公务员期刊网 精选范文 生物信息学的发展趋势范文

生物信息学的发展趋势精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物信息学的发展趋势主题范文,仅供参考,欢迎阅读并收藏。

生物信息学的发展趋势

第1篇:生物信息学的发展趋势范文

生物信息学 生物科学 实践教学

生物信息学作为一门新兴的交叉性学科,综合生物学、计算机科学和信息技术试图,从大量数据中寻找具有指导和开创性价值的依据,为生命科学研究提供必要的、有效的系统模拟和信息预测结果。目前,生物信息学在生物医学、生物工程、植物学、动物学、生态学、遗传学、制药和高科技产业领域中的应用越来越广泛,产生巨大的影响力和推动力。

一、生物信息学在生物科学领域的作用

生物科学是研究生物结构、功能、发生和发展规律,及其与周围环境关系的科学。在分子生物学技术突飞猛进的发展过程中,生物科学从传统的个体及群体表征研究逐步演变为内在分子机制的研究,随着基因测序技术的发展,生物科学领域的研究不仅聚焦于生物个体的内在分子机制,同时还从大量的生物个体的基因数据中获取和解析生命的本质和规律,并以此尝试对生命过程进行干涉和改造。而在获取、解析、干涉和改造的过程中扮演重要角色的就是生物信息学。

生物信息学是在生物科学领域各个学科发展的过程中逐步产生的一门综合性学科,该学科在生物科学领域的应用极为广泛。目前,植物基因组研究取得了重大进展,水稻、大豆、小麦等农作物的遗传图谱、基因序列、基因组注释已公布于美国国立生物技术信息中心(NCBI)的生物信息数据库中。利用生物信息学的相关方法和技术能够对这些数据进行查询、统计和分析,从而更好地理解和认识植物基因组的功能,指导后续的科学研究和生产应用。传统的生物学分类方法已经鉴定及分类了成千上万的物种,但是随着生物科学的发展和认知,越来越多的物种在遗传进化上的分类依据较为模糊,而利用生物信息学结合传统的分类学可以更好的研究生物类群间(植物、动物、微生物等)的异同性、亲缘关系、遗传进化过程和发展规律,这在当今的生物分类学中应用日趋广泛。生物信息学还可以综合利用数学、统计学和计算机等学科对生态系统进行模拟和计算分析,探索物种间基因流动的本质,揭示生态系统的物质和能量循环规律,从而为找到决定生态系统平衡和稳定的根本因素提供重要的依据,帮助生态系统平衡的恢复。此外,通过生物信息学技术构建遗传工程菌,降解目标污染物的分子遗传物质,从而达到催化目标污染物的降解,维护生态环境的空气、水源、土地等质量,也是当今生态环境保护的新兴研究方向。

二、生物信息学的学科内容和课程要求

生物信息学主要由基因组学、蛋白质组学、系统生物学、比较基因组学、计算生物学等学科构成,主要涉及的内容有生物数据的收集、存档、显示和分析,体外预测、模拟基因及蛋白质的结构和功能,对生物的遗传基因图谱进行分析处理,对大量的核苷酸和氨基酸序列进行比对分析,确定进化地位等。从生物信息学的概念及其涉及的内容中可以明确生物信息学不是一门独立的学科,所以要求教师在教学过程中掌握多领域的知识和技能,才能较好地把握该课程。

1.高等数学和统计学基础

生物信息学将数学和统计学作为主要的计算理论基础,主要包括数学建模、统计方法、动态规划方法、数据挖掘等方面。此外还包括隐马尔科夫链模型(HMM)在序列识别上的应用,蛋白质空间结构预测的最优理论,DNA超螺旋结构的拓扑学,遗传密码和DNA序列的对称性方面的群论等。因此,在生物信息学教学过程中要求教师具备数学及统计学的计算方法的基础知识,能够利用牛顿迭代法、线性方程回归分析、矩阵求拟、最小二乘法等进行数学建模和计算,从而对基因和蛋白质序列进行比对、进化分析和绘制遗传图谱等。

2.生物科学基础

生物信息学包含的生物类学科有,生物化学、分子生物学、遗传学等基础学科,基因工程、蛋白工程、生物技术等应用学科。根据其课程特点,学生在学习生物信息学课程前需要学习生物化学、分子生物学、遗传学、基因组学、蛋白质组学等基本生物学课程,对于基因序列、蛋白质序列、启动子、非编码区等概念有深刻的理解,同时需要对一些重要的生物学数据库有一定的了解,如美国基因数据库(GeneBank)、欧洲分子生物学实验室数据库(Embl)和日本核酸数据库(DDBJ)等。此外,要求学生能够利用生物学数据库查找基因序列、蛋白质序列、基因及蛋白质结构模型,能够读懂数据库中基因和蛋白质的信息注释,能够计算蛋白质序列的分子量和等电点,能够为扩增特定的基因片段设计引物,能够对特定物种进行系统发育分析等。

3.计算机科学基础

计算机是生物信息学的主要辅助工具,利用生物信息学研究生物系统的过程需要能够熟练使用计算机对大量的生物信息数据进行处理和分析,这主要包括对数据信息进行搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。所以,学生在学习生物信息学的过程中需要了解和掌握一些常用的生物信息学软件,如BLAST和FASTA序列比对分析软件,Oligo和Primer引物设计软件,VectorNTI、DNASTAR、DNASIS等综合分析软件。此外,学生还需要学习和掌握一些常用的计算机语言,如正则表达式、Unix shell脚本语言和Perl语言。

利用生物信息学在处理和分析海量生物数据的过程中,计算机软硬件资源需要配合处理分析软件的运行,因此要求计算机操作系统使用Unix和Linux操作系统,这些操作系统需要大量的操作命令进行输入执行过程,对于经常使用Windows操作系统的学生来说是一个较难跨越的障碍。

三、生物信息学课程教学中存在的问题

目前国内大多数高校的生物信息学教学采用传统的教学模式,即以课堂式的理论教学为主,缺乏必要的实践教学。理论教学模式固定、教学方法单一、教学内容狭窄,通常是介绍性、科普性的课程,甚至作为公选课程。少数高校开展生物信息学的实践课程教学,但多以验证性实验为主,缺乏和专业相适应的综合性、设计性实验,而开放性实验更无从谈起。

1.教学模式固定单一

生物信息学在内容层面涵盖诸多学科领域,注重应用性和实践性。然而,目前大部分高校把生物信息学作为一门孤立的课程,这导致教师需要将大多数课程内容压缩到一门课程进行教学,在有限的教学时数下灌输大量内容,增加了学生学习的难度,降低了教学质量。再者,大多数高校仅开展生物信息学的理论教学,忽视实践教学过程,造成生物信息学理论与实践内容的脱节,使学生在学习完理论知识后难以深入理解和吸收,无法将所学的知识应用到后续的工作和学习中,最终未能体现出该门课程的价值。

2.教师专业背景薄弱

作为一门交叉学科,生物信息学的教学要求教师具有较强的数学、生物学和计算机科学背景。然而,目前从事生物信息学教学的教师即便具备深厚的生物学背景,但是多数教师在数学和计算机方面较为薄弱,并不具备完整的生物信息学知识体系,对生物信息学发展趋势也了解不多。在师资缺乏的情况下,院系开设生物信息学课程,教师为了完成教学任务,仅仅在教学中进行介绍性的讲解,在课程考查方式上通过小论文、综述和课外活动等方式完成该课程的学习。因此,无论是理论教学还是实践教学均无法实现该课程大纲的要求,从而影响学生对生物信息学课程的理解和掌握,生物信息学的实践操作能力更无从谈起。

3.实践教学薄弱,专业教材缺乏

生物信息学实践课需要学生在网络环境下用计算机学习NCBI数据库的检索与使用、序列比对分析软件的应用、蛋白质空间结构图视软件的应用、序列拼接软件的应用等。但是目前,大多数高校开设的生物信息学课程多以理论教学为主,实践教学课时非常少或者为零,学生对于生物信息学课程的学习仅仅通过教材上抽象的文字描述进行理解和掌握,这导致学生在理论课中学到的知识无法在实践课中进行验证或操作,严重影响了生物信息学的教学质量,也偏离了教学大纲中强调的重在培养学生实践操作能力的培养目标。

另外,目前还没有适用于生物科学专业的生物信息学教材。国内各大高校使用的教材多为国外教材的影印版或者中文翻译版本,这些教材偏重介绍生物信息学的理论和方法,涉及的实践内容较少,学生需要具有较高的相关知识才能接受和使用这些教材。因此,部分高校在生物信息学教学过程中往往使用自家编写的简化教材,从而造成生物信息学教学内容不统一,教学大纲混乱等情况。

4.实践课程经费不足,实践教学环境落后

当今,许多发达国家都很重视生物信息学的教学和研究,积极开展各种生物信息资源的收集和分析工作,培养大量生物信息学人才,为整个生物学的理论研究及其相关产业创新(主要是医药和农业)提供指导和支撑。国内对生物信息学的关注和认识起步较晚,其发展落后于国际发达国家。国家和高校对生物信息学的教学和科研资金投入力度不大,缺乏必要的仪器设备,生物信息学的实践教学条件得不到保障,比如大多数高校的生物科学专业没有相应的计算机实训室,配套软件也相对匮乏,落后于国际发展水平。

四、生物信息学教学模式改革的探索

1.修改理论和实践教学大纲,编写适用的实践教材

根据当今生物信息学的发展方向,制定和修改理论教学大纲,除了引物设计、基因和蛋白质序列比对、基因和蛋白质结构功能预测等基本内容外,还需添加系统进化树分析、聚类分析、蛋白质互作网络谱图等较为综合的内容。另外,增加实践教学课程比例,充实实践教学内容,结合理论教学内容增加综合性、设计性实验,适当提供科研环境,鼓励开展开放性实验。

目前国内并没有系统的、专业的生物信息学实践教材,因此针对高校生物科学专业方向的特点,联合多学科领域(数学、生物科学、计算机科学)编写相应的生物信息学实践教材,在制定、修改实践教学大纲和编写教材的过程中结合学生的接受能力,由浅入深,多设实例和相关练习,使学生循序渐进的理解和掌握生物信息学的原理和方法,掌握更多的生物信息学工具。

2.紧密联系科研、基于实践问题开展教学

通过实践教学把生物信息学教学与科研有机结合起来,能够促进教学与科研的共同发展。在紧密联系科研的过程中,采用基于问题的教学(PBL)方法,通过实践教学环节,培养和训练学生把所学的生物信息学的知识和方法应用于各种生物科学领域的科研活动中,通过解决实际问题训练学生的实践技能,从而促进教学与科研的双重发展。例如,在生物信息学实践教学中多加入生产和科研中遇到的经典实例,鼓励学生利用相关的生物信息学软件及相关的理论和方法解决问题。学生也可以选择自己感兴趣的课题,利用自己熟悉的、合适的生物信息学软件和相关知识开展课题研究。此外,专业教师在指导学生课题研究的过程中还可以发现理论和实践教学的不足,不断的完善生物信息学理论和实践课程大纲和内容,提高教学质量。

3.开展多学科实践结合的教学模式

生物信息学属交叉学科,包含了不同领域的专业知识和技能,为使生物信息学教学达到教学的目标,该课程教学需要采用多学科实践结合的教学模式。

多学科实践结合的教学模式是指联合不同领域、不同学科、不同专业的课程在教学的过程中结合生物信息学涉及到的知识和技能进行基础性、铺垫性教学。比如,在高等数学和统计学的教学过程中,针对生物信息学的需求,适当增加数学建模、统计方法、动态规划方法、数据挖掘等方面的基础内容,同时,开设实例实践教学,使学生理解和掌握隐马尔科夫链模型,牛顿迭代法、最小二乘法等方法的应用原理和规则;在生物科学专业课程设置上,尤其是实践课程的教学过程中,结合生物信息学涉及的引物设计、序列比对分析、基因及蛋白质结构功能预测等方面开展相应的设计性、综合性、开放性实验项目,使学生了解和掌握基本的生物信息学原理及软件的应用;在计算机科学的教学过程中,应根据生物信息学的需求,开设正则表达式、Perl语言、R语言等课程学习,以及增加Linux和Unix操作系统课程学习,使学生在学习生物信息学前打好坚实的基础。

值得注意的是,生物信息学课程与其他课程的开设时间和顺序需要有一定的探索和评估,对于开设该课程的时间把握是开展多学科实践结合的教学模式的关键因素。过早开设生物信息学则会导致学生在不具备相应学科基础的条件下跨越式的接触生物信息学,无法理解和掌握相关的知识和技能;过晚开设则会使学生学习了相关学科知识和技能后,由于课程衔接不紧,导致在学习生物信息学时出现理解滞后和无法适应的现象。因此,针对不同专业和学科的特点,根据具体情况进行统筹安排,使生物信息学和其他相关学科课程有很好的衔接和过渡,以确保和提高生物信息学的教学质量。

五、结语

生物信息学是现代基因组学时代的开阔者,也是生物科学研究的重要的工具和载体。针对生物信息学的特点,高校生物科学专业课程设置、教学方法、教学模式和教学软硬件等需进行一定的改革,将多学科实践结合的教学模式运用到生物信息学的教学实践中,在提高教学质量的同时将更好的提升学生科研、应用和创新能力。

参考文献:

[1] 郝柏林,张淑誉.生物信息学手册[M].上海:上海科学技术出版社,2002.1-10.

[2]GUYD, NOELE, MIKEA. Using bioinformatics to analyse germplasm collections [J]. Springer Netherlands,2004.39-54.

[3]王春华,谢小保,曾海燕.深圳市空气微生物污染状况监测分析[J].微生物学杂志,2008,28(4):93-97.

[4]张菁晶,冯晶,朱英国.全基因组预测目标基因的新方法及其应用.遗传,2006, 28(10):1299-1305.

[5]周海延.隐马尔科夫过程在生物信息学中的应用.生命科学研究,2002, 6(3):204-210.

第2篇:生物信息学的发展趋势范文

【关键词】 基因组学;教学改革;CAI课件;蛋白质组学

生命科学是21世纪学科发展的主流,人类的医学史证明了仅依靠单一学科,如:细胞学、发育学、肿瘤学、人类遗传学或分子生物学难以完成人类对自身的认识和保护。人类基因组学的产生和人类基因组计划(human genome project, HGP)的完成,使得人类能够对生命现象进行系统和科学地认识,揭示疾病产生的机制以及长寿与衰老等生命现象。本科生通过对基因组科学与人类疾病课程的学习,能够了解什么是基因组科学,其主要研究方法和手段,如何从基因水平认识疾病、诊断疾病和治疗疾病,为今后更深入地在临床上应用这些知识为患者服务或是继续更深入地进行理论研究奠定基础。

1 课程改革的特点

弥补本科生对于生命科学,特别是基因组科学与人类疾病关系的认识,提高学生的科研能力,为将来的研究生阶段的学习打下基础,或是对于走上临床认识疾病、治疗疾病有促进作用。本课程是我校在本科生中新开设的一门选修课,本课程的开设得到了学校有关领导的高度重视,经多次论证和在学生中征求意见,学生的反响强烈,因此可以看出本科生对于本课程有极大的兴趣,期望通过老师的讲授能对于人类疾病从基因水平有全新的认识,对自己 的科研能力有一定的提高。

2 教学研究探索的几个方面

2.1 更新教学内容 课程讲授是当前生命科学中前沿领域的热点问题。主要课程安排如下:前言;人类基因组计划与DNA测序(包括基因组测序的发展、方法、DNA测序的规模化与工业化);cDNA测序和基因表达谱的研究(包括cDNA文库的构建、全长cDNA的克隆、基因表达谱的概念及其在医学应用中的意义);人类基因组DNA序列变异及其分析方法(包括人类基因组序列及其变异、基因组序列变异检测的常用方法及基本原理、突变检测在识别疾病相关基因中的应用);基因治疗(包括基因转移和基因治疗的早期历史、基因治疗的现状、遗传型基因治疗、表遗传型基因治疗、基因治疗的问题与展望);基因工程技术(包括理论依据、基因工程技术的内容—目的基因获取、克隆、表达、基因工程技术在临床医学中的应用现状);生物信息学(包括生物信息学的概念、产生的背景、生物信息学的研究现状与发展趋势、生物信息学在医学领域中的应用);蛋白质组学(包括蛋白质组学的概念及其在生命科学研究中 的意义、国内外相关研究动态、蛋白质组学研究发展展望);生物芯片(生物芯片的原理、种类及在医学领域中的应用);生物安全(包括生物安全的概念及含义、转基因生物的安全性、转基因动物及其产品的安全性、转基因食品安全性、医药生物技术及其产品的生物安全、国内外生物安全法规及管理)等内容。

2.2 本课程将采取理论与实验相结合的教学方法 鼓励学生敢于提出问题,独立思考问题,老师与学生共同参与教学内容。根据学生人数安排一定的动手操作实验的课程[1,2]。

2.3 采用多媒体教学形式,加深学生的理解 一方面,可以加深同学的理解能力;另一方面,对于条件不允许的实验,学生可以通过多媒体的形式了解实验过程[3]。

2.4 将科研的思路、科研的方法融入教学之中,提高学生的科研能力 课堂教学中和课下作业安排一定量的文献检索、文献翻译阅读、科研方法设计、预测实验结果等内容。

2.5 改革考试形式 采取闭卷笔试与课下查文献、答题相结合的形式。

2.6 改革课程用教材 重新更新编写适合本科生参阅并适合当前基因组科学最近发展的教材,并计划出版发行。

3 教学效果的学生评价

听取学生反馈意见分为3种形式。

3.1 采用不记名问卷的形式反馈学生意见 问卷内容包括实验内容的安排、教师授课质量、希望的授课内容方式、感兴趣的实验内容等等。

3.2 建立学生公共信箱 一方面可以将某些授课内容、习题、思考题等通过公共信箱让同学下载,另一方面学生可以将公共信箱作为与老师的互动平台,及时反馈对课程提出的建议和意见,老师定期浏览信箱,及时调整课程安排。

3.3 整学期课程进行中期和结课前安排两次学生课堂讨论 讨论时间20min左右,及时反馈信息,提高理论与实验教学质量。

总之,本科生的基因组科学与人类疾病课程是一门较新的课程,在诸多方面需要进行改革探索,以适应当前生命科学发展的需要并满足学生汲取新知识的需要。

【参考文献】

1 常冰梅,王惠珍,张悦红.医学七年制生物化学教学方法探索.山西医科大学学报(基础医学教育版),2005,(6):37.

第3篇:生物信息学的发展趋势范文

关键词:制药;新技术;发展;分析

中图分类号:X787 文献标识码:A文章编号:1007-9599 (2010) 01-0000-01

生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。

一、当前生物制药技术的发展方向

目前生物制药主要集中在以下几个方向:

1.肿瘤在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达54.7万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂,已有3种化合物进入临床试验。

2.神经退化性疾病 老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌萎缩硬化症,均已进入Ⅲ期临床。美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。

3.自身免疫性疾病 许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这类疾病。

4.冠心病美国有100万人死于冠心病,每年治疗费用高于1170亿美元。今后10年,防治冠心病的药物将是制药工业的重要增长点。Centocor′s Reopro公司应用单克隆抗体治疗冠心病的心绞痛和恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的延生。

基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动物,已逐渐进入产业阶段,用转基因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果表明转基因动、植物将成为未来制药工业的另一个重要发展领域。

二、现代生物制药新技术发展趋势

未来生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。

生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。

除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。

除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾君子的状况,而且对于解决全球性非法贸易问题具有重大影响。

各种新技术的出现有助于新药物的开发。计算机模拟和分子图像处理技术(例如原子力显微镜、质量分光仪和扫描探测显微镜)相结合可以继续提高设计具有特定功能特性的分子的能力,成为药物研究和药物设计的得力工具。药物与使用该药物的生物系统相互作用的模拟在理解药效和药物安全方面会成为越来越有用的工具。例如,美国食品药物管理局(FDA)在药物审批的过程中利用Dennis Noble的虚拟心脏模拟系统了解心脏药物的机理和临床试验观测结果的意义。这种方法到2015年可能会成为心脏等系统临床药物试验的主流方法,而复杂系统(例如大脑)的药物临床试验需要对这些系统的功能和生物学进行更为深入的研究。

药物的研究开发成本目前已经高到难以为继的程度,每种药物投放市场前的平均成本大约为6亿美元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。综合利用遗传图谱、基于表现型的定制药物开发、化学模拟程序和工程程序以及药物试验模拟等技术已经使药物开发从尝试型方法转变为定制型开发,即根据服药群体对药物反应的深入了解会设计、试验和使用新的药物。这种方法还可以挽救过去在临床试验中被少数患者排斥但有可能被多数患者接受的药物。这种方法可以改善成功率、降低试验成本、为适用范围较窄的药物开辟新的市场、使药物更加适合适用对症群体的需要。如果这种技术趋于成熟,可以对制药工业和健康保险业产生重大影响。

第4篇:生物信息学的发展趋势范文

关键词 分子肿瘤学;研究型教学;教学改革

中图分类号:G642.0 文献标识码:B 文章编号:1671-489X(2013)12-0081-02

近年来,恶性肿瘤已成为严重威胁国民健康的重要疾病之一。在全球范围内,每年新发癌症患者约1000多万,死亡700多万。我国每年新发病例也逐步提升,如何有效防治恶性肿瘤已成为医学界面临的时代难题[1]。世界各国政府纷纷大力投入,积极探索新技术、新方法,使肿瘤学研究得到飞速发展。

分子肿瘤学是生物学与医学的交叉学科,是将分子生物学技术应用于肿瘤相关基因及其表达产物的研究中,进而阐明肿瘤的发生、发展及其本质,为肿瘤的预防、诊断和治疗提供新措施。北京工业大学生命科学与生物工程学院以抗肿瘤药物的研发为学科发展方向,但随着现代生物技术发展的日新月异,原有的一些肿瘤学基础知识已不能完全满足当前科研的发展需求。为适应生物前沿技术发展趋势,有力地推动生物技术向多专业渗透,促进边缘交叉学科领域的发展,学院首次为研究生开设分子肿瘤学这门课程,主要从分子水平上深入阐述肿瘤学研究的新进展,并结合学院研究生培养目标和课程建设的要求,对该课程教学内容、教学方法以及考核方式等方面进行尝试与探索。这一举措必将促进学院在生物领域和医学领域的科学研究和学科建设。

1 以肿瘤基础研究为背景确立课程教学内容

随着我国医学模式的转变以及全球性卫生重点的转移,肿瘤的防治研究成为科教兴国战略的重要组成部分,不论是肿瘤发生发展的分子机制,还是临床肿瘤诊断治疗,都取得长足进步[1]。

北京工业大学生命科学与生物工程学院生物医学工程专业以探究肿瘤发生发展机制、抗肿瘤药物开发以及基因治疗等为主要研究方向,与医学肿瘤专业相比,在定位和针对性方面都有较为鲜明的特色。学院研究生大多数具有生物学等工科背景,掌握分子生物学、细胞生物学、免疫学及病毒学等丰富的理论知识,在基础研究方面具有优势,但缺少一定的临床肿瘤学知识。因此,分子肿瘤学这门课程的开设不同于医学院传统的临床肿瘤学课程,而是着重以肿瘤基础研究为背景,拓宽研究领域,深化研究层次。授课内容涉及肿瘤发生发展分子机制及其基因治疗、分子药靶、肿瘤表观遗传学等相关领域,以及肿瘤干细胞、miRNA、RNA干扰、蛋白质组学和生物信息学等前沿领域,从基因层面探讨肿瘤发生机制和有效的治疗措施。在此基础上,进一步发现新的肿瘤标志物,用于肿瘤的早期预测与防治。

2 以研究型教学为主导确立课程教学方法

研究生的课程教学处于从本科时期的知识学习型阶段向课题研究型阶段过渡的重要时期,是研究生培养过程中的一个基础环节。因此,这就决定了研究生课程教学不应仅仅只是本科式的知识传授的延续,而应是知识传授与科研能力培养并重。但当前高校教学中仍以传统的灌输式教学方法为主,师生交流与互动少,只适于简单的传授知识,不利于培养研究生自主学习和科研创新能力。

2.1 转变观念意识,优化课程设置

为了更好地增强教学效果,培养学生的综合能力,在开设分子肿瘤学课程之初就积极转换教学观念,以研究型教学为主导,结合课程的基础性与前沿性,优化课程设置,确立新的教学模式[2]。根据学校的研究生培养目标,制定出一套适应研究生教育的教学大纲,既满足研究生的知识需求,又能反应出学科水平和发展趋势。在整个教学过程中,以学生为中心,教师发挥组织和引导作用,根据课程具体内容、学生知识背景及理解能力等因素,充分激发学生的主动性与积极性。

在课程设置中,没有采用固定的教材形式,而是根据学生背景知识的差异,结合当前生物前沿技术在肿瘤学领域的研究趋势,采用启发式、讲座研讨式的教学方式,有目的性地开展授课。课程内容主要分为三部分:

第一部分着重介绍一些肿瘤学相关基本知识,包括细胞生物学如细胞结构与功能、分子生物学如肿瘤的分子标志物等基础知识,既照顾了那些基础薄弱的学生,同时给基础好的学生进行了复习;

第二部分重点从细胞周期与凋亡、细胞信号转导、血管生成、侵袭转移、耐药性等方面阐述肿瘤的癌变机制和肿瘤恶性演进机制;

第三部分介绍肿瘤的分子诊断、预防与治疗等内容与研究进展。

在授课中,从激发学生的创新思维目的出发,鼓励研究生参与课堂讨论,并结合学院一些学术前沿讲座,通过学术报告和学术交流,使学生更广泛拓宽学术视野,提高综合科研水平。

2.2 研究型教学在课堂中的实践

研究型教学是在教师的启发指导下,以学生独立自主学习和合作讨论为前提,以教学中的难点重点内容、有争议的学术问题或学科前沿问题为研究内容,通过学生查阅资料、独立钻研和认真思考展开课堂讨论和交流,使不同的学术观点相互碰撞、交流与补充[3]。

分子肿瘤学属于肿瘤学领域的前沿学科,知识更新快,教材不能涵盖最新的研究内容,因此在授课过程中不能以单一的教材作为参考资料。在教学之前提前做好研究性学习,从同行认可度高的期刊中查阅相关领域的最新研究文献,不断更新知识,在课堂上根据授课内容适时引入这些新技术新方法,既丰富了教学内容,又调动了学生的科研兴趣。

分子生物学、细胞生物学是肿瘤研究的基础,教学内容涵盖的知识点多、涉及面广,新技术与新方法的出现日新月异。如在给学生介绍细胞信号转导这章内容时,课前根据学生研究兴趣与方向设定一些知识点与问题,让学生课后分组查阅相关文献,准备PPT在课堂交流学习。如选择一个信号通路,查阅该通路包括的知识点,如蛋白种类、特点及调控功能,思考该通路在肿瘤生成中发挥怎样的机制?是否有其他小分子如miRNA的参与等?学生课后准备充分,结合自己今后的研究方向,积极探索与发现问题,在课堂交流中活跃,既丰富了课堂教学内容,又促进了对新知识的学习。

此外,还注重将本学院的研究成果融入教学过程中,如在介绍病毒与肿瘤这章内容时,为学生介绍学院科研小组对艾滋病、宫颈癌、食管癌等肿瘤病的研究进展与研究成果;在讲细胞生物学时,结合本实验室在干细胞领域的研究思路与研究进展,为学生介绍干细胞包括肿瘤干细胞、IPS细胞的特征及其在临床中的应用前景。这样让学生更全面了解本学院的研究现状与发展趋势,为今后进实验室开展研究工作奠定基础。

3 完善课程考核方式

课程考核是课程质量的重要内容,以多种形式考核指标来完善考核方式。在分子肿瘤学的课堂教学中,主要从课堂出勤、论文撰写、专题讨论三方面加以评估。其中专题讨论和论文撰写分别占总成绩的70%。在研究生的培养中,文献查阅是研究生从事科学研究非常重要的一个环节,学生可以在查阅、积累、梳理资料中消化、理解知识,并与相关知识融会贯通,运用各种知识解决实际问题。因此,撰写某一个感兴趣领域的研究进展论文是考核的重要内容之一。论文统一按照期刊发表的格式来撰写,考评内容包括论文格式的规范性、选题的新颖性、文献的代表性等。

专题讨论部分的考评主要通过学生对文献的理解程度,包括能否把握文献的核心内容,能否提出自己对文献研究内容的完善建议。同时,学生学术交流水平也纳入成绩考核部分,包括多媒体课件的制作、学术表述的流畅性和学术交流过程的应对能力。这样既可以考核学生查阅文献的能力,同时可以锻炼撰写论文的能力。

4 结束语

肿瘤的分子生物学研究一直是生命科学和医学研究的热点,尤其是癌基因的研究。随着科学技术的发展,生物芯片、RNA技术、表观基因组学及生物信息学等分析方法逐渐成为肿瘤研究的一种高效手段,使研究者更深入地了解疾病发生的分子机制,掌握癌基因特异性的分布规律,揭示基因信号内在的生物学意义,有力地促进肿瘤学的发展,为肿瘤的临床治疗奠定基础。

北京工业大学生命科学与生物工程学院专门为生物技术专业研究生开设分子肿瘤学这门课程,旨在为工科院校培养侧重于肿瘤学基础研究的复合专业型人才。在教学中转变教学观念,引入研究型教学模式,把研究的意识、思维、观点与方法融入教学中,强调对知识学习的自主性与探究性,注重学习过程中研究生的实践与体验[4]。在课堂教学中根据课程性质、教学内容和学生特点,创造性地进行教学设计,激发学生的科研兴趣,有利于全面培养研究生的综合创新能力。

参考文献

[1]陈正堂,等.肿瘤学专业现状与发展设想[J].医学杂志,2011,36(4):315-318.

[2]王文静.中国教学模式改革的实践探索:“学为导向”综合型课堂教学模式[J].北京师范大学学报:社会科学版,2012(1):

18-24.

第5篇:生物信息学的发展趋势范文

生物化学工程(又叫生化工程或生物化工)是化学工程与生物技术相结合的产物。生物化工是生物技术的重要分支。与传统化学工业相比,生物化工有某些突出特点:①主要以可再生资源作原料;②反应条件温和,多为常温、常压、能耗低、选择性好、效率高的生产过程;③环境污染较少;④投资较小;⑤能生产目前不能生产的或用化学法生产较困难的性能优异的产品。由于这些特点,生物化工已成为化工领域重点发展的行业。

1.世界生物化工行业的现状

生物化工发展至今已经历了半个多世纪,最早主要是生产抗生素;随后,是为氨基酸发酵、舀体激素的生物转化、维生素的生物法生产、单细胞蛋白生产及淀粉糖生产等工业化服务。自20世纪80年代起,随着现代生物技术的兴起,生物化工又利用重组微生物、动植物细胞大规模培养等手段生产药用多肽、蛋白、疫苗、干扰素等。而且,生物化工的应用已涉及到人民生活的方方面面,包括农业生产、化轻原料生产、医药卫生、食品、环境保护、资源和能源的开发等各领域。随着生物化工上游技术——生物工程技术的进步以及化学工程、信息技术(IT)和生物信息学(bioinformatics)等学科技术的发展,生物化工将迎来又一个崭新的发展时期。

生物化工行业经过50多年的发展,已形成了一个完整的工业体系,整个行业也出现了一些新的发展态势。下面简要描述生物化工行业的现状。

1.1工业结构

由于生物化工涉及面广,涉及的行业多,所以从事生物化工的企业较多。据报道,90年代中期,美国生物化工企业有:000多家,西欧有580多家,日本有300多家。近年来,虽然由于行业竞争日趋激烈,生物化工企业有较大幅度减少,但与生命科学(主要指医药和农业生化技术)诸侯割据的局面相比,生物化工行业依然是百花齐放,百家争鸣。既有象诺华、捷利康等从事生命科学的世界性大公司,也有象DSM、诺和诺德等大型的精细化工公司,当然也有在某一方面有专长的小公司如Altus等。而且,由于世界大公司正把注意力向生命科学部分转移,生物化工行业百花齐放的局面在很长一段时间内不会有什么改变。

1.2产品结构

传统的生物化工行业主要是指抗生素(如青霉素等)、食品(如酒精、味精等)等行业,而在目前,它已几乎渗透到人民生活的各方面如医药、保健、农业、环境、能源、材料等。同时,生物化工产品也得到了极大的拓展:医药方面有各种新型抗生素、干扰素、胰岛素、生长激素、各种生长因子、疫苗等;氨基酸和多肽方面有赖氨酸、天冬氨酸、丙氨酸、苏氨酸、脯氨酸等以及各种多肽;酶制剂有160多种,主要有糖化酶、淀粉酶、蛋白酶、脂肪酶、纤维素酶、青霉素酶、过氧化氢酶等;生物农药有Bt、春日霉素、多氧霉素、井岗霉素等;有机酸有柠檬酸、乳酸、苹果酸、衣康酸、延胡索酸、已二酸、脂肪酸、卜酮戊二酸、l亚麻酸、透明质酸等。还有微生物法1,3.丙二醇、丙烯酞胺等。

目前,全球生物化工年销售额在400亿美元左右,每年约以7%~8%的速率增长。从产品结构来看,生物化工领域生产规模范围极广,市场年需求量仅为千克级的干扰素、促红细胞生长素等昂贵产品(价格可达数万美元/g)与年需求量逾万吨的抗生素、酶、食品与饲料添加剂、日用与农业生化制品等低价位产品(部分价格不到:美元/g)几乎平分秋色。高价位的产品市场份额在50%~60%,低价位的产品市场份额在40%~50%。而且,根据近年来生物化工的发展趋势及人们对医药卫生的重视来看,高价位产品的发展速率高于低价位产品。

1.3技术水平

生物化工经过80年代以后的蓬勃发展,不仅整个行业技术水平有大幅度提高,而且许多新技术也得到广泛应用。

1.3.1发酵工程技术已见成效

据估计,全球发酵产品的市场有120~130亿美元,其中抗生素占46%,氨基酸占16.3%,有机酸占13.2%,酶占10%,其它占14.5%。发酵产品市场的增大与发酵技术的进步分不开。现代生物技术的进展推动了发酵工业的发展,发酵工业的收率和纯度都比过去有了极大的提高。目前世界最大的串联发酵装置已达75m\许多公司对发酵工艺进行了调整,从而降低了生产成本。如ADM(ArcherDanie1sMid1and)和Cargill公司在20世纪90年代初对其发酵装置进行改造,将以碳水化合物为原料的生产工艺改为以玉米粉为原料,从而降低了生产成本,ADM公司生产的赖氨酸成本比原先降低了一半。

1.3.2酶工程技术有了长足的进步

酶工程技术包括酶源开发、酶制剂生产、酶分离提纯和固定化技术、酶反应器与酶的应用。目前世界酶制剂从酶源开发到酶的应用都已进入了良性发展阶段,各阶段生产企业和用户关系密切,合作广泛。据报道,1998年全球工业酶制剂的销售额为13亿美元,预计到2010年将增长到30亿美元,每年以6.5%的速率增长。其中食用酶占40%,洗涤用酶占33%,其它(主要是纺织、造纸和饲料等用酶)占27%。

1.3.3分离与纯化技术也有很大进步

影响生化产品价格的因素,首当其冲的是分离与纯化过程,其费用通常占生产成本的50%~70%,有的甚至高达90%。分离步骤多、耗时长,往往成为制约生产的“瓶颈”。寻求经济适用的分离纯化技术,已成为生物化工领域的热点。已大规模应用的分离纯化技术有:双水相革取、新型电泳分离、大规模制备色谱、膜分离等。

1.3.4上游技术广泛应用于下游生产

利用基因工程技术,不但成倍地提高了酶的活力,而且还可以将生物酶基因克隆到微生物中,构建基因菌产生酶。利用基因工程,使多种淀粉酶、蛋白酶、纤维素酶、氨基酸合成途径的关键酶得到改造、克隆,使酶的催化活性、稳定性得到提高,氨基酸合成的代谢流得以拓宽,产量提高。随着基因重组技术的发展,被称为第二代基因工程的蛋白质工程发展迅速,显示出巨大潜力和光辉前景。利用蛋白质工程,将可以生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,从而生产出新型生化产品。

1.3.5新技术在生物化工中也得到了极大的应用

比如,在超临界液体状态下进行酶反应,从而大大降低酶反应过程的传质阻力,提高酶反应速率。超临界C02无毒、不可燃、化学情性、易与反应底物分离。利用超临界CO2取代有机溶剂进行酶反应,具有极大的发展潜力。又比如,微胶羹技术已被广泛用于动物细胞的大规模培养、细胞和酶的固定化以及蛋白质等物质的分离方面。

2.世界生物化工行业的发展趋势

2.1工业结构

行业与行业间的划分将日趋模糊,企业间的合作将加大。目前,许多从事医药、农业、环境、能源等方面生产的企业,正在从事生物化工生产。特别是某些从事传统化工行业的生产厂家,也纷纷涉足生物化工领域。如杜邦公司,长期以来主要从事有机化工和聚合材料的生产,现在正加大生物化工的开发力度,已开发成功了生物法生产1,3-丙二醇工艺,并正在开发用改性大肠杆菌生产己二酸工艺。DSM公司以前主要从事抗菌素方面的生产,现也加大了生物化工的投资力度。

由于生物化工涉及面广,许多生化公司都有自己的专长,它们之间为了商业利益的合作也非常活跃。此外,随着从事传统行业的生产厂家的加入,由于技术与生产方面的原因,它们与从事生物化工开发与生产的企业合作也很频繁。所有这一切,都使生物化工行业的合作越来越广泛。如杜邦公司与杰宁科乐公司合作开发用生物法生产1,)丙二醇,进一步生产PTT树脂。荷兰的Purac公司与美国Cagill公司合资建设年产3.4万tL。乳酸装置,并计划进一步发展到6.8万V入DSM公司与美国Maxygen公司签定了三年的研究合同,以利用Maxygen的DNA重排和分子培养技术,开发在7一ADCA和其它青霉素生产中使用的酶和菌种。2.2产品结构

生物化工产品正向专业化、高科技含量、高附加值方向发展。传统的低价位产品受到冷落,而高价位产品如生化药物、保健品、生化催化剂等则备受青睐。许多公司为了追求较高利润,都将低附加值的产品剥离。如日本武田药品工业公司不再生产味精,转而生产其它高附加值的调味品如肌甘酸二钠(IMP)和鸟甘酸二钠(GwtP)。另外,生物化工将涉足它以前很少涉足的领域如高分子材料和表面活性剂等。

生化药物由于附加值高而成为今后生物化工领域发展的重点。1997年生化药物市场销售额达130亿美元,其中细胞分裂素80亿美元,激素30亿美元,其它20亿美元;就具体药物而论,促红细胞生长素35亿美元,人胰岛素18亿美元,粒性白细胞克隆刺激因子16亿美元,人生长激素15亿美元,小干扰素11亿美元。预计今后其市场销售额还将以8%的速率增长。

在氨基酸方面,虽然用于药物合成氨基酸的量相对较小,但其发展潜力很大。据报道,500种主要药物中,有18%含有氨基酸或其衍生物的合成。在药物合成中,使用最广泛的是L。脯氨酸、r苯甘氨酸和r对羟基苯甘氨酸。L。脯氨酸用于血管紧张素转化酶(ACE)的合成,匹苯甘氨酸和r对羟基苯甘氨酸用于抗生素的合成。另外,多肽也是今后的发展重点之一。多肽是指有2以上氨基酸用肽键组成的化合物,在临床上使用非常广泛,主要用于治疗癌症、HIV病毒和兔疫系统功能减退、对传统抗生素产生抗体的感染以及疫苗等。全球合成多肽原药的产量在100kg左右,但销售额达2.5亿~3亿美元,而做成制剂的销售额则达25亿~30亿美元。多肽原药需求量的年增长率在10%以上。

碳水化合物方面,用于临床的碳水化合物受到人们越来越多的关注。但是,用于临床的碳水化合物结构复杂,如一对单糖,其不同的化学键就多达22种。因此,用化学法合成复杂的碳水化合物比较困难,难以实现工业化,而用酶法合成则是一条切实可行的途径。

作为生化催化剂的酶,也将是今后发展的重点。1997年,生化用催化剂销售额约1.3亿美元,在过去的3~5年间,每年增长速率在8%~9%,预计在未来的3~5年间,将以同样速度增长。生化催化剂主要用于手性药物的合成。当前,手性药物已成为国际新药研究与开发的新方向之一。

1997年手性药物制剂世界市场的销售额为879亿美元,占药品市场的28.3%,到2000年将达到900亿美元。在未来的25年内,约有一半的手性药物要通过生化催化合成,因此,生化催化剂无论从需求量和需求种类来看,都具有很大的发展潜力。

生化表面活性剂由于具有无毒、生物降解性好等优点,今后可能成为表面活性剂的升级换代产品,但目前还处于探索阶段。

生物化工在高分子材料、特殊化学品、生物晶片、环保等方面也将有极大的发展潜力。

2.3技术水平

不断提高菌株活力、发酵水平、生化反应过程、分离纯化水平,依然是生物化工面临的课题。

在菌种开发方面,由于从20世纪70年代以来从自然界中筛选菌种以获得新的代谢产物的机会明显减少,人们便考虑利用已知菌种经适当改变其代谢特性后生产新的产品。如日本协和发酵公司已成功地把生产谷氨酸的菌种改为生产色氨酸。

在生化反应器方面,反应器放大一直是一个老大难的问题。因此,利用计算机技术对整个生化反应过程进行数字化处理,从而优化反应过程,是今后的发展方向之一。

在分离纯化方面,亲和层析受到广泛重视,并有人研制了一种综合专家系统软件包,可在几分钟内告知对方被分离物系的分离方法和顺序,以便根据产品所需进行取舍。

另外,在生化过程的在线检测和控制方面,利用生物传感器和计算机监控,依然是今后的发展方向。

在酶催化反应中将发展有机溶剂中的催化反应。

生物上游技术的发展,将对生物化工产生深远影响。人们对从病毒、细菌、植物、动物到人类基因组顺序测定工作十分重视,并在此基础上形成了基因许多产品一哄而上,盲目上马,遍地开花,最终形成恶性竞争,许多企业破产倒闭。在竞争中生存下来的企业,也是元气大伤,难以进一步组织技术改造。如仅江苏省停产的发酵生产线就多达上百条。另外,行业内企业间的生产水平相差悬殊,企业技术装备水平达到20世纪80年代以后国际先进水平的仅占20%~30%,多数处于20世纪60~70年代水平。

二是产品结构不合理,品种单一,低档次产品重复生产,不能适应需求。在我国高档的医药生化产品如激素、生长因子、干扰素、药用多肽等,有的产量很小,有的没有生产,因此每年都需进口。

三是在生产技术上,工艺、设备不配套,上下游技术不配套,产物的收得率低。我国虽然某些产品如柠檬酸、乳酸等发酵水平较高,但大多数产品的收率都低于国外,酶制剂的活力也明显低于国外,生化反应器和分离纯化技术更是落后国外15~20年。每年都要花费大量资金从国外进口生物反应器、细胞破碎机、分离纯化设备及分离介质、生物传感器和计算机监控设备。

四是有些产品投入产出比达15/=以上,造成严重的资源浪费和环境污染。

五是基础研究薄弱,技术创新能力不强,企业的技术开发、技术吸收能力差,生产发展多数依靠传统的夕蜒型、粗放型扩大投资的增长模式,效益低、市场竞争力低。

3.2建议针对我国生物化工行业存在的问题,笔者有以下建议:

3.2.1扩大经济规模,提高竞争力要鼓励建设大型的生物化工企业集团公司,使之集科研、开发、生产、销售干一体。尤其要培育一批科技创新型企业。同时,也要鼓励在某些方面有一定特色的小型技术创新型生化公司的发展,并淘汰一批生产规模小、生产技术落后、没有市场竞争力的企业,从整体上优化我国生物化工的产业结构。

3.2.2调整产品结构要发展高档产品,如高档医药生化产品、功能性食品及添加剂(主要有低热值、低胆固醇、低脂肪、提高免疫功能、抗炎、抗癌等产品)、生化催化剂等。另外,也应发展众多精细化工产品及用化学法无法生产或很难生产的产品,如微生物多糖、生物色素、工业酶制剂、甜味剂、表面活性剂、高分子材料等。

3.2.3节约有限资源,强化环境保护在生化生产组学(genomics)。近年来又在信息学(informatics)的基础上建立了生物信息学(bioinformatics)。信息学的内容包括信息科学十生物技术十生物工程十生物动力学等的综合信息系统。可以预见,基因组学和生物信息学在生物化工中应用的商业前景极为可观。

另外,其它行业的新技术如分子蒸馏技术、组合化学(combinatoricalchemistry)等,也将在生物化工中得到应用。

3.我国生物化工的发层现状及建议

3.1发展现状

我国生物化工行业经过长期发展,已有一定基础。特别是改革开放以后,生物化工的发展进入了一个崭新的阶段。目前生物化工产品也涉及医药、保健、农药、食品与饲料、有机酸等各个方面。

在医药方面,抗生素得到迅猛发展61998年我国抗生素的产量达到33486h青霉素的产量居世界首位。其它生化药物中,初步形成产业化规模的有干扰素、白细胞介素。2、乙型肝炎工程疫苗。

在农药方面,生物农药品种达12种,主要有苏云金杆菌、井岗霉素、赤霉素等。其中,井岗霉素的产量居世界第一位。

在食品与饲料方面,作为三大发酵制品的味精、柠檬酸、酶制剂的产量也有很大的增加/1998年味精产量从1990年的22.3万、增加到56.4万一柠檬酸产量从1990年的6.13万、增加到56.4万一酶制剂从1990年的8.5万t增加到24万t。酵母及淀粉糖的产量也有明显增加。我国的味精生产和消费居世界第一,柠檬酸的生产和出口也居世界第一。另外,1998年乳酸的产量在1.5万t左右,赖氨酸的产量在2万t左右,卜苹果酸的产量在6000t。

在有机酸方面,衣康酸的产量达5000乙我国开发的生物法长链二元酸工艺居世界领先地位,目前生产能力达500Va以上,并有数家企业有建设长链二元酸生产装置的意向。

在保健品方面,我国已能用生物法生产多种氨基酸、维生素和核酸等。另外,我国生物法丙烯酞胺的生产能力达到2万V山与日本同处于世界领先地位。

但是与发达国家相比,我国生物化工行业存在着许多问题:

一是我国的生物化工产业主要以医药、轻工、食品业为主。部分企业对生物化工产品大都是精细化工产品这一点了解不够,加之行业规范也不够,导致过程中,应选择合适的原料,以降低成本与消耗,并加强废物处理,减少环境污染。

3.2.4提高生产技术水平,特别是下游技术水平因为我国生物技术上游技术水平与国外相差仅3~5年,而下游技术水平则比国外相差15年以上,改造传统发酵产品生产技术,不断提高发酵法产品的生产技术水平,开发生物反应器,提高我国生物化工产品分离和提纯技术,大规模开发生物化工装备等应首先提上议事日程。另外,还应积极采用微生物法代替化学法,开发基础化工新产品的工业化生产技术。

3.2.5加强产学研结合,注重上下游结合国内生物化工技术力量分散,为了做到优势互补,应加强产学研结合。另外在生物化工生产过程中遇到的很多问题,都是由于上、下游结合不够紧密而影响技术经济指标。因此,在人力和财力的投入上,应考虑上下游结合,以加快生物化工产业的发展。

第6篇:生物信息学的发展趋势范文

主题词:生物;制药技术;思考

中图分类号:TU984 文献标识码:A 文章编号:

生物技术药物(biotech drugs)或称生物药物(biopharmaceutics)是集生物学、医学、药学的先进技术为一体,以组合化学、药学基因(功能抗原学、生物信息学等高技术为依托,以分子遗传学、分子生物、生物物理等基础学科的突破为后盾形成的产业。

1 生物制药

目前生物制药主要集中在以下几个方向:

1.1 肿瘤 在全世界肿瘤死亡率居首位,美国每年诊断为肿瘤的患者为100万,死于肿瘤者达54.7万。用于肿瘤的治疗费用1020亿美元。肿瘤是多机制的复杂疾病,目前仍用早期诊断、放疗、化疗等综合手段治疗。今后10年抗肿瘤生物药物会急剧增加。如应用基因工程抗体抑制肿瘤,应用导向IL-2受体的融合毒素治疗CTCL肿瘤,应用基因治疗法治疗肿瘤(如应用γ-干扰素基因治疗骨髓瘤)。基质金属蛋白酶抑制剂(TNMPs)可抑制肿瘤血管生长,阻止肿瘤生长与转移。这类抑制剂有可能成为广谱抗肿瘤治疗剂,已有3种化合物进入临床试验。

1.2 神经退化性疾病 老年痴呆症、帕金森氏病、脑中风及脊椎外伤的生物技术药物治疗,胰岛素生长因子rhIGF-1已进入Ⅲ期临床。神经生长因子(NGF)和BDNF(脑源神经营养因子)用于治疗末稍神经炎,肌萎缩硬化症,均已进入Ⅲ期临床。美国每年有中风患者60万,死于中风的人数达15万。中风症的有效防治药物不多,尤其是可治疗不可逆脑损伤的药物更少,Cerestal已证明对中风患者的脑力能有明显改善和稳定作用,现已进入Ⅲ期临床。Genentech的溶栓活性酶(Activase重组tPA)用于中风患者治疗,可以消除症状30%。

1.3 自身免疫性疾病 许多炎症由自身免疫缺陷引起,如哮喘、风湿性关节炎、多发性硬化症、红斑狼疮等。风湿性关节炎患者多于4000万,每年医疗费达上千亿美元,一些制药公司正在积极攻克这类疾病。

1.4 冠心病 美国有100万人死于冠心病,每年治疗费用高于1 170亿美元。今后10年,防治冠心病的药物将是制药工业的重要增长点。Centocor′s Reopro公司应用单克隆抗体治疗冠心病的心绞痛和恢复心脏功能取得成功,这标志着一种新型冠心病治疗药物的延生。

基因组科学的建立与基因操作技术的日益成熟,使基因治疗与基因测序技术的商业化成为可能,正在达到未来治疗学的新高度。转基因技术用于构造转基因植物和转基因动物,已逐渐进入产业阶段,用转基因绵羊生产蛋白酶抑制剂ATT,用于治疗肺气肿和囊性纤维变性,已进入Ⅱ,Ⅲ期临床。大量的研究成果表明转基因动、植物将成为未来制药工业的另一个重要发展领域。

2 制药新技术分析

未来生物技术将对当代重大疾病治疗剂创造更多的有效药物,并在所有前沿性的医学领域形成新领域。 生物学的革命不仅依赖于生物科学和生物技术的自身发展,而且依赖于很多相关领域的技术走向,例如微机电系统、材料科学、图像处理、传感器和信息技术等。尽管生物技术的高速发展使人们难以作出准确的预测,但是基因组图谱、克隆技术、遗传修改技术、生物医学工程、疾病疗法和药物开发方面的进展正在加快。

除了遗传学之外,生物技术还可以继续改进预防和治疗疾病的疗法。这些新疗法可以封锁病原体进入人体并进行传播的能力,使病原体变得更加脆弱并且使人的免疫功能对新的病原体作出反应。这些方法可以克服病原体对抗生素的耐受性越来越强的不良趋势,对感染形成新的攻势。

除了解决传统的细菌和病毒问题之外,人们正在开发解决化学不平衡和化学成分积累的新疗法。例如,正在开发之中的抗体可以攻击体内的可卡因,将来可以用于治疗成瘾问题。这种方法不仅有助于改善瘾君子的状况,而且对于解决全球性非法贸易问题具有重大影响。

各种新技术的出现有助于新药物的开发。计算机模拟和分子图像处理技术(例如原子力显微镜、质量分光仪和扫描探测显微镜)相结合可以继续提高设计具有特定功能特性的分子的能力,成为药物研究和药物设计的得力工具。药物与使用该药物的生物系统相互作用的模拟在理解药效和药物安全方面会成为越来越有用的工具。例如,美国食品药物管理局(FDA)在药物审批的过程中利用Dennis Noble的虚拟心脏模拟系统了解心脏药物的机理和临床试验观测结果的意义。这种方法到2015年可能会成为心脏等系统临床药物试验的主流方法,而复杂系统(例如大脑)的药物临床试验需要对这些系统的功能和生物学进行更为深入的研究。

药物的研究开发成本目前已经高到难以为继的程度,每种药物投放市场前的平均成本大约为6亿美元。这样高的成本会迫使医药工业对技术的进步进行巨大的投资,以增强医药工业的长期生存能力。综合利用遗传图谱、基于表现型的定制药物开发、化学模拟程序和工程程序以及药物试验模拟等技术已经使药物开发从尝试型方法转变为定制型开发,即根据服药群体对药物反应的深入了解会设计、试验和使用新的药物。这种方法还可以挽救过去在临床试验中被少数患者排斥但有可能被多数患者接受的药物。这种方法可以改善成功率、降低试验成本、为适用范围较窄的药物开辟新的市场、使药物更加适合适用对症群体的需要。如果这种技术趋于成熟,可以对制药工业和健康保险业产生重大影响。

3 结束语

综合多学科的努力,通过新技术的创立可以大大拓宽发明新药的空间,增加发明新药的机遇与速度。因为这些手段可以寻找快速鉴定药物作用的靶,更有效地发现更多新的先导物化学实体,从而为发明新药提供更加广阔的前景。

参考文献:

[1] 张蕊,田澎. 生物制药产业现状分析及我国企业的发展战略[J] 工业工程与管理, 2011,(05) .

第7篇:生物信息学的发展趋势范文

关键词:微生物学实验课程;多学科融合;教学改革;教学质量;创新能力

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)47-0108-03

微生物学是生物学和生命科学领域中极为重要的基础性学科,同时也是生物工程和生物技术专业的核心课程。由微生物学的发展史不难看出,该学科最重要的特征就是具有实验性和实践性,同时具有很强的应用性。微生物学实验教学既是对微生物基本理论的深化和巩固,又是培养学生观察能力、动手能力、分析问题和解决问题能力的最有效途径,更是培养学生创新能力、科学思维和提高对本专业学习兴趣的重要手段。因此,在开设微生物学课程时,微生物学实验也是既重要又十分必要的课程。我校的生物工程、酿酒专业和生物技术三门本科专业尽管分属于工科、理科性质,但均侧重于培养本领域具有国际视野、创新思维和解决实际问题的高素质人才。特别是我校“国家生命科学与技术人才培养基地”的人才培养目标明确定位为“培养适合社会发展的具有创新精神、实践能力和创业能力的新世纪高层次工业生物技术人才”。同时,微生物学是多个相关学科的联系纽带,特别是生物化学、分子生物学、细胞生物学和发酵工艺学等本专业的学科平台课程和专业核心课程,均依赖于微生物学科的支撑。同样,微生物学和微生物实验课程的知识体系、基本理论和前沿进展又离不开其他学科的支撑,因此,在学科交叉与知识融合的背景下,在本科课程设置和教学模式改革中,我们特别注重微生物学实验教学的教学模式改革和实践效果。

一、微生物学实验课程的传统教学模式及不足

微生物学实验是微生物学的重要组成部分,也是微生物学教学的重要环节。从培养人才目标上来看,微生物学实践教学与微生物理论教学具有同等重要的地位,甚至更高。就我校生物工程专业,微生物学理论课程设定40学时,而实验课程设定48学时,这也从一定程度上反映了实验教学的重要性。传统的实验教学虽有区别,但总的来看多以单元操作实验、结果验证实验为模块进行课程设置,其出发点是以掌握基本实验技能,加深基本概念和理论为目标的。就其出发点来看,传统的实验教学设置课程体系是发挥了良好的效果。但是,对照培养高素质、宽口径和创新型生物工程人才的培养目标来看,传统的实验教学仍有一些不足之处,概况起来有以下几点。一是在主观认知上,认为实验课的目的是验证课堂讲授的理论内容,常采用实验课堂上教师单纯讲解示范,学生一味跟踪模仿,造成了学生被动接受知识的效果。长此以往,实验教学形式僵化,学生上课兴趣降低,导致最终的教学效果很难达到预期目标。二是实验教学内容的设计上呈现点状式、碎片化特征,验证实验过多,综合型、设计型实验环节较少。这种实验内容的设计优点是强调对基础实验技术的掌握,但是很难充分激发学生的创新思维和探索未知世界的兴趣。三是实验安排上采取每周有实验,理论课和实验课并行的特征,导致一些连续性的实验难以及时完成。这种实验课程学时的安排布局看似合理,实则不符合微生物学实验的基本规律,因为有些微生物学实验需要半天、一天甚至更长时间才能完成,而零碎的时间打断了实验的节奏,导致不可预知的实验结果,更为重要的是没有给学生充分的时间去思考、分析和吸收消化所学知识,教学效果肯定大打折扣。为此,我们在吸收、总结传统实验教学精髓的基础上,根据工科专业人才的培养特征,探讨和尝试了一些微生物学实验课教学的新举措。

二、微生物实验教学改革的探索与实践

1.微生物实验课程的体系改革。传统的微生物学实验主要包含无菌技术、染色技术、纯培养技术、显微技术这四大技术。如前所述,一方面,这些实验技术是基本的微生物学实验操作,随着生命科学特别是微生物学科的快速发展,仅仅开设这样实验内容是跟不上学科发展的步伐的,因此微生物实验教学体系结构也要有相应的改革和创新,必须体现新内容、新技术、新方法和新进展。另一方面,实验课程通常将这些实验技术分散在相对独立的实验单元中,各单元之间缺乏方法和内容的有机结合,形成割裂的教学效果,难以有效地培养学生完整的知识体系,融会贯通的理解能力。这种传统的教学形式不利于创新型人才的培养。因此,我们在课程实验教学环节,重构课程实验的教学内容和课程体系,增加综合和设计型实验比重,进行基本技能和创新能力的交叉递进式培养。

首先,通过单元操作技能训练,培养学生的基本实验技能(即染色技术、显微技术、无菌技术、纯培养技术)和动手能力。本部分内容主要包括细菌、放线菌、酵母和霉菌的形态学特征;微生物培养基的配制和接种;微生物培养基的配制与灭菌等。单元操作训练是认识微生物、了解微生物的入门技能,也是开展微生物学研究和微生物工程必备基本技能。在开展单元实验过程中,为提高学生的积极性和实验兴趣,首先结合教学录像进行讲解,在实验的关键点设置思考题,在观看录像过程中,老师随时就问题和学生互动,让学生对实验原理不仅要知其然,还要知其所以然。在问题设置上要能够从细节入手,让学生学会知识的交叉运用、思维方式的灵活拓展。如在进行培养基灭菌实验中,首先设置问题1:常见的灭菌方式有哪些?其适用范围和特点有哪些?根据所学理论知识和老师引导,学生很容易回答这个问题。接着,设置问题2:无菌操作时,超净台面和双手表面如何杀菌?通过这个问题与接种操作技术结合起来。设置问题3:我们在消毒时为何用70%左右的酒精而不是用无水乙醇?通过这个将微生物学和生物化学两个学科进行了有机交叉,实现了知识的融合。紧接着设置问题4:如果工程发酵罐中发现了噬菌体污染,如何消毒?这个问题将理论问题与发酵工程相结合,该问题要求学生既要掌握理论知识,也要熟悉发酵工业才能很好地进行回答。通过四个环环相扣的问题实现了知识的迁移、交叉和融合。其次是通过综合实验设计,强化学生基本实验技能和微生物学基础理论知识的应用。在这一部分中,首先由教师将一系列独立单元实验设计成围绕为解决某一模拟课题而展开的系列关联的实验环节,然后学生利用微生物理论知识结合基本实验技能,在遵循微生物基本原理基础上在一定范围内自主选择实验对象。让学生学习和掌握相关的实验技术和方法并学会对不同实验结果进行分析比较。以自来水中大肠杆菌菌群检测为例,利用微生物的生理生化实验进行微生物的鉴定,并对照水质检测的国家标准来安排实验。在这个实验过程中,不仅利用了微生物学基本实验操作,而且还将大肠杆菌的形态学特征、生理生化特征以及菌种鉴定等知识融合到实验中。更为重要的是,让学生直接认识到微生物特别是大肠菌群在水质监测中作为指标菌的重要应用。再次,通过设计型实验,提升学生利用微生物学理论和实验技术开展工业微生物菌株选育的能力。在这一层次上采用学生自主设计、老师负责把关的开放式实验教学模式,强化工程概念和实践特征。学生通过完成前面两个阶段的实验,对微生物基本理论和实验技能有了较好的理解和掌握。在此基础上,开放式的实验教学按照自由组合分组、独立设计实验方案、协同完善内容安排、时间分配,强调团队合作的基本原则开展实验。老师在整个过程中要起着引导、启发作用。例如:以“从自然界中筛选产酸性淀粉酶(或有机酸)的芽孢细菌”研究课题开展实验为例。学生需要完成如下工作:通过生境分析明确采样地点;完成采样并查找或自行设计快速检出方法;进行富集和选择培养;筛选获得相对优良的产生菌株;初步鉴定和发酵实验。整个环节的完成不仅可以提高学生对实验课的学习兴趣,强化团队协作能力,更重要的是使他们获得一个真实的实验研究过程的锻炼。最后,设置交叉学科的创新课题,引导学有余力的同学积极参与授课老师的相关科研课题,激发学生对生物工程和生命科学的兴趣。如前所述,微生物与分子生物学、生物化学、遗传学、生物信息学等学科有着广泛的交叉与联系,当今工业微生物育种技术在多学科交叉融合的发展趋势下取得了长足的进步。因此,培养创新潜力大、科研素质高的学生,普通的实验设计难以满足需要。我们在不断的探索过程中,初步形成了创新课题的形式,让部分学生真正参与到科学研究的第一线。创新课题实验按照学科交叉、由易到难、注重创新的原则设置。在学生能够独立完成小型课题的基础上,再进一步融入到研究生课题的探索中。如,以“表达绿色荧光蛋白的重组大肠杆菌构建”为课题,将微生物学、分子生物学、生物化学、基因工程、生物信息学等相关学科知识交叉、融合其中,让学生在探索中创新,在创新中实现宽口径、厚基础型的人才培养目标。

2.微生物实验课程的课时安排和考核模式改革。如前所述,传统的实验教学课时安排导致不适宜于微生物实验课程的开展。为了避免分散的课时导致教学效果的降低,教务部门在安排班级教学任务时,会统筹考虑不同课程的差异性,在协调优化课时安排的基础上,排出相对完整的时间安排微生物实验课程教学。另外,任课教师统筹利用下午和晚上连续较长的时间开展教学工作。实践证明,优化课程学时结构,合理安排教学课时能够保障实验的连贯性、一致性,提高学生的积极性,从而显著提升教学效果。考核是实验教学体系的重要环节,是评估学生学习成效的重要手段。传统微生物学实验考核方式相对单一,通常以实验报告为主,考勤情况等为辅综合评定的方法作为考核手段。这种评价方法尽管具有标准公平、成绩公正、易于操作等优点,不足之处在于导致学生仅注重实验结果和实验报告的书写,而忽视了实验过程中发现问题、分析问题和解决问题能力的培养,更重要的是这种考核模式难以真实反映学生对微生物学理论和实验技能的综合分析能力和创新能力。因此,我们也对微生物学实验课程考核方法进行了一些探索和尝试。

首先,我们认为考核的内容不仅应包括对实验原理的理解和基本实验技能的掌握,还应包括分析和解决问题的能力、团队协作精神以及科学严谨的态度。因此,实行实验过程与结果并重的考评方法对于培养学生良好的实验技能和求真务实的科学态度很有必要。

其次,在加强对实验课程的管理和考核规范的前提下,淡化和简化实验报告中操作步骤按部就班的抄写,注重结果分析和讨论,并在实验结束后布置一些开放性的思考题让学生完成。这样,不仅能促使学生通过查阅资料解决问题,增强其学习主动性和分析问题的能力,也能避免学生对实验结果作假和抄袭实验报告的现象发生。

再次,分类考核,全面考查。对于一次实验课能够完成的单元操作实验,指导教师应当场检查学生的实验完成情况和结果,发现问题当场指出并评定课堂表现成绩。教师将根据实验课堂表现和实验报告完成情况,对每个单元实验的综合成绩进行评分。对于需要多次实验才能完成的综合性和设计性实验,要求提供详细的原始记录、实验结果分析报告作为实验成绩考核的重要依据。

三、结语

江南大学生物工程学院的微生物学理论教学和实验教学在多年来不断探索和改革的过程中,逐渐形成了具有特色的学科平台课程。在教学过程中,微生物学理论课老师一般都要担任微生物学实验教学课程,这样老师能够更好地自主协调和平衡理论教学与实验课程在时间、节奏和进度上的合理安排,从而使二者能够相辅相成,相得益彰,整体上提高微生物学的教学水平和质量。通过单元操作实验、综合实验、设计实验和创新实验等由易到难、由浅入深的实验内容结构安排,对学生更好地理解和消化理论课,培养学生动手能力、创新能力有重要的意义。

参考文献:

[1]诸葛健,李华钟.微生物学[M].第2版.北京:科学出版社,2009.

[2]周宜君,刘越,戴景峰,等.微生物学实验教学改革探索与实践[J].微生物学通报,2009,36(10):1609-1613.

第8篇:生物信息学的发展趋势范文

关键词:遗传学;教学改革;课程群;

随着现代生物科学技术的发展,遗传学已成为21世纪生命科学领域发展最为迅速的学科之一,是生命科学中各门学科的核心,它的分支几乎扩展到生命科学的各个研究领域.目前,在生物学各专业的教学中,普遍存在着知识老化,课程体系陈旧,如遗传学和细胞生物学、生物化学、基因工程、基因组学、分子遗传学等课程之间存在着部分内容重复等一系列问题.显然,当前的课程体系已不适应高等学校生命科学教育的要求.如何突出遗传学主干课程,实现课程体系的整合、优化,不同课程间知识的融通和衔接,以此组建口径宽、方向灵活的课程群,加强学生创新意识和创新能力的培养,以增强学生的适应性和竞争力,培养学生的个性特长、能力特长以及继续学习的能力,形成终身学习的观念,是摆在我们面前值得思考的问题.我们从遗传学课程入手,对遗传学课程群进行了初步的思考,重新设置和实践,目的是实现课程体系的整合、优化,培养符合现代社会要求的创新型、复合型人才.

1遗传学课程群内课程设置的基本思路

遗传学课程群内课程设置的基本思路就是围绕“一个中心,三个方向”的原则,以普通遗传学为核心课程,兼顾三个方面的内容.基本框架如图1.

“一个中心”就是以普通遗传学为核心课程.遗传学是一门生命科学所有专业的重要基础课,要求全面系统地介绍遗传学的基本原理、分析方法及现代遗传学发展的最新成就.在教学中,要始终贯穿遗传物质的本质、遗传物质的传递和变异、遗传信息的表达与调控这一主线,使学生在群体水平、个体水平、细胞水平和分子水平的不同层次上对遗传学有比较全面、系统的认识,并能应用其基本原理分析遗传学数据,解释遗传学现象,并对遗传学各分支学科有一个基本的了解.

“三个方向”是以遗传学分支学科、反映现代遗传学发展的学科及遗传学普及性学科为遗传学内容细化、深化和普及的三个层面,主要包括以下内容:

一是遗传学分支学科的内容,主要包括《群体遗传学》、《微生物遗传学》、《细胞遗传学》等课程,以专业选修课的形式开出,主要目的是根据学生的兴趣和爱好,深入学习遗传学各个分支学科的知识.如《群体遗传学》是研究在自然选择、基因漂变、突变以及迁移四种进化动力的影响下,等位基因的分布和改变.它是在群体水平上研究种群的分类、空间结构等,并试图解释诸如适应和物种形成现象的理论.《微生物遗传学》是以病毒、细菌、小型真菌以及单细胞动植物等为研究对象的遗传学分支学科.《细胞遗传学》是遗传学与细胞学相结合的一个遗传学分支学科,主要是在细胞和染色体水平上研究.

二是反映现代遗传学发展的学科,如《基因工程》、《分子遗传学》、《基因组学》.这三门课程都是在普通遗传学基础上开设的专业选修课程,目的是与现代遗传学的发展接轨.如《分子遗传学》(moleculargenetics)的主要内容为基因的结构、复制和转录以及转录后调控、翻译,基因突变,DNA的复制、修复,原核与真核生物的基因表达调控,是在分子水平上进行的研究.此课程为生命科学各专业本科生的学科基础课,也可作为研究生的专业选修课.《基因工程》(geneengineering)主要介绍基因操作的主要技术原理,基因操作的工具酶,克隆载体,目的基因的分离方法,重组体的构建及导入,克隆基因的表达与检测,基因工程研究进展,存在问题及新策略等内容,使学生具备基因工程方面的基本知识和掌握其操作技术.《基因组学》(genomics)是对所有基因进行基因组作图,核苷酸序列分析,基因定位和基因功能分析的一门科学.主要讲述生物基因组的基本结构和组成、基因组内基因的表达和调控、遗传图谱与物理图谱、基因组测序、基因组序列解读、染色体的结构与基因表达调控、基因组的复制、基因组进化的分子基础、基因组进化的模式、分子系统发生学等内容,并讲述人类基因组计划的全过程以及由此引发的道德伦理和法律问题,系统向学生讲授基因组学研究的基本内容及相关进展.通过该课程学习,使学生了解结构基因组学和功能基因组学的重要研究领域、热点问题与发展趋势,以及国内外研究现状与进展.

三是遗传学普及性的内容,此类课程为遗传学的平行课程,以公选课的形式开出,主要目的是普及遗传学知识,提高人口质量和全民素质.我们针对非生物专业的学生开设了《人类遗传学》和《遗传与优生》两门课程.《人类遗传学》主要讲述人类在形态、结构、生理、生化、免疫、行为等各种性状的遗传上的相似和差别,人类群体的遗传规律以及人类遗传性疾病的发生机理、传递规律和如何预防等内容,使学生掌握人类遗传学的基本概念和主要研究方法.《遗传与优生》主要讲述什么是遗传病,遗传病对人类的危害,人类的染色体和染色体病、基因和基因病、肿瘤与遗传、人类代谢和发育中的遗传学问题、优生学的基本概念、影响优生的因素,优生的措施等.这两门课程都注重贴近生活,贴近社会,从剖析青年学生关注的问题入手去介绍人类遗传与优生的基础理论和基本知识,使学生能够在轻松、顺畅且饶有兴趣的学习过程中获益.对于医疗保健事业和人群遗传素质的改进具有重要意义.

2遗传学课程群内课程内容整合的思路

为解决遗传学的迅速发展及新知识、新技术不断出现与遗传学教学时数减少这一矛盾,我们通过建立遗传学课程群体系,协调课程群内各门课程的关系,尽量减少重复内容,对于学习遗传学的有关基础知识,如核酸的结构和特征在先修课程《生物化学》中介绍,染色体的结构,细胞周期等在细胞生物学课程中介绍,概率和统计学知识在生物统计学课程中介绍.而对于遗传学各分支学科的深入讨论,将在细胞遗传学、群体及数量遗传学、分子遗传学、基因组学、基因工程、生物信息学等课程中介绍.

3遗传学课程群内实验课程整合的思路

遗传学课程群内主要设置了遗传学实验和分子遗传学大实验,遗传学实验是为了配合遗传学的教学而开设的一门实验课程,其设计思想是:1)配合遗传学的教学,巩固和加深对遗传学知识的理解;2)适应现代遗传学的发展,让学生掌握现代遗传学研究所必需的基本实验技术;3)开设综合性、设计性和创新性实验,鼓励学生自己动脑筋设计、完成实验.目前已形成具有基础性实验、提高性实验和具有综合性、研究创新性、开放性实验的不同层次的遗传学实验教学内容体系.鼓励学生自己动脑筋设计、完成实验,实验室已对学生部分开放,并实施了自选实验考试法[1].学生在此过程中得到了很好的科研训练,部分学生在本科阶段就写作并发表了论文,充分体现了遗传学课程教学改革的特色.例如,结合本科毕业设计,我们编制了“遗传学试验的计算机模拟”软件[2],增强了学生对遗传学基本概念和基本原理的理解,而且也增加了学生对计算机应用于生命科学研究的兴趣.我们开发设计了“遗传学实验显微图像演示系统”[3],建立了遗传学实验图像库,学生在实验前可以方便地检索观察实验中可能出现的各种图像,大大提高了实验效率.通过遗传学实验的培训,学生具备了一定的设计和综合创新的能力,在此基础上,进入分子遗传学大实验的学习.而分子遗传学大实验的设计整合了分子遗传学和基因工程两门课程的实验内容,既涵盖了分子遗传学的基本实验技术,也体现了现代分子遗传学发展的新方法、新技术.实验通过DNA提取、扩增、检测,到目的基因的获取、重组、转化、分子杂交等系列性实验,使学生不仅掌握了现代生物学分析技术,也培养了学生的动手能力和独立设计实验的能力,更实现了理论类课程与实践训练类课程的有序衔接,同时完善了学生从认知实践到科研实践的创新精神培养体系.

4遗传学课程群实践基地的建设

仅有书本上的知识是不够的,遗传学课程群内的课程具有很强的实践性,专业知识与生产实际相结合的综合性教学是实践教学环节不可缺少的重要一环.为此,我们通过认识实习和生产实习等手段加强课程知识的掌握.利用地域优势,与中国农业科学院徐州分院、江苏省药用植物重点实验室、江苏维维集团等建立长期稳定的合作关系.如,我们在讲解“三系配套”时就带领学生到中国农业科学院徐州分院参观学习、实地学习如何进行“三系配套”的操作,加深了对理论知识的理解.通过专业实践,拓宽了学生的视野,培养了学生分析问题、解决问题以及开拓创新的能力,增强了学生的事业心和责任感.

5遗传学课程群教学方法和教学手段改革之思考

第9篇:生物信息学的发展趋势范文

90世纪末期迅速发展起来的计算机多媒体技术使传统学校教育进入了新的发展阶段,取得了显著的教学效果。现代化教学手段和教学方法在医学教育教学中的应用,也有力地促进医学教育教学的迅速发展和完善。它既解决了困扰医学学科多年的技术问题,更激活了医学学生的学习兴趣、提高了医学教育教学质量。

1现代化教学手段和教学方法

多媒体计算机技术是现代化教学手段中最具活力、最具前景的新兴技术,是实现教育信息化的重要手段。运用多媒体技术已经成为广大教育工作者改革教学方法、改进教学手段、提高教学质量的重要途径[1]。现代化教学手段和方法是指能对教学工作起到辅的展示、演示、模拟、拓展的一切现代化的机器设备,常指计算机、投影仪、实物展示平台、幻灯片以及其他影音设备。通过投影仪,计算机可以把教师课前备好的教学课件以及教学相关的知识材料、手术过程、自然现象以及病人生活片段展示出来,让学生在课堂上更好地接受知识、增强了解、加深印象。特别是在课堂上直接连接因特网上的相关内容,直接让学生感受到最新、最快的观点、材料、背景,这对掌握知识、拓展视野有很大的促进作用。

2多媒体技术在医学教育教学中的优越性

多媒体辅助教学的优越性体现在:

(1)借助计算机的模拟手段,可以使学生更加形象、直观地认识各种生物体的结构特点,诱发学生的想象性思维,极大地调动学生的学习兴趣和热情。例如以往在讲解DNA分子的双螺旋立体空间结构时最多有一个模型,而应用计算机特有的三维显示技术就可以很清晰地向学生反映出此空间结构的特点,让他们更容易理解DNA的复制、转录和翻译过程;同时借助多媒体技术也可以向学生动态地演示一些生化代谢过程,如糖酵解、三羧酸循环等复杂的生化反应,通过计算机的模拟使得教与学都取得了良好的效果。

(2)多媒体手段的运用使备课中增删教学内容变得非常方便,特别适合知识更新和随机在教学中增补学术前沿的内容;节省了课堂板书的时间,老师在有限的课时中有较充分的时间对重、难点讲透彻,更多地介绍新知识和新进展,还有一定的时间让学生们思考问题,讨论分析问题,有利于增强学生学习的积极性。对于老师来说运用多媒体技术授课可以促使其掌握更多的知识,包括专业知识和计算机基础知识与技能,对于教师素质的提高起到了良好的促进作用。

(3)多媒体的庞大知识信息储备能力和课件可以通过电脑网络资源共享的交流方式,使学生知识信息的获得不再主要依靠课堂上的有限时间,使课堂教学和课外自学实现了真正意义上的有机结合[2]。

3医学教育教学的发展趋势

当然,现代化教学手段和方法还包括医学教学的可视化、数字化和网络化。可视化、数字化和网络化是医学教育教学的趋势,因为医学发展的特殊性,医学教育教学更需要使用高效率的先进教学手段和方法。网络计算机辅助医学教育手段对于医学教育有着传统教学手段无可比拟的优点[3]。现代化教学中的多媒体有利于现代医学知识的阐明,现代的医学进展多以高通量、系统化、数字化和网络化为特征,比如一块小小的基因芯片所检测的内容相当于一座十层实验楼的检测量;一个网络数据库就能储存整个基因蛋白质组的全部相关数据;一个网络数字“数字人体”就能储存人体各个部位各种组织的全部形态和空间关系数据;医学的形态学科、功能学科、生物信息学科和影像学的新进展,用传统的教学方式表达出来既费时效果又差,而且关于医学新进展的教学挂图往往又没有生产销售。现代教育教学手段的使用是教学现代化的一个标志,网络和计算机突破了传统教学在时间、空间和地域上的限制,集声、形、色为一体,播放简便迅速,信息量大,适应现代医学发展的需要,可以给学生更直观的感性认识。更因为计算机声音图形播放和三维(3D)技术的应用,大量的示意图和照片可以被展示,计算机动画可以以人机对话的形式逐步展示生命活动的复杂动态过程;形态学上微细结构和空间相对关系和生物信息分子的空间构象也可以从不同的角度和不同焦距进行观察[4]。使用计算机辅助现代医学教学使知识的难点被化解,误解减少,抽象化为具体,无声化为有声,杂乱化为有序。这更有利于对新知识内容的深化,落实知识点,提高了学习的兴趣;同时也减少学习时间,提高了学习效率,适应了医学知识发展的需要,也更符合生活在网络时代的学生对教学形式的要求。使用计算机辅助现代医学教学更有利于医学生紧跟医学的进展,医学教材的更新一般为4~10年,而医学知识的更新是无时无刻不在进行的,今天的受教育者是要面对未来医疗环境的医生,医学教育更应该贯彻“面向未来”的方针。医学相关知识在网络资源中占有相当大的比重,网络是实时动态的,在普通医学院校只有使用网络才能更好地跟上医学发展的脚步,不管是医学博士生,硕士生还是本科生,都应该定期浏览因特网跟踪医学进展。

4现代化教学手段中的网络计算机教学有利于克服教学条件的不足

一直以来,医学基础和临床教学常常受历史传统、地理区域和季节气候条件的影响,比如在全世界范围,因为受历史传统的制约,尸体和标本来源少,生理和病理形态学教学中标本短缺,罕见疾病更难满足教学的需要。同时标本多储存在玻璃瓶中,观察起来不方便学习效果也不好。在临床上许多传染病只在世界部分地区流行,而地方病只存在于很小的局部地区,教学中囿于多种因素的影响,特殊的病例不易见到。除了标本和病例缺乏外,作为补充手段的挂图的数量和来源也很有限。因为如此,医学生往往只有空头的理论而无感性的知识,许多基础和临床教学都是纸上谈兵。在计算机教学中由于标本图片、动画、音频、视频和人机对话的广泛应用,这一问题得到了有益的补救。许多媒体教育资源可在网上获取,如:美国国立医学图书馆的可视人体教学资源、华盛顿大学的数字解剖学、哈佛大学的网络脑解剖图谱,世界大多数医学网站都完全对外开放。医学各学科的知识在网上都很丰富,通过搜索引擎和检索工具,我们可以接触到足够多的信息。因此在网络教学时代,教师应该为学生列出每节课的相关网络资源,充分利用网络是现代医学教育的必由之路。