公务员期刊网 精选范文 对空气质量的建议范文

对空气质量的建议精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的对空气质量的建议主题范文,仅供参考,欢迎阅读并收藏。

对空气质量的建议

第1篇:对空气质量的建议范文

关键词:空气污染指数;面板模型

一、引言

近年来,随着社会经济的发展,人们的生活质量逐步提高。但经济增长的同时,也给我们的生活环境带来了很大的影响,其中对城市空气污染的影响问题尤为严重。因而,对城市环境空气质量做出客观、全面的认识就变得尤为重要。

目前,学术界对空气质量的研究范围都比较窄,或只针对少数地区、城市,或没有从社会因素更深层次挖掘空气污染指数的影响因素。为此,本文选取克拉玛依、大同、潍坊、武汉、汕头、韶关、牡丹江及赤峰8个城市2008-2014年的样本数据,采用面板数据对空气污染指数的气候和社会影响因素进行实证研究。

二、实证分析

本文也采用空气污染指数(API)做研究,空气污染指数(API)就是将常规监测的二氧化硫、氮氧化物和总悬浮颗粒物浓度简化成为单一的概念性指数数值形式,并分级表示空气污染程度和空气质量状况,计算公式为:

(1)

其中,I为某污染物的污染指数;C为该污染物的浓度值。则空气污染指数API为:

(2)

(1)在气候因素方面,本文认为降水量、相对湿度、温度、平均水汽压都对城市环境空气质量产生重要的影响,据此构造回归模型如下:

(3)

其中Js表示降水量(10kin);SD表示相对湿度(103):WD表示温度(104℃);SQY表示水汽压(1MPa);μ为随机扰动项。根据Hausman检验,本文最终采用个体固定效应回归模型进行估计,结果见表1。

由回归结果可知:在其他变量不变的情况下,湿度每相对增长103,平均来说会引起空气污染指数下降2.3个百分点;温度每升高104℃,会引起空气污染指数下降0.3个百分点;水汽压每上升1,会引起空气污染指数下降0.9个百分点;降雨量对空气污染指数有滞后影响,平均来说降雨量每增长10km,空气污染指数就下降3.17个百分点。

(2)影响城市环境空气质量的社会因素主要有经济生产和环境保护两个因素。其中,经济生产中的工业生产总值、粉尘排放影响最为显著。在环境保护方面,本文考虑城市绿化面积这一因素。据此构造回归模型如下:

(4)

其中:人均粉尘排放量(百吨/人);表示人均绿化面积(公顷/人);表示人均工业产值(百万/人)。根据Hausman检验可知采用个体固定效应回归模型,结果见表2。

回归结果显示:在其他变量不变的情况下,人均粉尘排放量每增长1百吨,平均来说会引起空气污染指数上升5.99个百分点;人均工业产值每增长1百万,平均来说会引起空气污染指数上升1.46个百分点;人均绿化面积每增长1公顷,平均来说会引起空气污染指数下降1 10.95个百分点。

三、结论

据以上分析,得出主要结论有:气候方面,降水量、湿度、温度、水汽压均对空气污染指数呈显著负相关。人类经济社会活动方面,工业总产值、粉尘排放量对空气污染指数呈显著正相关,绿化面积对空气污染指数呈显著负相关。据此,本文提出以下建议

1.推进园林城市建设,有效调节城市空气环境

首先,森林被成为“绿色水库”,能有效调节城市空气湿度。其次,园林绿地能有效净化空气。绿色植物能调节二氧化碳和氧气在空气中的相对平衡,改善和促进城市生态环境的良性循环。同时,园林绿地还可有效吸收影响人类健康的有害气体。

2.着重发展第三产业,有效控制污染物排放

第2篇:对空气质量的建议范文

【关键词】 空气质量 污染 治理 因子分析

一、研究背景

空气质量的好坏反映了空气污染程度,它是依据空气中污染物浓度的高低来

判断的。空气污染是一个复杂的现象,污染物在空气中成分的多少,决定着空气质量的高低,也决定着对人类健康影响的好坏。所以我们要通过对空气污染物的研究控制其在空气中的比重,判断空气污染指数,寻找空气污染物的来源进而采取合理的措施,改善空气质量,保证人类健康。

由于有些城市的企业对工业发达的追求,对污染物的负面影响理解不够,预防不利,造成越来越严重的环境污染,空气质量越来越差,从而破坏生态系统和人类的正常生存和发展。我们通过对空气污染物中的二氧化硫、二氧化氮、可吸入颗粒物等其他空气污染物以及空气质量的污染指数进行分析,找出对空气污染起主要作用的因子,控制其在空气中的比列,从而达到治理空气污染的目的。

空气污染指数(API)是一种反应和评价空气质量的方法。本文是通过空气质量达到二级及好于二级天数以及空气质量达二级以上的天数占全年的比重来分析空气质量对人类健康的影响。当空气污染指数达到三级及三级以上会对人们的身体健康产生危害。

二、方法介绍

因子分析是从心理学与教育学发展而来的。1904年Charls Spearman提出这种方法用来解决智力测验得分的统计,这是因子分析的起点。

因子分析的基本思想是通过变量(或样品)的相关系数(相似系数)矩阵的内部结构的研究,找出能影响所有变量(或样品)的少数几个变量,并用这少数几个变量去描述多个变量(或样品)之间的相关(相似)关系。这里,这少数几个变量是不可观测的,通常被称为因子。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。因子分析方法有很多,本文采用主因子分析法。

三、实证分析

3.1 指标选取

根据空气污染物对空气质量的影响,选取二氧化硫、二氧化氮、可吸入颗粒物、空气质量达到二级及好于二级天数以及空气质量达到二级以上的天数占全年的比重这五个指标。

二氧化硫(SO2)是一种常见和重要的大气污染物,是一种无色有刺激性气味的气体。主要来源于含硫燃料的燃烧,化工、炼油、硫酸厂的生产过程。

二氧化氮是一种棕红色、高度活性的气态物。二氧化氮在臭氧的形成过程中有重要作用。人为产生二氧化氮的主要来源是:高温燃烧过程的释放,比如机动车、电厂废气的排放等。二氧化氮还是酸雨的成因之一。

可吸入漂浮物是指悬浮空气中,空气动力学当量直径

空气污染指数(API)是将常规检测的几种空气污染物浓度简化成为单一的概念性数值形式,并分等级表征空气污染程度和空气质量状况,适合于表示城市的短期空气质量状况和变化趋势。

3.2.收集数据

3.3 进行分析

R程序:x

fact

fact$scores

各地区的因子得分:

Cumulative Var为累积方差贡献率,由结果可知前两个因子的累积方差贡献率为71.5%,所以可选取前两个因子。

因子模型为:

x1=-0.873f1+0.318f2+ε1

x2=-0.254f1+0.748f2+ ε2

x3=-0.136f1+0.525f2+ ε3

x4=0.721f1-0.527f2+ ε4

x5=0.979f1-0.189f2+ ε5

公因子f1在x1,x4,x5上的载荷比较大,公因子f2在x2上的载荷比较大。

3.4 综合评价

通过数据和分析可知,越是发达地区的污染反而没有欠发达地区严重,我们不能走先污染后治理的道路,要用发展的眼光看待经济和环境问题。持续发展是既满足当代人的需求,又不对后代人满足其需求的能力构成危害的发展。它们是一个密不可分的系统,既要达到经济发展的目的又要保护好人类赖以生存的大气、淡水、海洋、土地和森林等森林资源和环境,使子孙后代能够永续发展和安居乐业。可持续发展与环境保护既有联系,又不等同。环境保护是可持续发展的重要方面。

我们通过环境质量评价是了解环境质量的过去、现在和将来发展趋势及其变化规律,制定综合防治措施与方案;可以了解和掌握影响本地区环境质量的主要环境因素、污染因子、和主要污染源,从而有针对性地制定改善换将质量的污染治理方案和综合防治规划与计划。

四、建议

如何在加快发展的同时,切实保护好环境,促进人与自然的和谐发展,这是我们的首要任务。我们应该做到以下几点:

(1)强化环境意识、树立生态理念。“环境保护,教育为本”,要大力普及环保科

学知识,提高全民环境意识,通过多种途径,普及科学知识,大力倡导生态工业、生态农业、生态服务业,以及生态环境、生态人居和生态文化建设。

(2)把环境保护作为决策的重要环节,从源头落实环保基本国策。领导必须树立

正确的政绩观,学会用绿色GDP核算体系代替传统的GDP核算体系,把环境保护纳入各级政府的政绩考核。

第3篇:对空气质量的建议范文

关键词:室内空气质量;影响因子;控制措施

DOI:10.16640/ki.37-1222/t.2017.14.228

世界卫生组织研究表明,人们80%以上的时间生活、工作在室内环境中。当室外雾霾污染严重时,人们多半更愿意选择待在室内,但往往会遭遇室内环境空气污染综合水平高于室外的窘况!尤其是新装修和装修时间不长的室内环境,如室内空气污染物-苯系物(苯、甲苯、二甲苯、乙苯等)、甲醛、PM2.5等已被世界卫生组织和IARC(国际癌症研究中心)确定为一类致癌物。长期生活、工作在污染物超标的空气环境中,不但会影响工作效率,更会诱发健康问题和呼吸道疾病,甚至会诱发癌症;对儿童、孕妇等老弱病残影响尤甚。

1 室内空气质量的影响因素

1.1 新风量

对于全封闭式或半封闭性建筑大楼,通风量问题是影响室内空气质量的主要因素。GB/T 18883-2002《室内空气质量标准》规定,新风量需不小于30m3/(h・人)[1]。但可能在建筑设计和施工期间,由于对新风量的考虑不足,导致新风量达不到《室内空气质量标准》的要求;同时,即使新风量的设计满足条件,由于后期管理的忽略也可能会导致新风量不足的问题。

新风量不足会导致室内有毒有害的气体与外界新风的空气不能充分地交换,影响室内空气品质,出现了各种症状,被称为“病态建筑综合症”(sick building syndrome,SBS)[2]。

同样的道理,对于具备自然通风条件的建筑,如果不经常开窗,也会导致室内空气无法流通尤其是在夏天,室内垃圾过多,通风条件差,很容易影响室内的空气质量[3]。

建筑材料一般分为两大类别:基础建筑材料和装饰材料。影响室内空气质量主要是装饰材料造成的,当然也有一部分是由基础建筑材料造成的。

随着人们生活水平提高,不少人对于居住环境和工作环境也提出了更高的要求。室内装修虽然使人们的生活环境和工作环境得以改善,但同样带来了负面影响。

1.2 人的活动

人在室内的某些活动也会产生室内污染物人们在烧菜的时候会产生油烟煤气的时候,虽然有抽油烟机清除油烟,但是抽油烟机的作用,毕竟是有限的,在室内难免还是会有零碎的污染物存在。另外,在室内抽烟也是影响室内空气质量的一个重要因素。

在日常生活中人们使用杀虫剂和化妆品是一种污染源。室内出现一些对人有危害,带有细菌的虫子是很平常的一件事情,尤其是在夏天,由于天气和气候方面的原因,苍蝇和蚊子肆虐,人们不堪其扰,经常会使用诸如“”“驱蚊水”等具有化学成分的杀虫剂,这些液体中含有大量的有害物质,散发到室内空气中,会对空气质量产生不好的影响。此外,化妆品的使用也容易影响室内空气质量,化妆品是女性在生活中必备的用品,但是化妆品中含有大量的化学成分,时间长了,他们很容易挥发到空气中,影响空气质量。

2 室内空气污染改善方法质量的控制因素

2.1 室内通风换气

对于全封闭式或半封闭式的大楼,在开启空调系统的同时也需开启新风系统,以保证室内的空气与室外的新鲜空气充分地置换。对于空调及新风系统,建议有专业的人进行管理。空调及新风系统需要定期清洗,因为不仅管道里易滋生细菌,而且时间久了还会集尘,会导致室内空气的二次污染,并影响空调及新风系统的效率,增加其能效。对于自然通风的建筑,用户需养成勤开窗通风的习惯,适当的通风有利于空气的流通,如果常年窗户紧闭,会严重影响室内空气质量。同时,对于新装修的建筑,用户不要急于入住,应充分地通风换气。入住前,建议请专业的检测机构对室内空气品质进行评估。

2.2 选择合适的装饰材料

对于准备装修的用户,建议选择有资质的、专业的装修公司。建筑装修材料中含有甲醛等污染源,尽量选择释放挥发性有机物、甲醛等有害物质少的装修材料:在铺地板、安装墙壁装饰板、保温、隔音板和家具时不宜用刨花板、硬木胶合板、中强度纤维板等含有甲醛的材料,可使用甲醛释放量较少或不含甲醛的原木材、软木胶合板、装饰板等,停止使用产生甲醛的脲醛泡沫塑料。对于涂料、胶黏剂,尽量选择含苯、苯系物、甲醛含量少的涂料[4]。

2.3 控制室内污染源

室内空气品质除了与房屋建筑设计和装修材料的使用有关以外,还与人的活动有着密切的关系。杀虫剂的使用、炒菜、抽烟等都会对室内空气质量产生一定的影响。因此,控制室内污染源,如减少甚至杜绝吸烟活动,控制杀虫剂的使用,在厨房里安装控油烟能力强的抽油烟机,多效并举地控制室内污染源,做好预防措施,防止污染源的扩散。

2.4 植物净化

绿色植物可以有效地降低空气中的化学物质,并将它们转化为自己的养料。植物净化主要通过叶片实现,主要作用有:吸收二氧化碳,放出氧气;吸附灰尘;吸收二氧化硫、甲醛、等有害气体等。适合摆放在室内的植物有绿萝、吊兰、金琥仙人球等。

采用化学或物理方法进行治理纳米光触媒技术:在有光的条件下,使甲醛、挥发性有机物等有毒有害物质与纳米粒子反应分解为二氧化碳、水和无机盐[5]。

负离子技术:产生的负离子能有效去除挥发性有机物、甲醛、苯系物等,还能抑制灰尘,提高空气新鲜程度。

物理吸附:采用活性炭吸附空气中的挥发性有机物、甲醛等。活性炭容易吸附饱和,需要定期更换。如果长期不换,容易引起二次污染。

总之,改善室内空气质量是一件极其繁琐而又复杂的工程。它需要考]的问题比较多,并不是某一种方法就能将这些问题,圆满地解决,需要多项措施并举,才有可能达到理想的效果。只有室内空气品质改善了,才能使人们的身心更加健康,使人们的生活、工作环境更加舒适。

参考文献:

[1]GB/T 18883-2002室内空气质量标准[S].

[2]刘晓燕,孙建刚.建筑室内空气品质分析与评价[D].大庆石油学院,2003.

[3]刘晔,霍玉玲.春节期间燃放烟火对镇江市环境空气的影响[J]. 环保科技,2017(01).

第4篇:对空气质量的建议范文

【关键词】PM2.5;监测;意义;流程;方法;建议

1 PM2.5监测的重要意义

PM2.5主要来源于机动车尾气、燃料燃烧、餐饮油烟、工业生产及建筑扬尘等。通过这些途径,PM2.5可能会富集大量重金属元素或者多环烃等致癌物质,这样就在很大程度上污染了环境空气。尽管大气颗粒物在大气中只占很少的一部分,但它对城市大气光化学性质的影响可达99%,对人眼所能见到的光产生很大的干涉作用,特别是当颗粒物的直径与可见光波长几乎一样的时候,颗粒物就会对光纤产生很强的消光作用,PM2.5的粒径基本上已经非常接近可见光的波长范围,因此,PM2.5浓度的增加导致了大气中可见光范围的缩小。此外,正是由于PM2.5的粒径非常的小,且富集的大量有毒有害物质,被人吸入肺中,影响呼吸系统的正常运转,给人体造成很大的危害,长期处于PM2.5浓度较高的空气环境中很容易患上支气管炎、心脏病以及各种呼吸道炎症等疾病。正是由于PM2.5对空气质量的影响以及对人体健康的危害,我国开始加强对PM2.5的监测,研究其形成机理与污染组分,掌握其变化规律及变化趋势,更能够为PM2.5的污染防控工作提供数据和技术支撑。随着我国逐渐的对PM2.5的监测引起重视,我国空气PM2.5严重超标的状况将会得到很大的改善,进一步提高我国居民的生活水平,提高我国的空气质量。

2 PM2.5的监测流程及监测方法

2.1 PM2.5的监测流程

(1)样品采集。在采集PM2.5样品时,通常都是使用悬浮微粒采样器进行的。通过分析在一定时间内滤膜上沉积的微粒质量,研究微粒中的组分和各自的含量比例。因为聚氯乙烯材质的滤膜具有阻力小、带有静电、不易吸水等特点,能够有效提高采样率。因此,在采样器中的滤膜一般都使用聚氯乙烯材质的滤膜。(2)样品分析。对样品的分析主要包括了对样品浓度和样品成分分析。在分析样品浓度时,将滤膜放置在25℃和相对湿度50%的实验室内24个小时,使用精密仪器测量滤膜的前后质量差,结合空气的采集体积,可以计算出样品浓度。在分析样品成分时,PM2.5的来源比较广,包含很多微型物质颗粒,因此,对不同的物质需要采用不同的分析方法:第一种。PM2.5中无机元素的测定。对无机元素检测的方法主要有原子吸收法、原子荧光分析法和原子吸收分光光度法等。通常对空气中PM2.5中金属有毒物质的消除方法主要有干灰法、电热板消解法和密闭容器消除法等。第二种。PM2.5中有机物测定。PM2.5能够吸附甲醛等有机物,对这些物质的分析方法主要为气相色谱和质谱联用、液相色谱和质谱联用和液相色谱等。

2.2 PM2.5监测方法

(1)重量法。所谓重量法是指PM2.5直接截留在滤膜上,然后用天平称重。滤膜并不能把所有的PM2.5都收集到,一些极细小的颗粒还是能穿过滤膜。但只要滤膜对于0.3μm以上的颗粒截留效率大于99%,就算合格。因为所损失的极细小颗粒物对PM2.5的重量贡献很小,对分析结果影响不大。目前按照重量法设计的采样设备较多,如中国生产的TH―150型智能中流量颗粒物采样器、四通道PM2.5采样器(PR2300)、美国URG公司生产的通用型大气污染物采样仪(URG-3000k)、德国GRIMM分析仪等。这些采样器利用Teflon膜或PTEE滤膜对PM2.5进行采样,再采用称重法计算颗粒物质量浓度。重量法是最直接、最可靠的方法,是验证其他方法是否准确的标杆。然而重量法需要人工称重,程序比较繁琐而费时。因此,这种方法及仪器多应用于进行单点、某时间段内的采样与监测,为大气污染调查、研究提供数据。如邓利群等使用基于重量法的VAPS通用型大气污染物采样仪(URG3000k)对PM2.5和环境空气中相关气体同时采集,从而分析2008年7月至2009年4月北京东北部城区PM2.5的污染状况、相关气体组分变化特征以及二次无机组分形成的机制。

(2)β射线吸收法。将PM2.5收集到滤纸上,然后照射一束β射线,射线穿过滤纸和颗粒物时由于被散射而衰减,衰减的程度与PM2.5的重量成正比。根据射线的衰减就可以计算出PM2.5的重量。由于这种方法可实现自动、连续监测,因此多应用于大气环境监测业务应用中。

(3)微量振荡天平法。基于微量振荡天平法研制的采样器由空心玻璃管、滤芯等组成。该空心玻璃管一头粗一头细,粗头固定,细头装有滤芯。工作原理为:空气从粗头进,细头出,PM2.5就被截留在滤芯上。在电场的作用下,细头以一定频率振荡,该频率和细头重量的平方根成反比,于是,根据振荡频率的变化算出收集到的PM2.5的重量。该方法可实现自动、连续监测。因此,近年来我国多个地区采用微量振荡天平法测定PM2.5浓度。例如,2011年沈阳市环境监测中心站采用“赛默飞世尔”的1405型振荡天平法颗粒物监测仪对PM2.5进行了长期的监测和分析。

(4)光散射法。该测定方法的原理是:空气中的颗粒物浓度越高,对光的散射就越强;测定光散射后,理论上就可以算出颗粒物浓度。但在实际运用中,由于光的散射与颗粒物浓度之间的关系是受到诸多因素的影响,这意味着光散射和颗粒物浓度之间的换算公式随时随地都可能在变,需要仪器使用者不断地用标准方法进行校正。

3 加强PM2.5监测的建议

3.1大力发展监测技术,形成统一的技术规范体系

我国的PM2.5监测起步晚,水平相对较低,需要不断地吸收国外先进技术,同时还应结合我国空气质量的特点,进行创新完善,形成一套适应我国空气污染特征的PM2.5采样方法及监测技术规范体系。

3.2不断提升环境预警水平

要从根本上提高我国PM2.5的监测水平,很关键的部分还在于气象和环保等部强力合作。只有在气象和环保部门的合作下,加强对PM2.5的监测点位的优化布设,才能不断扩大PM2.5监测所覆盖的区域,动、静态掌握其变化趋势及变化规律,同时利用气象部门的气象数据来进行环境预警分析,从而提高环境空气质量预测、预警水平。

3.3建立健全相关法律法规

在对PM2.5监控的过程中,政府可以利用自身的强大影响,对经济的发展中各种气体的排放给予制约,并制定相关的制度和法律,进行监督和制约,从根源上降低空气中PM2.5的浓度含量。

结束语

随着我国PM2.5污染问题日益凸显,对PM2.5的关注也越来越多。为此新的《环境空气质量标准》已将PM2.5纳入强制性污染物监测范围,并将在2016年开始全面实施,PM2.5的控制可以避免更大的社会经济损失,因而将是我国长期的一项重要环保目标。而改善空气质量不在监测,而在治理。在空气环境的改善中,对相关污染物的减排才是硬道理。只有这样,才能真正的逐渐改善我国空气环境质量,使全国PM2.5都降到一个较低水平。

参考文献:

第5篇:对空气质量的建议范文

关键词:广佛肇经济(卷);API;SO2;NO2;PM10

1引言

近些年城市空气污染已经成为社会公众的热点话题,尤其是区域性的灰霾天气已经引起了政府部门的高度重视,能否对空气质量作出准确全面的分析评价关系到城市环境治理方案的制定及实施。国内外学者提出了多种评价环境空气质量的方法,例如多指标可拓综合评价[1]、权重综合污染指数法[2]、模糊马尔可夫预测法[3]、分形模型[4]、橡树岭大气环境质量指数[5]。相对来说,空气污染指数(Air Pollution Index,API)是目前普遍采用的评价城市环境空气质量的重要指标[6],将自动化监测的几种常规大气污染物简化为单一概念指数值[7],同时划分环境污染及健康危害程度指数区间,以此表示空气质量等级。

在过去的文献中已有较多关于空气污染指数的研究,陈雷华对兰州市2001~2007年逐日API进行统计分析,发现该地区的首要污染物是PM10,冬季和春季污染最严重,采暖期污染日更集中[8]。段玉森应用经验正交函数和小波分析方法揭示全国47个环保重点城市API的时空模态区域分异规律,表明不同地区有不同的污染特征[6]。李小飞也指出我国由南到北、从沿海到内陆不同城市环境空气质量存在明显的区域性差异[7]。关于这方面的研究基本上是围绕着空气污染的时间分布特征和空间分布规律来探讨的,对于单一城市[8-11]或者大区域城市群[6,7,12]的讨论较多,而对于小型经济圈的分析较少。本研究也是从这一角度出发,探讨广佛肇经济圈的空气污染问题,为市民生活出行提供参考指南,也为区域大气污染联防联治提供科学依据与数据支持。

2材料与方法

2.1研究区域及数据来源

广州是我国南方地区的经济文化中心,佛山是广东省的工商业重镇,随着这几年肇庆不断接收广佛地区的产业转移,广佛肇成为珠江三角洲最大的经济圈。本研究收集了从2003年3月1日到2012年2月29日广州、佛山、肇庆3个城市的空气污染指数,形成三大时间序列,每个列向量含有3288个样本数据。所有数据来源于广东省环境信息GIS综合平台的城市空气质量日报(http:///EQPublish/CityAirQuality.aspx)。

2.2研究方法

我国的空气污染指数分为5个等级(0~50、51~100、101~200、201~300、301~500)7个档次(优、良、轻微污染、轻度污染、中度污染、中度重污染、重污染)[11](表1),API越大,污染级别越高,对人体健康的危害也越大。

本研究使用Excel 2003分别绘制3个城市API的季节和年际变化曲线,分析SO2、NO2、PM10的季节变化及其影响因素,比较广州、佛山、肇庆不同污染物的污染比重,对近十年的空气污染级别进行总体评价。

3结果分析与讨论

3.1API的季节变化和年际变化

广州、佛山、肇庆位于南亚热带,通常按照气候划分季节,即3、4、5月为春季,6、7、8月为夏季,9、10、11月为秋季,12、1、2月为冬季。从2003年3月1日到2012年2月29日广佛肇经济圈的API季节、年际平均值变化情况分别见图1和图2。

图1API季节变化

图2API年际变化

从总体上来看,3个城市近10年API的季节变化趋势大致相近,冬季污染指数较大,夏季污染指数较小,表明冬季空气质量较差,夏季空气质量较好。这与其他学者的研究结论是一致的,李小飞计算中国46个城市的API季节变化[7],显示空气污染指数为冬季(88)>春季(79)>秋季(73)>夏季(63)。因为空气污染与气象条件关系密切,夏季大气边界层对流活动较强,空气扩散条件好,并且雨量充沛,对污染物有较好的清除作用,所以夏季空气质量较好。由于冬季供暖导致能源消耗量较大,污染物排放量大,同时冬季大气边界层逆温现象出现的几率较高,容易造成污染物在大气中累积,故冬季空气质量较差。

近10年广佛肇经济圈API总体降低,表明环境空气质量有变好的趋势,与孙丹研究北京、天津、石家庄的结果一致[12]。2004年广州空气污染天数较多,2005年后由于亚运会而加强了节能减排和污染治理工作,空气质量持续好转,到2010年污染指数达到最低。佛山2003年API较高,从2006年开始不断得到改善,也是到2010年亚运会期间空气质量最好,这与近几年燃煤脱硫除尘是分不开的。肇庆从2003年到2007年环境空气质量有变差趋势,这段时期主要引进了广佛地区的产业转移,污染物排放量增大。随后环境保护部门加大了污染防治力度,空气质量改善效果显著,到2009年平均API只有44,近两年又有小幅回升。

3.2SO2、NO2、PM10的季节变化

对于主要污染物SO2、NO2、PM10的季节变化,图3、图4、图5分别列出了3个城市主要污染物在不同季节的污染天数分布情况。近10年广州和佛山的大气SO2污染主要集中在夏季,分别约占全年SO2污染天数的54%和58%,冬季和春季则较少见SO2污染。肇庆的SO2污染季节波动较小,在春季和秋季的SO2污染天数相对较多,分别占全年的37%和30%。

统计近10年大气NO2污染天数,广州有132d,其中58%出现在冬季,春季和秋季分别占20%和23%,夏季未见NO2污染。佛山只出现19d的NO2污染,其中有13d分布在冬季,夏季同样未见NO2污染。肇庆在近10年只出现2d的NO2污染,冬季和春季各占1d。以上表明NO2污染最容易出现在大气扩散条件较差的冬季,广州NO2污染天数分布较多,已出现汽车尾气污染型的特征。

广佛肇经济圈属于颗粒物污染主导型,表现出常年污染性特征。3个城市的PM10季节分布较均匀,基本位于20%~30%上下浮动,夏季相对低一些,秋季的PM10污染天数相对多一些,总体上季节性变化不大。

图3SO2季节变化

图4NO2季节变化

图5PM10季节变化

3.3广佛肇空气污染总体评价

图6显示近10年广佛肇经济圈大部分天数的API处于优良级别,广州无污染天数占267%,轻微污染天数只占70%,只出现1d重污染(2003年11月2日)、11d轻度污染天气,全年API大多位于51~100。佛山API良好级别占699%,轻微污染天数偏少,近十年只出现一天轻度污染(2005年3月17日),未见重污染天气。肇庆的环境空气质量较好,API优良级别占了979%,轻微污染只有21%,未发生重污染现象。

从图7可以看出,3个城市都以颗粒物污染为主,广州PM10占了有污染天数的833%,SO2占112%,NO2占55%,呈现出煤烟污染主导型同时伴随汽车尾气影响的特征。佛山PM10占了有污染天数的927%,SO2占65%,NO2占08%,由于佛山陶瓷工业发达,工业染料中的煤和重油比例较大,燃烧排放大量烟尘,导致空气中PM10浓度较高。肇庆PM10占了有污染天数的983%,SO2占16%,NO2只有01%,在珠江三角洲地区,处于工业化前期的肇庆并非排污大户,其空气质量总体上较好,颗粒物污染比例较大是受到了广佛地区污染物输送的影响。因此,建议佛山重点加强燃煤的脱硫除尘,广州还应控制汽车尾气排放,广佛肇经济圈应形成区域性大气污染联防联治机制。

图6空气污染级别分布

图7主要污染物比例

4结语

(1)广佛肇经济圈冬季污染指数较大,夏季污染指数较小,表明冬季空气质量较差,夏季空气质量较好,空气污染与气象条件关系密切。近10年API总体降低,表明环境空气质量有变好的趋势。

(2)近10年广州和佛山的大气SO2污染主要集中在夏季,冬季和春季则较少见SO2污染。肇庆的SO2污染季节波动较小,在春季和秋季的SO2污染天数相对较多。NO2污染最容易出现在大气扩散条件较差的冬季,广州NO2污染天数分布较多,已出现汽车尾气污染型的特征。广佛肇属于颗粒物污染主导型,表现出常年污染性特征。3个城市的PM10季节分布较均匀,夏季相对低一些,秋季的PM10污染天数相对多一些,总体上季节性变化不大。

(3)近10年广佛肇大部分天数的API处于优良级别,广州全年API大多位于51~100。佛山API良好级别占69.9%,轻微污染天数偏少。肇庆的环境空气质量较好,未发生重污染现象。广州呈现出煤烟污染主导型同时伴随汽车尾气影响的特征,佛山陶瓷工业是空气中PM10浓度较高的主要影响因素,肇庆空气质量总体上较好,颗粒物污染比例较大是受到了广佛地区污染物输送的影响。

(4)建议佛山重点加强燃煤的脱硫除尘,广州还应控制汽车尾气排放,广佛肇经济圈应形成区域性大气污染联防联治机制。

2013年5月绿色科技第5期参考文献:

[1] 蔡国梁,邢桂芬,李玉秀,等.城市环境空气质量的多指标可拓综合评价法[J].城市环境与城市生态,2003,16(5):4~6.

[2] 普映娟,王琳邦.环境空气质量综合指数评价方法探讨[J].环境科学导刊,2010,29(2):93~94.

[3] 方红.模糊马尔可夫预测法在空气质量评价中的应用[J].气象与环境学报,2008,24(1):60~62.

[4] 陈辉,厉青,杨一鹏,等.基于分形模型的城市空气质量评价方法研究[J].中国环境科学,2012,32(5):954~960.

[5] Ott Wayne R,Thom Gary C,等.A critical review of air pollution index systems in the United States and Canada[J].Journal of the Air Pollution Control Association,1976,26(5):460~470.

[6] 段玉森,魏海萍,伏晴艳,等.中国环保重点城市API指数的时空模态区域分异[J].环境科学学报,2008,28(2):384~391.

[7] 李小飞,张明军,王圣杰,等.中国空气污染指数变化特征及影响因素分析[J].环境科学,2012,33(6):1936~1943.

[8] 陈雷华,余晔,陈晋北,等.2001~2007年兰州市主要大气污染物污染特征分析[J].高原气象,2010,29(6):1627~1633.

[9] 曲晓黎,付桂琴,贾俊妹,等.2005~2009年石家庄市空气质量分布特征及其与气象条件的关系[J].气象与环境学报,2011,27(3):29~32.

[10] 张孟,林琳,张子宜.长春市空气质量污染特征分析与防治对策[J].气象与环境学报,2009,25(3):57~61.

第6篇:对空气质量的建议范文

1.1研究区概况和采样点布设

本文选择武夷学院校园的空气负氧离子为研究对象。武夷学院位于海峡西岸经济区绿色腹地,坐落在“世界文化与自然遗产地”———武夷山市。校园依山傍水,湖光山色,鸟语花香,四季如画,被授予“全国绿化模范单位”、多次获得福建省省级“花园式单位”“园林单位”等荣誉称号。现校园占地面积2千余亩,在校师生万余人。采样点布设按校园不同功能区划分,主要划分为四个:生活区、景观区、活动区和教学办公区。具体分别为学校食堂门口(学生生活区内,人流量大,空气对流较差)、校内茶园(茶山地势较高、人流量最少,空气流通好)、学校操场(周边绿化好、人流量一般,空气流通好)和聚贤楼(用于教学办公楼,位于天心湖旁和校园主干道旁,人流量一般,空气对流一般)。

1.2测量仪器及方法

测量采用日本原产(负离子协会推介产品)KEC-900型空气正、负离子测试仪。仪器使用重要参数如下:空气流速:200cm/s;测定范围:10ions/cc-1999000ions/cc;湿度≤99%R.H(不凝结水);工作温度:-20°C-60°C等。由于空气负氧离子浓度瞬时变化较大,测量时将仪器置于支架上,离地面约30cm,并在每个观测点按东、西、南、北四个方向瞬间分别读数,取四个方向的平均值作为此观测点的负氧离子值。所测数据用Excel软件处理。

2结果与分析

2.1不同功能区负氧离子浓度水平

选择四个不同功能区(见上文),于2014年5月5日至8日连续四个晴天进行负氧离子浓度测定,时段为7:00至19:00,每次测定持续20min,取平均值进行研究。从图中可以看出负氧离子浓度水平为:后山茶园>学校操场>聚贤楼>学校食堂。结合具体采样点自然和人类活动环境进行分析,学校食堂在人流量大,空气对流较差等环境影响下负氧离子浓度水平为功能区最低;后山茶园地势较高、人流量最少,空气流通好,其负氧离子浓度水平为功能区最高;学校操场和聚贤楼人口密度和空气对流情况介于上述二者中间,负氧离子浓度水平也介于中间。可见反映了不同功能区负氧离子浓度受人类活动力度、海拔高度、空气流通状况、动态水体和植被分布等综合因素影响。这与负氧离子浓度空间分布不均匀,由市中心向郊区逐渐增大,随海拔高度的增加而增加等研究结果一致。

2.2天气变化和日变化对后山茶园负氧离子浓度影响

为了进一步研究空气中负氧离子浓度受天气变化和日变化的影响,选择了校园人类活动强度最弱的后山茶园为研究对象,进行晴天、阴天、小雨和暴雨四个不同天气条件,以及7:00-8:00、13:00-14:00和18:00-19:00三个日不同时刻的负氧离子浓度测量。测量结果如图2所示。具体分析如下:

(1)从不同天气条件来看,负氧离子浓度水平为:暴雨天>小雨天>雨后阴天>晴天。雨天条件下负氧离子浓度更高的主要作用机理是:水的Lenard效应使水分子裂解,暴雨的跌撞等自然过程中的水自上而下,在重力的作用下高速运动,使水分子裂解,产生大量空气负离子,并且空气湿度高时,负氧离子O2-易与水分子结合,形成负氧离子团簇O2-•H2O,这种团簇对负氧离子的寿命具有较大的影响。但文中阴天条件下负氧离子浓度高于晴天的这一结果与曾曙才等的研究不一致,主要原因可能与选择测定的阴天出现在雨天后还是紧继晴天后有关。本项目选择雨天后的阴天天气进行测定,在雨后的湿度影响下,阴天的负氧离子浓度会有所增加。表明了空气负离子浓度与相对湿度之间存在正相关,与已有研究结果一致。

(2)从日不同时刻观察,负氧离子浓度水平在晴天、阴雨天基本上为:上午>傍晚>中午,可见负氧离子浓度水平有明显的日变化特征。主要因为中午气温高,负离子浓度与气温存在指数负相关,这与已有研究结果相同。但是暴雨天气下,由于不同时间段雨量的不稳定变化,当中午雨量占日雨量明显优势时,其负氧离子也呈现日时段的最大值,关于该方面尚未见报道。该变化体现了空气负离子浓度的最主要气象因子是空气相对湿度,其次是光照强度,最小为气温。这与已有研究结果一致。

2.3校园空气质量评价

世界卫生组织(WMO)规定清新空气的负氧离子标准浓度为1000-1500个•cm-3,并以400个•cm-3作为旅游区空气负氧离子的临界浓度。目前国内尚未形成负氧离子浓度与空气质量和人体健康的统一标准,本文参考文献中常用标准进行校园空气质量评价。结合以上标准对武夷学院校园晴天条件下空气清新程度和与健康的关系进行评价。可见该校园整体空气质量等级可以稳定达到四级或者三级,空气较清新或清新,有利于增强人体免疫力、抗菌力或杀灭、减少疾病传染。同时该结果是在晴天条件下测定的相对保守评价。如果是雨天或者暴雨天随着负氧离子浓度增加,空气更加清新(可达到一级空气质量),对人体有利度增加,甚至具有治疗和康复功效。可见,武夷学院校园整体空气质量可以与国内大多公园、湖泊、森林、乡村、田野、旅游区等相媲美。这样的空气质量与武夷学院校园位于旅游城市、校内人均占地大(2千余亩,约1万5千名在校师生)、建筑物间距大、楼层低(最高为五层)、空气流通好、绿化面积高以及依山傍水等整体生态环境有关。

3结论与讨论

(1)校园不同功能区负氧离子浓度水平排序为:后山茶园>学校操场>教学区>学校食堂。反映了不同功能区负氧离子浓度受人类活动力度、海拔高度、空气流通状况、动态水体和植被分布等综合因素影响。

(2)研究空气中负氧离子浓度受天气变化和日变化的影响:负氧离子浓度水平为:暴雨天>小雨天>雨后阴天>晴天;上午>傍晚>中午。表明了空气与相对湿度之间存在正相关,与气温存在指数负相关。

(3)武夷学院校园整体空气质量等级可以稳定达到四级或者三级,空气较清新或清新,有利于师生健康。这样的空气质量与武夷学院校园整体良好生态环境有关。

(4)影响空气负氧离子浓度的因素很多,本文是在自然和人为综合影响下测定的,建议今后做室内模拟实验分析气象单因子(气温、湿度、风向、风速、光照等)影响,明确其影响机理,为提高空气中的负氧离子浓度,改善环境质量提供依据和方法。

第7篇:对空气质量的建议范文

【关键词】 船舶排放;空气污染;排放控制区;强制;激励

当前,我国以臭氧、细颗粒物(PM2.5)和酸雨为特征的区域性复合型大气污染问题日益突出,区域内空气重污染现象大范围同时出现的频次日益增多,严重制约着社会经济的可持续发展,甚至威胁到人类的健康,治理大气污染刻不容缓。为此,2013年9月国务院了《大气污染防治行动计划》,加大空气污染治理力度。

2012年,我国内河和沿海运输完成货物周转量分别达到亿tkm和亿tkm,承运我国国际贸易进出口货物运输的国际航行船舶逾15万艘次。我国内河和沿海船舶活动量大,船舶排放的污染物中包含多种大气污染物,对我国沿河和沿海区域的空气污染不容忽视。

从控制相关区域内船舶大气污染气体排放着手,制定并实施相关政策,以减少区域空气质量的影响是可选择利用的方法。本文介绍国际相关政策措施以供我国借鉴,通过选择合适的政策类型、政策涉及的区域范围和实施时间等方法,改善我国沿河和沿海区域的空气质量。

1 船舶废气排放对区域空气质量的 影响

船舶排放的主要污染物有硫氧化物、氮氧化物和PM2.5。硫氧化物主要是燃料中所含硫的燃烧产物,其中的二氧化硫容易氧化形成酸雨危害人类,船舶硫氧化物排放主要取决于柴油机所使用的燃料油中的含硫量;氮氧化物由化石燃料与空气在高温燃烧时产生,不仅危害人体健康,而且是破坏环境、形成酸雨和光化学烟雾的重要物质;PM2.5主要来自化石燃料的燃烧物、挥发性有机物等,船舶排放的一部分气体发生化学反应也会转化成PM2.5。

鉴于船舶排放对空气环境的影响,国际海事组织(IMO)海洋环境保护委员会(MEPC)早在1988年就正式开展防止船舶造成大气污染议题的研讨及审议工作,将《国际防止船舶造成污染公约》(《MARPOL 73/78公约》)1997年议定书进行修订,通过了附则Ⅵ《防止船舶造成大气污染规则》,该附则已于2005年5月19日正式生效。

在水运活动集中的区域,特别是大型港口城市,船舶排放对当地空气污染的影响较大。发达国家或地区对此进行量化研究。美国南加州大学利用量化分析模型,分析了南加州空气盆地船舶废气排放对周边环境的二氧化氮、二氧化硫、臭氧和颗粒物浓度的影响。以洛杉矶中心区为例,船舶废气排放导致二氧化氮、二氧化硫的24 h平均浓度分别增加了7.4 g/L和0.3 g/L;1 h和8 h臭氧浓度峰值分别增加了4.5 g/L和7.9 g/L;硝酸盐和硫酸盐的平均浓度分别增加3.7 g/m3和0.1 g/m3;此外,如未来对船舶废气排放不加控制,预测2020年船舶废气排放将成为该地区最大的空气污染源。[1] 南加州研究机构在南加州范围内布置10个监测站,研究南加州空气盆地船舶排放的PM2.5对该地区空气质量的影响。研究结果表明,随着监测站与洛杉矶港和长滩港距离的增加,船舶废气对空气质量的影响随之减少,船舶排放的PM2.5占距离港口最近监测站的PM2.5比重达到8.8%,而占距离港口80 km的内陆监测站的PM2.5比重则下降为1.4%。[2]

我国香港特区环保署的《2011年香港排放清单报告》显示,2011年香港港口船舶排放的硫氧化物、氮氧化物和PM10分别占总排放量的54%、33%和37%,均是香港相应污染物的最大排放源。上海市环境监测中心等单位所做的研究结果表明,2010年上海港船舶排放的可吸入颗粒物为0.46万t,细颗粒物为0.37万t,柴油颗粒物为0.44万t,氮氧化物为5.73万t,硫氧化物为3.54万t,一氧化碳为0.49万t,其中,二氧化硫、氮氧化物和PM2.5对上海市空气质量的影响最为显著,分别占排放总量的12.0%、9.0%和5.3%。[3]

目前,我国并没有将船舶废气排放纳入污染物排放统计的范畴,国务院的《大气污染防治行动计划》中也只是提到“开展工程机械等非道路移动机械和船舶的污染控制”的原则性要求,并没有配套计划。随着未来大气污染防治的深入,控制船舶废气排放将成为我国特别是沿河和沿海港口城市要面对的一大挑战。

2 国际控制船舶废气排放的政策措施

控制船舶废气排放除要求船舶采用配备岸电装置靠港使用岸电[4]、安装柴油机颗粒过滤器、废气循环系统或选择性催化还原系统等减排技术手段以及诸如IMO强制实施的船舶能效指数(EEDI)标准、船舶能效管理计划(SEEMP)等减排管理措施以外,在一定区域范围内,从控制船舶大气污染排放着手,制定并实施强制性的废气排放政策是有效控制船舶废气排放的措施。

2.1 废气排放控制区及排放控制要求

目前,波罗的海区域和北海区域的硫氧化物排放控制区,北美区域的硫氧化物、氮氧化物和颗粒物质排放控制区已经正式启用。

2.1.1 废气排放控制区

在《MARPOL 73/78公约》附则Ⅵ中,除要求船舶使用的任何燃油中硫含量不得超过4.5%外,还将波罗的海区域指定为硫氧化物排放控制区,要求处于硫氧化物排放控制区的船舶使用的燃油中硫含量不得超过1.5%。按照《MARPOL 73/78公约》1997年议定书的规定,波罗的海硫氧化物排放控制区于2006年5月19日正式启用。按照经欧盟第2005/33/EC号法令修正的1999/32/EC号法令,2006年8月11日才开始执行波罗的海硫氧化物排放控制区船舶使用燃油中硫含量以1.5%为上限的控制要求。

2005年7月举行的MEPC第53次会议,通过了经修订的《MARPOL 73/78公约》附则Ⅵ,增加北海区域为硫氧化物排放控制区,于2007年11月22日正式启用。按照经欧盟第2005/33/EC号法令修正的1999/32/EC号法令,北海区域成为硫氧化物排放控制区的日期被提前到了2007年8月11日。

2010年3月举行的MEPC第60次会议,通过了经修订的《MARPOL 73/78公约》附则Ⅵ,增加北美区域为排放控制区,并于2012年8月1日正式启用。

2.1.2 排放控制要求

2008年10月举行的MEPC第58次会议,通过了经修订的《MARPOL 73/78公约》附则Ⅵ,进一步明确排放控制区是指采用特殊强制措施防止、减少和控制船舶排放硫氧化物、氮氧化物、颗粒物或上述3种污染物,以便减少对船员健康或环境不利影响的区域。

附则Ⅵ关于船舶氮氧化物排放控制标准分为3个阶段(见图1)。2000年1月1日2010年12月31日期间建造的船舶所安装的船用柴油机应满足第1阶段标准,否则应禁止使用;2011年1月1日2015年12月31日期间建造的船舶所安装的船用柴油机应满足第2阶段标准,否则应禁止使用;2016年1月1日以后建造的船舶所安装的船用柴油机应满足第3阶段标准,否则应禁止使用,其中,排放控制区内航行船舶的柴油机应满足第3阶段标准,排放控制区之外航行船舶的柴油机应满足第2阶段标准。

附则Ⅵ将排放控制区进行内外区分,并规定了船舶使用燃油中硫含量的上限控制要求(见图2)。此外,要求2018年前完成全球燃油市场供需状况评估,确定在非排放控制区域是否将船舶使用燃油中硫含量0.5%上限的标准调整到2025年1月1日实施。

2.2 强制靠港船舶减排的措施

目前,欧盟实施了强制靠港船舶使用低硫燃油的减排措施。从2010年1月1日起,在欧盟港口停泊(包括锚泊、系浮筒、码头靠泊)超过2 h的船舶不得使用硫含量超过0.1%的燃油(该要求不适用于停掉所有机器而使用岸电的船舶);船舶靠泊后应尽早转换为低硫燃油(硫含量不超过0.1%),船舶开航前应尽量推迟切换为高硫燃油;燃油转换操作应记录在航行日志上。

美国加州于2014年1月1日实施强制靠港船舶使用岸电的减排措施。基于港口空气污染物大多来自船舶在港口航行、靠港和离港操作以及靠港作业时的特点,为进一步减少船舶污染物排放,美国除了通过设立北美排放控制区控制船舶在沿海航行活动中的废气排放外,经济发达、空气质量要求高的加州对于靠港船舶还提出更高的控制废气排放要求。

加州法典第17篇第1节第7.5分节第93118.3小节“靠泊加利福尼亚港口远洋船舶应用的辅助柴油引擎的有毒空气污染物控制”中强制要求从2014年1月1日起,挂靠加州港口的集装箱船(船公司船舶年挂靠加州港口25次以上)、邮船(船公司船舶年挂靠加州港口5次以上)和冷藏货物运输船靠泊期间必须不断加大关闭引擎和使用岸电的比例。法律规定,各船公司挂靠每一个加州港口的船舶使用岸电的挂靠次数占其在该港口总挂靠次数的比例在20142016年期间应达到50%,20172019年期间达到70%,2020年之后达到80%。如果船公司挂靠船舶不能满足上述要求,每次停靠将根据情况罚款~美元。

2.3 激励船舶在港区减排的措施

为改善环境质量,一些航运发达的地区或者港口采取了激励船舶在港区减排的措施,如美国长滩港、新加坡和我国香港特区等。

2.3.1 长滩港“绿旗计划”

鉴于船舶低速航行有利于减少大气排放,自2006年1月1日起,长滩港开始实施一项船公司自愿参加的降低船舶航行速度的“绿旗计划”,鼓励船舶在靠近海岸20 n mile的范围内将航行速度降到12 kn以下。作为对船公司参与“绿旗计划”、重视环境保护的回报,长滩港将减收这些船公司船舶的港口费。

长滩港以费尔曼角(Point Fermin)灯塔为中心、半径20 n mile(2009年扩大到40 n mile)的半圆海域为参加“绿旗计划”船舶自愿降低航行速度的区域范围,由美国南加州海事交换中心负责检测并记录在此范围内船舶的航行速度,并以12个月为时间单位,统计船舶执行“绿旗计划”的情况。如果挂靠长滩港的船舶在12个月内100%地执行“绿旗计划”,将获得绿旗作为环保成就奖;如果在12个月内船公司执行“绿旗计划”的船舶比例达到90%,则未来一年内的港口费将减收15%。2012年,挂靠长滩港的船舶中,83%以上的船舶在距离港口40 n mile范围内实施减速航行;接近96%的船舶在距离港口20 n mile范围内实施减速航行。

截至2012年底,200多家船公司获得减免港口费的奖励,同时与港口运作相关的柴油污染物排放量减少了75%。

2.3.2 新加坡“绿色海港计划”

为鼓励本地船务业采用洁净能源,减少碳排放量以保护环境,2011年新加坡海事和港务管理局宣布推行“新加坡绿化海事计划”。“绿色海港计划”是“新加坡绿化海事计划”的3个组成部分之一。

“绿色海港计划”针对在新加坡海港停靠的船舶实施,规定船舶在海港内采用被认可的减排科技或改用低硫燃油,符合《MARPOL 73/78公约》附则Ⅵ所规定的标准,则减收其15%的港口费。

2.3.3 我国香港特区《乘风约章》

2011年共有18家远洋船公司签署了《乘风约章》,承诺2年内在香港港挂靠远洋船舶在靠港时尽可能换用低硫燃油(硫含量不高于0.5%的燃料油)。2011年共有艘次远洋船舶在香港港靠港时换用低硫燃油,占全年挂靠香港港远洋船舶总艘次的11%,减少约890 t的二氧化硫排放。

在《乘风约章》2年有效期期满之时,在成员的共同推动下,为延续《乘风约章》的实施对香港空气质量改善的有利影响,香港特区政府在2012年2月的《20122013年度财政预算案》中,建议对在香港港靠港时换用硫含量不高于0.5%低硫燃油的远洋船舶,减免一半的港口设施及灯标费,并将此称为“泊岸换油计划”。

3 控制船舶废气排放政策措施的比较

上述在发达地区、国家或者港口实施的区域船舶废气排放控制政策措施可以归纳为以下3类:(1)建立排放控制区是通过政府间或IMO机制实施的,属于国际强制性措施;(2)欧盟强制靠港船舶使用低硫燃油和美国加州强制靠港船舶使用岸电是通过政府组织或者地方政府的机制实施的,属于局部强制性措施;(3)以地方利益换取区域内船舶减排效果的措施,属于激励性措施。

不同政策措施的特点,其效果也不尽相同,比较结果见表1。表中“准备难度”指实施相关政策措施的准备工作困难程度,包括政策制定、审查和颁布程序,配套保障措施到位等的人力、财力、物力和时间投入的需求。

从“准备难度”角度看,激励性政策措施涵盖区域范围小,涉及船舶范围有限,船公司可以不执行更加严格的排放控制要求,政策制定、审查和颁布程序比较容易;局部强制性政策措施涵盖国家或地区范围增加,涉及船舶范围增加,具有强制性,在政策制定、审查和颁布程序方面难度有所增加;制定、审查和颁布实施国际强制性政策措施最为困难,按照《MARPOL 73/78公约》及其附则Ⅵ的要求,证实有防止、减少和控制船舶排放硫氧化物、氮氧化物、颗粒物或者上述3种污染物造成空气污染的需要,IMO才会考虑设立排放控制区。设立排放控制区需要经过提出建议和评估通过2个程序。

设立排放控制区需要由1个或者多个《MARPOL 73/78公约》签约国向IMO提出建议,如果2个或更多的签约国对某一特定区域有共同关注,这些签约国应起草1份互相协调的建议。建议内容包括:

(1)1份船舶废气排放控制适用区域的明确描述和1张标有该区域位置的参考海图;

(2)控制船舶废气排放的类型建议,可以是硫氧化物、氮氧化物、颗粒物或者上述3种污染物;

(3)1份受到船舶废气排放威胁的人口和环境区域的说明;

(4)在所建议的排放控制区内,船舶排放对周边环境空气污染和环境不利影响的评估报告,评估内容包括船舶排放对居民健康和环境影响的描述;

(5)所建议的排放控制区和受到威胁的人口、环境区域内有关气象条件的相关资料;

(6)所建议的排放控制区内船舶航行状况,包括船舶航行的模式和密度;

(7)1份建议提案国(一国或多国)对危及所建议的排放控制区的陆上硫氧化物、氮氧化物或颗粒物排放源影响所采取的控制措施以及按照排放控制区的硫氧化物、氮氧化物或颗粒物控制要求采取协同措施的说明;

(8)与陆上控制措施相比较,减少船舶排放的相对成本以及与国际贸易相关的航运经济影响的说明。

4 结 语

国家、地区或者港口对于控制船舶废气排放政策措施的选择,应充分考虑改善区域环境和提高空气质量的需要、政策准备的难度和时间要求、政策实施的监督体制及机制建设的障碍以及监督成本的增加对于国际贸易和航运的影响以及本地航运企业对于成本增加的承受能力等因素,从而确定相应的政策类型、政策涉及的区域范围和实施时间。

参考文献:

[1] DABDUD D,VUTUKURU S.Air Quality Impacts of Ship Emissions in the South Coast Air Basin of California[M].Irvine:State of California air resources board,2008:61-80.

[2]AGRAWAL H,EDEN R,ZHANG X Q,et al.Primary particulate matter from ocean-going engines in the Southern California Air Basin [J].Environment Science and Technology,2009,43(14):5398-5402.

第8篇:对空气质量的建议范文

【关键词】大学生 自习教室 学习环境

一、引言

随着社会的发展和人们对生活水平质量的追求不断提高,重中之重的教育环境又正在面临着怎样的问题呢?大学生进行学习的场所基本都在室内,不同的学习环境有着不同的舒适度,然而一个舒适的学习环境会给学生的学习效率造成很大的影响,较差的学习环境不仅影响着学生的身体健康,最重要的是直接影响到了学生的学习心情,一个良好的学习心情无疑是学生学习的最大动力,有了好的环境,学习的效率将会大大提升。

二、环境对学习效率的影响

环境的好坏,直接影响着学生在此环境内身心健康,通过对大一新生部分班级自习教室的实地调查,运用抽样调查的方式,以调查问卷和找部分同学询问和交流等手段为主,了解到了环境影响学习效率的以下几个方面和所占比例:1.效率下降(15%)2.情绪压抑(10%)3.记忆力下降(4%)4.发困(6%)5.烦躁(18%)6.头痛(3%)7.热感(9%)8.没影响(35%)。通过以上调查结果可知大多数的同学认为环境对学习效率是有影响的,且在不同的方面造成影响,比如闷热的环境很容易使学生心里感到烦躁,通风不好的环境易造成学生的发困、头痛等情况。当然,影响也不是绝对的,但只有少部分的学生对于环境的感觉影响不大。

三、自习教室的环境情况分析

通过对大一新生部分班级自习教室的实地调查,运用抽样调查的方式,以调查问卷和找部分同学询问和交流等手段为主,了解到了自习教室以下三方面的有关情况:1.空气质量2.热感觉3.湿度感。(1)关于空气质量方面,其中认为自习教室空气质量还不错的人数占25%,认为较闷的人数占55%,剩余20%的同学对空气质量没有任何意见。可见由于学生人数较多,空间较小,造成空间人口较密集,造成空气不流通,从而使人感觉空气质量较差,使大部分同学感到较闷,造成学习效率下降。(2)关于热感觉方面,其中认为稍热的人数占8%,认为较舒适的人数占92%,没有人认为稍冷。可见,由于人多,从而造成整体温度稍高,但是在同学可接受的范围内,不可接受的同学只占少数,说明自习教室的温度方面还比较令同学满意。(3)关于湿度感方面,认为有点湿的人数占25%,认为一般可以接受的人数占25%,没有任何意见的人数占50%。可见,湿度环境方面也还不错,能令大多数同学满意。总体来看,自习教室最需要改善的是空气质量,温度方面最令同学满意,湿度方面还可以,多撒些水应该能再加湿一下空气,使空气的

新鲜度提高。(4)另外个别班级自习教室还存在一个重要的问题:伴随着夏日的来临,开窗通风降低室内温度是一种常见的做法,可是教室的窗户上并没有安装纱窗,这就使得在开窗通风的同时会飞入大量的飞虫,尤其是蚊子令同学们特别烦恼,夜晚的灯光更会吸引大量的飞虫“入侵”,给同学们的学习带来很大的困扰。

四、改善建议与措施

1.及时为没有窗纱的教室的窗户上安装纱窗,从而有效的防止在通风的同时造成飞虫大量进入教室。

2.在教室内适当泼洒弱碱水。由化学反应方程式可知,碱水会与二氧化碳反应生成

无毒害的碳酸钠和水。从而降低空气中二氧化碳的浓度,提升空气质量。但多数人认为也许实践起来效果可能不是那么明显。

3.绿色植物一直被大多数人们放入卧室来达到净化空气的作用。实际的问卷调查也显示出同学们对给教室增添一些植物的方案表示满意,植物不仅仅可以净化空气,还有缓解视疲劳,改善心情的作用,从而大大的提高学习效率,提高环境舒适度。

【参考文献】

[1]杨晓敏.高校教室环境品质实测与评价[D].衡阳:南华大学,2013

第9篇:对空气质量的建议范文

PM2.5:影响欧盟人均寿命

在空气动力学和环境气象学中,颗粒物是按直径大小分类的,粒径小于100微米的称为TSP(TotalSuspendedParticle),即总悬浮物颗粒;粒径小于10微米的称为PM10(PM为ParticulateMatter缩写),即可吸入颗粒物;粒径小于2.5微米的称为PM2.5,即可入肺颗粒物,它的直径仅相当于人的头发丝粗细的二十分之一。

气象专家和医学专家认为,粒径10微米以上的颗粒物,会被挡在人的鼻子外面;粒径在2.5―10微米之间的颗粒物,能够进入上呼吸道,但部分可通过痰液等排出体外,也可能被鼻腔内部的绒毛阻挡,对人体健康危害相对较小;而粒径在2.5微米以下的细颗粒物(PM2.5),不易被阻挡;与PM10相比,PM2.5更具危险性,因为当入吸入之后,它可能抵达细支气管壁,并干扰肺内的气体交换,引发包括哮喘、支气管炎和心血管病等方面的疾病。此外,PM2.5对空气质量和能见度也有更大影响。与较粗的大气颗粒物相比,PM2.5粒径小,含有大量的有毒、有害物质,且寿命长、输送距离远,因而对人体健康和大气环境质量的影响更大,对空气能见度的影响要比PM10更直观。

一般而言,粒径2.5微米―10微米的粗颗粒物主要来自道路扬尘等来源;粒径在2.5微米以下的细颗粒物PM2.5,主要是日常发电、工业生产、汽车尾气排放等过程中经过燃烧而排放的残留物,如机动车尾气、燃煤等,通常含有重金属等有毒物质。世界卫生组织的报告显示,无论是发达国家还是发展中国家,目前大多数城市和农村人口均遭受到了颗粒物对健康的影响。高污染城市中的死亡率超出相对清洁城市的15%―20%。据统计,在欧洲,PM2.5每年将会导致386000人死亡,并使欧盟国家人均期望寿命减少8.6个月。

各国:监控标准由宽到严

2005年世界卫生组织的《空气质量准则》对PM10和PM2.5的年平均浓度和日平均浓度设定了准则值和三个有梯度的过渡时期目标值。其中准则值的要求最为严格,是根据科学研究所得出的比较理想的、对人体健康危险较小的颗粒物限制标准。世卫组织设定的准则值标准很高,即使是部分发达国家,也难以马上实现,因此,世卫组织在设立准则值的同时,又对PM2.5和PM10确立了三个有梯度的过渡时期目标值,过渡时期目标值的要求比准则值相对宽松。世卫组织认为,通过采取连续、持久的污染控制措施,这些过渡时期目标值是可以逐步实现的;过渡时期目标值有助于各国评估在努力减少颗粒物浓度过程中所取得的进展。目前已有部分国家和地区逐步将PM10和PM2.5纳入当地的空气质量标准进行强制性限制。总体上看,各国对颗粒物的监测和控制呈现出以下特点:

一、发达国家监控体系逐步完善,监控标准由宽松到严格。从上世纪七八十年代开始,欧美国家开始量化指标限制空气中颗粒物的浓度。起初,欧美空气质量准则对颗粒物的限定比较笼统,没有对颗粒物的大小进行细分。1987年,美国环保局首次制定了针对PM10的限定标准。1997年,美国在《国家环境空气质量标准》中增加了对PM2.5浓度上限的要求。2006年,美国修订空气质量标准,对PM2.5浓度提出了更为严格的限定标准。

按照美国目前的标准,PM10日均浓度上限为150微克/立方米,相当于世卫组织对PM110确定的第一个过渡时期的目标值;PM2.5日均浓度上限为35微克/立方米,年均浓度上限为15微克/立方米,大致相当于世卫组织对PM2.5确立的第三个过渡时期目标值。自上世纪80年代以来,欧盟开始致力于监控空气颗粒物。2005年,欧盟关于限制PM10的法令生效;2010年,对PM2.5的监控标准生效。目前,欧盟的空气质量标准包含对PM10年均浓度与日均浓度、PM2.5年均浓度的要求,是世界上对PM10监控标准最严格的地区之一。欧盟PM10日均浓度限值(50微克/立方米)已达到世卫组织所设定的准则值标准。

二、欧美国家执法严格,对超标行为惩罚严厉。南京信息工程大学大气物理学院副院长、空气质量研究专家朱斌认为,在空气质量监控方面,立法容易执法难;欧美等国目前都普遍制定了完备的空气质量法律,并严格执行,对不达标者的惩罚也很严苛。据了解,在欧盟空气质量法令实施的最初几年,欧盟允许各成员国自行决定空气质量标准的实施办法。但是,各自为政的格局导致各成员国经常出现有法不依的尴尬局面。2005年,欧盟27个成员国中有23个国家出现了PM10浓度超标的情况。2008年,欧盟委员会通过了新的空气质量法令(2008/50/EC),开始严格监督执行空气质量标准,对超标行为进行严厉惩罚,有些超标城市可能面临每天高达7075欧元的罚款。

三、部分发展中国家也开始监测PM2.5。近年来,有些发展中国家也收紧了对PM2.5和PM10的监控标准,如印度、墨西哥等国。以印度为例,印度环境与林业部1994年制定实施的空气质量标准只包含对总悬浮颗粒物和PMIO的监控要求,2009年新修订的标准取消了对总悬浮颗粒物的控制指标,新增加PM2.5的限制指标,要求工业区、居住区、农村等地区的PM2.5年均和日均浓度都不得超过40微克/立方米;PM10年均和日均浓度的上限分别为60微克/立方米和100微克/立方米,大致处在世卫组织设定的三个过渡时期目标值范围内。

中国:技术已成熟实施需稳步

2011年11月,中国环境保护部公布《环境空气质量标准》二次征求意见稿,在基本监控项目中增设PM2.5年均、日均浓度限值,并收紧了PMIO浓度限值等,这是中国首次制定PM2.5的国家环境质量标准。意见稿中,PM2.5年均和日均浓度限值分别定为35微克/立方米和75微克/立方米,相当于世卫组织所设定的第一个过渡时期的目标值。新标准拟于2016年1月1日全面实施。

亦有专家认为,由于我国不同地区空气污染特征、经济发展水平和环境管理要求差异较大,新增指标监测要开展硬件和软件的一系列准备工作,因此新标准需要分期实行。专家建议在我国PM2.5监测中应该重视以下问题: