公务员期刊网 精选范文 生物医学工程现状范文

生物医学工程现状精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物医学工程现状主题范文,仅供参考,欢迎阅读并收藏。

生物医学工程现状

第1篇:生物医学工程现状范文

从我国生物医学工程与医疗器械产业的发展现状来看,由于我国在该领域的发展较国外晚,使其在实际的发展中还是存在许多需要完善与改进的地方。基于这种现状考虑,我们必须要提高对生物医学工程与医疗器械产业的完善、优化与创新意识,并通过各种有效性措施的大力落实,促进生物医学工程与医疗器械产业的健康、稳定、长效发展。

关键词:生物医学工程;医疗器械产业;发展

【中图分类号】

R195 【文献标识码】B 【文章编号】1002-3763(2014)08-0294-01

1 前言

生物医学工程(Biomedical Engineering,BME)主要是指结合了化学、物理、数学、计算机与工程学原理,从事医学、生物学、卫生学以及行为学等方面的一种研究。生物医学工程作为一门新兴的边缘学科,其应用工程技术手段,可以有效的解决目前医学中的一些问题,从而为各类疾病的诊断、治疗与预防,保障人们的健康起到积极的作用。而医疗器械产业主要是指在疾病预防、诊断与治疗中所应用的电子医疗设备、内外科器械、离体诊断设备、牙科器械、整形设备以及医院供应品等等。生物医学工程与医疗器械属于医院诊治疾病中不可或缺的一部分内容,也是现代医药产业发展的两大支柱。基于生物医学工程与医疗器械产业的重要性,本文就以我国的生物医学工程与医疗器械产业作为研究方向,论述其发展现状,并对生物医学工程与医疗器械产业的发展前景展开探讨。

2 生物医学工程与医疗器械产业的发展现状

2.1 生物医学工程的发展现状:

生物医学工程专业作为一项研究方向诸多、内容复杂、要求极高的专业,其在我国的发展已经经历了36年,但是,我国生物医学工程较国外相比,其起步还是较晚,综合来看,其与国外的发展还是具有一定的距离。而从我国生物医学工程的发展现状来看,其对于人才的培养目标及研究成果,主要体现在以下几个方面:

⑴人才的培养。其一,培养能从事医疗设备管理、医疗器械质量控制与管理、医药市场营销、医学技术服务等方面的人才;其二,将生物医学工程专业将医学技术与工程技术相结合,并以此为目标来培养高级临床医学工程技术型人才;其三,培养出综合能力较强,能够从事生物医学工程研究、开发与生产的高级人才。⑵研究成果。我国生物医学工程目前的研究成果主要有:人工关节、人工晶体等功能性假体;人工心脏瓣膜、人工心脏起搏器等人工器官;不同规格、不同种类的电磁与激光治疗设备;超声成像、磁共振成像、X射线计算机断层扫描、生化分析仪等新型临床诊断与监护技术、监护设备等。

2.2 医疗器械产业的发展现状:

生物医学工程在我国的发展,不仅促进了临床疾病的诊治效果,还推动了医疗器械产业的发展,而当前我国医疗器械产业的发展情况,主要体现在如下几方面:⑴医疗器械工业现状。由于国外医疗器械对国内医疗器械市场造成的冲击,近年来,我国已开始重视对医疗器械的自主研制与创新。例如,在“十二五”规划中,特别强调了我国自产医疗器械的应用与普及、产品创新。并在着力突破高端装备大多引进国外的问题。力求实现高端主流装备、医用高值材料、核心部件等医疗器械的自主制造,以实现降低医疗费用、打破进口垄断的问题。⑵医疗器械营销现状。我国的医疗器械生产销售企业诸多,尤其是近年来,在科技的快速发展下,使得我国医疗器械的营销势态良好,例如婴儿培养箱、心电图机、高压氧舱、磁共振成像系统、体外诊断试剂、各种敷料及卫生材料等数千种大小不一,规格不一的医疗器械在全国各医院的应用是非常广泛的。⑶医疗器械技术现状。在科技的快速发展下,医疗器械的性能与质量也得到了不断升级。而我国各大小型医院,在先进性医疗技术的驱动下,所应用的医疗器械也在不断升级和完善,例如,基层医疗卫生机械对采色超声成像仪、生化分析仪、免疫分析仪、多参数监护仪、心电图设备、耗材等医疗器械的配置与升级。一些大型、综合性医院对实时三维彩色超声成像仪、全自动生化分析仪、64排螺旋CT等先进性医疗器械的应用。

3 生物医学工程与医疗器械产业的发展前景

3.1 生物医学工程的发展前景:

虽然生物医学工程在我国的发展比较迅速,但其与国外的发展相比,还是存在一定的差距,基于这种现象,我国对于生物医学工程的持续发展也十分重视。而在分析目前我国生物医学工程的发展情况与研究成果之后,笔者认为,我国今后生物医学工程的发展前景,将会体现在以下几方面:⑴纳米技术、介入性微创技术、激光技术以及植入型超微机器人,将是未来生物医学工程的研究重点。⑵生物型人工器官、生物机械结合型将会有新的突破,各种高质量的人工器官将会广泛应用于临床。⑶药物与材料相结合的新型给药装置或技术将得到有效发展。⑷所应用的各种诊疗仪器与装置,将会逐渐朝着远程医疗信息网络化、智能化的方向转变,其诊疗所用机器人会在临床上得到广泛的应用。

3.2 医疗器械产业的发展前景:

我国目前的医疗器械市场规模占医药总市场规模的14%,这也表现出我国的医疗器械产业虽然发展迅速,但与全球水平比还相差甚远,不过,这种现象也给投资者们看到了该领域更大的发展空间。在技术的不断升级下,国产高端医疗器械将会逐渐替代国外进口器械,随着机械器智能与生物智能技术的发展,我国在未来必将不断研发高科技医疗器械。此外,由于国民生活水平的不断提高,之后的医疗器械产业还会以家庭会对象,研发生产出一系列适用于家庭自我监护、诊断的高科技医疗器械产品。

4 总结

通过以上分析可见,生物医学工程与医疗器械产业在医学领域占据着举足轻重的位置,而近年来在科技的快速发展下,我国对生物医学工程也越来越重视,且医疗器械产业也得到了长足的发展。相信在未来医学技术的不断完善下,我国生物医学工程与医疗器械产业也会有更加良好的发展前景。

参考文献

[1] 王卫东,曹德森,医学工程保障中的质量控制的研究[J],医疗设备信息,2007年03期.

第2篇:生物医学工程现状范文

一、生物医学工程学科特点

生物医学工程学科是运用现代自然科学和工程技术原理与方法,从工程学的角度研究生物体(特别是人体)的结构、功能及其相互关系,揭示生命现象、探索生命本质,研究和开发用于防病治病、人体功能辅助及卫生保健的人工材料、制品、装置、系统和工程技术的一门综合性学科[1],是理工类学科与生物医学学科深度交叉、高度融合的边缘性学科,所涵盖的领域十分广泛,具有“覆盖广、交叉深、发展快、变化多”等其他学科不具有的特点。根据研究侧重点,生物医学工程学科可分为信息技术型、材料技术型、生物技术型、生物医学研究型、医疗器械产业型、临床生物医学工程、军事生物医学工程等7类[2]。当前讨论和研究的热点领域主要有:生物医学材料、生物力学、医疗信息技术、生物芯片与传感技术、组织工程及再生医学、介入医学工程、医疗器械等7个方面[3]。

二、医科院校生物医学工程学科专业教育现状分析

高等医科院校生物医学工程学科和临床医学结合紧密,医学大背景很深厚,具备丰富的医学类学科教学资源和优越的临床设备实践条件等优势,但同时因学科体系不完善、教学师资力量比较薄弱、专业实验室建设投资大等影响因素,一定程度上制约了生物医学工程学科专业的高效快速发展。

1.理工学科体系不完善。生物医学工程专业学科涵盖面非常广,广到什么程度呢?可以用四个字形容———“包罗万象”,如果用“学科频谱”来描述学科涵盖面宽度,生物医学工程无疑是88个一级学科中“频谱宽度”最宽的学科。目前大多数开设生物工程学的高等医科院校,物理、数学、化学等基础学科相比理工科院校比较薄弱,而且缺乏材料、自动化等重要工程学科的有力支撑,这些支撑学科的缺少会导致相应课程设置不完善以及综合性实践训练平台缺乏,学生无法系统地学习工程类课程,得不到系统扎实的工程技术训练,影响人才培养目标的整体实现。

2.复合型师资比较缺乏。要实现培养医工结合与交叉的复合型高级工程技术人才目标,首先需建设一支医工结合与交叉的复合型师资队伍方阵。在高等医科院校,生物医学工程专业师资队伍中具有理工科教育背景和医学教育背景的教师比较多,而既懂医学又懂工程技术,能将工程技术与医学需求紧密结合起来的复合型、交叉型、融合型师资比较缺乏,教师队伍知识结构普遍不够合理,与各相关学科交叉融合能力弱,这些现状一定程度上影响了课程体系构建以及教学质量和人才培养质量。

3.创新能力培养不扎实。生物医学工程专业85%以上的基础课和专业(基础)课程都要开展实践教学,必须建设相应的实践教学平台,这些实验室建设要求高、仪器设备多、投入大,部分院校在生物医学工程专业课程实验条件建设经费投入不足,单独开设的实验课程比较少,实践教学体系不够完善;课程标准中演示性、验证性等基础性实验设置比较多,而综合性、设计性实验设置比较少[4];缺乏“大学生电子设计创新基地”等综合性实训实验硬件软件平台和组织管理经验;学生规模小,缺少其他理工科学科支撑,组队参加全国大学生电子设计竞赛、全国大学生挑战杯设计竞赛等活动较为困难。

4.学生专业思想不牢固。生物医学工程学作为一门新兴的边缘学科,覆盖面广,涉及领域跨度大,专业知识体系复杂,专业课程内容在各学科之间交叉频繁,本科学生对本专业缺乏深入的了解、足够的信心和学习热情;相对材料、自动化、机械、通信以及临床、医学影像等专业,生物医学工程专业学生所学知识普遍存在“宽而不精”,“广而不细”等问题,就业时相对处于劣势;部分学生由于学习任务重、压力大,导致学习积极性、主动性不高,专业思想不够牢固,甚至影响到专业整体的学习风气。

三、对策初探

高等医科院校要盯准医工结合的复合型高级工程技术人才培养目标,突出学科交叉综合培养、工程技术意识培养、创新能力素质培养,深化教学改革,加大教学投入,改善教学环境,加强队伍建设,充分发挥医学院校资源优势,积极探索具有医科院校特色的生物医学工程专业教育培养模式,构建科学合理的课程体系和实践教学体系,不断提升生物医学工程人才培养质量。

1.坚持走“先研究生后本科生”的教育培养模式。“覆盖广、交叉深、发展快、变化多”等特点决定了生物医学工程学科专业的开设和建设,对教学基本建设、课程体系构建、师资队伍力量、实践教学平台等方面要求比较高,必须具备一定水平的软硬件条件。医科院校在开设建设之初,往往存在培养方向不明确、课程体系不科学、平台条件不完善、师资力量不足等困难和问题,因此,对于计划开设生物医学工程专业的高等医科院校来说,要坚持走“先研究生培养后本科生培养”的教育培养模式,通过5-10年时间的研究生培养和学科建设,加强教学基本建设,积累教学经验,规范教学管理,建设一支高素质师资队伍和一批高水平的实验教学平台,构建完善的课程培养体系和实践教学体系,为本科生培养创造良好的学习条件和学习环境。

第3篇:生物医学工程现状范文

关键词:学风建设;生物医学工程;本科专业

中图分类号:G641 文献标志码:A 文章编号:1674-9324(2013)08-0019-03

生物医学工程(Biomedical Engineering,BME)是一门新兴边缘学科,综合采用生物学、医学和工程学的理论和方法,运用工程技术手段,研究和解决生物学和医学中的有关问题,为人类健康服务。

随着医疗卫生事业的迅速发展,生物医学专业的重要性突显,社会对生物医学专业从业人员的需求也迅速升温,该行业的社会地位也越来越高,前景一片光明。中国的生物医学工程专业本科教育走过了三年多的历史。目前,全国至少有117所高校开设了生物医学工程专业,其中58所高校开设了生物医学工程硕士点,92所高校招收本科生[1]。

作为一门交叉学科,生物医学工程专业的学生既要求掌握工程学(包括化学、机械、电子等)知识,还要掌握一定的生物医学知识,课程繁多、难度较大。同时这门交叉学科既需掌握理论知识,又需培养实践动手能力。因此,对于生物医学工程专业的学生而言,学风的建设显得尤为重要[2]。作者长期担任生物医学工程本科班级的班主任,对生物医学工程本科班级的学风建设有较深的心得体会。本文根据生物医学工程本科专业的特点,对该专业的学风建设进行探讨,揭示其内在的规律,提出生物医学等交叉类学科专业学生如何进行学风建设的思路。

一、生物医学工程专业学风建设面临的问题

同高校其他很多专业一样,生物医学工程专业面临一些共性的问题。例如,部分学生学习目的不明确,进取心不强,学习不够努力。主要表现为缺乏严谨的求学态度,学习上弄虚作假,投机取巧,作业抄袭,甚至考试作弊;课堂不认真听课,实验不参与操作;一些学生学习纪律松懈,上课迟到、早退,甚至出现旷课、缺课现象,还有极少数学生沉迷于电脑游戏,终日不思学习,致使学业荒废。

与其他专业相比,生物医学工程专业显现的最主要问题是学习目的不明确。不少学生对该专业仍然存在片面的认识,认为生物医学工程专业是一大杂烩的专业,所学课程繁多而没有确定的方向,就业没有明确的目标。另外,对于本校的生物医学工程专业来说,还有部分学生是从别的专业调剂到生物医学工程专业的,少数学生由于认识上的差异,对本专业不感兴趣,热情不高,甚至产生厌恶感。这样思想认识的存在,使学生学习缺乏动力,得过且过。这些问题严重影响到学生的大学本科学习。

二、生物医学工程类专业学风建设的尝试

生物医学工程专业本科生的学风建设,在与高校几乎所有专业学风建设一样,按照“科学发展观”的要求,加强思想教育、以学生为主体、严格管理、加强师资队伍建设,发挥教书育人作用等方面进行大量工作外,本专业还根据自己的特点和优势,重点开展了以下几个方面的尝试。

(一)加强学生对生物医学工程专业的认识,明确专业方向

通过入学专业教育、专业认识实习、学生教师恳谈会、研究生本科生座谈会、已毕业校友返校座谈会等形式加强学生的专业认识,特别是通过到医院、医疗仪器公司参观、座谈,让学生了解生物医学工程专业在社会上的现状及其就业前景,提高学习热情;其次,我们通过专业方向的细分,将培养方向定位于生物医用材料和医疗仪器,并在“本科生科研导师制”的活动中根据老师的研究方向进一步进行培养方向的定位,这样就让学生有了明确的专业方向和就业目标,学习目标也就更加明确。

(二)学生的学业生涯、职业生涯规划

从新生入学起,本专业就举办学业生涯、职业生涯规划大赛。教师们认真评阅每一个学生所撰写的“学业生涯、职业生涯规划书”,了解每一个同学的学业、职业目标,有针对性的在各方面加以指导,真正做到因材施教、“个性化培养”。教师每学期对照学生自己的“学业生涯、职业生涯规划书”进行检查、评估、指导以及修改。

(三)发挥本专业高学历、高素质教师多的优势

教风之于学风具有鲜明的导向性,高素质教师在学风建设中的作用是毋庸置疑的。在本专业教师队伍中,“海归”人才的比例达到58%,博士学历比例达到50%。从2002年起,本校通过重庆市“回归工程”引进了一大批高素质“海归”人才,这批人在国内外都有一定的影响,他们是学生心中的偶像,在教学、科研和对学生的引导等方面起到了巨大的作用。

在发挥高素质“海归”人才众多的优势方面,本专业老师每学期都要进行多次各类讲座,内容多种多样,从“欧美文化”到“科研,创造自己的成功”。通过这些讲座,“海归”教授以身说法,将海外高校优良的学风带进了我们的校园,学生也开拓了视野,了解到这些老师的成功是“坚强的意志、勤奋和努力”的结果;我们还开设了多门双语课称,例如“远程医疗”等,采用原版教材,进行原汁原味的英语教学,取得了很好的效果。

(四)在大二学生中实行本科生科研导师制

本校生物医学工程专业在重庆市乃至全国高校中率先实行了大二学生本科生科研导师制,重视发挥导师教书育人的作用,以教风促学风的作用。充分发挥“海归”人才和高学历人才的优势。从大二开始,学生进入老师的实验室,从文献资料的查找、英文文献的阅读与翻译基本训练着手,在教师的实验室中培养了科学研究和动手能力,增加了学习的兴趣。实践证明,参加导师科研活动的学生,无论是在就业还是继续读研究生进行深造这两方面,都较之没参加导师科研活动的学生拥有更大的优势。

(五)鼓励学生考研,促进学风建设

从新生入学教育开始,我们就提倡、鼓励生物医学工程专业的本科生为考研做准备,并在其后的一系列活动,例如研究生本科生座谈会、教师学生恳谈会、考研动员会等活动中不断宣传,影响学生。考研与就业互不矛盾。考研与就业都需要在大学本科学习期间,掌握坚实的基础知识和专业知识。考研能够提高学生的层次。在社会上,研究生与本科生的差异是非常明显的,特别是,通过考研,学生可以考上重点大学乃至名牌大学,这对其自身的发展大有裨益。考研能够激发和保持本科学生的学习热情[3],有了考研这一更高层次的人生目标,本科学生学习才会有更大的动力,使之能把握学习的最佳时期,够持之以恒地努力学习。考研有利于本科学生巩固和掌握扎实的大学所学的理论知识。数学和英语在考研中有极大的权重,因此,要求本科学生要系统学习、牢固掌握、灵活运用数学、英语等基础知识,这样才能顺利考上研究生。我校本专业长期的学风建设实践表明,一个有考研目标的本科学生,在大学学习期间能够保持较强的学习意志、好精神状态,可以从整体上促进其学习。

本专业学生考研率、上线率和研究生录取率连续多年位列学校第一,2011年的数据分别为27.8%、22.2%、19.4%,十余名学生还考上了四川大学、华中科技大学等重点大学的研究生。

三、结束语

近几年来我校生物医学工程专业的学风建设,通过践行科学发展观,以人为本,以学生为主体,以教师为主导,两者紧密联系,发挥本专业的特点和优势,取得了一定的成绩。本专业从2006~2011届毕业生中,86.2%的学生通过国家计算机二级考试,英语四、六级通过率分别为62.1%、34.5%,在全校处于前列。2006、2008班级被评为全校优秀标兵班级。总之,通过以上措施,本专业的学风建设取得了长足的进步,为学校的本科教学评估和学校升格为大学做出了突出的贡献。

参考文献:

[1]Xiaohong Weng,Undergraduate Education on Biomedical Engineering of Comprehensive University in China.Yi Peng,Xiaohong Weng(Eds.):APCMBE 2008,IFMBE Proceedings 19,pp.629-632,2008 ?Springer-Verlag Berlin Heidelberg,2008.

[2]王秀华,楚同军,冯小苗.高校学风建设的实践与认识[J].江苏教育学院学报(社会科学版),2006,(11).

[3]陈富贵,龚文平,刘生国.抓学风建设是促进大学生考研的有效途径[J].江汉石油学院学报(社科版),2002,4(3).

第4篇:生物医学工程现状范文

1.1 生物医学工程学科

生物医学工程(BiomedicalEngineering,BME)是综合应用生命科学与工程科学的原理和方法,从工程学角度在分子、细胞、组织、器官乃至整个人体系统多层次认识人体的结构、功能和其他生命现象,研究和开发用于防病治病、人体功能辅助及卫生保健的人工材料、制品、装置、系统和工程技术的学科。BME学科是各学科交叉与高度综合的产物,涉及学科领域十分广泛,包括数学、物理学、化学、生物学、医学等基础学科,又结合了包括声、光、磁、电子、计算机、材料等尖端工程学科,是将其它学科研究成果应用于临床,将生命体与诊断、医疗、康复等装置视为一个系统,并充分考虑其相互作用的一类知识高度密集的技术领域。

1.2 国内生物医学工程专业教育现状

我国自1978年创建生物医学工程学科。截止2004年9月,我国有80余所高校设有生物医学工程学科相关专业。其中医科大学11所,综合性大学12所,名牌工科大学13所,医学院16所,普通工科院校27所,高职高专5所(左右)。依据人才培养的侧重点不同,上述高校可以分为3类:(1)实力较强的理工院校的BME专业以培养能从事BME研究、开发和生产的高级BME技术人才为主要目标。(2)医学院校的BME专业以培养能将工程技术与医学密切配合的高级临床医学工程技术人员为主要目标。(3)普通理工科院校以培养能够从事医疗器械质量管理、设备管理、市场营销、技术服务等工作的应用型人员为主要目标。为了区别本科院校的专业设置、适应应用型人才培养的需要,第三种类型中高职高专层次的院校一般将生物医学工程专业的名称设置为“医用电子仪器专业”、“医疗器械专业”等。

1.3 我校医疗器械专业人才培养目标

我校自2002年创设“医疗器械专业”。该专业的人才培养目标可划归到第三类,即:面向医疗器械生产销售型企业、贸易型企业和医院等医疗器械使用单位培养从事医疗器械市场营销、质量管理、保养维护等方面工作的高等技术应用性人才。至今,该专业已招收3届近250名学生。首批35名学生已于2005年毕业,一次性就业率为95%。

2.医疗器械产业

生物医学工程的发展不仅促进了医学的现代化,而且形成了一个新的高技术产业领域——生物医学工程产业。生物医学工程的产业范围包括:生物医学材料制品、(生物)人工器官、医学影像和诊断设备、医学电子仪器和监护装置、现代医学治疗设备、医学信息技术、康复工程技术和装置、组织工程等。习惯上,在生产实践和行业监管领域,“生物医学工程产业”则更多地被称为“医疗器械产业”。

2.1 医疗器械产业的发生、发展

20世纪初,电子管的发明和电子学的蓬勃发展促进了近代医学科学和自动化理论与实践的飞速发展。随着晶体管的发明,各种模数转换技术日趋成熟,一大批数字化检验、检查、治疗仪器应用于临床。70年代以后,大规模集成电路、微处理器芯片问世,各种以微处理器为核心的医疗检验、检查、治疗仪器在中等以上医院得到广泛应用。先进医疗器械在医院的使用极大推动了医学事业的发展,并成为医学现代化的重要标志。医疗器械已经发展成为全球性发展最快、贸易往来最活跃的高新技术产业之一,在医疗卫生事业、公众健康保健中起到越来越重要的作用。

2.2 医疗器械市场概况

2.2.1世界医疗器械市场概况

医疗器械是当今世界经济发展最快,贸易往来最为活跃的工业门类之一。据美国医疗卫生工业制造商协会(HIMA)统计,1995年全球医疗器械销售额为1200亿美元,2000年达到1900亿美元,2005年增加到2500亿美元,预测2006年全球医疗器械销售额将达到2600亿美元左右。

2.2.2 中国医疗器械市场状况

中国有14亿人口,29万家医疗卫生机构,医疗器械有广阔的市场。2000年,中国医疗器械市场容量达527亿元,2005年达到760亿元,平均年增长率15%,占世界市场份额3%,是全球医疗器械十大新兴市场之一,已成为除日本以外亚洲最大的市场。

2.3 医疗器械产业现状

2.3.1 我国医疗器械工业的现状

我国的医疗器械工业总产值自改革开放以来一直保持快速增长。20世纪90年代以来,平均增幅一直保持在20%左右的水平。根据国家统计局公布的数据,1995年全国医疗器械工业总产值仅140亿元,2005年我国医疗器械工业总产值、销售收人、利润总额已经分别达到504亿元、488亿元和40亿元,同比均有24%以上的增幅,增长势头强劲。

截至2004年11月30日,我国医疗器械生产企业数已达到10447家,其中仅2004年就比2003年净增加1438家,增长率达13.8%。年生产品种5000多个,规格1万个以上,其中仅2001~2004年,我国共注册境内医疗器械产品29480个。加上期间注册的港澳台医疗器械产品178个、进口医疗器械产品7595个,产品已基本上满足全国各级医院的装备要求。

目前我国医疗器械工业总产值在国际市场份额仅占2%左右,而美国高达42%,欧盟占27%,日本占14%。从医疗器械和药品的销售比例来看,我国为1:5左右,而在发达国家两者的销售比例为1:1.9,可见我国医疗器械工业的发展空间很大。医疗器械行业“十五”规划预测,到2010年我国医疗器械行业总产值将达1000亿元。

经过50多年的建设,我国医疗器械工业布局和产业结构逐步形成。目前,医疗器械生产厂商主要集中在上海、北京、天津、江苏、浙江、广东、辽宁、山东、湖北、四川、陕西等地区。国有企业继续在行业内发挥骨干作用,如北京万东、山东新华、汕头超声、苏州医疗、上海手术、上海齿科、上海医光等;90年代以后,在计划经济向市场经济转轨条件下,涌现出一批乡镇企业和民营企业,如江苏宏宝、威海高分子、哈慈、浙江双鹤、康德莱、宁波戴维等,多种所有制成份的共同发展,使医疗器械行业展现出勃勃生机。

2.3.2 浙江省、宁波市医疗器械相关企业现状

据不完全统计,浙江省现有医疗器械生产销售型企业1000余家、贸易型企业1000家以上、县级(含)以上医院等医疗器械使用单位200家以上。进人2005年中国医疗器械企业销售收人100强的生产销售型企业中,浙江占了5家。据2000年的统计,宁波市有医疗器械生产销售型企业80家、总产值不足4亿元人民币、产值达到500万元的企业不足10家。经过5年多的调整、发展,到2005年,全市医疗器械生产销售型企业有220家、贸易型企业250家。全市医疗器械生产销售型企业工业总产值达20亿元人民币,年产值在500万元以上的企业有50家,有的企业产值已达到2亿元。产品涵盖医用磁共振成像系统、婴儿培养箱、高压氧舱、心电图机、卫生材料和敷料、体外诊断试剂等几十个门类数百个品种几千种规格的产品,在全国都有一定的影响。

政策评估从国家政策层面上看,按照原国家经贸委制定的《医疗器械行业“十五”发展规划》,到2010年我国医疗器械总产值将达到1000亿元,在世界医疗器械市场上的份额将占到5%,到2050年这一份额将达到25%,成为世界一流的医疗器械制造强国。为贯彻落实“十五”高技术产业发展规划,2003年2月11日,国家计委专门公告,组织实施“十五”期间生物医学工程高技术产业化专项,加快生物医学工程产业发展。

地方上,北京、天津、上海、江苏、广东、浙江等省市,以及深圳、南京、佛山、莆田、衡阳、杭州、宁波等城市都对医疗器械产业进行了产业引导和政策支持。《浙江省国民经济和社会发展第十一个五年规划纲要》指出,医疗器械是“具有重大带动作用的高技术产业”,要“大力发展”。有关部门已经着手制订“医疗器械产业’十一五’发展规划”。宁波市医疗器械行业协会也正在促成“十一五”规划期间的政策支持。

同时,政府部门也意识到要制定更严格的监管制度来引导各类型单位实现产业升级、规范管理,解决这些单位面临着一些实际问题:推动生产销售型企业落实生产质量管理规范(GMP)和质量管理认证;明确要求新开办贸易型企业至少配备2名医疗器械大专以上毕业生从事质量管理、提供售后技术服务;要求医疗单位加强设备管理、强化医疗器械不良事件监测与控制。

3.讨论

3.1 我国生物医学工程学科正在得到各类型高校的重视,各学校又依托原有基础发展出各具特色的相关专业进一步促进了学科的发展。但可以预见,各高校之间的竞争也将日趋激烈。寻找合适的定位、有所侧重才能为学科的发展作出贡献。

第5篇:生物医学工程现状范文

生物医学工程(BiomedicalEngineering,BME)是理、工、医相结合的交叉学科,崛起于20世纪60年代。现代生命科学与技术、计算机科学与技术、电子科学与技术、材料科学与技术、医学科学与技术等广泛渗透、交叉、融合,形成了生物医用材料、现代工程医学、远程医疗工程、智能医用仪器系统、人工器官等诸多生物医学工程技术新领域。BME硕士教育开创了集产学研为一体的工程技术中高级人才培养模式。近年来,BME在推动现代医学的发展中发挥着越来越重要的作用。六年前国家发改委高科技产业司就明确提出:尽快培育、壮大我国生物医学工程产业,使其成为国民经济新的增长点。

一、我国BME硕士专业学位研究生教育的现状

我国BME人才培养主要依托于工科或医科,存在培养方向多但培养人数少的问题,导致我国医院及相关企事业单位的该领域从业人员大多没有生物医学工程专业背景。BME硕士学位教育的规模过小,难以满足社会的需求,特别是融合医、理、工等学科的复合型人才更是供不应求。据中华医学会医学工程学分会副主任吕忠生调查,目前全国大约有6万家医院,生物医学工程专业人员只占医院总人数的10%,与国外30%的比例相差悬殊。作为医学工程的最大产业,国内1万多家医疗设备企业也急需该专业的高级技术人员[1]。我国BME硕士专业学位教育在2008年以前仅在理工院校中进行,每年招生不足百人,发展处于徘徊状态。鉴于我国急需大量BME中高级专业技术人才以及提升在职从业人员的专业水平的需要,开展BME硕士专业学位教育已刻不容缓。

二、在医学院校开展BME硕士专业学位教育的探索和实践

为使BME硕士专业学位教育有新的突破,国务院学位办尝试在医学院校开展该项教育。我校生物医学工程专业起步早、基础好,特别是近年来从海内外引进了一批优质人才后,形成了一支医、理、工相融合的师资队伍,具备了较好开展BME硕士专业学位教育的条件和能力。2008年我校成为开展该项教育的首所医学院校,并力求在医疗器械与医院信息管理、基因工程与基因药物方向做出特色。

(一)依托医学院校的优势资源,分层次招生宣传,吸引优质生源。近年来医院得到了快速地发展,医师的学位层次提升较快,而医技人员的学位层次相对滞后,对该学位教育具有较大的需求。作为医学院校,要善于发挥拥有诸多的附属医院和教学医院的优势,分层次招生宣传,以取得良好的效果。即先向医院主管领导介绍BME硕士专业的学位特点;再请各医院相关部门协助开展招生宣传;同时向医技科室寄送简章并进行网络招生宣传;还可尝试对相关企业开展定点招生宣传。2008年我校首届招收学生21人,招生人数列全国第二位,录取考生的GCT成绩百分位平均值81.17,列全国第四位,生源质量和数量较为理想。

(二)明确培养目标,创新教育体制,构建良好的BME硕士专业学位培养体系。全国工程硕士专业学位教育指导委员会起草的《生物医学工程领域工程硕士专业学位标准》,明确规定BME硕士专业学位培养目标是理论基础扎实、工程实践能力强、综合素质高,并具有一定创新能力的应用型、复合型高层次工程技术和工程管理人才[2]。

1.创新运作机制,合理设置培养年限和培养方式。攻读BME硕士专业学位的学生多为业务骨干,学习时间较紧张,故我校实行弹性学制3-5年,且课程学习采取周末上课,实践学习结合其实际工作在其所在单位副导师指导下进行,使学生能结合工作并学有所用,以提高其学习积极性和主动性。

2.充分利用医学院校的特色资源,科学合理地设置课程。课程结构关系到研究生的知识结构[3]。BME是运用工程技术的理论与方法解决医学中的实际问题,因此其课程设置应在现代医学理论和工程技术理论及相关学科的基础上,科学合理的设置课程[4]。我校规定学生课程必须修满35个学分,根据不同专业方向设置课程,其中医学类约10个学分,工程类约10个学分,公共类约10学分,自然科学进展研讨5学分。

3.建立双导师制,加强实践能力的培养。BME硕士专业学位的培养实行正、副导师共同指导制(简称双导师制)。正导师负责学生的课程学习、论文选题、中期考核、学位论文指导,并对学位论文的质量负责。副导师选聘学生所在单位的具有高级职称的技术人员担当,负责学生的工程技术实践能力培养,论文选题,论文实践部分的指导。两位导师经常交流情况,互相配合,共同指导,保证其培养质量。实践教学是该学位培养的重要环节,鼓励其结合自己的本职工作进行。我校要求学生进行不少于一年的实践计15学分,通过考核计5学分,共计20学分。

4.加强中期考核,严把论文质量关,保障培养质量。中期考核是在学生进入论文实施阶段后,对其政治思想表现、课程学习和科研能力等方面进行的一次综合考核和评定。其目的是评价学生入学以来的学习成效,及时发现和纠正其培养过程中存在的问题,督促其达到规定的学位要求;对少数不宜继续学业者尽早做出妥善处理。我校在第四学期初对学生进行中期考核。学位论文是综合衡量培养质量的重要指标,应在导师的指导下,综合运用科学理论、方法和技术解决工程实际问题,或创造出一定的经济或社会效益,并有一定的理论基础,具有先进性、实用性[5]。我校规定学位论文评阅实行校内学科专业组评阅和校外盲评相结合的方式进行,实践证明这种方式行之有效。

三、在医学院校发展BME硕士专业学位教育的建议和思考

1.加大宣传力度,提高对BME硕士专业学位的认可度。BME硕士专业学位设立的时间不长,各医院的领导和广大医技人员对该学位比较陌生,因此需要招生学校做好充分细致的招生宣传,提高社会对该学位的认可度。当然,培养出优质BME硕士专业学位毕业生,才是提高社会认可度的关键。

第6篇:生物医学工程现状范文

生物医学工程专业作为一个多学科交叉的前沿学科,要求学生掌握工程技术,如医学、生物、电子、光学、计算机在生物医学中的应用研究、产品开发和管理的基本技能,对学生创新能力的要求很高[1]。但是,由于学科交叉、内容庞杂,本专业培养的学生其实践创新能力往往较电子类、计算机类、光学类学生差,达不到满意的培养效果[2]。

学科竞赛是在紧密结合课堂教学或新技术应用的基础上,以竞赛的方法培养学生综合能力,引导学生通过完成竞赛任务来发现问题、解决问题,并增强学生学习兴趣及研究的主动性,培养学生的团队协作意识和创新精神的系列化活动[3]。

目前,国内外对生物医学工程专业学生创新能力的培养多以电子、计算机、光学专业为参考模板,东南大学、浙江大学、东北大学、天津大学等国内高校都在积极发展以竞赛为导向的生物医学工程专业创新人才培养模式。

二、建立生物医学工程专业创新人才培养模式的具体策略

(1)整合资源,搭建科技创新实践平台。以学科竞赛为导向的创新人才培养模式的建立,必须以学院的科研平台为依托。为此,长春理工大学生命科学技术学院(以下简称“我院”)以生物医学工程专业实验中心为依托,为学生建立创新实验室,吸纳优秀学生开展实验。创新实验室配备有单片机、DSP、FPGA等开发平台以及心电、脑电、肌电采集平台,为学生开展科技创新活动提供了优良的条件,使创新实验室成为学生科技新的孵化基地。我院根据各大科技竞赛的需要,为学生分配专用场地,配置专业仪器设备,指派专职指导教师,搭建创新所必需的平台。

(2)健全机制,完善科技竞赛制度平台。为保障科技竞赛活动健康有序地开展,我院要加强对学生科技创新活动的引导和支持,积极鼓励广大师生踊跃参赛、多出成果,进而全面培养学生的创新创业意识,制定奖励制度,明确指导教师队伍建设和参赛学生奖励政策,并且由专门的实验教师协助分管院长进行管理,从而使得学科竞赛更加规范化和制度化。

(3)优化队伍,强化科技竞赛智慧平台。高水平竞赛师资队伍是将学科竞赛与创新型人才培养有效结合的保证。为此,我院要专门成立大学生科技创新指导教师团队,以具有一定工程实践背景、较强设计研发能力和科技大赛经验丰富的老、中、青骨干教师、优秀的研究生队伍,形成一支结构合理、实力过硬、认真负责的优秀指导教师队伍,全面提高教师的竞赛指导能力和职业精神,为学科竞赛构建一个核心的智慧平台。

(4)营造氛围,优化科技竞赛环境平台。浓厚的学术研究氛围对于创新型人才的培养具有至关重要的作用。为了在科技竞赛和创新能力培养方面营造浓厚的氛围,必须充分发挥优秀学生的传、帮、带作用,激励更多学生参与并专注于科技竞赛活动。同时,积极发挥班导师的作用,通过教师在专业教学科研方面的优势,对所在班级日常管理进行相关专业的培训及管理。如定期就专业学科方向的发展情况与学生交流沟通;组织学生模拟参加课题并按项目组的方式进行管理;按学生专业学科方向的发展,选拔科技竞赛种子并进行培养。

(5)教学相长,加强学科竞赛内容。我院积极搭建基于大学生科技竞赛的创新实践课程体系实施平台,将大学生科技竞赛融入正常的实践教学体系,以学科竞赛为契机,深化实验教学改革。我院加强科技竞赛内容创新,将竞赛的内容转化为实验教学或者大学生毕业设计题目,使学生能够循序渐进地掌握基本技能和实际动手能力。

参考文献:

[1]王晓勇,俞松坤.以学科竞赛引领创新人才培养[J].中国大学教学,2007(12):59-60.

第7篇:生物医学工程现状范文

[关键词] 生物医学工程;生物化学;教学改革

[中图分类号] R313 [文献标识码]B [文章编号]1674-4721(2010)05(c)-120-02

生物医学工程是典型的理工类学科和生物医学学科交叉、结合、融合的边缘学科,并无自己独立的基础理论与知识体系,对相应学科有较大依赖性[1]。同时,生物医学工程产业的研发性质较强,要求培养的学生必须具有扎实、广泛的基础和专业课程知识,以及一定的创新能力与科研思维。目前我国生物医学工程的本科专业设置主要集中在信息技术类,而在生物材料、生物技术等方向上缺乏相应的人才培养,这样的专业特点导致学生重视电子、计算机与机械制造课程,而轻视医学相关学科,如生物化学,学生不能将该学科内容与职业生涯相联系,难以理解学习生物化学的重要性。加上生物化学本身具有抽象、繁杂等特点,学生在学习中容易出现畏难厌学情绪,学习效果不佳。针对在该专业生物化学教学中遇到的问题,笔者谈几点自己的体会和看法。

1 生物医学工程的生物化学教学现状

生物化学相对于其他基础学科具有抽象难懂、内容繁杂等特点,是医学院学生感觉最难的课程之一。尤其是对于生物医学工程专业,缺乏一部为该专业量身打造的教材,内容多与课时少的矛盾极为突出。就本校而言,该专业的生物化学理论学时数仅为40学时,而使用的教材为刘新光主编、科学出版社出版的《生物化学(案例版)》,该书系统全面完整,但课时数远远不够,如果按照一般医学本科教学大纲进行讲授,学生感觉难以消化,对生物化学课程的畏难情绪和抵触情绪增加。其次,教学模式单一,以教师为课堂的绝对主体,进行传统填鸭式教学,学生缺乏主动学习的兴趣,容易疲劳。第三,考查形式单一,仅对书本知识进行闭卷考试的单一评价考核体系,既不能反映学生的综合素质,也难以激发学生的创造力,容易使学生投机取巧,仅关注考点,而忽视对学科知识的整体把握。

2 改革教学内容和考试形式,双管齐下提升教学效果

2.1 精选教学内容,因材施教

根据专业需要适当删减生物化学教材内容,调整重、难点,将教学内容精简为基本原理,并更新补充学科发展的前沿理论和技术。世界医学教育会议发表的《爱丁堡宣言》在谈到医学院校需要改进教学法时指出:“把现在广为采用的被动学习方法改变为更加主动的学习,包括自我指导的独立学习以及导师辅导等方法,以保证终身连续的学习[2]。”在讲授过程中除了讲授知识点,更应强化学习内容的结构层次和逻辑联系,培养学生学会梳理教材,增强其自学能力。例如在开篇即告诉学生全书总的来讲可分为三大部分[3],第一部分即生物大分子的结构与功能,生物化学也称为生命的化学,那么这些化学反应的物质基础必然包括各种生物大分子,因此这部分将重点讲授生物大分子的结构特点、生理功能及基本理化性质与应用;第二部分为物质代谢及其调节,使学生重点掌握各类物质代谢的基本反应途径,主要调节环节,重要生理意义,各种物质代谢的相互联系以及代谢异常与疾病之间的关系等;对第一、二部分,强调生物化学的基础知识,不求过深、过难,抓住主线、框架和基础知识,按层次展开,既可以在有限的课时数中从容的执行教学进度,又培养了学生抓结构体系的学习方法。第三部分即基因信息的传递,以及基于基因信息传递的基本原理而发展起来的基因工程技术,针对生物医学工程专业特点,第三部分将比其他专业讲授更为详细。而细胞信息传递、肝脏生物化学与血液生物化学等专题部分则删除不讲。

2.2补充课外阅读,培养学生兴趣

“兴趣是最好的老师”,对于生物化学这门枯燥繁杂的课程,尤其需要培养学生的学习兴趣。为了兼顾有限的课时数,由教师选择合适的课外阅读材料,打印并发放给学生,要求课外阅读,并在下一次课上进行讨论。如疯牛病,从热带丛林食人部落的“库鲁病”,羊瘙痒症,克雅氏病,到对于疯牛病疾病本质的认识,长达100多年的研究历程,又或者如诺贝尔获奖者故事,重大理论的研究思路和创立历程,这既能引起同学们的兴趣,初窥神秘的科研世界,也在无形中培养了他们严密求证的科学精神。另一方面,生物化学作为生命科学的基础学科之一,自20世纪50年代以来,得到快速迅猛的发展,而生物医学工程本身就是生命科学高度发展、多学科交叉融合而催生的一门新兴学科,因此在对该专业的学生授课时可适当介绍生命科学的前沿,培养学生主动追踪最新进展的学习意愿。

2.3考核形式多样化,利用分数的杠杆调动学生学习兴趣

将课程的考核评价体系拆分,将传统的闭卷考试方式与试验成绩、论文报告相结合,考核形式更为丰富合理。课程的考核评价体系分为平时成绩和期末考试两个部分,书本知识采用传统的闭卷考试方式,占70%;而平时成绩又分为试验成绩与论文报告,共占30%。为了检验学生课外阅读的效果,增加了论文报告这一考核内容,论文报告要求学生利用图书馆和互联网对某一种现代生物化学与分子生物学技术或者热点方向的研究进展作一综述,以论文形式提交,对写作优秀者加分,还可帮助修改和鼓励发表。通过考核评价体系的改革,可以激发学生的学习热情,促使学生学会通过各种途径查阅资料,敏锐把握学科动态,获取和分析信息,培养初步的科研思维和论文写作能力,并且这种考试方式能更真实的反映学生的综合素质。

在尝试进行以上教学改革时,还应注意3方面问题:第一,在教材的把握上,如何既保留生物化学的学科特色与要求,授予足够的基础知识,又因材施教、合理的删减教材内容,处理好重、难点。第二,在引入课外阅读和论文写作上,如何循序渐进的选择材料和内容,逐步培养学生对科技论文的阅读理解和写作能力,不至于使学生被畏难情绪打击,产生厌学情绪。第三,应当建立反馈机制,通过发放学生调查问卷,适时把握学生诉求,及时了解学生感兴趣的问题、内容或者学习中的难题,便于客观评价和改进教学方式。

总之,随着学科的发展和社会需求的变化,针对不同学生特点,生物化学的教学工作必须做出相应的调整,更新教学内容,优化教学方法,改革培养模式,调动学生的学习积极性,拓展眼界,开阔思路,激发其科研兴趣,培养其科学思维和创新能力,为今后的工作或进一步深造打下一定的基础。

[参考文献]

[1]冯圣平, 秦斌,袁力.生物医学工程专业高等教育的内涵探讨与实践[J].医学教育探索,2004,24(3): 21-23.

[2]刘秉勋.爱丁堡宣言[J].医学教育,1990,10(5):1.

第8篇:生物医学工程现状范文

关键词:3D打印;生物医学工程;发展现状

前言

三维打印(Three Dimension Printing,简称3DP)属于一种快速成型(Rapid Prototyping,简称RP)技术,它由计算机辅助设计(CAD)数据通过成型设备以材料逐层堆积的方式实现实体成型。“三维打印”在技术界也叫“增材制造”、“自由成形”、“快速成形”或“分层制造”等[1]。三维打印起源可追溯于上世纪八十年代,1984年查尔斯・赫尔发明了将数字资源打印成三维立体模型的技术,并于1986年成立了3D Systems公司,开发了第一台商用立体光敏3D打印机,1988年,斯科特・克伦普发明了熔融沉积成型技术(FDM)并于1989年成立了Stratasys公司,随后在2012年合并以色列3D打印公司Objet。3D Systems和Objet是目前世界上最大、最先进的两家3D打印公司。我国清华大学颜永年教授于1988开始研究3D打印成型技术,华中科技大学王运赣教授以及西安交通大学卢秉恒院士等,纷纷于上世纪90年代起就开始涉足3D打印成型技术的研究。

1998年,清华大学的颜永年教授又将3D打印成型技术引入生命科学领域,提出生物制造工程学科概念和框架,并于2001年研制出用于生物材料快速成型的3D打印设备,为制造科学提出了一个新的发展方向--生物制造。生物制造的一个重要手段即是生物3D打印。生物三维打印是以活细胞(living cells)、生物活性因子(proteins and bio-molecules)及生物材料 (biomaterials)为基本成形单元,设计制造具有生物活性的人工器官、植入物或细胞三维结构,是制造科学与生物医学交叉融合的新兴学科,它是目前3D打印技术研究的最前沿领域,也是3D打印技术中最具活力和发展前景的方向[2,3]。

1 3D打印技术的分类

目前比较典型的3D打印快速成形技术主要分为三种[4]:

1.1 粉末粘结3D打印光固化材料3D打印与熔融材料3D打印

粉末粘结3D打印是目前应用最为广泛的3D打印技术,其工艺过程如下:首先,在工作平台上均匀铺洒单位厚度的粉末材料;其次,依据实体模型离散层面的数字信息将粘结剂喷射到粉末材料上,使粉末材料粘结,形成单位实体截面层;再次,将工作台下降一个单位层厚;最后,重复第一步至第三步,逐层堆砌,形成三维打印产品。其存在缺点是,通过粉末粘连成形的零件精度和强度偏低,一般需要后续工艺提高其强度,但后续处理工艺会导致零件体积收缩,变形严重。

1.2 光固化3D打印(光敏三维打印)

该技术使用液态光敏树脂作为原料制作零件模型,光敏材料三维打印成形基于喷射成形技术和光固化成形技术,喷头沿X方向往复运动,根据零件的截面形状,选择性喷射光固化实体材料和光固化支撑材料形成截面轮廓,在紫外光照射下光固化材料边打印边固化,层层堆积至制件成形完毕。但其应用于骨骼类产品打印的主要缺点是,当前具有生物活性的骨骼类材料如羟基磷灰石,生物玻璃等材料自身不是光敏性材料,需与光敏材料混合使用,因此影响产品的生物活性在打印后将受到很大影响。

1.3 熔融材料3D打印成形

熔融材料三维打印成形基于熔融涂覆成形(FDM)专利技术,分别加热两种丝状热塑性材料至熔融态,根据零件截面形状,选择性涂覆实体材料和支撑材料形成截面轮廓,并迅速冷却固化,层层堆积至制件成形完毕,其原理与光敏材料3D打印成形类似 [16]。目前熔融材料三维打印成形,可采用由磷灰石和骨骼所需的有机盐配置而成的骨水泥,不需要额外添加紫外光照射固化所需的光敏介质,有利于保证材料后续的生物相容性和生物活性。但由于挤压式喷头的喷嘴处压力大,容易造成阻塞现象,因此对喷嘴和材料浆料的粒径要求较高。

除三维打印外,应用比较广泛的商业化快速成形工艺还包括立体光刻成形(SLA)、选择性激光烧结成形(SLS)堆叠、实体制造(LOM)、熔融堆积成形(FDM)等,但这些工艺大多需要配备价格昂贵的激光辅助系统,且成型工艺实质上还是类似于上述三种材料叠加-固化技术。因此,三维打印技术被认为是最具生命力的快速成形技术,发展潜力巨大,在医学中的应用前景广阔,其推广应用将对传统的医疗产品生产模式带来颠覆性的影响。

2 三维仿生重构建模技术的发展

基于医学图像的三维重构建模技术是生物3D打印技术的重要研究内容之一。3D打印生物构件的实现首先需要在计算机环境下有效重构和建模,生成可用于驱动打印喷头的指令数据进而操控成型设备实现产品成型。随着医学影像技术的发展,人体组织的二维断层图像数据可以方便地获取以进行医学诊断和治疗。但是,二维断层图像只是表达了某一截面的解剖信息,医生可以凭经验由多幅二维图像去估计病灶的大小及形状,“构思”病灶与其周围组织的三维几何关系,可三维打印设备却无法根据这些断点数据进行立体三维成型,因此,基于医学图像的三维重构建模技术是生物3D打印技术的重要前驱步骤。

由于CT或MRI等检测设备扫描得到的二维图像信息不能直接用于快速成型,只有通过专用软件将二维断层图像序列重建为三维虚拟模型,并生成为快速成型机可以接受的STL(Stereo Lithography)格式图形文件,才能最终制造出生物产品三维实体模型。近十多年来,欧美等发达国家的科研机构对于医学图像三维重建的研究十分活跃,其技术水平正从后处理向实时跟踪和交互处理发展,并且已经将超级计算机、光纤高速网、高性能工作站和虚拟现实结合起来,代表着这一技术领域未来的发展方向。

在市场应用领域,国外已经研制了三维医学影像处理的商品化系统,其中,比较典型的有比利时Materialise公司的Mimics、美国Able Software公司的3D.Doctor和VGstudio MAX。在国内,中国科学院自动化研究所医学影像研究室自主开发的3D Med是基于普通微机的三维医学影像处理与分析系统,系统能够接收CT、MRI等主要医疗影像设备的图像数据,具有数据获取、数据管理、二维读片、距离测量、图像分割以及三维重建等功能。清华大学计算机系研发的人体断面解剖图像三维重构系统能给外科手术中的影像诊断提供一定的参考。中国科技大学在应用Delphi开发三维重构软件的研究上取得了很好的成果。国内企业也研发了一些三维医学影像处理系统。如西安盈谷科技有限公司“AccuRad TM pro 3D高级图像处理软件”于2005年4月投入市场。它能对二维医学图像进行快速的三维重建,并能对临床影像的数据进行科学有效的可视化和智能化挖掘和处理,为临床提供更多有价值的信息。但目前国外优秀软件如Mimics、3D Doctor、VGStudio MaX等的价格非常昂贵,且其技术严格保密。国内的产品大多没有自主知识产权和成熟的商业应用模式。

3 3D打印技术在生物医学工程中的应用

3D打印技术在生物医学工程中应用广泛,其应用领域大致包括:体外器官模型、仿生模型制造;手术导板、假肢设计;个性化植入体制造;组织工程支架制造;生物活体器件构建以及器官打印;药物筛选生物模型等。如图1所示为3D打印在生物医学工程中的各种应用情况[5-7]。

3.1 体外器官模型、仿生模型制造。该类应用主要用于医疗诊断和外科手术策划,它能有效地提高诊断和手术水平,缩短时间、节省费用。便于医生、患者之间的沟通,为诊断和治疗提供了直观、能触摸的信息,从而使手术者之间、医生和病人之间的交流更加方便。

3.2 手术导板、假肢设计。该类应用便于订制精确的个性化假体,实现个性化医疗需求。根据患者缺损组织数据量身订制的假肢,可提高假肢设计的精确性,提高手术精确度,确保患者的功能恢复,减少患者的痛苦。

3.3 个性化植入体制造。人体许多部位的受损组织,需要个性化定制。如人类面部颌骨(包括上下颌骨) 形态复杂, 极富个性特征, 形成了个体间千差万别的面貌特点。人类的头颅骨,需要准确与颅内大脑等软组织精确匹配扣合,人体的下肢骨、脊柱骨等会严重影响患者今后的步态及功能恢复。因此这类修复体可通过3D打印技术实现个性化订制和精确 “克隆”受损组织部位和形状。

3.4 组织工程支架制造。如通过3D打印技术设计和制备具有与天然骨类似的材料组分和三维贯通微孔结构,使之高度仿生天然骨组织结构和形态学特征,赋予组织工程支架高度的生物活性和骨修复能力。

3.5 生物活体器件构建以及器官打印。此方面的应用大多涉及活体细胞的生物3D打印技术。细胞三维结构体的3D构建可以通过活细胞及其外基质材料的打印构建活体生物器件。如英国赫瑞瓦特大学和一家干细胞技术公司合作,首次将3D打印拓展到人类胚胎干细胞范围。这一突破使得利用人类胚胎干细胞来“打造”移植用人体组织和器官成为可能。美国康奈尔大学研究人员最近在其发表的研究论文中称,他们利用牛耳细胞在3D打印机中打印出人造耳朵,可以用于先天畸形儿童的器官移植。

3.6 药物筛选生物模型。药物筛选指的是采用适当的方法,对可能作为药物使用的物质(采样)进行生物活性、药理作用及药用价值的评估过程。作为筛选,需要对不同化合物的生理活性做大规模横向比较,因此有研究人员指出通过3D打印技术,精确设计仿生组织药物病理作用模型,可以使人们开在短时间内大规模高通量筛选新型高效药物。最近,四川大学联合加州大学圣地亚哥分校等科研机构,通过3D打印技术设计了一款肝组织仿生结构药物解毒模型(如图1-c),该研究成果发表在最近一期的Nature Communications上,受到3D打印研究领域的广泛关注。

3D打印在生物医学工程中应用:(a)3D打印磷酸钙骨组织工程支架; (b)3D打印细胞、活体器官构件;(c)3D打印肝组织仿生结构药物解毒模型。

4 结束语

三维打印技术正处在蓬勃兴起的阶段,3D打印技术在生物医学工程中得到了广泛的应用,其应用以及发展现状表明:3D打印在体外器官模型、组织工程与再生医学、个性化医疗以及新药研发等方面展现出广阔的应用前景。抓住生物材料及植入器械的三维打印技术新一轮发展浪潮,发展我国生物三维打印技术,对发展我国生物材料医疗器械产业步入国际先进水平具有十分重要的意义。

参考文献

[1]Kenichi Arai1, Shintaroh Iwanaga, HidekiToda, Capi Genci, Yuichi Nishiyama, Makoto Nakamura. Three-dimensional inkjet biofabrication based on designed images[J]. Biofabrication, 2011, (3).

[2]Calvert P. Materials Science: printing cells[J]. Science, 2007.

[3]Mironov V, Reis N, Derby B. Bioprinting: a beginning[J]. Tissue Enginerring. 2006.

[4]Karoly Jakab, Francoise Marga, Cyrille Norotte, Keith Murphy, Gordana VunjakNovakovic, Gabor Forgacs. Tissue engineering by self-assembly and bio-printing of living cells[J]. Biofabrication, 2010, (2).

[5]Vladimir Mironov, Richard P. Visconti, Vladimir Kasyanov, Gabor Forgacs, Christopher J. Drake, Roger R. Markwal. Organ printing: Tissue spheroids as building blocks[J]. Biomaterials, 2009, (30).

[6]Solaiman Tarafder, Neal M. Davies, Amit Bandyopadhyaya, Susmita Bose. 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model[J]. Biomaterials Science, 2013.

第9篇:生物医学工程现状范文

关键词:生物医学工程;大学生;校企合作

一、大学生校企合作现状

从总体上看,生物医学工程专业大学生校企合作已经取得了良好的成绩,而且正在不断深化。很多企业与高校签订了校企合作人才培养协议,积极接受大学生实习,为大学生指派指导老师;建设了校企合作人才培养基地,搭建了校企合作平台,通过校企合作项目带动一批大学生学术实践水平提升。同时我们也要看到,当前校企合作仍然面临不少问题。例如,高校消极安排学生实习、企业接受大学生实习意向低、政府支持力度不够、学生权益保障不到位、学生技能与实习岗位匹配度低等等。

二、大学生校企合作存在的问题

当前生物医学工程专业校企合作存在的问题主要包括高校责任意识不到位、企业积极性差、缺少政府推动、大学生自身素质不够高,导致校企合作流于形式。高校责任意识方面,部分高校把安排大学生到校外实习看作是一项政治任务。纯粹是为了完成大学生培养方案规定的实习要求,敷衍了事,草率安排学生实习,没有与用人单位签订校企合作协议,具有盲目性,学生权益得不到保障,积极性难以调动,实习效果不佳。企业积极性方面,企业的营利性与高校的公益性存在矛盾。部分企业不愿意花费时间和成本来培养大学生,尤其是出于人情关系接受大学生实习的企业,将接待大学生实习看作得不偿失的麻烦事儿,消极安排大学生的工作。因此,企业积极性低,往往将接受大学生实习看作“鸡肋”。政府工作方面,当前地方政府在推动校企深度合作方面影响有限。在“专项资金支持”“校企合作服务平台”“财税政策支持”“校企合作保障机制”等方面的措施力度支持不够[1],贯彻落实滞后,在促进校企深度合作方面还有很大提升空间。大学生自身素质方面,部分大学生不学无术、玩物丧志,专业素质低。学生实习期间不能利用所学理论知识为企业解决实际问题,导致企业产生反感情绪;有些大学生在沟通、合作、执行能力等方面表现较差,不能尽快适应企业文化,工作效率低下。

三、大学生校企合作存在问题的原因

生物医学工程专业校企合作存在问题的深层原因包括:校企合作优势互补没有充分彰显、校企合作没有照顾到企业的营利性、校企合作缺乏持久动力。首先,校企合作优势互补方面没有得到充分彰显。高校与企业都有各自优势,可以优势互补、互利双赢,高校的公益性与企业的营利性并非不可调和。高校优秀大学生,长于理论研究;企业高级工程师,实践经验丰富。学生通过实习,理论联系实际,在锻炼自身实践能力的同时,为企业带来效益;高校教师到企业挂职锻炼更是如此,在促进双师型教师培养的同时,能够为企业解决科研、生产中的难题;企业高级工程师被聘到高校讲学,传授学生实践经验,能够获得相应报酬,还可以吸收优秀学生到本单位就业。而部分高校积极性不高,一些企业“短视”,双方不能看到校企合作的广阔前景,因此校企合作推进不够顺利。其次,校企合作没有照顾到企业的营利性。企业本身就是以营利为目的的组织,也正是企业的利益驱动促使企业不断创新、发展,企业重利益,轻情谊无可厚非。企业在校企合作中进行人才培养确实会消耗企业的成本和资源,因此高校在与企业合作的过程中,一定要注意照顾企业的盈利性,不要让企业觉得“亏”。比如,高校在与企业合作的过程中,可以共享教育资源、实验室资源,共同申报政府、高校项目,共同研究企业发展问题、行业热点问题,在双方利益层面上实现互补,校企合作才能稳固。然而,当前很多高校通过人情关系,强行将大学生安排在企业,企业被动接受大学生实习,挫伤了企业的积极性,也达不到培养大学生个人能力的效果。再次,校企合作缺乏持久动力。当前校企合作大多是阶段性的,大学生的实习期为半年或是更短,这样企业往往不愿意接受大学生,因为企业需要花费时间和人力培养大学生,而大学生获得经验后,不久便结束实习,企业认为得不偿失。更糟糕的是,产生这种心态后,企业往往给大学生安排一些简单的、与专业无关的任务,将大学生作为廉价劳动力使用,校企合作效果大打折扣。不仅仅是阶段性的实习,以项目驱动的校企合作,也经常会随着项目结束而终止,校企合作不能持久。