、以电子竞赛的方式促进学生的工程实践能力

处于医科院校的生物医学工程学科,其研究的主要特点是和医学结合紧密,医学大背景很深厚。在这样医学氛围很浓的环境中,生物医学工程自然成为小学科,工程力量相对薄弱。这就要求学生理论分析能力和动手能力要好,不仅要熟练掌握基本理论和基础知识,而且要接受科学实验研究能力、工程设计能力、新产品开发能力和生产过程组织管理能力的基本训练,提升自身能力。

通过多年生物医学工程专业的教学经验,辅导学生参加电子竞赛具有非常好的效果。2014年本专业组织学生参加了由教育部信息技术中心主办的“第九届全国信息技术应用水平大赛”。它是推动各有关院校信息技术相关专业教学体系的改革,引导学校积极开展应用型人才的培养,提高学生解决问题的能力和自主学习能力,培养学生的创新创业能力。根据学生理论课的学习情况,选择了“飞行器控制设计”竞赛组,要求选手使用指定芯片,自主设计、制作控制电路板,以控制大赛指定的一个飞行器完成起飞、悬停、降落及其他指定任务。

在综合知识考试部分,通过2014年试题分析,主要元件、信号及基本电路占15%,模拟电路、数字电路占20%,高频电路占5%,C语言的基本知识及应用占20%,主要测量仪器使用占5%,印制电路板设计及电路安装调试占5%,单片机原理及电路占40%,涵盖了几乎所有的专业基础课程内容。

飞行器设计部分,将整个系统分为三大块:遥控系统、通信链路、控制系统。学生需要使用STC公司的IAP15F2K61S2核心处理器实现控制板的设计,遥控器的设计,完成起飞、悬停、降落及其他指定任务。飞行器是将机械、电子、空气力学、高频发射等专业知识整合为一体的精密设备,需要正确组装和调试才可避免事故发生。要实现起飞、悬停、降落以及指定方向的快速准确动作,学生必须学习掌握双旋翼飞行器的飞行原理、旋翼速度的控制原理、舵机的控制原理等,通过查找相关技术资料,这些初次接触的新概念的基本原理用在基础课程教学中的知识完全可以解决。比如,舵机是一种角度伺服的驱动器,在所有的飞行器机电控制中,舵机的控制效果是性能的重要影响因素,而舵机控制原理,所有的学生都是初次接触,很茫然。指导教师要求一个学生查找资料后,面对其他学生进行讲解,舵机的控制需要一个20ms的时基脉冲信号,该脉冲信号的高电平部分一般为0.5ms―2.5ms范围内的角度控制脉冲部分。该飞行器中所用的180°角的伺服,对应的控制关系是0.5ms―0°、1.0ms―45°、1.5ms―90°、2.0ms―135°、2.5ms―180°。而控制角度其实就是控制PWM的占空比,通过讲解学生理解了原理,同时也和理论教学紧密结合,使学生认识到理论课的重要性。通过实际测试,学生感性认识并理解了直流电机控制中转速与电压、电流和功率的相互关系,对理论课程中学习的电压、电流和功率的概念有了更加深入的理解。

遥控端作为整个系统的控制中心,主要是将用户对油门摇杆、俯仰摇杆、航向摇杆以及微调按钮相关的机械操作转换为可进行传输并且可以对直升机进行操控的数据。双桨共轴直升机主要完成上升下降、前进后退、左右转向等操作,学生需要自学相关的控制原理,这样就把理论课上学习的电子技术知识、C语言编程、器件的感性认识、电路焊接、调试等融合在一起进行工程技术的实现,激发了学生学习的积极性,工程技术、资料查询、科研能力也得到了提高。

故障排除部分,给每个学生发放一套开发学习板,要求在3小时内完成现场的硬件故障排除,软件编程实现特定功能,其要求高,难度大。

通过竞赛,学生把课堂上学习的电路理论、模拟电子技术、数字电子技术、C语言编程技术、微型计算机技术等这些生物医学工程专业的专业基础课程连接在一起,巩固了重要的知识点,比如AD转换、DA转换、功率放大、稳压电路、PWM脉冲控制、SPI串行通信、振荡电路以及C语言中的语法等,从工程实践能力上加强了学生PCB电路的设计和制作、电路焊接与调试、电路综合故障排除等能力。

四、效果分析

在学校和系领导的大力支持下,本次生物医学工程专业组织大三学生组成了4组共12人参加了这次竞赛,其中有2组进入决赛,我校是参加本届大赛的唯一一所医科院校。进入决赛的两组学生参加了在北京航天航空大学举行的全国总决赛,取得了一个一等奖、一个二等奖的好成绩。通过这次比赛,参与的学生都充分认识到了理论学习的重要性,明白了实际的研究工作都是需要理论指导的,课堂理论知识在工程技术中都会用到。通过这次比赛,学生具备了很强的动手能力,初步了解了科研工作的工作套路以及对疑难问题的分析解决能力。通过这种模式,大大提高了生物医学工程学科的学生质量,促进了行业的发展。

通过这次比赛,主要有以下两点经验:(1)应选择竞赛内容较为全面、覆盖知识面较广的竞赛,可以把课堂上的理论知识充分运用到实际中,巩固知识。(2)应结合生物医学工程专业的就业能力需求,把工程践能力的培养作为一项重要的内容。通过竞赛,培养学生的工程实践能力,使他们毕业后,能够独立承担工作,满足医学工程师的需求。

第3篇:生物医学工程概念范文

关键词:软件工程 生物医学工程 教学方法 工具软件 案例开发实践

中图分类号:G420 文献标识码:A 文章编号:1673-9795(2014)01(a)-0152-02

1 研究背景

当今,软件产业已经渗透到几乎所有的生产生活领域,软件开发和管理人才紧缺的状况非常严重[1]。然而,当前严峻的就业形势与软件人才特别是软件开发人员中高级人才的匮乏与之形成了鲜明对比。软件工程是大学培养软件人才的必修课程,更是中高级软件人才必须具备的重要基本专业素质之一。在生物医学工程专业中,从大型医疗设备(如核磁共振成像MRI,计算机断层扫描成像CT,正电子发射体层成像PET,到小型医疗设备(如彩超/B超,心电监护仪),都必须要集成对采集的医学图像或信号的显示、分析和诊断软件。因此,对于生物医学工程专业的学生也必须具备软件工程的知识,以便为高端的医疗影像设备、监护设备和医学分析仪器设计优秀的显示、分析和诊断软件奠定基础。由于软件工程课程讲授的概念、原理、技术和方法都比较抽象,国内高校的软件工程课程理论与实践教学尚处在一种探索和发展阶段。其教学方法以教师带领学生进行知识学习的思路为主,即教师讲授,学生被动接受知识的模式。在这种教学方式下,通常导致培养的学生,在实际工作中缺少独立思考的能力,不知道如何利用相关的专业工具软件和所学理论知识来实质性地开展项目,推进项目和维护项目,即实践能力不足。

软件工程是一门实践的课程[2]。为了让学生能够活学活用软件工程的概念、原理、方法和技术,在教学过程中我们采用了将一套专业工具软件的实践使用、案例分析和抽象的理论学习紧密结合起来,让学生在运用工具软件分析和设计具体案例中,更深刻和更全面地理解和运用软件工程中的概念、原理、方法和技术。我们的目标是:提高学生运用软件工程知识来管理和开发软件项目的实践能力。根据软件工程课程的主要内容,我们有选择地集成了数个当前软件工程领域内流行的专业软件分析工具,并让学生使用这些工具来分析和设计具体的项目案例,从而使学生获得实践软件生命周期中各部分相关知识的机会。这种教学方式让培养的学生既熟悉实际工作中的各种主流分析工具,又能深刻地理解和掌握各种复杂概念、原理、技术和方法等相关知识点,并使之融会贯通。我们认为通过使用相关的具体软件工具,来一步一步实现案例分析的整个过程,将获得比仅仅停留在纸面上的案例分析方式更好的、更生动的教学效果。此外,熟练掌握这些专业分析工具本身也是提高学生专业素质的重要一环,让培养的学生更易适应未来的实际工作环境,增强就业竞争力。

2 基于工具软件实践的教学方法

我们认为高效的实践活动是掌握软件工程课程中概念、原理、方法和技术最佳途径[3]。而如何保证实践活动的高效率呢?在我们这个基于工具软件实践的教学方法中采用了以下两个方面来保证:(1)选取当前软件工程领域最流行的软件设计和分析工具。通常这些软件管理和开发的专业工具已经将软件工程领域业界的通用概念、原理、方法和技术融入其中,这样学生在使用这些工具中,就会不知不觉地以软件工程的思维方式和开发模式来管理、分析和设计软件,从而实现了将软件工程的概念、原理、方法和技术贯穿于学生开发实践的全过程。(2)选择由简单到复杂的软件开发案例集合。这些案例的选择使得学生在实践过程中有了具体的目标。在管理、分析和设计这些软件开发目标中,学生将掌握这些案例是如何从需求一直做到测试的,理解每个步骤之间的演变过程,弄清楚软件生命周期各阶段具体要完成的工作,掌握这些阶段的模型是如何推导的,并且是如何保证可回溯的,软件开发过程是如何管理的。

2.1 专业软件工具的选取

依据软件工程这门课程的教学大纲内容和当前软件工程邻域的流行的专业分析设计工具,我们为学生选择了三种软件工具:IBM公司的Rational Rose、Sybase公司的PowerDesigner和HP/Mercury Interactive公司的功能测试工具WinRunner。各软件工具描述及使用工具的教学目的如表1所示。这三种软件工具的学习使用可以让学生深刻理解软件工程的各种复杂概念、原理、技术和方法等相关知识点,参考工具中的开发案例,了解该领域最新的发展成果。

2.2 软件开发案例的选取

软件开发案例需要精心地选取,选取的原则是“由简单到复杂,由局部到整体”。案例又分为教学案例和实践案例。教学案例,即在教学过程引入软件开发的实际案例,将抽象复杂的理论知识用生动具体的实例进行讲解,能够收到事半功倍的效果。案例教学应以应用软件工程的概念、原理、方法和技术分析和解决案例为主线,以工具软件的学习和使用为辅线,通过分析实际案例,提高学生的兴趣,从而激发学生的积极性和主动性。选择的教学案例最好来源于教师自己熟悉的软件项目,将一个典型的、完整的、易于理解的并贴近学生的实际生活的案例引人教学中,将复杂抽象的概念用具体生动的案例进行诠释,从而提高了教学效果。实践案例,即学生在实验课中及课后需要完成的软件开发实际案例,可以根据学生的兴趣,选定数个复杂度中等的实际案例。根据生物医学工程专业的特点,教学和实践案例可以选择心电监护仪、MRI图像重建和显示、医院信息化系统HIS、医学图像显示和分析软件等具体的实际案例。在这些实际案例中,由学生们自由组合的小组任意选其一来在规定的时间内实现开发,并上交开发的实际成果,如软件规格说明书、分析设计中的各种文档视图、独立运行的开发软件和源代码、测试规格说明书和使用说明书等等。这种将感兴趣案例和分组实践相结合的方式可以让学生们集思广益,相互学习,又体会到软件工程中的项目组织管理方面知识的重要性。

2.3 软件生命周期与软件工具相结合

软件工程的概念、原理、方法和技术均可纳入每个软件的软件生命周期中。而在软件工程业界各种软件工具中,某一些完整涵盖了软件生命周期中各项开发活动,如Rational Rose和PowerDesigner,而另一些则专注于某一项软件开发活动,使该项软件开发活动功能更专业更强大,如Win Runner。这些软件工具都提供了软件项目开发的完整的建模解决方案,都支持统一建模描述语言(UML),包含各种软件工程建模的动态或静态视图。在选定了具体开发案例后,让学生以开发组的形式,运用这些软件开发建模、测试工具来完成相关软件开发案例的开发工作。学生在开发过程中,鼓励阅读这些软件工具的帮助文件,这不仅有利于对书本上各种复杂概念、原理、技术和方法的进一步理解,而且让学生们主动思考如何解决开发过程中的实际问题。在这种具体的实践中,学生的学习兴趣得到提高,学生的成就感得到满足,最终学习效果明显提升。每一个软件的熟练使用本身就是需要对软件工程专业邻域知识牢固掌握和相关开发案例的详细分析,需要大量的实践时间。因此,应该要求学生先抓住软件生命周期模型这条主干,完成对软件开发各项主要开发活动的学习理解。其它更深的问题及细节可让感兴趣的学生课后学习完成。

3 实践过程中应注意的问题

在软件工程教学和实践过程中,将软件工程知识、案例实践和生物医学工程专业知识紧密结合,提高教学效率,增加专业针对性,应该注意以下方面。首先将本课程与学生已学过的其他计算机类课程联系起来。学生应初步具备程序设计(如面向对象的C++语言设计)、数据库、操作系统、软件图形化界面设计等相关知识;其次要让学生将理解、掌握与软件工具实践运用有效结合。在软件工程开发实践中,深刻理解什么是软件工程,为什么需要软件工程,软件工程需要解决哪些问题,软件工程涉及哪些方面的内容;牢固地掌握软件工程的概念、技术、过程、手段及工具软件;体会运用工程化思想进行软件开发,进行需求分析、软件设计、软件实现、软件测试、软件维护的重要性;再次,教师应该在学生的实际学习过程中将“课堂讲授、案例的工具软件实践、课后进一步思考和阅读”三者紧密结合。“课堂讲授”主要是让学生切实理解课程中的知识点和软件工程思想,无需死记硬背。“案例的工具软件实践”是根据具体的软件开发案例在实践过程中体会软件工程的原则、方法和技术;在掌握高效软件工具的过程中,提高抽象思维的能力、培养独立解决问题的能力、培养合作精神。“课后进一步思考和阅读”是进一步阅读相关的软件工程及项目开发方面的书籍,软件工具的帮助文件,了解先进设计方法和最新技术,开拓学生的视野,提高学生的兴趣,为后续专业方向课程的学习打下坚实的基础。最后,要引导并鼓励学生将所学的软件工程的概念、技术、过程、手段及工具软件运用与生物医学工程专业相结合。这可以通过选取具有该专业背景的教学案例和实践案例来实现软件工程知识在此专业软件开发中的应用。此外,以介绍国内外生物医学工程领域中相关专业软件的设计特点为辅助,使学生了解当前软件工程在生物医学工程软件开发中的最新成果。

4 结语

软件工程是门综合性很高的课程.理论性和实践性都很强,本文阐述了一种新的软件工程教学方法,该教学方法将软件生命周期模型中的开发活动、多种软件工程领域的软件工具使用和具体的软件开发案例实践紧密结合。此外,本教学方法紧扣生物医学工程专业培养的目标和要求,选择具有该专业背景的开发案例,有效地融合了专业知识和软件工程知识。本教学方法的最终目的是让生物医学工程专业的学生深刻牢固地掌握软件工程的概念、原理、方法和技术,能做到学以致用,提高学生的学习兴趣,扩展学生的视野,为培养医疗设备及仪器的软件开发人员,特别是高端大型医疗设备的软件开发高级人才做准备。本教学方法已在教学实践中取得了学生的好评,当然本教学方法还需在实践中不断加以完善和调整。

参考文献

[1] 孙水华,郑磊,林志强.以行业需求为导向的应用型本科软件工程专业课程体系构建[J].计算机教育,2011,14:16-18.

第4篇:生物医学工程概念范文

根据生物医学工程专业学生基础较好,思维比较活跃,如果采用传统式的灌输式的教学方法,即只注重教师负责在课堂上讲授,学生负责听课就可以了,这样的方式授课的话,学生就是被动式的学习,学生也普遍反映这样满堂灌的方式比较枯燥,调动不了学习的积极性。而现在要强调学生站主导地位,教师是辅助学生学习。就要采用启发式教学,让学生参与整个教学过程,跟着教师的思维进行思考,活跃课堂的气氛。例如:讲授质点运动学开课时就在黑板上写上问题:1)你如何评价地心说,日心说,宇宙真有心吗?2)参考系、坐标系有何联系和区别?3)绝对、相对牵连速度之间有什么联系?4)多大物体可视为质点?5)在笛卡尔直角坐标系中,如何确定圆周运动的速度、加速度?讲授基本概念和公式后,根据学生人数分为几小组进行讨论这些问题后回答,最后点评总结学生的回答情况。并且按每组回答问题的情况进行计分作为考核他们的平时成绩。每次课都要根据课程内容启发他们思考物理原理,物理现象的原因,主动提出自己的见解,启迪学生的思维,加深学生对知识点的理解,通过实践发现采用启发式的教学活跃课堂的气氛,激起了学生学习物理课的兴趣。

2教学内容侧重于医学应用

生物医学工程专业具有医学背景的特点,主要培养生物材料,医学仪器等方面的人才。大学物理要为本专业人才培养计划服务,结合本专业的医学背景特点,因此,大学物理教学对纯理论和公式计算方面的内容要求相对较低,只要求将概念和公式的物理意义讲清楚,使学生能理解概念、公式等是怎样来的,着重培养他们的思维能力和侧重于多讲点医学方面的应用。这样,才能将大学物理和他们的专业很好地结合起来,满足生物医学工程专业的培养计划的要求。例如,带电粒子在电场和磁场中的运动,讲清楚带电粒子在磁场中所受的洛伦兹力公式后,着重讲解带电粒子在电场和磁场中运动的例子。如质谱仪是用物理方法分析同位素的仪器。在医学上,质谱仪作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片图为基础,确定药物和代谢产物的存在;也可用于定量分析,用被检化合物的稳定性同位素异构物作为内标,以取得更准确的结果。又如,讲解光学相干原理时,可以加入光学相干在医学上的应用,光学相干层析技术(OCT)是近十年来继超声成像,X射线,CT,MRI之后迅速发展起来的一种成像技术。它利用宽带光源的低相干特性,根据干涉测量原理,采用高精度,高速扫描驱动机构,通过检测生物组织不同深度层面的背向反射或散射信号,获得生物组织二维或三维结构。由于OCT系统主体功能是获取深度方向的层析信息,在实际应用中,一个点的层析信息远远不能满足需求,从而产生了各式各样横向扫描方式,形成二维层析图像,甚至三维层析图像,使其广泛应用于众多医学领域。通过讲解一个简单的物理原理却可以在医学上有深入的应用,可以制造医学检测仪器等。调动了生工专业学习物理的兴趣,充分展现物理课的基础性作用,以后工作和学习中会用到物理原理来解决实际问题和现象,提高了学生学习的积极性,取得了良好的教学效果。

3多增加物理实验课,培养学生动手能力

第5篇:生物医学工程概念范文

《微机原理及接口技术》是生物医学工程专业的一门重要的专业基础课程,具有承上启下的作用,是学习《单片机原理》的先导课程,能为学生后续课程的学习奠定基础[1]。通过对本门课程的学习,要求学生全面了解微型计算机的内部结构、原理和接口应用,并能够掌握典型机的工作原理,具备简单的微机应用系统设计及开发能力。《微机原理及接口技术》课程的特点是理论联系实际,软硬件相结合,理论概念抽象,内容涵盖多,记忆起来较困难。教学中一般采用理论为主、实验为辅的授课方式,但由于实验条件的限制,学生很难理解抽象的概念,并难以达到教学目标。因此,在日常的教学工作中存在两个突出问题,一是教师难教,二是学生难学[2]。为了解决这些问题我校对《微机原理及接口技术》课程改革进行了初步探讨。

1《微机原理及接口技术》课程教学中存在的问题

1.1教学内容与所学专业脱节

该课程目前的主要教学内容以80X86CPU和其组成的微型计算机系统为重点,包括微机原理和外部接口两大部分内容,并且已经形成了相对稳定的课程体系。但是,伴随着计算机技术的日益发展,以80X86CPU组成的微型计算机已经逐步退出了常见应用领域。因此,存在着教学内容相对陈旧的问题,并且缺少与学生所学专业相联系的实际案例,加之实验条件有限等诸多问题,不能很好地激发学生学习的积极性,更难以调动学生的主观能动性。因此,需要进一步调整教学内容,以适应学生就业的需要。

1.2教学方法过于陈旧

本课程的第一部分主要以微型计算机的原理为重点,抽象的概念较多,各个章节的名词术语和知识点多且复杂,并且各部分内容前后交叉。传统教学主要采用理论讲解为主的授课方式,教学方法单一陈旧,致使学生学习起来枯燥难懂、兴趣不高,学生学习的积极性差,课堂气氛较沉闷,导致教学效果欠佳。因此,教学方法亟需改进。

1.3实践教学环节薄弱

本门课程的实践性很强,其实验课程由软件部分和硬件部分组成。所开设的实验大部分属于验证性实验,只要学生按照实验指导编写的程序连接电路图就能得到结果,整个实验过程自主创新少,学生缺少自主学习与思考;并且,书写实验报告时存在袭现象。目前的《微机原理及接口技术》实验课程难以达到让学生自主学习、提高动手能力的目标。

1.4考查方式单一

现行的考查方式是期末一卷定终身。这种考查方式容易使学生出现期末考试前突击复习、背书应付考试,考后遗忘的现象。因此,需要改革这种单一的考查方式,以达到全面评价学生学习过程和学习效果的目的。

2教改措施

2.1优化教学内容,与本专业相联系

合理制定教学大纲,不断更新教学内容,补充与生物医学工程专业相关的实际案例,突出课程特色。以增强课程的实用性为原则,以微型计算机的基本原理和概念为主线,确保课程的系统性、完整性和应用性。授课时可将课程分为三大部分:基本概念、汇编指令、接口技术,以这三部分为重点,着重培养学生利用计算机技术的基本思想去发现、分析、解决问题的能力。以加强与所学专业联系为原则,在生物医学工程专业的基础上介绍微型计算机新的应用领域和发展趋势,帮助学生解决本专业要求的实际应用问题,以提高学生的学习兴趣,唤醒他们主动学习的潜能。

2.2采用多种教学模式,加强网络资源建设

为了获得好的教学效果,在《微机原理及接口技术》授课过程中采用了MOOC、翻转课堂、任务驱动法与传统教学方法相结合的多种教学方法,在一定程度上充分调动了学生学习的积极性,并培养了他们团队协作的能力[3]。结合我校多媒体网络课程复习互动中心(以下简称课程中心)的建设,将教学课件、网络课件以及一些其他教学资源到网站上,学生们可以登录学校的网站学习、观看、下载,不但方便了学生自主学习,并能帮助学生理解和消化课堂内容。在课程中心的网站上,学生们还能在线与教师和其他同学交流,不仅方便了学生学习,而且丰富了教师与学生的沟通方式。除开展网上课程中心的建设外,还开展了试题库的建设,主要题型包括选择、填空、判断、简答与编程等题型。

2.3加强实践教学环节

《微机原理及接口技术》是实用性非常强的一门专业基础课程,因此,非常有必要加强实践教学环节。由于学校的硬件条件有限,授课时将计算机仿真技术和网络平台引入到实践教学中,教会学生使用可视化软件Proteus、multisim,并鼓励学生用它们完成实验,以此来弥补仪器设备和经费的不足[4]。这样,不仅帮助学生掌握了微机原理的基本知识,也让他们对电工电子技术有了更为深刻的认识。

2.4改革考核模式

为达到检验教学效果的目标,应改变传统的考核模式,采用形成性评价的考核模式,以全面、客观、公正的反应学生的学习情况[5]。考核分两个部分,理论部分和实验部分。理论部分考试,采用期末试卷成绩占70%、平时成绩占30%的方式,平时成绩包括出勤、作业、提问、随堂测验等,每次课前公布上次课的平时成绩,可制定考核表贴于班级教室内或发至班级公共邮箱;实验部分考试从实验态度、操作能力、创新性和实验报告四个部分进行考核,考核方式和成绩公布同理论课平时成绩的公布方式。

3小结

近两年来,为了提高学生的学习兴趣,进一步改善教学效果,我校对《微机原理及接口技术》的课程改革进行了初步探索,并取得了一些成效。学生学习的积极性得到了明显提高,利用计算机思维提出问题、分析问题和解决问题的能力得到明显改善,对堆栈、指令队列、时序等抽象概念能够正确理解,基本能够完成简单的程序编写。但是还存在一些问题,如学习态度功利化,遇到问题容易浮躁、习惯性的去网上查找等,这些还有待继续探讨、改善。

【参考文献】

高敏.微机原理课程改革初探[J].电脑知识与技术,2014,10(33):7912-7913.

舒秀兰,李骁龙,叶伟慧.“微机原理与接口技术”实践教学改革与探索[J].科技视界,2015,(11):63,141.

蒋翀,费洪晓.面向MOOC的新型教学模式探索[J].计算机教育,2014,(9):17-20.

谢春祥,陈龙.基于Proteus的8086和8255A接口实验仿真[J].蚌埠学院学报,2013,2(4):12-14.

第6篇:生物医学工程概念范文

关键词:头脑风暴;创新思维;生物医学仪器实验

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)03-0136-02

一、引言

实验教学作为课程教学的重要组成部分,是培养学生的实际动手能力,全面提升学生综合素质的重要途径之一。《生物医学仪器实验》是生物医学工程专业本科生的专业必修课,是对医学传感器、数字电子技术、模拟电子技术、生理学、微机原理等专业课程的综合应用,掌握现代生物医学仪器的基本原理、设计方法、实际的操作使用和国内外生物医学仪器的前沿研发,对学生毕业后在工作岗位中工程思维能力、实际动手能力和分析问题及解决问题能力的培养具有相当重要的作用。如何将知识与能力相融合,如何让学生将课堂上学习到的理论知识在实验中得到印证和激发其科研的兴趣,如何培养学生的实际工作技能,更好地适应社会对生物医学仪器人才的需求,是在《生物医学工程实验》课程中尝试以学生作为实验的主要设计人和完成人,让学生掌握必需的实验技能,并且要在此基础上进一步提高学生自主完成实验和科研项目的能力。国内各院校十分重视医学仪器实验课程的开设,《生物医学仪器》实验作为未来前沿的发展方向,对培养国家的人才储备具有重要的现实意义。大连理工大学生物医学工程系于2007年成立,至今已有6届毕业生,学生的高素质广受企业的欢迎。如何进一步提升学生的实际工作能力、工程思维能力、表达与交流能力,使学生的技能与未来的工作环境更加贴近,是本课程改革的重点方向。授课教师在英国和加拿大的求学和工作经历中,参加了各种教学培训,对课程设计和培养学生的实际动手能力感受深刻。欧美国家将实验课程融入教学中,开放的教学环境以及充分的利用各种资源使学生能够接触到先进的实验仪器以及医学器材。教师启发学生积极思考,鼓励学生设计实验,并要求学生团队协作完成实验。因此将生动的头脑风暴和小组合作引入到《生物医学仪器实验》课程中,能够激发学生的科研兴趣和提高学生的参与热情,有效地培养学生的基本实验技能。

二、头脑风暴教学法

“头脑风暴”法(brain storming)于1939年由被誉为“创造工程之父”的Alex Osborn在其著作《你的创造力》(Your Creative Power)中作为一种开发创造力的方法正式提出。最早是精神病理学上的用语,是指精神病患者的精神错乱的状态,患者会产生大量的奇思异想。Osborn借用这个概念来比喻思维高度活跃,不同于常规的思维方式而产生大量创造性想法的状况。在教育领域,对一个新观点,成员之间能够互相帮助,进行合作式学习,并且在学习的过程中,取长补短,集思广益,共同进步,产生了一种新的教学法――头脑风暴教学法。其本质是让参与者的思维高度活跃,打破常规,产生大量创造性设想,使各种设想在教学活动中相互碰撞激起脑海的创造性“风暴”。国内也有一些院校开展了“头脑风暴”教学法[1,2],将“头脑风暴”应用到实验教学中,是非常有益的尝试。通过3年来的教学实践,在《生物医学仪器》实验课程中采用“头脑风暴”法,有效地激发了学生的学习热情和创造力,主要的方法为:①授课教师需要确定课堂讨论的主要议题,熟练掌握“头脑风暴”的主要方法和技巧,重要的是保持开放的教学态度,鼓励学生畅所欲言,使教学、实验气氛自由轻松。②鼓励学生发言,先分组讨论,再选出代表进行发言,使每个学生都有机会提出设想和发言。③发言讨论结束后需进行总结。用智力激励法产生出来的构想,大部分都只是一种提示,缺乏系统性和逻辑性,因此整理、补充和完善构想这一步就显得相当重要。在《生物医学仪器》课程中采用“头脑风暴”法的优势:①实验课程要注重对理论知识的形象化、深刻化,使学生能够将理论知识应用到实践中,并且培养学生的创新思维能力。学生是“头脑风暴”的主体,小组讨论时,各抒己见,脑力互相激荡。这突破了传统的教师讲授,取而代之的是学生的讨论与交流,让学生指导学生。“头脑风暴”教学法主要的目的是促进学生的发散思维,而发散思维是创新性思维的核心,从而推动创造性思维的发展。此外,这种“独立思考、团队合作、相互探究”的实验实践方式,使学生爱学、会学、善学。在进行“头脑风暴”小组讨论中,学生处于一种畅所欲言、自由轻松的气氛中,思维可自由驰骋,可从不同的角度、层次提出各种想法,想法越多,越另辟蹊径。在实验中就能尝试不同的设计方案,获得的实验技能就越牢固。“头脑风暴”讨论的结果并非否定或是批判谁的观点,这样可以使学生充分发挥想象力,摆脱外部的价值判断压力,不必担心被人讥讽而框住自己的思路,从而使学生在一个自由安全的环境里互提设想,互相启迪,以求得创新思维的发展。②集思广益,课堂讨论气氛热烈。“头脑风暴”的优势之一就是形成尽可能多的观点。通过“头脑风暴”教学,学生可以从各自知识背景、思维习惯、观察角度和方法出发,互相启发,充分交流,同时也丰富了教学内容。“头脑风暴”在短时间的思考,未经深思熟虑、反复策划,但是通过课堂讨论,各个小组仔细倾听其他小组的想法,在别人思想的启发下不断修改完善自己的设想,集思广益,取长补短,相互学习促进。③培养独立思考与团队协作精神。“头脑风暴”教学改变了传统的教师占主导地位的教学形式,让学生成为教学的主体。在“头脑风暴”教学的过程中,学生围绕议题,进行快速思考与小组讨论,发表各自的观点与主张,培养了学生独立思考的能力。“头脑风暴”分组进行,在实验过程中人员有不同的分工,它既要独立完成又必须以小组的形式共同合作完成,锻炼了学生的组织能力和合作能力。④使表达、交流的能力得到锻炼。沟通与交流能力是现代社会核心竞争力之一,“头脑风”暴注重培养学生良好的语言组织和表达能力。“头脑风暴”的教学过程有利于学生的思辨能力、口头表达能力得到锻炼,让学生居于讲授与实验设计操作的主置,给学生一个锻炼自我、展示才华的舞台,充分展示了学生的专业知识能力、表达能力和组织协调能力。在实验前、验中和实验后都需要不断地进行“头脑风暴”式的小组讨论,实验结果需要以口头报告的形式向全班同学进行演示和讨论,这锻炼了学生的表达和交流能力。⑤培养学生对学科前沿和医疗仪器市场的把握。采用“头脑风暴”讨论,培养了学生对学科前沿和商业应用的兴趣。作为新型的产业类型,例如可穿戴医疗设备以及各种便携式的医疗仪器,培养了学生主动获取学科前沿知识的能力,并使其具备一定的市场眼光。

三、结语

将“头脑风暴”教学法应用到《生物医学仪器实验》课程教学中是有益的尝试,通过3年的探索,逐渐形成了多种实验模式。这种教学方式受到了学生们的欢迎和喜爱,在轻松自由的氛围中独立思考,畅所欲言,自主实验,相互交流。

参考文献:

[1]杨阳,闻书宁.头脑风暴教学法与法学课堂[J].法制博览,2016,(18):326.

[2]赵志宽.高职锅炉专业头脑风暴教学法的实践与创新[J].现代企业教育,2012,(18):68-69.

Application and Exploration of the "Brain Storming" in "Biomedical Instrument Experiments"

QI Li-ping,QIN Kai-rong,LIU Rong,QIU Tian-shuang

(Department of Biomedical Engineering,Dalian University of Technology,Dalian,Liaoning 116024,China)

第7篇:生物医学工程概念范文

生物医学工程是利用工程技术研究生命科学现象,运用工程手段解决生物医学基础理论及临床应用问题的综合性专业[1]。其中“生物医学传感器与测量”课程的教学是专业教学体系的核心组成部分。近年来,随着微电子技术、新材料技术和电子信息技术的飞速发展,各种新型生物医学传感器不断涌现,原有的教学内容显得有些陈旧。笔者结合科研背景,提出“兴趣引导,自主学习,实践探索”的指导思想,尝试对本课程教学内容和教学方法进行改革。

1教学内容的改革

本课程原有教学内容主要是对各种传统物理类传感器原理和测量电路的讲授,基本上移植了自动化类专业的传感器教学内容。我们根据生物医学专业特点,对该课程的教学内容进行了调整,除了介绍应变式、电感式、电容式、压电式、磁电式和光电式等经典的物理类传感器的基本原理和测量电路外,增加了这些传感器在医学上应用内容,如多普勒频移血流计、电容式心音传感器和光电式脉搏传感器等内容。此外,还补充了近年发展起来的一类新型的传感器———生物传感器内容。生物传感器融合了生物学、化学、物理学和信息学等相关学科,在国内外已经发展成为一个活跃的研究领域。所增加的生物传感器的主要内容有:生物传感器的基本概念和类型,生物分子识别元件及其生物反应基础及生物敏感材料的固定化。这三部分是生物传感器的基础。在此基础上,讲授了电化学生物传感器(包括酶电极、微生物电极、免疫电极、亲和电极、介体电极和生物组织电极等内容)、光学生物传感器、热生物传感器、压电晶体生物传感器、半导体生物传感器、表面等离子体生物传感器、光纤生物传感器及分子印记生物传感器和基因芯片,这些内容都是生物传感器近年来最新研究成果[2]。新内容的补充可以拓展和丰富传感器的类型,特别是生物传感器利用生物反应巧妙的实现生命信息的探测和转换内容。

2教学方式的改革

2.1多媒体与传统板书结合

多媒体教学是现代主流的教学方式,可以提高教学效率[3]。但我们发现如果单纯依赖多媒体教学,学生认为只要拷贝教师的课件就可以掌握上课内容,所以往往不会做笔记,忽视了教师讲授的知识。针对本课程特点,我们采用多媒体教学和传统板书教学手段相结合的方式。例如对于传感器的结构、外形及应用采用多媒体的图片和动画展示,增加学生的印象,而对于传感器的基本原理及测量电路中的公式推导,采用传统板书的方式,提醒学生做笔记。

2.2理论讲授与教学道具相结合

在本课程的讲授中,我们非常重视培养和引导学生的学习兴趣。通过将传感器的内容讲授与生活中的应用联系起来,使学生发现原来所学习的传感器就在自己身边。比如在讲解压电式传感器时,向学生展示电子打火机和医院B超中的超声源等。在讲解电化学生物传感器时,向学生展示常用的测试血糖的试条就是一个电化学生物传感器。

2.3实验和课程设计相结合

在理论教学过程中,我们根据上课内容和教学进度,穿插安排实验教学,同时根据学生兴趣,自选题目进行生物医学传感器与测量的课程设计[4]。通过实验教学,让学生掌握传感器的测试性能、使用方法和测量电路等基本操作技能。另外,通过布置实验作业给学生几个测量参数,让其通过自己选择不同的传感器和测量电路来实现。比如对温度的测量,有的学生用热敏电阻,有的用双金属片,有的用红外光电探测器等方式来实现测量。学生不但学习了专业知识,而且还理解了针对同一个目标,可以有多种方式来实现的思想。除了实验教学外,我们还给出若干个设计题目或让学生自拟题目,让学生根据所学内容进行课程设计。学生通过查阅课外资料和文献,购买元器件搭建电路,可以发挥自己的能力进行课程设计。

第8篇:生物医学工程概念范文

[关键词]图像处理智能化;应用;发展

中图分类号:TN911.73 文献标识码:A 文章编号:1009-914X(2015)21-0118-01

[Abstract]introduces the basic concept, principle, and image processing,Account for part of the algorithm,Image compression, enhancement and recovery are briefly discussed, and the characteristics of image collection, processing。With the rapid development of computer, The application of image processing is ubiquitous, Communication engineering, aerospace, biomedical engineering, security industry, military and so on all has the extremely widespread application. This article from the status quo and the content of image processing, intelligent, Summarized the application of related concept, At the same time the paper forecasts the development direction of the future。

[Key words]intelligent image processing; Application; The development of

1、图像处理的研究内容及现状

所谓数字图像处理指的是用数字计算机加工、处理图像,目的是为了恢复图像的本来面目,改善人们的视觉效果,突出图像中目标物的某些特征,提取目标物的特征参数[1]。数字图像处理起源可追溯到20世纪20年代,在50年代时人们开始对数字图像处理进行系统的研究。这个时期的图像处理系统采用机箱式结构,所以系统的体积比较大,功能也比较强,价格较贵。随着时间推移,其演变成小型化,外形绝大部分都采用PC系列危机构成图像处理系统,并采用双屏操作方式,图像卡体积小,且采用大规模集成电路,从而在价格上大大降低,从20世纪90年代初,其突出特点为单屏方式,在Windows平台上编制图像处理软件包。

2、图像处理的应用

图像是人类获取及交换信息的主要载体,数字图像处理的应用领域与人类的生活息息相关,不仅在理论方面有着显著的成功,在实际应用当中也起到至关重要的作用。

2.1 遥感航空航天方面

数字图像处理不仅应用于航天和航空技术方面,还应用在飞机遥感和卫星遥感技术中自JPL对月球、火星照片处理有了新发现之后,许多国家每天派出很多侦察飞机对地球上相关地区进行大量的空中摄影人们利用具有高级计算机的图像处理系统来分析照片,相比以前既加快了速度,又节省了相当一部分人力,还从照片中提取出人工所不能发现的相关有用情报从60年代以来,美国及一些国际组织发射了资源遥感卫星和天空实验室,由于成像条件受到了飞行器环境、姿态、位置、条件等影响,图像质量总不是很高,因此以如此昂贵的代价进行简单直观的判读获取图像是不合算的,而必须采用数字图像处理采用多波段扫描器,在900Km高空对地球每一个地区以18天为一周期进行扫描成像,其图像分辨率大致相当于地面上十几米百米左右。

2.2 生物医学工程方面

数字图像处理在生物医学工程方面的应用十分广泛,而且很有成效除了文献[2]中介绍的CT技术之外,还有一类是对医用显微图像处理分析,如红细胞、白细胞分类,癌细胞识别,染色体分析等此外,在X光肺部图像增强、超声波图像处理、心点图分析、立体定向放射治疗等医学诊断方面都广泛地应用到了图像处理。

2.3 通信工程方面

目前通信的主要发展方向是声音、图像、文字和数据结合的多媒体通信,具体地讲是将电话、电视、和计算机以三网合一的方式在数字通信网上传输其中以图像通信最为复杂和困难,因图像的数据量十分巨大,如传送彩色电视信号的速率达到100Mbit/s以上,要将这样高速率的数据实时传送出去,必须采用编码技术来压缩信息的比特量,在一定意义上讲,编码压缩是这些技术成败的关键除了已应用较广泛的DPCM编码、熵编码、变换编码外,目前国内外正在大力开发研究新的编码方法,自适应网络编码、如分析编码、小波变换图像压缩编码等。

2.4 军事、公安方面

在军事方面图像处理和识别主要用于导弹的精确制导和制弹、判读各种侦查照片、建立具有图像传输、存储、和显示的军事自动化指挥系统及飞机、坦克和军舰模拟训练系统等; 在公安方面,判读分析公安业务图片、识别指纹、鉴别人脸,复原不完整图片、监控交通和分析事故等。

3图像处理存在的问题及未来发展

数字图像处理技术快速发展的同时也存在一定的问题,表现在以下四个方面:(1)提高精度的同时还要解决处理速度的问题,发达的数据量和处理速度不相匹配;(2)加强软件研究,创造新的处理方法;(3)边缘科学的研究如人的视觉特性,促进图像处理技术的发展;(4)建立图像信息库和标准子程序,统一存放格式和检索,方便不同领域的图像交流和使用,实现资源共享。

随着计算机科学技术的迅猛发展,图像处理随着应用领域的拓宽,在其应用方向上也随着人们日益要求的提高在逐步延伸,前方未知的领域还有待我们继续去探索。

参考文献

第9篇:生物医学工程概念范文

试题库建设是教育现代化的需要,是教考分离、实现标准化考试的需要,也是课程建设的重要组成部分[1-3]。用试题库进行考试是命题方式的重要改革,是高校教学管理探讨的重要课题之一。但是题库的建设并非一个简单的试题堆积过程,而是一个艰苦的摸索创新过程,需要一个适应的过程。本文是以《生物医学传感器》课程为主要研究对象,依托人才培养方案,积极开展课程试题库的建设,使考试管理工作进一步规范化,保证考试公平、公正,促进教风和学风建设,不断提高教学质量。生物医学传感器技术是一门多学科交叉的应用技术,是生物医学工程专业的重要学习内容,是获取人体生理、病理信息的关键技术。本课程要求学生了解各类生物医学测量技术中常用的物理、化学和生物传感器的构成原理、性能特点等各类基本知识,掌握各种传感器在医学上的各项应用方法,使学生分析问题、解决问题及研究应用设计的能力得到提高,为使学生将来在生物医学电子领域设计、研究出更好的医电产品打下坚实的基础[5-6]。

该课程的学习不仅可以培养学生观察、记忆、思维、理解和分析问题的能力,而且对学生后续专业课程的学习和科研能力的培养均具有深远的影响。因此检验课程的教学成果,反馈教学信息对《生物医学传感器》课程的建设至关重要,是评价教师的教学效果、学生学习水平、学习状态、教学目标的实现程度,激发学生创造力,调整教学策略的主要依据。《生物医学传感器》课程专业题库的建设是和课程的特点紧密联系在一起的。首先,该课程涉及到的基础知识广,命题量大。生物医学传感技术涉及物理、化学、生物、电子电路等多方面的知识,因此考试中常常难以做到面面俱到。专业题库的建设依据强大的计算机技术,灵活安排考试内容,能够实现多层次不同级别考试的进行,使考试内容更加规范化,科学化,同时可以更好的评估学生的学习效果。其次,该课程和实践联系紧密,实用性强。生物医学传感技术和生产实践联系紧密,在理论知识的介绍中,更注重知识的活学活用,具有很强的实用性。专业题库的建设可以通过多种技术手段建立虚拟的实验测试平台,对丰富的实验内容和实验软件进行考核,从而强化理论联系实践的学习效果。

最后,技术创新发展迅速,知识更新快。生物传感工程是目前发展迅速的热门领域,知识更新换代比较快,不断有新的技术突破充实进来,因此考试内容也要与时俱进,积极关注该领域的最新发展。专业题库具有灵活、高效和极强的可控性,可以适时的补充和完善,能够很好的解决这个问题。由于目前《生物医学传感器》的题库建设还比较少,没有多少可以借鉴的经验,需要任课教师自己摸索。同时该学科的前瞻性也要求教师时常更新试题以完善试题库,这样就给教师增加了工作强度和难度,为该模式的推行带来了相应的阻力。

1《生物医学传感器》课程试题库建设内容

本着不断探索的精神,我们对《生物医学传感器》课程试题库的建设主要包括以下内容:

1.1试题标准的确定

根据教学大纲,结合本专业学生的培养目标,建立一套合理完善的试题标准,提高命题的科学性,既要对教材内容的重点、难点有所突出,同时兼顾教材内容的深度和广度。凡是入库的试题都是经过严格筛选,并按合理的原则组织起来的,保证考试质量的稳定性。

1.2题库等级的划分

根据试题标准,建立不同层次不同等级的试卷,既要有针对重点章节局部内容全面细致的考察,又要对整体知识的把握和融会贯通的测试,优化组合成内容、性质、难度等各不相同的试卷,使试卷符合预定的各项质量指标,保证考试的信度和效度,从而使整个测量系统具有较好的稳定性、一致性和通用性。

1.3命题形式的规范化和多样化

结合考试内容,对同一知识点从不同方面进行考查,同时变换命题形式,丰富题库的类型,对不同题型的比例进行优化。每道试题的题意要清楚,题文用语要准确、精炼,题图要规范,并附评分规定、难度参数、区分度参数、答题时间等信息。

1.4注重与科研实践的结合

根据专业特点,结合本学科的发展趋势,进行实验考核,通过考试内容引导学生跟踪国内外本学科的最新进展,关注医用传感器相关产品和企业,激发学生的学习兴趣,促进学生对学科的认识和理解。

1.5试题库的维护

试题库是动态的,应该随着生物传感技术的发展和教学大纲的变化做适当的调整,不断完善。

2建立以试题库为主体的教考分离模式

建立以试题库为主体的教考分离模式是一种创新的教学形式,该模式的实行将大大推动生物传感器课程的教学改革、规范教学管理过程。本着这一思路,我们对《生物医学传感器》的试题库主要做了以下的工作:

2.1试题自备阶段

主要将试题的着眼点放在教材各章后的习题上面,对试题进行认真筛选,将那些概念性强,知识要点突出,方法典型,综合性强和具有一定分析能力的试题全部录入。现已初具规模。

2.2教师自编试题收集录入

生物传感器课程都有其独特的知识热点,根据教学进度、学生的学习情况以及学生对课程的掌握情况,任课教师设置试卷的范围、试题的难度系数等,编制灵活多变的试卷。根据课程的发展需要,对题库中试题进行增加、修改、删除等工作。题库入库试题必须不断得以补充,好的试题加入和质量差的试题淘汰,形成库内试题不断更新。

2.3积极开发试题库

为克服闭门造车的弊端,节约人力和时间,在参考别人的基础上,开发具有自己特色的试题库,可以按本课程涉及的物理、化学、生物、电子电路等多方面知识进行分类建设。