公务员期刊网 精选范文 生物医学工程的发展前景范文

生物医学工程的发展前景精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物医学工程的发展前景主题范文,仅供参考,欢迎阅读并收藏。

生物医学工程的发展前景

第1篇:生物医学工程的发展前景范文

    生物医学工程学是融合理工科学和生物医学的 理论和方法逐步成长起来的边缘性学科,其基本任 务是运用理工科原理和工程技术方法,研究和解决 医学和生物学中的相关问题。作为一门独立学科发 展的历史尚不足50年,随着现代科学技术的进步, 生物医学工程学科得到了长足的发展。它在保障人 类健康和推进疾病的预防、诊断、治疗、康复等技术 进步所起的作用日益增强,已经成为当前医疗卫生 健康发展的重要基础和有力技术支撑。

20世纪60年代,美国一些著名大学先后开启了生物医学工程学科的建设,相继启动了生物医学 工程专业人才的培养。美国的生物医学工程教育特 点是在技术产业化需求驱动建立起来的具有其自身 特性,且反映了生物医学工程学科建设与发展的前 沿特征。各个学校的本科教育课程虽然具有自己的 特色,但在课程设置上大致可以分为科学基础课程、 专业核心课程、关注领域课程、设计课程、人文与社 会科学课程、专业选修课程及其他选修课程等六 类Q_2。不同学校本科课程的主要差异体现在专业 选修课程及其他选修课程的设置上,各个学校根据 自身的生物医学工程领域的研究方向和研究水平特 点开设一些相应的选修课程,并培养学生在相应方 向上的研究探索实践能力。这是美国生物医学工程 本科教育的基本特点。

我国生物医学工程专业教育起步于20世纪80 年代,主要发源于著名工科院校的信息技术类专业 和力学专业,进而逐渐形成的生物医学工程专业教 育,后来,_些医学院校在医学物理和医用计算机技 术的基础上相继开展了生物医学工程专业教育,于 是在我国基本上形成了这样两种类型的生物医学工 程学科[4_3。上述两类院校的生物医学工程学科建 设发展模式各具侧重,遵循了共同的学科基础,在培 养生物医学工程专业人才的应用层面上有显著特 点。相对来说,工科院校的生物医学工程培养模式 注重工程技术的开发和功能拓展,医科院校则注重 医学与工程结合、工程技术在医学中的综合应用。

1 中国生物医学工程学科发展思路

    生物医学工程是一种交叉学科,交叉的学科基 础及其融合的紧密程度决定了生物医学工程学科的 发展水平,交叉的学科发展推动着生物医学工程学 科的发展,并且使得生物医学工程学科研究领域变 得十分广泛,而且处在不断发展之中。

1.1学科发展轨迹在中国,基于电子信息工程发展而来的生物医 学工程学科,主要包括生物医学仪器、生物医学信号 检测与处理、生物医学信息计算分析、生物医学成像 及图像处理分析、生物医学系统建模与仿真、临床治 疗与康复的工程优化方法、手术规划图像仿真以及 图像导引手术及放疗优化等;有基于力学发展而来 的生物医学工程学科,主要包括生物流体力学、生物 固体力学、运动生物力学、计算生物力学和微观尺度 的细胞生物力学等;基于化学材料工程发展而来的 生物医学工程学科,主要包括生物材料学、组织工程 与人工器官、物理因子的生物化学效应等。

1.2学科发展特点作为交叉学科的生物医学工程学科,其发展的 关键在于交叉学科间的交叉融合。构建一种良好的 交叉结构,对推动交叉学科的发展具有至关重要的 作用。约翰霍普金斯大学对于生物医学工程这样的 交叉学科的描述有一个形象的说法:交叉学科如同 在不同学科之间建立起连接桥梁,如果在河两岸没 有坚实的基础,桥是无法建立好的,对于生物医学工 程这样一座建立在两个不同学科之间的桥来说,它的 发展要求具有坚实的交叉学科基础和交叉学科紧密 融合深度。那么在生物医学工程学科构建良好的交 叉结构,需要选取具有理论支撑和技术支撑的主干学科进行交叉,凝练学科方向,不能大而全,过于宽泛。

目前,医学仪器和医学成像技术具有良好的应 用和发展前景,应该成为生物医学工程学科的重点 发展方向。医学仪器和医学成像设备能有力推动医 疗产业的发展。医疗仪器和医学成像设备是现代医 疗器械产业中的主流产品,在产业发展中起着主导 和引领作用。其发展水平已成为一个国家综合经济 技术实力与水平的重要标志之一。产业化驱动也是 学科发展的一种动力,也为学生未来职业发展奠定 良好的基础。基于医疗卫生健康事业的需求和生命 科学发展的大趋势,生物医学工程学科应大力促进 医学仪器和医学成像方法的学科建设,从而提升整 个学科的发展水平。

生物医学工程学科的建设离不开一流的学术研 究和学术成果的应用。一流的学术研究不但能提升 学科的发展水平,而且能开拓学科纵深发展,产生良 好的经济效益和社会效益,进而增强学科服务社会 发展的能力。学术研究的前瞻性和创新性将确保学 科建设的发展动力和趋势以及学科发展的活力。

交叉学科往往具有不同程度的可替代性。可替 代性程度越高,交叉学科存在的必要性就越小。如 何减小生物医学工程学科可替代性的程度是需要深 入思考的,是需要提升学科的特异性的。生物医学 工程学的学术研究主要包括应用理论研究和理论应 用研究,应用理论研究主要涉及生物医学工程领域 所需要解决的科学问题,开展新理论、新方法的研 究。 理论应用研究主要涉及生物医学工程领域所需 要解决的科学和技术问题,借助理工科的相关理论 和方法开展应用基础研究和应用研究。应用理论研 究是理论驱动型的学术研究,理论应用研究是应用 驱动型的学术研究。 理论驱动型和应用驱动型是生 物医学工程学科学术研究的两种主要模式。 理工科 大学具有良好的理论创新基础和强大的交叉的学科 背景,开展理论驱动型研究具有自身优势。医学院 校具有丰富的医学资源,面临着大量需要应用理工 知识解决的医学问题,开展应用驱动型研究,将很好 地实现与医学的应用融合,具有较好的临床应用价 值,有力推进医学的进步与发展。各自的学术优势 将有利于生物医学工程学科特色发展,从而增强其 不可替代的程度,实现学科可持续创新发展。

1.3学科体系作为一级学科的生物医学工程,包含学科的理 论体系和技术体系,且该体系离不开所交叉的学科 的理论体系和技术体系的支撑,此外生物医学工程 学科理论体系和技术体系既要有学科自身的特色, 又要具有可持续发展和一定程度上的不可替代性, 这样学科才会有旺盛的生命力。要面向医疗卫生、 生物科学所涉及的重大、重要技术理论问题及基础 应用开展学术研究。实现良好的学术研究定位,形 成自己的理论体系和技术体系。

2 大数据时代的生物医学工程学科发展

    守正创新是生物医学工程学科发展的必由之 路,人类已进入大数据时代,所谓大数据(big data), 或称海量数据,是指由于数据容量太庞大和数据来 源过于复杂,无法在一定时间内用常规工具软件对 其内容进行获取、管理、存储、检索、共享、传输、挖掘 和分析处理的数据集。大数据具有“4V ”特征:①数 据容量(volume)大;②数据种类(variety)多,常常具 有不同的数据类型和数据来源;③动态变化 (velocity)快,如各种动态数据,非平稳数据,时效性 要求高;④科学价值(value)大,尽管目前利用率低, 却常常蕴藏着新知识和重要特征价值或具有重要预 测价值。大数据是需要新的分析处理模式才能挖掘 分析出其蕴藏的重要特征信息[<3。

人体生老病死的生命过程就是一个不断涌现的 生物医学大数据发生源,这种源源不断的生物医学 大数据的检测、处理与分析,将给生物医学工程学科 的建设与发展带来新的机遇和挑战。模式识别、人 工智能、数据挖掘和机器学习的发展将带动大数据 处理技术的进步。生物医学大数据广泛涉及人类医 疗卫生健康相关的各个领域:临床医疗、基础医学、 公共卫生、医药研发、临床工程、心里、行为与情绪、 人类遗传学与组学、基因和蛋白质组学、远程医疗、 健康网络信息等,可谓包罗万象,纷繁复杂。生物医 学大数据中蕴藏了种种有科学价值的信息,研究有 效的大数据挖掘的新理论、新技术和新方法,对生物 医学大数据进行关联和融合计算分析,充分挖掘生 物医学大数据中的信息关联和特征关联和数据空间 映射关联,既能为疾病的预防、发生发展、诊断和治 疗康复提供系统化的全新的认识,有利于深入疾病 机理研究分析,开展个性化诊疗。还可以通过整合 系统生物学与临床数据,更准确地预测个体患病风 险和预后,有针对性地实施预防和治疗。

生物医学工程学科所面临的生物医学大数据主 要包括多模态医学影像数据、多种类医学信号数据 以及基因和蛋白质组学的生物信息数据。生物医学 大数据在生物医学工程学科领域内有着广泛深远的 应用前景,从三个方面应用将推动生物医学工程学 科的发展。

(1) 开展多模态影像大数据计算分析。医学影 像学科的发展从早期看得到,到看得清,目前的看得 准,未来的趋势是看得早。只有看得准和看得早才 有利于临床早期干预,提高治疗预期。医学影像大 数据计算分析在影像诊断、手术计划、图像导引、远 程医疗和病程跟踪将发挥越来越大的作用。

建立新的医学影像大数据计算分析模型和数值 计算方法,挖掘多模态影像数据的特征数据和特征 关联,将会提供强有力的影像诊断分析手段,极大地 推动影像技术的发展,具有重要的临床应用价值和 科学价值。

(2) 开展多种类医学信号大数据计算分析。医 学信号大多直接产生于生理和病理过程中的信号, 能在不同层面上表达生理和病理相关机制特征。融 合多种医学信号的大数据计算分析,能对生理病理 过程进行更好更全面的阐释,不仅能深入了解生理 病理的状态特征和过程特征,而且能实现个体健康 监测和管理。可以很好地开展回顾性研究和前瞻性 研究,推进系统化的医学应用研究。实现强大的多 种医学信号数据的特征挖掘及特征关联计算分析。 大数据挖掘能够增加准确度和发现弱关联的能力, 能更好地认识生理病理现象和本质。

(3) 开展基因和蛋白质组学的生物信息大数据 计算分析。基因组学、蛋白质组学、系统生物学和比 较基因组学的不断发展涌现了海量的需要计算分析 的生物信息数据,已进入计算系统生物学的时代。 开展生物信息大数据计算分析,可以拓展组学研究 及不同组学间的关联研究。从环境交互、个体生活 方式、心里行为等暴露组学,至细胞分子水平上的基 因组学、表观组学、转录组学、蛋白质组学、代谢组 学、基因蛋白质调控网络,再到人类健康和疾病状态 的表型组学等不同层面不同方向上实现大规模的关 联计算分析,可以全面阐述生命过程机制,挖掘生命 过程特征及关联特征。

第2篇:生物医学工程的发展前景范文

[关键词]生物医学工程 应用型 人才培养模式

[中图分类号] G640 [文献标识码] A [文章编号] 2095-3437(2013)22-0019-03

生物医学工程(Biomedical Engineering,简称BME)是运用现代自然科学和工程技术的原理和方法,从工程学的角度,在多层次上研究人体的结构、功能及其相互关系,揭示其生命现象,为防病、治病提供新的技术手段的一门综合性、高技术的学科。BME的研究方向较多,如生物信息学、医疗仪器、医学图像、图像处理、生理信号处理、生物力学、生物材料、系统分析、三维建模等。在每个方向上又有着非常宽广的内容。因此,BME领域将是今后的研究热门之一,具有广阔的发展前景。

广东药学院医药信息工程学院2005年开始招收生物医学工程专业本科生,并成立了生物医学工程系。为了使BME专业更好地融入医药信息工程学院的医药信息背景平台,我们先后三次对人才培养方案进行了修改和完善。目前本专业有两个方向――生物医学电子仪器方向和医学影像技术方向。

在8年教学实践的基础上,我们根据学生的学习状况和社会需求,从明确培养目标、设置合理的课程体系、强调实践环节教学和加强实习基地建设、双师型教师队伍建设四个方面对生物医学工程专业应用型人才培养模式进行了探索研究。

一、明确人才培养目标

从社会需求和毕业生就业的角度考虑,我院BME本科教育培养方向定位于应用型人才,专业领域为医疗仪器,即培养大型医疗设备的操作、维修及管理人员。

根据这个专业定位,我院BME本科教育的培养目标为:培养面向生物医学工程技术及医学仪器领域从事科学研究、系统设计、质量管理、维修销售的高级工程技术人才,具备生命科学、电子技术、计算机技术及信息科学有关的基础知识和基本技能,具有本学科及跨学科技术开发与应用的基本能力,适应社会需求的应用型人才。

为了实现上述培养目标,拓宽就业渠道,我们要求本专业的学生要具备以下的知识和能力:首先,精通本专业领域的技术基础理论知识,尤其是电子技术、医学信号的获取、处理的基本理论和一般方法,具有BME应用研究和产品设计、维护和管理的基本能力;其次,了解本专业所需要的医学知识和生命科学知识;再次,了解医疗产业的基本方针、政策法规、医疗设备企业管理的基本知识;最后,熟悉文献检索和资料查询的基本方法,了解BME理论前沿,具有研究与开发新系统及新技术的初步能力。

二、设置合理的课程体系

课程设置是人才培养的核心,其合理与否直接影响毕业生的质量。课程设置的知识模块不应是封闭的“金字塔”形状,而应该是开放的“知识树”状态。合理的课程体系应是以社会需求为导向的,紧密结合生产和科技发展变化的需要,并坚持技术知识本位、知识能力本位和做人本位的有机统一,及时调整课程设置,不断更新课程内容使学生能够尽快地接受新技术与信息。

根据广东药学院建设高水平应用型大学的目标,针对BME专业在数字信号处理、医学影像设备、电子学等方面的学科优势,重视医学课程与工程技术课程知识的相互渗透,实现医、工的有机结合。据此,我们在深入分析BME学科性质和特点的基础上,学习借鉴国内外同类专业的办学经验,经过3次修订教学计划,逐步建立完善了BME专业的课程体系。在课程设置上做到既重视基础知识课程,包括专业基础知识课程和医学知识课程,又突出专业特色,开设了医学电子仪器原理与设计、医学仪器故障诊断与维修、生物医学仪器与医疗器械、医用X线机与CT成像技术、MRI与医学超声技术、核医学与放射治疗技术、医疗器械营销、医疗器械质量体系与法规等课程。围绕生物医学工程专业的培养目标、专业技术重点来设置各课程在整个专业教学计划中的比重。在突出主干课程的同时,尽可能多地开设前沿选修课,让学生了解该领域的研究热点。具体需做到以下几点:

第一,在专业课程设置中注意突出应用型本科课程设计要求和特点,加大实践课的比重。以学分制为例,目前本专业开设的实践课学分21分(含课外实践学分),占课程总学分160分的13.13%,应当进一步加大实践课的比重。

第二,重视医学、理工两大学科基础知识的加强。在构建课程体系时,重点加强生理学、人体解剖学、临床医学概论、电子技术、计算机基础课程,以公共基础课和专业基础课作为支柱,形成宽口径学科教育平台。

第三,重视实践能力和创新意识的培养。教学要求强化实验、实训、实习等实践教学环节,通过适当增加课程设计、综合实验、大学生课外科技活动及竞技活动、建立创新实验室等多途径给学生创设动手训练的机会,提高专业技能,使学生毕业后能迅速适应工作岗位。目前,我院实验课、实训课开出率达到100%,建立了生物医学工程创新实验室,多次组织学生参加国家级和省级等各类级别的电子设计竞赛等。

第四,把国内外知名的网络教育品牌引入学院的教学中。在美国纽交所上市的安博教育集团已经与我院签约合作培养医药软件及服务外包人才,使同学们有机会接触到最前沿的信息技术知识与技能。

三、强调实践环节教学,加强实习基地建设

第一,加强专业实验室建设。目前虽建有生物医学工程专业实验室,但仅能开展信号与系统实验和医用传感器实验,像医学影像设备原理、医学电子仪器原理与设计、医学仪器故障诊断与维修、生物医学仪器与医疗器械、医用X线机与CT成像技术、MRI与医学超声技术、核医学与放射治疗技术等课程所需的实验仪器和设备因所需资金较大,所以目前只能开展模拟实验,效果不是很好,这是我们需要改进的地方。

第二,开设第二课堂。全院所有教学实验室和大部分科研实验室向学生开放,接受高年级学生进行科研训练和创新性实践,并要求承担了省厅级科研项目的教师积极吸收学生进实验室,参与课题研究。同时,鼓励学生参加各类型的科技创新竞赛活动,并屡创佳绩,有数十人获得国家及省部级奖项,其中,我系学生分获2008、2009年全国电子设计大赛广东省二等奖、三等奖;2010年全国电子设计大赛广东赛区二等奖; 2010、2011年全国文科类大学生计算机设计大赛二等奖; 2011年全国电子设计大赛广东省二等奖、三等奖等。

第三,在医疗设备生产企业和医院之间建立长期稳定的实习基地。在企业实习过程中,要求学生下到车间参与生产过程,并对医疗设备的技术发展动向和市场状况有明确的认知;在医院实习过程中,要求学生轮换到各个相关科室工作,了解常用医疗仪器的使用、操作和维修方法,掌握其原理和关键技术,并熟悉医疗设备的管理和维护方法。如广东药学院第一附属医院、第二附属医院和广东药学院附属中山医院(中山市人民医院)均可作为生物医学工程专业的实践教学基地,为本专业的相关课程(如医学影像设备原理、医用X线机与CT成像技术、MRI与医学超声技术、核医学与放射治疗技术、医学电子仪器原理与设计、医学仪器故障诊断与维修、生物医学仪器与医疗器械等)提供见习、实验条件。

第四,学院多次举办学生与医药企事业的交流活动,请政府官员、企业老总到学校给学生做学术报告,带领学生参观医疗设备企业、参加各种学术研讨会,举办模拟招聘会,给学生提供广泛接触企业的机会。让学生在交流活动中展现自己的学识、能力与才华,了解医疗设备行业的发展趋势和珠三角地区医疗设备行业的发展布局,了解自己学习的专业方向与今后就业的联系,了解企业的经营范围、产品开发流程、运作模式、感受企业文化。

四、建设“双师型”教师队伍

“双师型”教师队伍建设是落实人才培养模式的关键,是提高应用型本科教育教学质量的关键。我院的教育理念是“重实践,强能力”,力争培养“上手快、善沟通、动手能力强”的应用型医药卫生人才,因此要求我们建立一支敬业爱岗,教风严谨,既有理论又能实践,既能从事学院教学,又能从事在职员工培训,既肯刻苦学习专业前沿技术,又富于改革创新精神,既搞教学又搞科研的“双师型”教师队伍。

我院生物医学工程系现有专任教师15名,具有高级职称的教师4名,占专任教师的26.7%;具有博士研究生以上学历的教师6名,占专任教师的40.0%;从附属第一医院、安博教育集团、广东凯通软件开发有限公司、广州中星网络技术有限公司等聘请10余位兼职教师。基本形成了一支结构合理、素质高、专兼职相结合的师资队伍。当然,我们做得还远远不够,接下来将在以下方面进一步加强“双师型”队伍的建设:

第一,组织教师深入医药和医疗设备企业一线了解人才需求情况,制订培养目标。积极鼓励教师开展经常性的下厂实践活动,让每一位教师都与一个或几个与本专业相关的企业建立长期的联系,不断学习企业的先进技术和管理思想,并将其应用到教学与培训中来,同时利用自己的专业知识帮助企业解决实际工作中遇到的问题。我们鼓励教师在不影响正常教学的情况下在相关企业中兼职,为企业提供咨询服务活动,通过这项活动,教师积累了大量来自医药和医疗设备企业的教学案例,使理论教学更加结合实际,受到学生的欢迎。另外,在实践教学过程中打破了理论课教师与实践课教师的界限,积极鼓励理论课教师参与到实践课教学指导中来,目前,BME专业中不但实验课、实训课开出率达到100%,而且实验、实训课的指导全部由任课教师担任。

第二,指导数学建模、电子设计大赛等。积极参加每年的全国大学生数学建模比赛与电子设计大赛,学院各级领导与多名教师参与各类竞赛的组织、辅导、参赛等工作,均取得了优异的成绩。从中既锻炼了学生的理论实际应用能力,又使参赛教师的业务水平得到了提高。

第三,教研室内形成良好的学习、教学氛围。在教师队伍建设方面,及时总结推广教研室或教师的先进经验,按照计划、实施、检查、总结这四个阶段,使教研室工作计划保证落实,固定教研活动时间,明确科研课题,教改目标到位,对教师能力、素质培养体现充分,并将常规教研活动与专题教研活动和创造发挥型教研活动有机结合,在活动中实现教师间的相互交流和共同提高,创设一种青年教师成长、中年教师进步、老年教师提高的良好氛围,努力提高“双师型”教师业务水平,建设成为一支稳定的“双师型”教师队伍。

五、结束语

我院自2005年开设生物医学工程专业以来,目前已有五届毕业生,就业情况良好,就业前景十分广阔。用人单位普遍反映毕业生的思想品德优秀、专业基础扎实、实践能力强以及适应性好,具有良好的综合素质,用人单位对本专业毕业学生的满意率达到95%以上。今后,我们将继续秉承培养“上手快、善沟通、动手能力强”的应用型医药卫生人才的办学方针,在人才培养模式上不断调整和完善,培养高素质的创新型应用技术人才。

[ 参 考 文 献 ]

[1] 王能河,邹卫东,梅贤臣.生物医学工程专业课程体系建设与应用型人才培养质量保障[J].咸宁学院学报,2009,29(2):104-106.

[2] 陈超敏,贺志强,周凌宏.复合应用型生物医学工程人才培养的探讨[J].医疗卫生装备,2004,(9):123-124.

第3篇:生物医学工程的发展前景范文

【关键词】生物技术;计算机;应用

【中图分类号】Q50 【文献标识码】A 【文章编号】1672-5158(2013)01―0046-01

进入二十一世纪以来,由于研究的深入,对知识的进一步认识和了解,许多学科之间都有了一些交叉,尤其是一些新兴学科之间的相互交叉,广泛渗透更是对科学的发展起了很大的促进作用,人们进一步提升对自然界的认识,对人类本身也有了进一步的了解。随着科学技术的不断发展,尤其是计算机技术的飞速发展,计算机在其中的应用范围也日益扩大,计算机和药学两者互相影响、互相渗透、互相结合,密不可分。

1、生物技术与信息技术的关系

信息技术和生物技术都是高新技术,二者在新经济中并非此消彼长的关系,而是相辅相成,共同推进21世纪经济的快速发展。信息技术为生物技术的发展提供强有力的计算工具。在现代生物技术发展过程中,计算机与高性能的计算技术发挥了巨大的推动作用。如今,人们越来越清醒地认识到,超级计算机在创造新品种的药物、治愈疾病以及最终使我们能够修复人类基因缺陷等方面是至关重要的,高性能计算可以为人类作出更大的贡献。生物技术推动超级计算机产业的发展。随着人类基因组计划各项任务的完成,有关核酸、蛋白质的序列和结构数据呈指数增长。面对如此巨大而复杂的数据,只有运用计算机进行数据管理、控制误差、加速分析过程,使得人类最终能够从中受益。然而要完成这些过程,并非一般的计算机力所能及,而需要具有超级计算能力的计算机。因此,生物技术的发展将对信息技术提出更高的需求,从而推动信息产业的发展。生物技术将从根本上突破计算机的物理极限。运用数学、计算机科学和生物学的各种工具,来阐明和理解大量基因组研究获得数据中所包含的生物学意义,生物学和信息学交叉、结合,从而形成了一个新的学科。生物信息学或信息生物学,它的进步所带来的效益是不可估量的。

2、计算机在生物技术中的应用分析

生物医学工程运用现代自然科学和技术科学的原理和方法,从工程学的角度研究人体的结构、功能及其相互关系以及其他生命现象。其目的是解决医学问题,即研究和开发为防病、治病以及人体功能辅助等医学应用的装置和系统。用技术科学的概念和方法来解释和描述人体各层次的成份、结构和功能,以及人体各种正常生理功能和病理状态之问的差异,这些内容形成了这个学科的基础部分。而防病、诊断、治疗及功能辅助的具体技术和设备则形成这个学科的应用部分。

2.1 计算机技术在生物信息学中的应用

生物信息学在今后的无论是生物医药科研还是开发中都具有广泛而关键的应用价值;而且,由于生物信息学是生物科学与计算科学、物理学、化学和计算机网络技术等密切结合的交叉性学科,使其具有非常强的专业性,这就使得专业的生物医药科研或开发机构自身难以胜任它们所必需的生物信息学业务,残酷的市场竞争及其所带来的市场高度专业化分工的趋势,使得专业的生物医药开发机构不可能在自身内部解决对生物信息学服务的迫切需求,学术界内的生物医药科研机构也是如此,而这种需求,仅靠那些高度分支化和学术化的分散的生物信息学科研机构是远远不能满足的。可见,在生命科学的新世纪,生物信息学综合服务将是一个非常重要的也是一个极具挑战性的领域。

2.2 计算机在微生物学中细菌生化反应上的应用

细菌学的计量检验是医学检验现代化的种重要手段。此检验技术是通过收集已确证的统计资料,并将系列生化反应试验的反应结果数值化,按照一定的数学模型进行多元分析,利计算机的运算速度和记忆能力,检验标本作出规范化的定量鉴定。实现这一计量鉴定,我采用了计算机辅助编码捡索系统(CAIS)菌科细菌系列生化反应机辅检索程序(CAE-15)、(eAE-I)输入微机。通过各项生化反应结果及增补试验结果所得的编码数经过人工查询,从计算机编程的“缩码检索手册”中直接查找指定编码的细菌概率分布和相应的补充试验。计算机在微生物中的应用,不仅节约了时间和人力,而且鉴定结果准确可靠,避免主观误。

2.3 计算机在破译遗传密码和管理基因数据方面的应用

计算机在破译遗传密码和管理基因数据方面的潜力,在加利福尼亚大学圣迭分校的生物化学教授杜利特尔及其同事的工作中得以体现。他们在年进行的工作中只通过分析计算机打印输出的数据就获得了一个重要的生物学发现。杜利特尔教授的研究小组比较了两个由计算机打印输出的蛋白质序列,发现一种与癌症发生有关的序列和一种与细胞生长有关的序列完全一样,揭示出癌基因引起了细胞的不正常生长。这一发现在没有进行过任何一实验的情况下就获得了。

2.4 计算机在创造生物的虚拟环境方面的应用

计算机还正被用于创造一个虚拟的生物环境,以便对复杂的生物网络和生态系统进行模拟。这种虚拟环境创造不同的情境,帮助研究人员产生新的假说,并在实验室里被用于检测新的农业和制药产品以及医学活体实验。在虚拟世界里,生物学家敲敲键盘就可以产生新的合成分,而在实验室经常需要几年时间才可能合成一个真正的分子。有了三维的计算机模型,研究人员可以在屏幕上将各种基因和分子进行组合,然后观察它们的相互作用情况。年,宾夕法尼亚州立大学和位于加利福尼亚拉霍亚的斯克里普斯临床研究所的研究人员,通过使用最先进的计算机首次设计了一种极有价值的合成分子。这种被命名为的化合物是在计算机屏幕上构想出来的,几家生物技术实验室正在进行该化合物的批量生产。科学家们打算通过使用新的信息时代的计算技术造出多种多样的新分子。

2.5 计算机在生物医学工程中的具体应用

生物医学工程运用现代自然科学和技术科学的原理和方法,从工程学的角度研究人体的结构、功能及其相互关系以及其他生命现象。其目的是解决医学问题,即研究和开发为防病、治病以及人体功能辅助等医学应用的装置和系统。用技术科学的概念和方法来解释和描述人体各层次的成份、结构和功能,以及人体各种正常生理功能和病理状态之间的差异,这些内容形成了这个学科的基础部分。而防病、诊断、治疗及功能辅助的具体技术和设备则形成这个学科的应用部分。

3、发展前景

计算机在生物医学工程中应用的例子还很多,并且发挥着越来越重要的作用,同时对计算机技术水平的要求也越来越高。比如在生物医学信号处理方面,普通的计算机已经很难胜任实时处理的能力,使人们转向研究处理速度更快的专门处理器件DSP芯片。在人工智能方面,往往还需要功耗更低、存储更大的微计算机。因此,生物医学工程在利用计算机的同时也促进了计算机的发展。二十一世纪是生物技术的世纪,信息生物学是自然科学中发展最迅速、最具活力和生气的领域,并且为人类带来了很大的便利与贡献。不难看出,生物计算机研制成功以后,又会带来一次革命,它将会给人类带来更多的福祉,世人将以期盼的心情等待它的出现。随着科技的发展,随着生物技术的发展,它将越来越离不开计算机。不但如此,计算机和生物技术更越来越紧密结合。将更快地促进两者的发展。

参考文献

[1]张宜,汤韧.计算机单机及局域网在药学领域应用发展回顾及现状[J].武汉总医院杂志,2005,13(4):12

第4篇:生物医学工程的发展前景范文

关键词:成都市;生物医药产业;政策建议

一、生物医药产业概述

(一)生物医药产业定义。目前,生物医药产业尚无统一的界定标准,一般意义讲,它是指运用生物技术从事药品、设备生产和提供相关服务企业的集合,主要包括生物制药和生物医学工程两方面内容。生物制药产业主要包括生物技术药、化学制药和中药制药等领域,其中中药制药是我国独具特色的生物制药子产业。生物医学工程产业是指运用生物医学工程技术进行产品开发、设计与生产的产业,主要包括生物医用材料及植入器械、诊断试剂以及高新技术诊疗设备及系统等。

(二)生物医药产业特征。首先,生物医药产业具有“三高一长”的特征。生物医药产业是资本与技术高度密集型产业,具有高投入、高风险、高回报、长周期等特征。生物制药是一个投入相当大的产业,主要用于新产品的研究开发及医药厂房和设备仪器方面。新药的研发周期很长,从化合物筛选、临床前研究、各期临床试验到批准上市往往需要10-15年时间,而且风险很大,成功率仅在百万分之一,开发过程中一旦出错,都可能导致项目失败。但若研发成功也有着惊人的高回报。

其次,生物医药产业具有行业周期较弱的特点。医药产业与生命科学密切相关,很难说存在成熟期,是永远成长和发展的产业。医药产品与服务是人类生存的必需品,有不可替代性和广泛的刚性需求,因此,生物医药产业的发展与经济景气程度的关联度较低,具有超强的抗经济危机能力。在历次的经济衰退期,包括2008年的全球金融危机中,美国纳斯达克医药类股票及标准普尔保健指数均有不错的表现。

再次,生物医药产业高度依赖研发资源服务。与IT等高新技术产业不同,生物医药产业在研发阶段更依赖基础科学研究,研发团队需要在产业化的不同阶段适时引入在技术评估、资本运作、市场营销等多种创新要素,加速成果转化。

二、生物医药产业链条分析

(一)生物技术药。上游:主要包括生物制品原材料和研发服务,有研发服务投入大、风险高、附加值高等特点,原材料生物制品制备领域成本相对较低,血液制品行业由于血浆资源的稀缺性较高,平均毛利率达10-15%;中游:主要包括基因工程药物、单抗药物、疫苗、血液制品等药品的制造,制造环节科技含量与附加值较高,行业平均毛利率30%;下游:医药流通及服务环节,由于进入门槛较低,毛利率在5―8%。

(二)化学药。上游:主要包括化工原料供应和化合物筛选,药用辅料及包材的供应;中游:主要包括化学原料药与药物制剂的制造,化学合成药产业中,大宗原料市场趋于饱和,毛利率低,特色原料药和制剂药增长速度较快,而且附加值高,特色原料药和制剂产品的毛利率通常分别在50%、40%左右,化学合成新药作为新产品,往往具有较高的附加值;下游:包括化学药物流通及服务。

(三)现代中药。上游:主要包括中药材种植(养殖)、新药研发,毛利率较高,达40%;中游:主要包括饮片炮制、配方颗粒加工、中成药制造和植物提取物制造,其中中药饮片加工行业毛利率约为30%,中成药制造毛利率约为35%,配方颗粒毛利率达45%;下游:包括中药材流通及服务。

三、国内生物医药产业发展现状

近年来,在人口老龄化及经济发展的双重因素作用下,我国药品市场高速扩容,2002~2012年,我国医药工业总产值的复合增长速度达到22.3%。目前,我国已成为世界第一大原料药生产和出口国,世界第二大OTC药物市场,世界第三大药品市场。2012年,我国药品市场规模达到9261亿元,医药产业总产值达到 18147.9亿元;预计到2020年,我国药品市场规模将以年均12%的增速继续扩容,到2020年市场规模将达到2.3万亿元。第一,从市场格局来说,我国正形成中药、化学药、生物药三足鼎立的市场格局;第二,从各类药品市场份额来看,西药是药品市场的主体,中成药约贡献20%以上,特别是在小医院、基层医疗和零售;第三,从产业布局来看,生物医药“三高一长”的产业特点要求产业向经济发达地区集聚、向专业智力密集区集聚、向园区集聚。目前我国生物医药产业初步形成了以长三角、环渤海为核心的集群发展态势。“十二五”期间,我国生物医药产业仍将进一步集聚于东部沿海地区科研院所集中和创新能力较强的省份,以及少数中西部的中心城市,区域发展不平衡有进一步强化的趋势。其中,研发要素将进一步向上海、北京集聚;此外,西部地区的四川成都、重庆已经具备良好的产业基础,成渝经济圈在生物医学工程领域创新活跃,是西部地区重要的生物医药成果转化基地。

四、成都市生物医药产业发展现状

成都具有良好的生物医药产业基础,在生物制药、现代中药、生物医药材料等领域实力较为雄厚,拥有科伦、地奥等一批优势企业。现代中药、疫苗、血液制品、大输液产品的技术研发水平处于国内领先地位。近年来,成都生物医药产业增长显著,年主营收入增速保持在20%以上。2012 年,全市共有生物医药企业600多家,其中规模以上209家,实现主营业务收入314亿元,占全市规模以上工业比重4.1%;实现利税65亿元,同比增长18.6%。

从政府区域规划角度看,成都市生物医药产业发展前景是可观的,但是不可否认,当前成都市生物医药产业的发展仍面临着不小的问题与挑战。主要是以下几个方面。第一,企业竞争力不强,尽管成都市高新区内聚集了200余家生物医药企业,但尚无真正核心的龙头企业;第二,产业高端化不足。成都市生物医药企业大多处于化学药仿制生产、中药复方生产等产业链低端位置,在药物研发试制、药品检测与鉴定、知识产权服务等高端环节仍旧较为缺失;第三,产业同质化竞争较为激烈。由于生物医药产业的高技术、高资本投入的产业特征,因而对于地域、能源、交通等因素要求不高。成都市内各个区域均有生物医药企业分布,导致企业同质化竞争明显,更易造成企业间的恶性竞争;第四,产业机构亟待升级。成都市大部分企业研发创新不足,产学研合作也较为缺乏,导致一些研发成果产业化较慢,一些关键性产业化技术长期没有突破,制约了产业向高技术、高附加值的下游深加工产品领域延伸,产品更新换代缓慢。

五、成都市生物医药产业发展对策建议

(一)明确发展思路,加强产业招商引资。要明确思路,将生物医药产业作为成都市重点主导产业进行重点扶持和培育。加强产业研究,充分发成都市在我国西部地区的区位、资源优势,重点支持和发展成都市相关区域具有比较优势或能实现突破性发展的产业领域。同时,要把“招商选资”作为成都市生物医药产业发展的一项长期工作。利用好国际产业链分工和产业外包转移契机,“导入招商”与“存量招商”并举,引进一批产业高端和产业链薄弱、缺失环节的关键企业。

(二)优化产业发展环境,促进产业联动发展。要促进“产城一体”组团化发展,加强产业发展载体支撑。加大现有园区的土地整理、清理及置换工作力度,为产业发展预留后备载体空间,大力促进生物医药制造与“成都国际医学城”医疗服务的融合、互动发展,延伸产业链条,以制造环节为主体,带动总部经济与生产业的快速发展。设立生物与医药产业发展的专项资金,加大对优质企业及项目的扶持力度。同市引导企业加大技术创新和技术引进力度,增强自主开发能力,鼓励企业联合高校、科研机构等围绕重大关键技术及高端产品进行 “产、学、研、用”合作。

(三) 完善政府体制机制,改善政府职能。加强生物医药企业运行监测分析,对重点企业实行“一企一策”、“一事一议”。深化与周边省(市)县的产业合作,主动出击,吸引其他省市的优秀技术资源和优秀生物医药企业向成都市高新区、天府新区等区域进驻。支持企业积极申报新版GMP认证,对通过认证的企业基于资金补贴。

参考文献:

[1] 国家发展与改革委员会《2010年医药行业分析报告》

第5篇:生物医学工程的发展前景范文

关键词:生物医学光电检测;交叉学科;教学模式;原理概念;创新思维

一教学体系的构建和优化

生物医学光电检测是应目前学校教学改革的需求,结合现今生物学、医学及光学等多门学科交叉融合发展的现状,而面向大学本科三年级学生开设的专业课程。该门课程涉及的内容相当广泛:综合了一般医学与生物学的检测技术——光学显微技术、电子显微技术、X射线影像检测技术、超声检测技术、核磁检测技术和太赫兹检测技术等;所呈现的内容新,处于自然科学研究领域的前沿:涵盖了包括近代物理学、化学、数学、生物学、医学和生物化学领域等的多项研究成果和最新进展;相关的参考资料如专业书籍、杂志和相关文章数量众多,内容丰富;与多种检测技术相关的检测仪器种类多,发展迅速,相应的教学内容具有一定的工程化技术化的特点;相比本系开设的其他专业课程如《波动光学》、《激光原理》、《信息光学》和《光通信技术》等,该门课程的开设时间较短。因此如何根据本门课程的特点,合理有效地开展教学工作,达到开阔学生的视野,加强学生对基本原理、概念的认知能力,提高学生对相关问题的思考能力和理解能力,培养学生工程化能力、多学科综合能力和创新思维能力的目的,就成为了本门课程的教学目标和重中之重。为此,笔者根据拟定的教学大纲和教学内容,进行了教学体系的构建和优化,内容包括教材的选取、教学内容的调整、教案的准备和教学要求的制定等。笔者首先进行了教材的筛选。在众多教材和参考书中,笔者选取了2014年清华大学出版社出版的,由黄国亮等主编的《生物医学检测技术与临床检验》[1](清华大学985名优教材)一书作为教材,另考虑到近年来激光技术与生物学技术的紧密结合,将1995年由湖南科学技术出版社出版的,由向洋编写的《激光生物学》[2]和2010年由中国农业科学技术出版社出版的,由段智英等编写的《激光生物学效应研究》[3]两本书中的部分章节选入作为补充教材。之后在教材内容的选取上,以生物医学检测技术和激光生物学技术为两大板块,进行了教学内容的调整和取舍:生物医学检测技术的主要教学内容包括多种成像检测技术和光谱检测技术;激光生物学技术的主要教学内容包括了激光工作原理及特性、激光生物学作用原理和激光的安全防护等。以这些内容为教学重点,做到教学体系的完整性和合理性。在此基础上,结合教材内容和相关的参考资料[4-13]准备手写教案,并同时进行多媒体教学课件的准备,完成教学前的准备工作。值得一提的是,在准备多媒体课件的过程中,笔者在网上搜集了大量的与该课程有关的图片、视频和PPT等,并对这些资料进行了分析、整理和整合,融入到自己所制作的课件中,力争做到课件信息量大、形象直观,让学生记忆深刻。在教学过程中,举出丰富的事例对学生进行知识点的讲解,并遵循知识点随机提问,进行课堂讨论,增加与学生的互动;向学生提出合理的学习要求:上课之前预习教材内相关章节内容,课堂记笔记,课后复习;积极思考课堂提问,认真完成课堂作业、课后作业,学有余力且对相关知识感兴趣的学生可参考笔者提供的参考资料收集相关内容进行学习。另外参考国外的教学方式,为了让学生了解平时学习的重要性,相应设计出了多元化的考查方式,将平时成绩在总成绩中所占的比例提高到了50%,平时成绩为上课点名、课堂提问、课堂测验和平时作业等成绩的加权平均,而期末考试成绩只占总成绩的50%,这从另外一方面也减轻了学生的考试压力,有助于增强学生学习的兴趣,提高学生学习的能动性。除此而外,笔者在课后收集学生对每堂课的教学反馈意见,实时调整教学中的部分内容,根据学生感兴趣的内容,查阅该领域该部分内容的最新进展,增加相应的教学量,提高教学质量,优化教学体系。总之,教学体系的构建和优化涵盖了教学活动中的所有环节,对于有效开展课堂教学非常重要。

二教学内容的选择和系统化

在教学体系的构建和优化中,教学内容的选择、教学内容的系统化是一个非常重要的部分。该门课程的内容广泛,参考资料丰富,如何有侧重地选取教学内容,保证教学内容的系统化有一定的难度,因此笔者在备课和教学的过程中,对该门课程的教学内容进行了精心的选择和安排,力争做到以教材为蓝本,突出教学重点,注重基本概念和基本原理的理解,注重光、机、电、软件的结合,注重检测技术和仪器运用的结合,注重工程化与技术化的结合,注重理论和实践的结合,实现教学内容完整性和系统性的统一。以显微技术一章为例,自从1665年胡克发表了用显微镜观察软木塞组织的微观结构以后,显微镜就与生物医学观察和检测密不可分了。以光学显微技术为代表的显微技术成为了生物医学光电检测技术的基础与核心内容,之后产生和应用的检测技术如电子显微技术,虽然在技术手段和方案上有所创新,但依然在重复利用或借鉴显微技术的基本原理和基本思想,因此笔者以显微技术为基础和切入点,向学生展示相关检测技术的原理。而在阐述显微镜的成像原理时,又着重介绍了显微镜性能评价参数如视角放大率、分辨率、有效放大率、光束限制和线视场,并从光学知识出发,分别对这几个参数进行了理论推导;通过数学推导让学生理解和掌握有关显微镜的基本问题,如为何高倍物镜比低倍物镜能观察到的物面范围要小;显微镜的分辨率与波长,与数值孔径有何关系;为何数值孔径要与放大倍率合理匹配,才能充分发挥显微镜的分辨能力等。对这些问题的理解都有助于学生今后正确地选取和使用显微镜,也有助于引导学生思考实验仪器的选择和其性能的关系,提高他们的分析能力和实践应用能力。在此基础上,笔者介绍了显微镜的制片技术和使用;之后,笔者对多种显微镜如荧光显微镜、暗视野显微镜、激光扫描共焦显微镜、相衬显微镜、金相显微镜、偏光显微镜、倒置显微镜及新型显微镜的原理进行了描述,并与普通显微镜原理的异同进行了比较。对于显微技术的发展历史、国内外主要显微镜生产厂家介绍等趣味性强和难度较低的内容则不作教学要求,留给学生自学,给予他们一定的空间开拓视野。这样的内容安排使学生轻松容易地掌握相关的知识,且对仪器的使用产生浓厚的兴趣,达到较好的教学效果。而后面章节的内容也正是基于同样的思路进行选择和安排的。正是由于对教学重点和难点的选择和合理安排,让笔者做到了课程内容的完整性和统一性,为之后教学方法的实施和教学手段的运用作了铺垫。

三教学方法的实施和教学手段的运用

好的教学方法和教学手段有助于推动教学工作的开展,有助于提高教学质量。2011年笔者进行了该门课程的申请和教学工作,由于当时缺乏经验,不知如何完成此项教学任务,故在一次偶然的机会中,向1996年诺贝尔物理学奖获得者、斯坦福大学物理系教授DouglasOsheroff请教了该门课程的教学问题,他告诉笔者一句话:“Startingtheclassfromthesimplethings.”他的这番话让笔者受益匪浅:教学就是要深入浅出,从简单的事物、事例出发,让学生对这门课程的内容有所了解,充满兴趣,借此引导学生进入该课程的学习。在之后的教学工作中,笔者始终秉持这种由浅入深,由简单到复杂的方式来帮助学生吸收知识,积极思考。以该门课程的引言部分为例,笔者首先向学生介绍此课程具有学科交叉、涉及专业广等特点,再将课程内容进行了归纳,课程的核心是“检测”二字,此课程着重解决两个问题:一是检测什么?二是如何检测?对于第一个问题,答案是物体形貌和特性表征;对于第二问题,答案是成像和成分分析。提纲挈领的表达让学生清晰地认识到课程的内容;之后从检测技术和激光生物学这两个板块,对课程的构架进行了框图表述,让学生直观地看出教学内容间的逻辑联系。在此之后,从学生最熟知的观察及成像出发,将课程内容引入。向学生提出一个看似简单却甚少有人思考的问题:“我们是如何观察到物体的?”学生经过思考后给出的答案不是非常全面,笔者就学生的回答做出了一定程度上的肯定,然后向学生抛出笔者自己总结出的观察物体的三个层次:看得到、看得清楚和看得舒服。言简意赅的答案引起了学生的热烈讨论,由此引出了学生对光特性探讨的热情。学生从光的波动性和粒子性回顾了他们的光学知识。之后,笔者又引导他们思考在物体太小和物体离人眼距离太远的情况下,如何观察物体的问题。认真思考的学生做出了回答:可用显微镜和望远镜来进行观察。在此基础上,引导学生根据透镜成像的规律分析对比放大镜、显微镜和望远镜成像的异同;然后顺利引出显微技术和其他生物医学检测技术的发展概况和应用实例,较好地完成了既定的教学任务。在整个教学过程中,笔者尽量做到由浅入深、循序渐进地引导学生对所学内容产生兴趣;在随机提问和自由讨论的轻松氛围中,让学生自然地做到了与教师的“教”与“学”的互动;通过图片、视频资料丰富的多媒体课件,让学生获取信息量大、直观生动的知识;结合在黑板上用粉笔推演公式的传统方式,以适中的速度让学生理清楚基本原理和相关公式的来龙去脉;根据学生感兴趣的知识点和目前的热点研究成果,实时调整部分教学内容,收集相关知识的最新进展,为学生补充知识,如教材中没有的太赫兹检测技术等,以达到扩展学生知识面,扩大学生视野的目的。总之,通过多样化的教学方法和有效的教学手段来培养学生的思考能力和理解能力,提高教学质量。

四总结

第6篇:生物医学工程的发展前景范文

【关键词】 现代 电子技术 医院 医学 精密设备

科学技术的发展是一个载体,承载着医学技术和电子技术双方面的发展,而这两个专业的结合,也助力医学精密仪器的完善。即使这是两个单独的学科,但这两个学科也是相辅相成的。所以说,现如今电子医用设备在医院具有着广泛的应用。

一、对于电子医学的概述

电子医学是一种学科,这种学科不是单一的,而是综合了有关医学、电子技术学科、工程学科等等多种学科有关知识而诞生的一种新学科。[1]这门学科在一九五零年前后成为了一门单独的研究学科,尤其是当电子学的蓬勃发展,使得医学使用的仪器精确到分子等级,更加让医学仪器更加的精密。

二、现代电子技术在医院精密设备中的应用类型

现如今电子技术的发展已经是有目共睹,凭借方便携带和最低功能耗电量的优点,这种技术手段已经完全突破了以往“医用”定义的约束,除了生病了之后要看医生,现在的医院已经深入到家庭之中,目的也比仅仅是看病,也可能是保健。同时,这种电子技术制造出的仪器除了用于家庭之外,在医院使用在精密的仪器中,也可以增强检测的精确度,从而提升医疗的水平,从而造福患者。那么,这种电子技术在实际中都应用在哪些方面呢?

2.1 传感技术在精密医用仪器中的应用

电子传感技术是一种新兴的电子科学技术,可以制作成为传感器,这种仪器是一种能够感应到或者应和需要测量物质的物理性能,并且遵照其中的一些程序把这种物理性能转化成为一种可以识别的信号。[2]这种信号可以提供数据,并且把这些数据输入到计算机当中,让计算机对于这些数据进行检测、调控,也是测量体系中的一种先前仪器,这种仪器是由理、化、生、医学、通信科学等等多种学科穿插而制作成的新型高等科技产物,通过这种仪器而输出的物理量可以进行精密的分析,最后对于患者着身体素质有着一定的判断。

利用这种技术,可以制作成一种生物芯片,这种芯片是聚集了数百万的生命信号,能够对于不同生物映射出不同的反应,有着多种多样的操作性能(比如说样品取得、生物和化学反应、细胞亲和度测验等等),能够对于脱氧核糖核酸或者是核糖核酸分子、蛋白分子、生物中的存活的细胞或者是生物或者人的软组织以最快的速度进行分析的微型器件,也可以概括成为在芯片上的微型实验室。[3]这个芯片所用的材料可以采用诸如硅之类的半导体常用的材料,也可以是其他材料,比如说玻璃、塑料等非金属材料。不光是医学,传感器这种技术已经在各种领域都进行这广泛使用,为人类造福。

2.2 全新无线网络数据通信技术在医学精密仪器中的使用

全新无线网络数据通信技术又称为zigbee技术,这种技术是一种距离比较近的、操作非常简单、功能消耗非常低、速率非常低、成本非常低的双向无线沟通的电子技术。一般应用在距离比较短、功率消耗相对来说非常低而且传播速度不是非常快的多种多样的仪器之中,达到传播数据的目的,或者是应用于具有一定周期循环的数据、有间隔的数据和不需要太多反应时间的数据。[4]普遍来说,伴随着沟通需要距离的加大,仪器的复杂程度、功能消耗或者说成本也在进一步的提升,所以就现如今来讲,全新无线网络数据通信技术还是非常实用的。

在医学环境里面,全新无线网络数据通信技术一般使用于时间比较长的护理工作中,可以利用这种技术制造出医学工具来增进医护工作者和患者的沟通,让医护人员即使不整天守在患者的床边,也能及时的掌握患者患病的数据,从而对于患者有着最好的治疗效果。这属于一种远程进行监督护理的方法,可以对患者进行监督和管理、行动进行监督和管理、对于安全进行监督和管理等等,在时间和空间上都为医患双方都提供的便利。

全新无线网络数据通信技术应用在患者活动的环境中,能够让患者脱离自动监控装置的管束,从而给予患者最大的行动能力。同时,这种技术也可以应用于多种医疗产品中,以更好的传递数据和信息。

2.3 电子技术在家庭方便携带的医疗仪器中的广泛应用

医院最想要使用的仪器就是对于健康可以随时进行检测的无线仪器,运用无线电网络技术或者是蓝牙等通信技术,让患病的人可以随时随地都能够携带这种仪器,从而可以进行自己的日常生活,携带在身上的无线传感网络具有着十分低的价格和动手操作性能,一般不会收到干扰,并且具有很低的功率。拥有这样的仪器就意味着患者再也不用进行住院治疗,就可以随时的让医生进行检测。但是这种仪器需要非常的精确,才能得到完美的实施,所以要完全依靠电子技术的支持。[5]

除了检测数据、远程监控患者之外,医院在病人身体检查方面要应用的仪器也需要非常的精密,这样才能更好的对于患者的病情记性全面的把握,从而对症下药,还患者一个健康。

三、现代电子技术在医院精密设备中的应用的现状和发展前景

电子技术所制造的医院精密仪器可以应用与医学的各方各面,比如说检测、放射科、远程监控等等,把各种各样的电子技术使用在最前沿的医学仪器的开发当中,比如说要让x光使用仪器的功能提高,就可以让其分辨率增高,要让医学仪器更加的清晰,从而完全让患者病变的部位显示出来,就可以采用让对比度升高或者是采用灰阶的模式,这样才能让患者所因为医学检查所受到的伤害减少,也在减少仪器体积的同时增加检验的精确度。[6]这种电子设备就可以使用在核磁共振成像、超声波诊断设备、电子窥镜设备等等上面。

现在的电子技术应用于医院精确仪器设备中,可以提供更多患者的身体信息,是现如今在医学上应用最广泛的使用仪器,这些精密仪器包含心电图仪器、脑电波仪器、胃电仪器等等对于人体生理信号的仪器,在这些仪器中可以检测到人体的体内温度、脉搏数、血压、血糖等等。电子技术在医学精密仪器上的应用也让现如今医学诊治技术产生了多种分支的局面,凭借多种多样物理原因诊治的设备,在临床上面也起到了非常重要的作用,也有着十分广泛的应用。

四、结束语

电子技术越来越多的应用于医学仪器,这是一个好的现象,但这即使一个医学发展的机遇,也是一项对安全的挑战。对于这些精密仪器要做好使用和管理,因为我们国家对于这些医学仪器的安全性能没有予以足够的重视,在安全使用方面也没有一定的管理制度,所以要加大管理力度,让电子技术在医疗设备的应用成为患者的福音。

参 考 文 献

[1] 张慧. 医学高职医疗仪器维修技术专业《电子技术》课程改革效果初探[J]. 沙洋师范高等专科学校学报,2010,11(6):41-43

[2] 钟丽莎,李佳凌,黄志伟,曹高飞,肖波. 生物医学工程专业“电子技术课程设计”教学改革初探[J]. 福建电脑. 2013(1):169-169,168

[3] 吴强. 超声波诊断仪基本原理及典型机型的介绍[J]. 医疗装备,2011,24(5):21-22

[4] 贻. 医疗电子技术的应用和前景[J]. 中国医疗器械信息,2011,17(3):53-55

第7篇:生物医学工程的发展前景范文

【关键词】西药制药;生物技术;制药;应用

近年来,生物技术、制药技术的联合日趋全球化,在整个制药生产当中居于首位。就以现代化西药制药生产技术而言,它在应用的过程中取得了优异的成绩,为制药行业的进步做出了巨大贡献。以生物制药技术为主的制药工艺应用不仅为人类解决目前存在病症提供了技术指导,也有效的消除了营养不良、延长人类寿命,提高生命质量。

1.生物制药技术现状

当今社会经济发展中,生物药品的开发与消费数量惊骇世俗,其开发资金也十分的巨大。就改革开放至今,我国生物制药技术总体投入了100多亿人民币,无论是在技术上还是设备上,都投入了相当大的精力。在目前的生物技术应用工作中,其主要是从基因工程、酶以及细胞固定化技术和细胞工程等方面入手的。

1.1基因工程

在当今的生物研究当中,激素以及多性因子是调节人体生理代谢和技能的主要物质手段,其活性强、临床效果十分的明显。但是这些物质在自然界中十分的稀少,从人体以及动物体重大量的摄取难度极大、来源限度极为严格,在供需矛盾上存在着严峻的缺陷。而在现代化生物制药技术当中,其为临床工作的开展提供了廉价、高效的药品,为人们身体健康做出了重要指导。胰岛素作为治疗糖尿病的主要激素之一,它在提取的过程中存在着资源匮乏、价格昂贵的特性,而利用基因工程则有效的解决了这种现象,并且有效的实现了生物制药技术的发展流程和要求。

1.2酶和细胞固定化技术

微生物在转化成为酶或者细胞固定化技术的过程中,这一技术已经广泛应用在各类制药工艺当中,逐渐弥补了酶中存在的不足,在制药领域的应用中极为显著,其无论是优势还是在制药模式上,都出现了翻天覆地的变化。生物制药技术在目前的应用中,最为常见的技术体系包含了固定化细胞、特别为生物等等。

1.3细胞工程

细胞工程是生物工程领域中最受欢迎的一项,也是最为关键的技术体系之一,它的应用为药物资源开辟、微生物原料利用提供了充足的技术指导,为保护生态平衡发挥出至关重要的意义。时至今日,无论是在西医还是中医方面都有所涉及,其重要方面的应用数量高达90%以上,而西药更为常见,几乎涵盖了西药生产各个领域,为西药生产技术的发展指明了新方向。

2.生物技术在西药制药工程中的应用

近年来的社会发展中,生物制药技术经过二十多年的努力已经创造出了许多重要的临床治疗药物,其年销售额更是高达70多亿。就生物技术的应用进行分析,它在西药制药生产中的应用不仅为需要生产打下坚实基础,更是为西药功能的发挥提供了更高效的技术水准。

2.1生物制药技术在肿瘤药物中的应用

近年来,就全球各种疾病引发的死亡数量进行分析,因为肿瘤而引起的死亡率高居榜首,就我国而言,每年所诊断出的肿瘤人数高达百万以上,因为肿瘤病症而死亡的人数高达50万。就我国每年就肿瘤药物的研究费用高达一百五十多亿。其中肿瘤作为多种机制导致了复杂的疾病,现在就早期诊断、手术、治疗等手段的选择上,更是呈现出翻天覆地的变化。我们可以预计,在未来十多年时间里肿瘤药物会迅速的增多。如果在利用的过程中将其进行综合研究和分析,其整个工作在扩散的过程中都是以下系统化、全面化进行的。在目前的当今社会发展的过程中,整个工作流程的应用都是整个肿瘤治疗制剂中最多的一项,它也很快得到广泛的应用。

2.2神经药物

神经系统药物在利用生物技术治疗老年痴呆、脑中风等多种药物体系,在应用和研究的过程中它包含了胰岛素生长因子等多种新药物的选择。目前,已经在许多医院的临床诊疗工作中得到重视。用于治疗末梢神经炎和脑萎缩硬化症的神经生长因子(NGF)以及脑源神经营养因子(BDNF)都开始Ⅲ期临床试验。全国每年中风患者大概60万,每年死于中风患者达15万。现在有效治疗中风症的药物不多,特别是很少有可治疗不可逆脑损伤的药物,CerestaL已被证明能对中风患者的脑力有显著改善和稳定作用,已经进入Ⅲ期临床试验。

2.3免疫性药物

很多疾病都是由于自身免疫缺陷引起,如红斑狼疮、哮喘、多发性硬化症、风湿性关节炎等。我国风湿性关节炎患者多达4000多万,每年花费巨额医疗费,很多制药公司正对这类疾病进行研究。如Genentech公司研制出一种治疗哮喘的单克隆人源化免疫球蛋白E抗体,进入了Ⅱ期临床试验。美国Cetor’s公司开发出一种用于治疗风湿性关节炎的TNF-α抗体,治疗的有效率达80%。有些公司运用基因疗法治疗糖尿病,治疗方法是把胰岛素基因导入到糖尿病患者的皮肤细胞,然后把这些细胞注入人体,让这些工程细胞可以进行全程胰岛素供应。

2.4冠心病治疗药物

我国每年有接近一百万人死于冠心病,每年都要花费高额的治疗费。未来10年,防治冠心病的药物将推动制药工业迅速发展。Cen-tocor′sReopro公司利用单克隆抗体对冠心病引起的心绞痛治疗以及对心脏功能的恢复取得了成功,这标志着诞生了一种新型冠心病治疗药物。随着基因组科学的建立以及基因操作技术的迅速发展,目前基因治疗与基因测序技术正在进行商业化开发,推动了治疗学的发展。利用转基因技术构造转基因动物和植物,都以实现产业化开发,以转基因绵羊为载体生产蛋白酶ATT抑制剂,来治疗囊性纤维变性和肺气肿疾病,进入到了Ⅱ、Ⅲ期临床试验。

3.生物技术在西药制药中的应用前景分析

今后10年生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。

4.结束语

综上所述,随着现代生物制药技术的不断研发与应用,在西药制药中如何合理、科学应用生物制药技术,将成为影响现代西药制药行业发展趋势的重要因素,也是提高整体医药生产水平和工艺的关键。 [科]

【参考文献】

第8篇:生物医学工程的发展前景范文

小波变换近年来发展迅速,作为传统Fourier变换的继承和发展,小波变换解决了Fourier变换所不能解决的一些技术方面的问题(如突变信号与非平稳信号)。中医诊断的主要方法为望、闻、问、切,其中望诊和切诊至关重要。本文对小波变换在望诊和切诊中新的应用,即对中医诊断图像的处理(包括图像增强、去噪、融合、压缩)和对中医脉象信号处理进行了简要的综述。

【关键词】 小波变换 中医诊断 中医图像处理 中医脉象特征分析

【Abstract】 Wavelet transformation has been developing for many years,as the inheritor and the offspring of traditional Fourier transformation, it resolves several problems which Fourier transformation cannot solve(such as mutative signal and unquiet signal).The main methods of the Chinese medical diagnosis are observing, smelling, consulting and pulse-taking,especially the observing and pulse-taking. This article give a summarize about the new application of wavelet transformation in Chinese medical observing and pulse-taking, that diagnostic image processing of Chinese medicine(including image enhancement ,noise elimination ,fusion ,coding compression) and pulse signal of Chinese medicine .

【Key words】 wavelet transform; Chinese medical diagnosis; Chinese medical image processing; Chinese medical pulse signal

小波的概念最初是由法国地球物理学家J.Morlet提出,最初是为了更好地分析地震波的特性。经过20余年的发展,目前小波理论在图像处理、医学信号处理、信号分析、语音合成、计算机视觉、数据压缩、大气与海洋波分析、地震信号处理、分形及数字电视等许多领域得到了巨大的发展。在中医诊断方面,小波变换主要具体应用在对中医诊断图像的处理和中医脉象信号处理上,使望诊和切诊更准确,从而大大提高了中医师诊断的准确率,使古老传统的中医通过计算机科学技术这一新的途径发扬光大。

1 基本原理

小波变换是时间(空间)和频率的局部化分析,通过伸缩和平移运算对信号或函数逐步进行多尺度细化的分析,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意一个细节,所以说小波变换有两个特点,即自适应性和数学显微镜性质,能根据对象调整各项参数和调焦。

2 小波变换对中医诊断图像的处理

小波变换对中医诊断图像中的处理和对西医诊断图像中的处理大体相同,都是利用小波变换的特点使得医学诊断图像更有利于识别病征[1],具体作用主要表现为以下几个方面。

2.1 中医诊断图像增强 在中医诊断图像中,图像会难免有对比度差或者图像边缘模糊一系列不利于诊断的因素,对于中医师的准确诊断有不少的障碍。传统的图像增强的方法往往基于像素灰度变换的空间域增强和基于滤波操作的频率域增强来达到图像增强的目的,这样会或多或少产生图像的局部失真和噪声增强。小波变换刚好弥补了这一缺点,即在不改变图像的精确度的情况下,对图像的轮廓进行一种补偿式的增强,使得中医师在对诊断图像进行分析诊断时,更好的把握病人的病情,基于小波变换的医学图像增强的方法有很多,其中李清顺等[2]分析了采用分形增强的方法,在分形增强后又采用了小波增强图像的方法,使图像边缘轮廓增强,达到了更好的视觉效果,并且避免了单纯采用小波增强方法会使图像噪声也增强的不足。侯艳芹等[3]分析了将尺度系数和小波系数进行不同的处理,分别利用两步提升增强法对小波变换后的图像低频信息进行增强和软域值算法对小波变换后的图像高频信息先进行去噪, 然后再增强,最后把这两部分综合起来进行小波反变换得到图像的一种新的方法。王修信等[4]提出将超声医学图像投影到小波变换域,然后利用软阈值技术方法进行降噪处理最后使用非线性增强技术提高图像对比度。处理结果有效地去除原图像的斑点噪声,使图像中较模糊、对比度差的细节得到增强,优于传统的直方图均衡增强方法。武杰等[5]在基于小波变换的医学图像增强方法中,分析比较了3种基于小波变换的医学图像增强方法,得出小波变换避免了窗口滤波运算,在变换域中更加灵活,更加有效,得到的处理图像层次感更分明,增强效果更明显,更有利于医师做出及时准确的判断。综上所述,通过小波变换能够使中医诊断图像更为准确的反映病人的身体各项机能,使中医师根据中医诊断图像做出更精确的判断。

2.2 中医诊断图像去噪 在中医师进行诊断的过程中,所得到的图像难免会混入噪声,使图像的信噪比下降,提高了中医师对中医诊断图像分析的难度,对中医师的正确诊断有诸多不利的影响,降低中医师诊断的准确率。对于医学图像处理的传统去噪方法主要有:邻域平均法、多幅图像平均法、中值滤波等。小波变换在此基础上更进一步提高了图像的信噪比,张昌林等[6]概括提出了一种改进的基于小波变换尺度间相关性的去噪方法,小波变换对整个图像变换从时域变换到频域,然后再量化、编码、输出,这样就保留图像的精细信息,满足中医疾病诊断图像的要求。对诊断图像进行去噪处理和方法二维小波变换大大提高了中医师对图像的准确率,可以检测出患者病患的轮廓线,从而有助于提高中医师对各种疾病的诊断准确率。陶玲等[7]分析了医学图像的噪声主要分布在图像的高频成分上,对小波分解的高频系数作处理来达到去噪的目的。二维小波变换在当高频噪声含量较高时,可以采取低频滤波法;当高频噪声含量不高时,可采用小波阈值化去噪法对小波变换域的系数进行筛选。郭敏等[8]分析提出了一种基于小波分析理论的医学超声图像噪声的综合抑制方法,首先对医学超声图像进行对数变换,将乘性噪声变成加性噪声;然后进行多尺度小波变换,将图像分解成一系列不同尺度上的小波系数,对变换后不同尺度的高频子图像进行非线性小波软阈值处理,阈值处理后的高频子图像进行增强;最后,经小波逆变换和指数变换恢复去噪后图像。结果证明该方法可有效保留细节信号,极大限度地去除斑纹噪声。这些文献均证明了基于小波变换不仅可以去除残留的噪声,而且去噪后获得的图像更加清晰,这样一种方法运用在中医诊断图像上,使中医疾病诊断图像有很好的视觉效果,消除噪声带来的不利影响,提高中医师诊断的准确率。

2.3 中医诊断图像融合 图像融合在医学方面的应用是通过对多幅图像的冗余信息和互补信息进行处理, 将不同模态图像的信息综合起来,集中到一幅图像中表达, 为医生提供更加有效的诊断信息。这种方法在西医诊断中应用广泛 (如CT、MRI、PET等),为临床诊断和治疗提供了不同模态的图像。同样我们也可以将此方法运用到中医的中医诊断图像中。唐晶磊等[9]提出了一种基于小波变换的医学图像融合方法,而且证明基于小波变换的图像融合效果非常好。对图像进行小波分解后, 形成了不同频率分辨率的细节信息, 针对不同频带子图像的小波系数进行组合, 形成融合图像的小波系数。融合后的图像保留了原始图像的纹理和边缘特征, 消除了图像的块状伪影, 有效地将图像所提供的信息融合在一起, 图像的主观视觉质量有明显的提高。陶观群等[10]分析了基于小波变换的医学图像融合方法不仅可用于 CT图像上观察到的骨组织结构和MR图像上对照软组织信息的融合,而且还用于来源于CT或MR图像的解剖信息与来源于PET或SPECT图像的功能信息融合。在外科手术导航系统中,将手术前所得的 CT和MR的病灶三维图像与手术中所得到的实时X荧光图像或超声图像进行融合,有利于实时地指导和观察,确保手术顺利准确地进行。

2.4 中医诊断图像数据压缩 中医诊断图像经过小波变换后生成的小波图像的数据总量与原图像的数据量相等,即小波变换本身并不具有压缩功能。之所以将它用于中医诊断图像压缩,是因为生成的小波图像具有与原图像不同的特性,表现在图像的能量主要集中于低频部分,而水平、垂直和对角线部分的能量则较少。汤乐民等[11]证明了小波变换非常适合于医学图像压缩编码等医学图像的处理。樊华等[12]也提出建立在小波分析基础上的心电信号准无损压缩算法是可行的。小波分析的优点是重建后的信号同原始信号相比几乎没有损耗;而且由于小波只需分解一层还具有算法简单和运算速度快的特点。该方法不仅可用于心电信号压缩方面,而且当所采集的信号其数据变化范围较大时,也可应用基于小波分析的准无损压缩算法来进行压缩。

3 小波变换在中医脉象信号特征分析中的应用

脉诊是中医诊察疾病的重要手段,脉象反映的是人体的生理与病理信息,脉象信号具有随机性和非线性等特点。由于小波变换有“数学显微镜”这一特性和良好的时-频局域化性质,我们可以通过小波变换这一方法对脉象信号进行处理。谢家宇等[13]应用连续小波变换分析了15例海洛因吸毒者和15例正常人的脉象信号,提取了吸毒者脉象信号中的异常信息,为戒毒治疗的评估与改进提供客观依据。研究结果表明,连续小波变换是处理脉象信号的有效方法。岳沛平等[14]分析了小波变换对脉象信号处理的另一种具体方法,即先将脉象信号消噪,利用小波变换具有良好的时-频局部化的能力和对非平稳信号突变点的检测能力,对脉象信号同时进行时域、频域特征值的提取和分析,然后对脉象信号的特征值采用不同尺度的分析,在信号的不同部位得到最佳时域分辨率和频域分辨率,此外再提取脉象在不同时间尺度上的能量这一表征脉象的新的特征值。结果表明小波变换有助于提高系统对不同脉象的识别能力,尤其是对相兼脉的辨识。

4 总结

小波变换这一技术在近几年发展迅速,在各行各业都有着巨大的发展前景,在中医诊断这一领域内不断有所突破,然而中医古老悠远且博大精深,相信这一领域还有很大的发展空间。小波变换在中医诊断中的应用发展可以借鉴小波变换在西医诊断运用中的成功经验,这样有利用将小波变换这一现代化技术更好的辅助中医诊断,推动中医的积极发展,小波变换也必将对于未来中医的远程医疗、中医医院信息化(HIS、PACS)、中医电子健康工程项目(E-HEALTH)等中医诊断与现代化技术相结合的诊疗方案的开发有着积极促进作用。

【参考文献】

1 李莹.小波变换在医学图像处理上的应用.计算机工程与设计,2006,27(7):1279-1280.

2 李清顺,杨定楚,秦前清.基于分形小波变换的医学图像增强.计算机工程与设计,2005,26(3):807-809.

3 侯艳芹,李均利,魏平,等.一种基于二维离散小波变换的医学图像增强算法.计算机工程与应用,2006,7:227-228.

4 王修信,胡维平,梁冬冬,等.基于小波分析的超声医学图像非线性增强.计算机工程与应用,2005,18(8):197-199.

5 武杰,聂生东,黄勇,等.基于小波变换的医学图像增强方法的比较分析.生物医学工程研究,2005,24(2):67-69.

6 张昌林,高红艳,侯玉,等.小波变换在中医诊断图像中去噪处理的应用.上海中医药大学学报,2006,20(4):70-72.

7 陶玲,王惠南,颜廷勇.二维小波变换及其在医学图像处理中的应用.南京航空航天大学学报,2004,36(3):373-377.

8 郭敏,马远良,朱霆.基于小波变换的医学超声图像去噪及增强方法.中国医学影像技术,2006,22(9):1435-1437.

9 唐晶磊,何东健,赵文文,等.小波变换在医学图像融合中的应用.医学信息,2007,20(1):1-3.

10 陶观群,李大鹏,陆光华.小波分析方法在医学图像融合中的应用.西安电子科技大学学报(自然科学版),2004, 31(1):82-86.

11 汤乐民,李敏.医学图像压缩中的小波变换技术.南通医学院学报,2003,23(4):503-505.

12 樊华,郑小林.基于小波变换的医学图像压缩.山东生物医学工程,2003,22(2):14-17.

第9篇:生物医学工程的发展前景范文

生物技术的应用领域介绍

农业:一方面,现代生物学技术将使农业科技上升到分子水平,人类可以根据需求从不同种类的动植物中,将它们的优良基因重新组合,培育新的品种,为此人类生产食物的能力将空前提高。另一方面。由于现代生物学从分子水平认识生命的本原,因此不仅在农业内部不同生命体的种属界限被打破,而且导致农业与其他产业间的围墙逐渐被拆除。

医药:医药生物技术一直是生物技术中发展最快、最活跃的领域,也是各国生物技术研究开发的重中之重,是生物技术产业最为成熟,竞争最为激烈的领域。近年来,基因组学、生物信息学、转基因技术、干细胞和克隆技术、生物芯片技术等一系列新兴技术的发展。为促进医药产业的发展提供了新的途径和思路。医药生物技术正在成为整个医药产业发展最重要的技术推动力。目前60%以上的生物技术成果集中应用于医药工业,用以开发特色新药或对传统医药进行改良,由此正在引发医药工业的重大变革。

化工:近年来各国对利用生物技术生产塑料和燃料的研究力度都在加大。对于塑料生产厂家而言。用植物这样的可再生资源来取代以石油为基础的原料,发展前景极为诱人。树脂生产厂家不再依靠化石燃料的有限供应,降解型的生物聚合物可以变成肥料,不仅节省了填埋场所占的土地面积,而且更有利于环境保护和工业的可持续发展。从玉米、高粱或其他植物获取的淀粉和糖,是目前正在开发的几种生物化学新工艺的基础原料。

能源:地球上亿年积累的化石能源――石油、天然气、煤等。仅能支撑30。年的大规模开采就将面临枯竭。如果按现有的开采技术和连续不断地日夜消耗这些化石燃料的速度推算,煤、天然气和石油的有效年限分别是100―120年、30-50年和18-30年。显然21世纪所面临的严重危机之一是能源问题。利用现代科技发展生物能源,是解决未来能源问题的一条重要出路。生物能源是指从生物质得到的能源,是通过绿色植物、藻类和光合细菌的光合作用,捕获太阳能,经代谢转换,储存于生物质中的能量,是太阳能的有机储存,是可再生能源的重要组成部分。它是人类最早利用的能源,生物能源是一种可再生的清洁能源,开发和使用生物能源,符合可持续的科学发展观和循环经济的理念。

大力发展我国生物技术与产业发展的驱动力分析

高度重视生物技术的基础研究,形成以企业为主导的创新联盟

鉴于生物技术自身技术创新的需求特点,发现其对基础研究的依赖非常大。因此,需要高度重视生物技术的基础研究,重视政府在支持研发活动中的关键作用。从支持生物技术发展的国外经验来看,欧洲的举措效果显著,这主要得益于欧洲技术平台的重要作用。欧洲技术平台是2003年欧盟委员会提出的,旨在增强欧洲组织和实施技术创新的能力,实现欧洲在战略技术领域保持或获得世界领先地位。该平台是由欧洲战略技术领域的企业、高校、科研机构、政府部门和专家组成的创新联盟,负责制定欧盟在高技术领域的研发战略目标、战略重点、战略措施及行动计划。2010年6月,欧盟启动了低碳技术欧洲产业行动计划,而各低碳技术领域发展路线图和三年实施计划的制定均由各领域的欧洲技术平台(TP)起草制定。经过9年的发展。欧洲技术平台已经在欧洲的低碳产业行动中发挥了核心的作用。

建议我国政府部门应该高度重视生物技术的基础研究,并加快形成以企业为主导、官产学研资用配套的创新联盟,共同推动该产业的发展。在技术研发过程中,一定要平衡好政府和企业的角色和位置,可以采取政府前期资助研发一企业提高研发竞争力一再投资于技术的基础研发的周期形式。

高度重视不同阶段的特点,实施灵活的融资投入机制