公务员期刊网 精选范文 生物医学工程的现状范文

生物医学工程的现状精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物医学工程的现状主题范文,仅供参考,欢迎阅读并收藏。

生物医学工程的现状

第1篇:生物医学工程的现状范文

1.国内发展现状

1.1发展还不完善

中国的现代生物医学工程学科发展较晚,相对于国外一些发展较早的国家来说,我们对它的认识还很浅显,跟国外一些技术先进国家的距离还很远,很多人包括一些从事其研究的人对它都有或多或少负面的评价,他们普遍认为现代生物医学工程是一个生物、医学、工程学的交叉学科,但实际的培养计划中生物、医学学的很少,电子学得多些,学科广而不专,就业不好。它尚未形成自己的独立基础理论与知识体系,以融合各交叉学科知识为自己的基础,缺乏永恒的研究主题与固有的中心目标,随交叉学科的发展和应用对象的需求而变化。很多学习现代生物医学工程的人对自己的专业抱有消极的态度,对自己的前途感到渺茫,就业形势不是很乐观,这也反映了现代生物医学工程发展不完善,没有形成很好的体系,没有在国内高校中产生普遍影响力。

1.2发展方向不够全面

现代生物医学工程就目前的情况来看,还主要将目光着眼于医疗器械的研发和使用,发展方向比较单一。仅仅着眼于医疗器械而不是全面的发展,就会产生很大的局限性。这也深深影响着在这一领域学习的学生,不能使他们从一开始就形成一种将自己的研究全面化的思想,使学生的学习变得保守,进而失去学习的动力,这样就不利于生物医学工程更好的发展。

1.3包含的学科多杂

我们知道,现代生物医学工程是综合了生命科学和工程技术,理、工、医相结合的新兴交叉学科,是一门多学科交融的边缘学科,其中工程学又包括电子学,计算机科学,力学,材料科学,机械制造学等。生物医学包括生物学,神经科学,内科学,外科学,矫形科学等。现代生物医学工程学习的重点是生物医学,但是在解决一些生物医学问题的时候往往要借助于工程学的知识,掌握工程学的知识对于更好的掌握生物医学又起着至关重要的指导意义。

第2篇:生物医学工程的现状范文

关键词 生物医学工程;专业英语;教学改革

中图分类号:H319.1 文献标识码:B 文章编号:1671-489X(2012)18-0077-02

生物医学工程专业英语是高校生物医学工程专业普遍开设的专业课程之一,课程内容包括本专业知识和英语知识,与学生在大一大二时上的大学英语课有所不同。笔者根据近年在河南科技大学医学技术与工程学院生物医学工程专业英语课中的教学经验,结合大多数学生的反馈,总结生物医学工程专业英语课程教学过程中的缺点与不足,并在教材编写、教学方式、学习方法和技巧等方面提出改革措施。

1 教学中存在的问题

1.1 教材老化

河南科技大学医学技术与工程学院生物医学工程专业英语一直使用几年前的自编教材,教材内容单调,没有系统性。生物医学工程领域的发展日新月异,教材无法紧跟时代,显得有些老化,需要选择更合适的教材。但目前生物医学工程专业英语缺乏统一的教材,难以满足教学要求,更达不到培养既通外语又懂专业的复合型人才的要求[1]。

1.2 教学方式落后

目前高校对专业英语的教学并没有足够的重视,教学方式大部分仍然是传统的板书,而生物医学工程专业英语的特点是医学名词多,合成词多,单词长,拼写难,长句较多,但句子结构并不难,语法较简单。以板书的方式教学,形式单一,实际讲授内容较少,学生感觉枯燥而且难学,普遍不感兴趣,因此急需改革教学方法,调动学生的积极性。

1.3 考核方式单一

专业英语期末考核往往是由任课教师从教材或其他英语文献中摘取几段让学生翻译成汉语,这种考核方式太单一,与一般的英语考试也有所区别,而且与学生听说读写的英语综合能力考核的要求相差甚远。

2 教学改革的3个方面

针对以上教学中存在的问题,结合学院的实际,在生物医学工程专业英语课程的教学改革中应明确:以提高学生专业英语水平为目标,重新编写教材,改革教学方法,引入多媒体教学,提高学生的学习兴趣,并改革课程考试方法,真正考察学生对课程掌握情况及英语水平的进步程度。

2.1 重新编写教材

针对生物医学工程专业已学完公共英语的大三学生重新编写一本专业英语教材。生物医学工程是运用工程技术手段解决生物学及医学上的问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务的一门交叉学科,内容广泛,因此在选材时要充分考虑专业领域最新的发展方向,系统规划,利用各种资源开发教材,确保章节、单元内容适应专业课的教学需求。所编教材共有6个单元的内容:第一单元是生物医学工程专业简介,包括专业发展历史及现状、具体涉及的领域及生物医学工程师的具体工作;第二单元是常用生物医学仪器的介绍;第三单元是医学影像学的各种方法、目前医院及科研中常见的各种影像仪器的原理与使用等;第四单元是医院管理,主要介绍医院管理系统HIS及其下属的各个小系统,以PACS为重点进行分析;第五单元是生物材料和组织工程;第六单元是康复工程和生物力学。

2.2 使用多媒体教学方式

专业英语课程使用板书的教学方式会因为书写板书而浪费很多时间,课堂教学效果也不是很好。而采用多媒体教学,教师可以充分地利用课堂时间为学生讲解课文中的生词、长句,通过多媒体教学软件的演示,将语言、文字、图像等多种与课程内容相关的信息显示在屏幕上,使原本枯燥的内容变得有声有色,大大提高了学生学习的兴趣,激发了学生学习的积极性、主动性,授课效率大有提高。比如较长的专业词汇,学生刚学时感到很吃力,教师可以通过多媒体教学声音与动画结合的演示,将单词的拼写以动画的形式在屏幕上演示,并在课件中加入单词的读音;而文中的长句则可以用不同的颜色标出句子的主干及关键词,这样加深学生对生词和长难句的理解和记忆,教学效果很好。

2.3 课程考核方法的改进

尽管目前已有很多高校取消了英语四六级考试与毕业挂钩的要求,但由于就业困难,许多大学生仍然十分重视四六级考试。因此,在专业英语的课程考核当中,可以考虑使用四六级考试的多样化题型来考查专业英语的内容,而不仅仅像以前那样简单地出一些翻译题型。这样不仅考核了专业英语的学习情况,对学生来说也是一次四六级考试的实战练习,引起学生的重视,也提高了积极性。

3 总结

通过教学改革实践,不仅能够提高学生对专业英语课程的学习兴趣,调动学生学习的积极性,而且丰富了教学手段,优化了课堂教学效果,使学生通过学习不仅能够学到英语知识,也巩固了专业知识,提高知识应用能力和英语听说读写能力。当然改革是一个长期的过程,需要在教学过程中不断完善,不断积累经验,这样才能真正达到培养应用型本科人才的目标。

第3篇:生物医学工程的现状范文

“当然不是什么自设专业。生物医学工程是交叉学科,可是个大热门,我也许会做个工程师吧。”我笑着应答。

“是不是也要和典型工科男一样,整天对着电脑看数据,或是画图呢?”

“这会是工作的一部分,因为有不同的分支,就业也有很大的不同。”

很多人听说我学生物医学工程专业,都表现出惊诧的眼神,不知道会学些什么。当他们得知我在医学院,眼里的惊讶就又升了一个等级。是的,我在医学院读工科博士学位,梦想着能成为一个为医学事业效力的工程师。

下一个诺贝尔奖的产出地

生物医学工程是一门新兴的交叉学科,它是工程学、生物学和医学的完美结合。通过研究人体系统的状态变化,运用工程技术手段去控制这类变化,来解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务。如果说医生是在临床上给予病人直接的救助,那么生物医学工程师就是通过研发的方式,为医生提供技术支持。

现代医学的迅速发展,离不开高新设备的推动。手术室中高端器械,如高频电刀、激光刀、呼吸麻醉机、监护仪、X射线电视、超声、核磁共振成像技术等,都是生物医学工程高速发展的产物,生物医学工程研究者就是这些医用电子仪器的研发者。当你看扣人心弦的美国医疗剧时,医生常常使用的挽救了无数生命的除颤仪,就得力于医学工程师的研究和设计。

生物材料制作也是生物医学工程的重要组成部分之一。在我国器官捐献还较少,而很多终末期器官衰竭者又在等待新的器官来延续生命,于是人工器官应运而生。生物材料为各种人工器官提供物质基础,器官制造直接关乎生命,是个大学问。制作人工器官的材料必须要充分考虑强度、硬度、挠度、韧性、耐磨性及表面特性等各种物理、机械等性能。由于这些人工器官大多数是植入体内的,所以要求具有耐腐蚀性、化学稳定性、无毒性,还要求与机体组织或血液有相容性。这些材料包括金属、非金属及复合材料、高分子材料等,其中轻合金材料的应用较为广泛。所以,从事这一领域研究不仅要有丰富的医学知识作为基础,还要对物料、材料等方面有深入了解和研究。相信在未来随着技术的成熟,我们会设计出质量高而又成本低的人工器官,为人类的健康作出更大贡献。

最有趣、最前沿的要数神经网络的研究了。大脑是人体最复杂的器官,对脑神经的研究是目前世界各国科学家掀起的一个新热潮。这是一个可能引起重大突破的新兴边缘学科,它研究人脑的思维机理,将其成果应用于研制智能计算机技术。运用智能原理去解决各类实际难题,是神经网络研究的目的,现在这一领域已取得可喜的成果。也许,下一个诺贝尔生物或医学奖的获得者就是研究该领域的生物医学工程科学家。

除此之外,生物医用陶瓷材料、纳米医学、微创医学、生物力学、生物信息学、远程医学与健康信息学等,都是生物医学工程的重要分支。

英语想不好都难

单看这个专业的名字,就能看出这个新兴的交叉学科的三大板块――生物、医学、工程,缺一不可。

第一板块:生物。在该领域,学生要修读化学生物学、生物传感与分析、生物信息学、生物电子学等相关课程。不仅要掌握这些理论基础,还要有生物科学的基本实验技术,能从事试验工作。

第二板块:医学。在医学方面,学生要修读人体生理学、人体解剖与组织学、神经科学、医学统计学等。同时要学习生物医学仪器的基本原理、设计方法,并了解相关仪器的发展趋势,掌握现代医学影像技术的基本原理、技术现状和发展趋势。此前我对医学影像学一无所知,后来去医院和一些厂家实际参观,一张张生动立体的器官美图、核磁共振检查带来的精确诊断,让我领略了生物医学工程的巨大魅力。

第三板块:工程。尽管此专业在很大程度上是为了服务于医学领域,但是在学习的过程中,涉及工科的课程最多,也最复杂。生物力学是必修课,但是有其自身特点,这是一个应用力学原理和方法对生物体中的力学问题进行定量研究的学科。像生物流体力学、生物心血管系统、飞行等与水动力学、空气动力学、边界层理论和流变学等有关的力学问题,学习者了解了这些后可以对自己的身体有更深的认识。除此之外,纳米科学技术引论、成像理论与技术、信息可视化技术、电路与电子技术、计算机硬件与软件、信号处理与分析等实践性较强的课程也是必修课。

作为工科专业,它对实践能力的要求很高,较强的动手能力也是毕业生将来就业的基础。在研究生阶段,我们要学习硬件电路设计与调试,要像“码农”一样,熟练掌握计算机编程。此外,如果你以为生物医学工程学生外语是弱项的话,那你就大错特错了。也许你入学的时候英语刚刚到国家线,甚至是自己的减分项,那么通过两三年的研究生学习,你也能成为英语高手。因为生物医学工程专业在欧美国家发展强劲,我们用的一些教材都是英文原版,如《磁共振成像原理》《系统与计算神经科学》等。同时我们也要阅读大量的外文文献,了解国外前沿动态。一些专业课还要全英文教学,在这样的语言环境中,英语想不好都是难事。

第4篇:生物医学工程的现状范文

关键词:生物医学工程;电子竞赛;职业能力

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)15-0233-02

生物医学工程学(Biomedical Engineering,BME)是一门理学、工学和医学高度综合的交叉学科。应用现代自然科学和工程技术的理论和方法,从工程学角度,研究人体的结构、功能及其相互关系,揭示其生命现象;研究人体系统的状态变化,并运用工程技术手段去控制这类变化;研究解决医学防病、治病的新技术手段,保障人民健康的一门新兴的边缘科学。这门学科培养学生具备生命科学、电子技术、计算机技术及信息科学有关的基础理论知识以及医学与工程技术相结合的科学研究能力,能在生物医学工程领域、医学仪器以及其他电子技术、计算机技术、信息产业等部门从事研究、开发、教学及管理的高级工程技术人才。

一、生物医学工程专业需求分析

学科的交叉融合决定了就业选择的多样性,主要有教学科研型、医疗设备型、电子通信型。(1)教学科研型,主要在国内外高校或科研院所就业,从事人才培养和科学研究,属于科研型人才,工作稳定,有较高的社会地位。教学科研型单位入门门槛高,通常要求具有硕士、博士学位,要求有良好的教育素养和较高的专业知识水平,创新能力强,有强烈而持久的进取心精神。(2)医疗设备型主要分为三大类:第一类在医院设备、影像、放疗、临床工程、信息中心等相关科室,从事医疗设备和软件的安装、维修和管理等工作;第二类是去各大跨国以及国内医疗器械企业,比如GE、SIEMENS、迈瑞、安科等,从事研发、测试、销售、售后服务等;第三类进入国家医疗器械司及各级医疗器械检测所。医疗设备型需要实干型人才,能够将所学的专业知识应用到工作中。(3)电子通信型,主要从事与生物医学无关的纯电子、通信以及计算机等相关工作。

目前,毕业生从事的工作按百分比排序依次为:医疗器械公司32.7%,医院20.9%,高校和科研院所19.1%,与专业相关的其他公司7.3%,工厂2.8%,政府机关1.1%,其他单位16.1%。

二、我国生物医学工程专业的学习现状

生物医学工程专业开设的专业基础课程有:电路原理、模拟与数字电子技术、C语言程序设计、信号与线性系统、生物医学传感器与测量等。实验课包括大学物理实验、医学实验、电工实验等。这些专业基础课程既有丰富的理论体系,又有很强的实践性,是一门抽象、难懂的学科。学生的兴趣和动手能力是学好这些课程的关键。传统的教学模式是教师讲、学生听;先理论、后验证。这种模式不利于培养学生的操作能力和激发学生的求知欲,往往造成学生理论有余而实践不足,极大地妨碍了学生发挥学习的主动性和积极性,不利于培养他们的职业素质和实际工作能力。在学校里学习的医疗设备特别是大型医疗设备,如CT机、核磁共振、螺旋CT等都是纸上谈兵,无法将课本中的理论知识与现实中的医疗设备有机结合起来[1]。

三、以电子竞赛的方式促进学生的工程实践能力

处于医科院校的生物医学工程学科,其研究的主要特点是和医学结合紧密,医学大背景很深厚。在这样医学氛围很浓的环境中,生物医学工程自然成为小学科,工程力量相对薄弱。这就要求学生理论分析能力和动手能力要好,不仅要熟练掌握基本理论和基础知识,而且要接受科学实验研究能力、工程设计能力、新产品开发能力和生产过程组织管理能力的基本训练,提升自身能力。

通过多年生物医学工程专业的教学经验,辅导学生参加电子竞赛具有非常好的效果。2014年本专业组织学生参加了由教育部信息技术中心主办的“第九届全国信息技术应用水平大赛”。它是推动各有关院校信息技术相关专业教学体系的改革,引导学校积极开展应用型人才的培养,提高学生解决问题的能力和自主学习能力,培养学生的创新创业能力。根据学生理论课的学习情况,选择了“飞行器控制设计”竞赛组,要求选手使用指定芯片,自主设计、制作控制电路板,以控制大赛指定的一个飞行器完成起飞、悬停、降落及其他指定任务。

在综合知识考试部分,通过2014年试题分析,主要元件、信号及基本电路占15%,模拟电路、数字电路占20%,高频电路占5%,C语言的基本知识及应用占20%,主要测量仪器使用占5%,印制电路板设计及电路安装调试占5%,单片机原理及电路占40%,涵盖了几乎所有的专业基础课程内容。

飞行器设计部分,将整个系统分为三大块:遥控系统、通信链路、控制系统。学生需要使用STC公司的IAP15F2K61S2核心处理器实现控制板的设计,遥控器的设计,完成起飞、悬停、降落及其他指定任务。飞行器是将机械、电子、空气力学、高频发射等专业知识整合为一体的精密设备,需要正确组装和调试才可避免事故发生。要实现起飞、悬停、降落以及指定方向的快速准确动作,学生必须学习掌握双旋翼飞行器的飞行原理、旋翼速度的控制原理、舵机的控制原理等,通过查找相关技术资料,这些初次接触的新概念的基本原理用在基础课程教学中的知识完全可以解决。比如,舵机是一种角度伺服的驱动器,在所有的飞行器机电控制中,舵机的控制效果是性能的重要影响因素,而舵机控制原理,所有的学生都是初次接触,很茫然。指导教师要求一个学生查找资料后,面对其他学生进行讲解,舵机的控制需要一个20ms的时基脉冲信号,该脉冲信号的高电平部分一般为0.5ms―2.5ms范围内的角度控制脉冲部分。该飞行器中所用的180°角的伺服,对应的控制关系是0.5ms―0°、1.0ms―45°、1.5ms―90°、2.0ms―135°、2.5ms―180°。而控制角度其实就是控制PWM的占空比,通过讲解学生理解了原理,同时也和理论教学紧密结合,使学生认识到理论课的重要性。通过实际测试,学生感性认识并理解了直流电机控制中转速与电压、电流和功率的相互关系,对理论课程中学习的电压、电流和功率的概念有了更加深入的理解。

遥控端作为整个系统的控制中心,主要是将用户对油门摇杆、俯仰摇杆、航向摇杆以及微调按钮相关的机械操作转换为可进行传输并且可以对直升机进行操控的数据。双桨共轴直升机主要完成上升下降、前进后退、左右转向等操作,学生需要自学相关的控制原理,这样就把理论课上学习的电子技术知识、C语言编程、器件的感性认识、电路焊接、调试等融合在一起进行工程技术的实现,激发了学生学习的积极性,工程技术、资料查询、科研能力也得到了提高。

故障排除部分,给每个学生发放一套开发学习板,要求在3小时内完成现场的硬件故障排除,软件编程实现特定功能,其要求高,难度大。

通过竞赛,学生把课堂上学习的电路理论、模拟电子技术、数字电子技术、C语言编程技术、微型计算机技术等这些生物医学工程专业的专业基础课程连接在一起,巩固了重要的知识点,比如AD转换、DA转换、功率放大、稳压电路、PWM脉冲控制、SPI串行通信、振荡电路以及C语言中的语法等,从工程实践能力上加强了学生PCB电路的设计和制作、电路焊接与调试、电路综合故障排除等能力。

四、效果分析

在学校和系领导的大力支持下,本次生物医学工程专业组织大三学生组成了4组共12人参加了这次竞赛,其中有2组进入决赛,我校是参加本届大赛的唯一一所医科院校。进入决赛的两组学生参加了在北京航天航空大学举行的全国总决赛,取得了一个一等奖、一个二等奖的好成绩。通过这次比赛,参与的学生都充分认识到了理论学习的重要性,明白了实际的研究工作都是需要理论指导的,课堂理论知识在工程技术中都会用到。通过这次比赛,学生具备了很强的动手能力,初步了解了科研工作的工作套路以及对疑难问题的分析解决能力。通过这种模式,大大提高了生物医学工程学科的学生质量,促进了行业的发展。

通过这次比赛,主要有以下两点经验:(1)应选择竞赛内容较为全面、覆盖知识面较广的竞赛,可以把课堂上的理论知识充分运用到实际中,巩固知识。(2)应结合生物医学工程专业的就业能力需求,把工程践能力的培养作为一项重要的内容。通过竞赛,培养学生的工程实践能力,使他们毕业后,能够独立承担工作,满足医学工程师的需求。

第5篇:生物医学工程的现状范文

关键词:生物医学工程;基础生物学;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2012)09-0140-02

生物医学工程(Biomedical Engineering,BME)是综合生物学、医学和工程学的理论和方法而发展起来的新兴边缘学科,其主要是运用工程技术手段,在多层次上研究生物体特别是人体的结构、功能和其他生命现象,研究用于防病治病、人体功能辅助及卫生保健的人工材料、制品、装置和系统的工程原理的学科。它主要以临床医学为对象,以生物学、化学、物理学、数学等传统自然学科为基础,融电子、机械、化工、计算机信息为一体,对于揭示生命现象、临床诊断、治疗和预防疾病等方面显示了不可估量的应用前景[1]。自上世纪70年代末以来,国内许多综合或理工科大学、医学院校及相关科研机构都设立了生物医学工程专业,旨在培养具有各方面能力的复合型人才[2]。我校生物医学工程专业设置在电子信息与电气工程学部,基础生物学是其中必修的专业基础课程。基础生物医学知识的教学是生物医学工程专业教学体系的重要组成部分,通过基础生物学、医学知识的学习,为进一步促进生物医学工程不同学科间的交叉融合奠定必要的生物学基础。基础生物学课程涉及领域宽,涵盖范围广,而且随着生命科学的日益发展,不断地涌现出新的理论和技术,给基础生物学的教学工作带来了极大的挑战。[3]因此作者针对在该专业基础生物学教学中遇到的实际问题,结合本学科课程设置的目的,在基础生物学课程教学中对教学模式的改变进行了大胆的尝试,在把握课程整体思想、方法的基础上,引入以研究内容为导向的课程设置和以研究课题为基础的教学方式,使学生有机会参与科研项目研究,在实践过程中获得知识。

一、精选教学内容,灌输思维方法

目前国内生物医学工程学科的发展仍处于起步阶段,不同院校的生物医学工程专业具有不同的研究方向和专业培养目标,因此对于基础生物学的教学还没有统一的教材,这就要求任课教师在教材的选择上应体现出自身特色。对于工科院校学生而言,由于缺乏基础生物医学相关背景知识,如果按照以往传统教材内容按部就班的授课,很可能导致学生的理解难度增加,降低学生的学习兴趣,同时容易造成学生把握不住学习重点,不能对所学知识灵活运用。同时内容多与课时少的矛盾相对突出,导致教学效果不佳。因此对于本课程的教材,精心选取国内高等教育出版社最新最优秀的同类课程教材《基础生命科学(第2版)》、《生物学导论》等作为主要参考书,基于保持本课程的实用性和先进性为目的,依据教学内容的差异,为学生推荐现代生命科学前沿学科的优秀教材,以确保教学内容的精炼和完整。同时,考虑到学生的专业背景,适当删减基础生物学教材内容,调整重点、难点,强化学习内容的结构层次和逻辑联系,注重交叉学科的联系渗透,通过不断引入新的理论和技术来提高学生学习的积极性和主动性。比如在讲发育时,把授课内容的侧重点主要放在干细胞与组织工程领域,着重向学生介绍现代生物技术在该领域的研究现状及发展前景,使学生在学习新理论、新技术的同时,能够和之前所学的知识融会贯通,从而对生物医学工程专业的发展有更深层次的理解,为以后更进一步的学习及工作打下良好的基础。在教学过程中,如何培养学生的学习兴趣,变被动的、应付考试的学习,为主动的、探索性的学习是提高教学水平的主要环节,因此对于每一门课程,任课教师必须要清楚教学目的,把握课程思想。在授课过程中,教师不仅要教会学生单纯的理论知识,更重要的是灌输思维方法,实现真正的学以致用。同时还要注意讲授内容的深度与广度相结合,紧密跟踪前沿学科,启发学生积极探索的创新思维。

二、改进教学方式,丰富教学方法

基础生物学以生命基本特征为主线,涵盖生命活动的各个领域,涉及人口、粮食、环境、资源、健康等诸多社会问题,与我们的日常生活密切相关。因此,如何将学生的综合素质培养融入到课程教学中,激发学生的学习热情,培养学生的历史责任感,是我们一直在探索的一个问题。在理论教学中,我们主要采取精讲、略讲和自学相结合的原则,以提高教学效率,提高学生分析问题、解决问题的能力。同时在采用现代多媒体教学的基础上,不断探索教学方式的改进与完善,促进师生互动,调动学生自主学习的积极性、主动性和创造性,从而为学生进一步获取更专业的知识打下坚实的基础。

第6篇:生物医学工程的现状范文

1生物医学工程专业课程设置及教学现状

我校自2003年开办生物医学工程专业以来,根据医科院校特点,以为医疗和医学研究服务为目的,培养能将医学与工程技术相结合,从事医学影像、医疗电子仪器和计算机技术的研发、操作和管理工作,并且能够开展生物医学工程学科研究的人才[1]。该专业主要学习生命科学、电子技术、计算机技术及信息图像传输、处理等有关的基础理论知识以及医学与工程技术相结合的科学知识,设置的主干课程有:“电路原理”“模拟电子技术”“数字电子技术”“微机原理”“生物医学传感器”“医疗仪器原理”“信号与系统”“数字信号处理”“生物医学信号检测与处理”“单片机原理与接口技术”等。另外凭借医学院校的优势还开设了一些医学方面的基础课,生理学、人体解剖等。为了提高教学质量,更好的达到教学效果,所开设的这些课程基本上都需要做实验演示,以增强形象性效果和形象性验证。实验教学在大学教育中是必要手段。几乎每门课的实验教学都需要用到各种各样的电子仪器,主要包括示波器、信号发生器等。在传统教学中基本上都是使用相对独立、功能固定的电子仪器,不能够随意更改它们的结构和功能。对于需要电子计算机之类的课程而言,一般都得配备几十套教学仪器来供教学使用,这些仪器设备还需要不断更新维护,教学成本比较高。另外,在医学院校对于和医学相关的专业课程很多实验实际操作比较困难,效果不理想。中国的医学教育资源本身很紧张,另外医院的设备多是大型设备,体积庞大,价格昂贵,操作使用复杂,临床使用要求高,一般院校很难满足大型医疗设备的教学使用需要。因此,在医学院校的教学中就出现很多问题,比如医学实验教学中的人体生理参数采集等演示效果不好,所以,传统的医疗仪器教学只能偏重于理论讲解,不够生动,即使有个别实验模具,其教学效果也不理想。在当前学校经费较少的情况下,如果大量增加常规仪器、仪表的配置,学校财力难以支付。这样容易造成实验教学效果不理想,对提高学生学习兴趣,培养创新及实践能力都有一定影响。随着现代测试功能和计算机技术的密切结合,出现的虚拟仪器技术可以帮助我们克服一些硬件上不能解决的难题,弥补传统仪器教学的不足。

2虚拟仪器在课程中的应用

2.1虚拟仪器简介

虚拟仪器(VirtualInstrument,VI)是一种新兴的仪器,一种功能意义上的仪器,在以通用计算机为主的硬件基础上,由用户自己设计定义虚拟的操作面板,测试功能由软件来实现的一种计算机仪器系统[2]。其实质是以计算机为核心的仪器系统与电脑软件技术的密切结合,将仪器装入计算机。通过软件将计算机硬件资源与仪器硬件融合,通过软件编程来实现传统仪器中的由硬件电路完成的功能,利用计算机显示器的显示功能来模拟传统仪器的控制端,利用计算机强大的软件功能来管理仪器系统,完成对信号数据的运算、分析处理等,可以多种形式输出结果,少量的硬件模块则为虚拟仪器的正常运行提供信号I/O接口设备来完成不同要求的测试。虚拟仪器具有传统仪器没有的性能高、扩展性强、开发时间短、开发成本低等优点,具有很强的灵活开放性。不同领域的科学家和工程师都借助虚拟仪器来解决工作与课题中的实际问题。所以,虚拟仪器自诞生以来就在测量、航空航天、自动化、远程教学和生物医学等世界范围的众多领域内得到了广泛应用[3]。LabVIEW是美国NI(NationalInstrument)公司推出的一种基于图形化编程的软件开发工具,将功能强大的图形化设计平台LabVIEW与相关硬件结合应用于教学上,能够使传统理论教学与实际有效结合,帮助学生完成从理论到实践的学习。LabVIEW软件平台结合数据采集卡等相关硬件可以开发出示波器、信号发生器等常用的电子仪器,不仅可以代替传统仪器且摆脱了传统电子仪器功能单一、更换维护麻烦等缺点[4]。将基于LabVIEW的虚拟仪器应用在教学中极大提高了教学效率,已经逐渐成为一种新的手段。

2.2在医疗仪器教学中应用

“医学仪器原理”是生物医学工程专业的一门专业必修课。该课程涉及了医学和电子学、计算机、信号处理、传感器技术等方面的知识,是一门实践性很强的科目。作为生物医学工程专业的学生,要掌握常见的医疗仪器的基本结构、工作原理,而且还要具有一定的创新思想和科研水平,有开发和设计高水平的医疗电子仪器的素质[5]。因此做好实验教学是学生提高学生实验水平和综合能力的关键。医学仪器原理实验主要将人体生理信号的检测及处理分析作为教学内容,包括了人体血压信号、心电、体温、呼吸、脉搏等生理参数的测量。生物医学信号由传感器转变成电信号,因为人体生理信号比较微弱要先经过信号的放大、滤波等预处理,再进入数据采集卡。信号通过数据采集卡采集到计算机上以后,利用LabVIEW的图像化语言进行编程,实现对数据的各种分析,包括数值分析、频谱分析等,再通过仪器软面板把结果显示在电脑上。我们以人体呼吸测量为例,这种设备一般只在医院常见,用于教学中的仪器基本上没有。因此讲过理论原理后,学生不能够真正透彻的明白,无法满足教学上的需要。我们利用少量硬件设计结合LabVIEW软件编程构建了一个人体呼吸测量系统,采用阻抗式呼吸测量原理,硬件电路主要涉及放大和滤波环节,限于篇幅就不详细说明了。图1为基于LabVIEW平台搭建的呼吸测量面板图,针对学生教学取得了很好的效果,同学们一致反映对呼吸测量的原理有了更透彻的认识,并且能学习新的软件技术,扩展知识面。在LabVIEW环境下进行实验教学只需要根据实际情况,比如是呼吸测量还是心电测量等,通过软件编程及很少的硬件连接便可完成实验任务,即节省了实验成本,又利于实验设备更新,让教师和学生脱离了传统教学仪器功能单一的框框,更重要的是可以充分提高学生积极性和发挥创造性,像搭积木一样,根据不同的测试需要,在计算机上构建一个基于虚拟仪器技术的测试测量装备,这样做还能够充分的节省高校技术资源[6]。

2.3在信号处理类课程教学中应用

生物医学工程专业设置的信号处理类课程主要有:“数字信号处理”“信号与系统”“生物医学信号检测与处理”等。这些课程中往往涉及大量抽象的概念、公式,老师上课的时候也只是讲解推导公式或证明算法,学生没有直观印象,无法把函数公式与实际波形相联系,理解起来非常困难,从而很大程度的影响了教学效果。我们以“数字信号处理”课程为例作一简单介绍。“数字信号处理”是一门理论性很强的,以算法为核心的科目。为了使学生深入理解教材上提到的理论算法,需要通过仿真实验来验证那些理论。LabVIEW软件平台的特点之一就是具有丰富的运算且灵活高效的信号处理功能,LabVIEW图形化信号处理平台由多个信号处理与数学函数库组成,包含小波变换、滤波器设计、时频分析、图像处理等工具包,将信号处理的各种功能转化为VI函数,给使用者提供了方便、简单的编程途径,从函数库调用这些现成的VI函数就可以迅速完成信号处理。学生能一目了然地看到程序的运行情况,也可以比较不同的参数对结果的影响。在数字信号处理教学中滤波器是重点知识,也是教学难点。在以往的教学中发现学生普遍对于滤波器的作用弄不明白,另外根据学习的理论知识怎样设计出有实际应用价值的数字滤波器也不清楚。在讲授滤波器时,在LabVIEW中信号处理函数面板中的滤波基本函数栏进行选择,在虚拟仪器前面板上放置多个图形显示控件,完成对滤波器的设计,还可以同时显示多个滤波器的滤波结果,这种学习方式简单明了,学生很容易理解抽象的概念从而掌握所学知识。另外LabVIEW图形化的编程语言有助于学生在比较短的时间内开发出相对复杂的数字信号处理程序,增加了同学们的自信,提高了其学习积极性。虚拟仪器技术强大的功能可以使其对学生开展形象、直观的教学方式,灵活的应用于教学中,不仅可以帮助学生深刻领会抽象的理论知识,扎实掌握所学知识,同时还可以提高他们的学习兴趣,达到最佳教学效果。

第7篇:生物医学工程的现状范文

关键词:纳米技术;生物医学;应用;机遇;挑战

随着科技的进步,纳米技术在生物医药和科学技术等领域的应用较为广泛。尤其是生物医药领域,对于临床医学和基础医学的发展起到了积极的推动作用。虽然在不少科学家和医学研究家们对纳米技术进行了详细的研究,并将其运用于生物医学领域,取得了不错的成效。但是对于纳米技术的研究还不够深入,相较于发达国家而言,我国的纳米医学技术还处于发展的初级阶段。需要对纳米医学技术在今后发展中面临的机遇和挑战进行分析。

一、纳米技术在生物医药领域的应用

(一)纳米生物学

纳米生物学是以纳米作为尺度,其研究内容主要包括:其一,细胞器结构、细胞器功能。比如细胞核和线粒体内部结构和功能分析。其二,交换细胞信息,包括生物体的物质、细胞能量信息等。其三,针对生物反应问题,对其反应机理问题进行研究和分析。比如有关于生物复制和生物调控的机理分析。其四,发展分子工程。包括纳米生物分子机器人和信息处理系统等。将纳米显微术引入生物医药领域,可以为生物学家研究进行研究提供技术支撑。比如ScanningProbeMicro-scopes,简称SPMs,中文简称扫描探针显微镜,这是一种新型的纳米生物技术,标志着显微技术和纳米技术的发展。除此之外,扫描显微镜(STM)的内部结构较小、不复杂,因此操作流程较为简单,生物学家可以借助扫描显微镜展开原子级分辨探究,从而提高生物细胞观测能力和分辨能力。仔细观察原子级的内部结构对于进一步探索和研究生物原子微观知识具有推动作用。在自然条件下,利用扫描显微镜可以对生物的蛋白质、多糖等分子展开直接观察。借助STM弹道电子发射电镜可以对单个原子进行操作,这是一种典型的人工改变单个生物结构和分子结构的行为方式。这种方式可以实现治疗疾病这一超前设想。

(二)生物医学工程

将纳米技术引入生物医药领域,可以帮助传统医生解决复杂的难题。比如纳米机器人和生物传感器。纳米机器人简称分子机器人,是酶和纳米齿轮的结合体,将其引入生物科学领域,能够充当微型医生一角,为医生解决以前的疑难杂症问题。这种纳米机器人不仅可以直接注入血液,还可以成为一种传输身体健康与否的工具。一方面,血液在传输过程中能够判断分子机器人的健康状况,机器人能够获得能量,达到疏通血管血栓的目的。另一方面,医生通过外界信号编制好的程序能够探知和杀死人身体中的癌细胞,从而全面系统地监视身体构造和疾病情况。这种先进医学工程能够为现代医学的发展打下坚实的基础。除此之外,利用纳米技术还可以进行器官的修复工作,比如对修复的器官进行整容手术或者基因配置,从而将错误或者不符合的基因去除,引入正确的染色体装置,进而保障机体的健康运作。

(三)纳米治疗技术

将纳米技术引入生物医药领域是一场全新的革命运动,能够在日后的临床治疗方面起到一定的积极作用。比如德国柏林“沙里特”临床医院,早先就有过利用纳米技术治疗癌症的成功案例。研究人员将氧化钠纳米微粒注入鼠类的肿瘤里,然后将他们放置在磁场中。由于受磁场的影响,患有肿瘤的鼠类的温度会随着纳米微粒升温而增加。实践表明,纳米微粒在可变磁场中的温度能够上升到46℃。这样的高温足够将癌细胞杀死。肿瘤附近的机体组织是健康的,没有受损坏,因此纳米微粒不会烧毁这些健康组织,健康组织的温度也不会受到伤害,这就需要研究人员将目光转移到人体试验中,实现消除人体癌症的目的。

二、纳米技术在生物医学领域中应用的展望

随着社会经济的不断发展以及科学技术的不断进步,纳米技术和生物医学之间的联系不断加强,两者的有机结合不仅能够改善生物医学技术的不足,还可以促进生物医学的进一步发展,为更多的临床实验奠定基础。

(一)生物检测诊断材料的应用

不可否认,将纳米材料与生物诊断技术进行有效融合,能够提高医学检测技术水平。实践证明。两者之间的配合还需要结合生物医学工程和先进医疗器材,医学工程是促进纳米技术与生物医学互相融合的基础,对生物医学工程进行深入研究和分析,能在一定程度上催生新医疗器材的出现。如此一来,机械设备的使用用途和功能将会得到不断扩大,这在很大程度上取决于纳米材料的功能。由此可见,将纳米材料合理运用于生物医疗诊断中,势必会进一步催生一大批更为先进的医疗诊断器材。

(二)纳米技术植入人体器官

利用先进的纳米材料可以制成性能优良的人造器官和人工血液等。将这些器官和血液植入人体,能够帮助人类远离疾病,免遭疾病的伤害。比如将传感器和基因技术进行有机结合,能够将微利器官(比如听觉和视觉上遭到损害的机体)直接植入体内,从而帮助他们恢复视觉和听觉,从而达到正常人的状态。

三、纳米医药技术在发展中面临的机遇和挑战

就机遇而言,我国是首位将纳米晶体合成碳纳米管的国家,这个碳纳米管的长度属于世界最长,其性能良好。在医药学研究方面,我国科学家们利用纳米技术研制出了一批具有抗菌效果的医疗器材和设备,并为现代医疗技术的发展提供了先进的理论和技术支撑。在纳米药物载体的研究方面,我国已有有关于“动物体内”应用的报道。这已标志着我国纳米医疗技术进入了世界领先地位。就挑战而言,与发达国家相比,我国的纳米技术还不够成熟,还需要进一步加强对纳米材料、纳米传感器等方面的研究,以此作为进一步推动我国生物医药科技进步的基础。

四、结语

纳米医药技术对于进一步推动我国临床医学和基础医学的发展具有积极的影响。因此国家相关部门以及科研成员应该以积极主动的态度投入到生物医药纳米技术领域,进一步推动我国生物医药科技的进步。

参考文献:

[1]董大敏.纳米技术与社会发展意义的辩证思考[J].商业经济,2011,23:27-28+32.

[2]中国微米纳米技术学会纳米科学技术分会纳米生物与医药技术专业委员会2010学术年会[J].生物骨科材料与临床研究,2010,05:31.

第8篇:生物医学工程的现状范文

关键词:合作;研究生;科研能力

1 医院合作的理念和必要性

长期以来,在高层次科学人才培养方面,研究型大学一直重视学术型研究人才的培养。然而随着新科技革命不断深化、经济全球化日益普及和高等教育大众化的逐步实现,研究型大学的研究生教育也担负了为工业发展和经济进步培养高层次研发人才的重要使命。树立合作教育理念,增加学校和企业合作培养研究生的机会,是我国研究型大学研究生教育发展与改革的重要方向[1]。重点大学在基础研究方面有很强的优势,科研工作主要以学术成果和科技奖励为导向,研究缺乏市场意识,研究生的学习研究比较容易脱离实际[2],而且,随着研究生招生规模的扩大,传统的研究生培养模式也出现很多弊端,单一的培养模式已经不能适用师生比例扩大的研究生教育,尤其是交叉学科的研究生的培养[3]。因此,通过学校与医院的合作交流,进行多样化培养方案,在一定程度上可以实现优质资源共享,提高研究生培养质量,把大学的培养目标同经济发展的需要相结合,符合时代的要求和高校发展的趋势,更好地适应经济社会发展对不同类型高层次人才培养的多样性要求[4]。

生物医学工程是一门理、工、医相结合的交叉学科,它的发展依赖电子学、 材料学、工程力学、信息科学和电子计算机等多种学科的进步,而且生物医学工程的众多的新课题及其研究成果都有着极好的产业化前景。这对该学科研究生的知识、能力和素质的培养提出了更高要求[5]。因此,在研究生的培养过程中,应当注重结合社会实际,增加研究生在医院等机构中的合作交流,弥补理工院校医学教育等方面的不足,。这对培养学生的团队精神,合作意识和集体荣誉感也是非常有帮助的[6]。

2 医院合作在生物医学工程研究生培养中的应用

多年来,人工心脏小组一直重视生物医学工程研究生的跨学科培养,充分利用和医院的合作交流机会,培养了许多高水平的复合型人才,而且取得了大量的教学科研成果。生物仿真与力学实验室人工心脏小组09级优秀研究生经过三年的认真学习与努力研究,取得了优秀的科研成果,她发表了十余篇重点期刊杂志论文,其中包含有着高水平含量的SCI 4篇,EI 2篇,并成功申请了两个专利,一个软件著作权,荣获了本校科技新星,优秀毕业生等多个荣誉称号。这只是众多优秀研究生的一个代表, 该小组还培养了许多高水平人才,而这些成果与成功的研究生培养方法是密不可分的。

例如人工心脏小组,在研究生入学之后,即根据学生各自的课题特点,联系医院进行合作交流,充分利用社会资源,安排与课题相关的实验验证,这丰富了研究生研究课题的内容,也提高了研究生对于所研究对象的深层次理解,同时还为研究结果提供了必要的实验数据等。另外,该小组研究生和医院合作进行了人工心脏应用于动物的临床实验,在老师的指导下,实验室研究生根据自己的课题内容,团结合作,自行研发了人工心脏的控制系统,这整套系统涵盖了电学,生物力学,医学,材料学,计算机技术等大量综合的学科,也体现了生物医学工程专业的特点,即是众多学科的交叉综合。他们不但合作实现了系统的设计,制作;在该套系统被用于动物实验中,他们还独立设计了实验流程,参与了动物实验的术前准备和术后监护过程,对实验数据进行采集和分析。这为学生提供了一次学习机会,学习了解到临床医学的一些常识,同时为研究生阶段的实验设计等提供临床验证,确保了实验结论的真实性,正确性,这也大大促进了研究生科研成果的获得。在合作这个过程中,也增强了研究生的社会沟通能力,有利于研究生毕业后的职业发展。该小组还与医院合作进行了粒子成像测速(PIV)实验,该技术广泛应用于测量流体的流动特性,利用医院的设备,并且进行了相关的PIV实验培训,为心血管内血液的流动特性的仿真结果进行了验证,增加了课题的完整性和可靠性。

并且,根据心衰课题,还安排研究生进行医院手术室见习,通过学生在手术室的见习,他们能够更直观地了解到辅助循环(人工心脏等设备)在改善心衰中的地位,也可以了解到辅助循环在整个过程中的工作原理,通过实际的观察学习,学生能够更扎实地理解辅助循环。同时,通过在手术室中的学习,学生还可以对生理知识有更多的了解,他们接触到了很多参数,比如生化标记物BNP的浓度能够表征心脏功能等,同时学生还了解了一些药物的作用,补充了理工类学科医学知识的不足,这对于学生之后的学习以及生活都有着极其重要的意义。

该小组还给了学生很多其它的机会去与人合作,提供给每一个成员充分的机会去提升自己,在这样的培养方式下,小组取得了很大的成绩,受到了学院学校以及社会的高度认可,经过三年训练,小组成员可以独立的完成一些合作项目,进行实验设计,实验操作,科研思维的严谨性也得到提高。研究生经过自己的努力,科研成果大大增加。截止2008到2011年,通过与医院合作教育,小组研究生SCI类9篇,EI类13篇,核心期刊会议十余篇。该小组研究生毕业后均有良好的职业发展,就业范围涉及医院,软硬件企业公司及研究机构,实践证明,合作培养方式取得很大的成功。

3 医院合作的重要意义

通过人工心脏小组的例子可以看到,合作这种培养方式,对于生物医学工程专业研究生能力的提升是很有效的。由于生物医学工程专业有着高度的学科交叉性,因此研究生的培养也应当注重培养学生的综合能力。学校和医院等企业进行合作交流,弥补了工科院校医学资源的不足,为生物医学工程研究生提供实验机会,为学生研究内容提供必要的数据和验证,帮助研究生取得科研成果;同时,学生走出校门,提高了动手能力,锻炼了社会交往能力;最后,学生在合作中,更进一步了解自己的专业在社会的发展情况,他们对职业有了更深的认识,有助于其毕业后的职业发展。我院根据研究生各自的课题特点,为研究生提供与医院的合作机会,充分利用了校外资源,积极帮助学生进行,这种方式是适应教育的趋势的,对提高学生的综合能力及以及帮助学生取得科研成果有着重要意义。

参考文献:

[1]别敦荣,康宏. 合作教育:我国研究型大学研究生教育发展的新方向.教育研究,2005(2):26-31

[2] 黄泽霞. 重点大学产学研合作现状分析. 科教论丛,2007(8):134

[3]徐瑞,曾宝成,刘浩源. 产学研合作联合培养研究生模式探析. 集体经济职教培训,2011(36):184-185

[4]张晶,刘东明. 产学研合作培养应用型人才. 科教论丛,2009(22):211

第9篇:生物医学工程的现状范文

【关键词】模拟电子技术;设计性实验

《模拟电子技术》是我校生物医学工程专业必修的专业基础课,主要学习模拟电信号的产生、传输、处理、变换的基本原理、基本电路和基本分析方法,培养生物医学工程专业学员对各种功能电路工作原理的定性、定量分析能力,电路系统性能指标的选择、计算能力,以及培养对模拟电路系统的综合应用和设计能力,为后续专业课程的学习和掌握医疗设备的工作原理,奠定电子技术理论和实践基础,使学员在未来服务于军队医疗和科研时具有较系统的模拟电子技术的理论知识和实践技能。

模拟电子技术是一门工程学、实践性极强的课程,它涉及的知识点多,学生理解起来很抽象,所以在学习过程中必须注重实验的重要性。我校模拟电子技术实验包括:基础性实验和设计性实验两个方面的内容。基础性实验内容包括:晶体管单管电压放大器的性能调试、差分放大器的测试、集成运算放大器的基本运用、有源滤波器的调试与频率特性的测量、功率放大器电路的测试、直流稳压电压的安装和调试。

在以往基础性实验开展过程中,主要存在以下问题:(1)基础性实验以教材给出的电路为基础进行展开,一般设计为3个学时,教师讲解30分钟左右,然后由学生动手,重在让学员熟悉电路的基本组成和性能参数。由此可见,实验的目的仅仅停留在对基本电子和电工设备的安装、调试、测试方法等基本技能上,缺乏对学员独立设计与创新的实验思维的锻炼,以致解决实际问题的能力不强;(2)有些同学参数测试完成后,在实验报告中,对测试结果的可靠性判断能力差,不清楚到底自己测试的数据是否正确,实验评价做得不是很理想,这也从某种层面反映了学员对实验内容的理解和掌握程度;(3)实验内容虽然紧扣课本每章节内容,学生反映出来的积极性不够,觉得实验内容在理论课中已经详细介绍了,重视程度不够,学生实验的兴趣不高[1]。

针对基础性实验中遇到的问题,我校尝试性的开展了设计性实验的内容。首先是选题,考虑到我校生物医学工程专业的培养方向,我们选取了与医学相关的设计性实验课题进行开展,于是我们选取了一个简单但是很具有代表性的目的:脉搏信号采集接口电路的设计。并且对设计的具体要求进行了说明:根据要求设计红外光电传感器的脉搏信号采集接口放大电路,并制作,搭建实验电路板并制版,利用函数信号发生器、示波器等电子设备对接口电路进行调试,完成接入红外光电传感器检测手指脉搏波,并记录波形,然后将脉搏波信号整形为方波信号。并且要求红外光电传感器接口电路的频率范围为0.1-30Hz;接口电路放大器增益A>=1500倍;集成运算放大器要求采用双电源供电。

我们的设计性实验按照表1进行开展实施:设计6个课次进行,总学时为44学时,按照6个方面的内容进行。

1.确定设计方案

在开展设计性实验前一个月,我们将设计性实验内容布置下去,让学员对设计性实验的内容预先有所认识和了解,并且进行分组,2-3人一组。考虑到我校生物医学工程专业科目多的实际问题,我们在课堂上也专门安排了4个学时的文献查阅和阅读时间,并且以组为单位设计方案,安排2个学时时间,每组派代表对自己设计的方案进行设计方案初步汇报,初步汇报的任务是让学员们对整个电路设计的模块有个确定的把控,让学生们弄清楚脉搏信号的组成,来源,信号特征,利用红外光电传感器采集的脉搏信号特征,重点要弄清楚在脉搏信号采集过程中的有哪些干扰信号,如何滤除干扰和脉搏信号采集接口电路组成的基本模块。

通过学生的预汇报,发现组与组之间查阅文献有很多是相同的,学生们积极性很高,通过汇报的方式开展反映效果好。预汇报后,以组为单位再进行方案的修正,再安排两个学时进行方案的最终确定,这次方案要求拿出实际设计的电路结构,电路的静态和动态参数。通过汇报的方式,可以让组与组之间发现自己电路设计的问题,也开阔了设计的思路。

2.电路仿真

方案设计好之后,首先要利用软件的方式来验证设计方案的可靠性。软件仿真统一的采用Mutisium软件进行,Mutisium软件涵盖了模拟电子技术常用的芯片和基本元器件,学员可以很方便的进行电路图的连接,加入包含噪声信号的信号源,利用示波器进行观察,检测输出、输入参数是否和设计的性能指标一致。软件仿真进一步加强了设计方案的可靠性。在仿真过程中一定要求学员逐级电路进行仿真,很多同学将整个设计电路连接起来,结果输出结果不正确,这时候就无法判定到底是哪一级电路出现了问题,同时要提示学员注意电路级与级之间的耦合干扰,要求学员记录每一级电路的静态和动态参数和总电路的动静态参数。

3.方案电路测试

通过软件仿真后,方案电路测试是利用模拟电子技术实验电路箱,通过硬件方式

来对设计方案的可靠性进行验证。模拟电子技术实验箱,学生们在开展了基础性实验之后,已经非常的熟悉。这时候输入信号选择利用红外脉搏传感器直接输出的信号,也可以按照软件仿真的方式逐级进行硬件电路连接,记录每一级的动态和静态参数和总电路的动静态性能参数。在设计操作中,提示学生采用红外光电方式采集脉搏信号的工作原理,红外光电正常工作时是有一个工作电流范围的,一定要加限流电阻保证红外光电管工作在正常的工作电流范围内。

4.PCB版设计及焊接

在软件仿真和硬件仿真无误后,就需要考虑PCB制版了,很多生物医学工程专业的现状是没有重视PCB版的设计,甚至很多高校没有给学员创造PCB设计和焊接的机会。PCB版设计采用Protel开展,让学员了解印刷电路板的版图设计,需要考虑外部和内部电子元件连接的优化布局、金属连线和通孔的优化布局、热耗散等各种因素甚至电磁保护等问题。PCB版制备完之后,以组为单位,由教师进行PCB版的加工制作,制作完之后,以组为单位完成元器件的焊接。

5.电路板调试

焊接成功之后,就需要对电路板进行调试。这时候以人体脉搏源信号为基础,对人体脉搏信号进行检测,并且利用示波器进行显示,在实施过程中,也要求学员逐级电路进行实验测试,记录每级电路的静动态参数进行测量和记录。

6.考核

考核是本次设计性实验开展情况的总结汇报,以幻灯讲解和现场功能演示的手段开展,汇报讲解内容包括软件、硬件仿真以及电路板性能参数设置和评价体会,并且由评委老师当堂打分,对实验内容进行点评。

表1 设计性实验实施计划

课次 学时 内 容

1 8 查询并阅读文献,研讨确定设计方案

2 4 使用Mutisim软件进行电路仿真

3 8 方案电路测试(实验箱)

4 12 PCB版设计及组装焊接元器件

5 8 电路板调试

6 4 考核(幻灯讲解、现场功能演示)

通过本次设计性实验的训练,学生们对模拟电子技术内容有了更深入的认识,学生普遍反映较好。以组为单位促进了学员之间的团结合作精神的培养,学生们的综合能力得到了提高,对模拟电子技术理论有了进一步的认识,将模拟电子技术知识与我校的医学背景紧密联系起来,提高了学生的积极性。总之,模拟电子技术设计性实验在我校模拟电子技术实验开展中是非常重要的,对我校生物医学工程专业的未来发展是非常必要的,必须不断的探索和研究。