前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的二氧化碳排放影响主题范文,仅供参考,欢迎阅读并收藏。
摘 要: 人均二氧化碳排放的影响因素基于Kaya恒等式可以分解为人均GDP、能源结构和能源强度三个因素。VEC模型的实证结果显示我国存在二氧化碳库兹涅茨曲线,即人均二氧化碳排放随我国经济增长先恶化后改善的倒U形曲线,非化石能源比重与能源强度对我国二氧化碳减排影响显著,但方差分解方法显示能源结构因素和能源强度因素对我国二氧化碳排放的抑制作用非常有限。我国“十二五”期间和2020年的节能减排任务艰巨,只有坚持节约发展和清洁发展,才能实现减排目标。
中图分类号: F062.2 文献标志码: A 文章编号: 10012435(2012)01002506
Analysis of CO2Kuznets Curve in China Based on VECM
LIU Ying, REN Yanyan (School of Economics, Shandong University, Jinan 250100, China)
Key words: carbon dioxide Kuznets curve; proportion of non-fossil energy; energy intensity; VECM
Abstract: The influencing factors of per capita emissions can be decomposed as GDP per capita, energy structure and energy intensity based on Kaya identity. The empirical result of VECM shows that CKC,the inverted Ushaped curve between emissions and income, holds for China. Moreover, both proportion of nonfossil energy and energy intensity are significant on emissions reduction. However, the result of variance decomposition displays that their restraining effects are very limited. In addition, the tasks for energy saving and emissions reduction for twelve fiveyearplan and in 2020 are still arduous. We must insist on conservative and clean development to accomplish our goal.
2009年哥本哈根气候大会召开前,我国提出到2020年单位GDP二氧化碳排放比2005年下降40%至45%,在2011年德班大会上再次重申并表示在2020年后有条件接受量化减排协议,引起了国际社会的关注。由于我国正处在发展经济、改善民生、推进工业化和城市化的关键阶段,二氧化碳减排困难重重。研究二氧化碳排放的影响因素,预测二氧化碳排放的趋势,对于我们制订合理的减排计划、遵守减排承诺至关重要。
根据环境库兹涅茨曲线(Environmental Kuznets Curve, EKC),在经济发展初期,二氧化碳排放将随经济增长而增加,当经济发展到一定阶段排放会随经济增长而逐渐减少,这种倒U形曲线关系被称为二氧化碳库兹涅茨曲线(Carbon Dioxide Kuznets Curve, CKC)。Jalil 等认为,CKC假说在中国是成立的,能源消费对二氧化碳排放影响显著而对外贸易影响不显著[1]。Acaravci等发现除了丹麦和意大利支持CKC假说外,其他国家均不支持[2]。Iwata等则发现二氧化碳排放和经济增长之间不是倒U型曲线关系,而是单调递增的线性关系[3]。杜婷婷等认为我国不存在CKC曲线,我国的二氧化碳排放与经济增长之间呈现“N”型曲线关系[4]。陆虹运用空间状态模型证明我国人均二氧化碳排放随人均收入上升而持续恶化[5]。国内外学者对于CKC假说难以得到一致的估计结果。国内学者对我国CKC的研究主要集中于二氧化碳排放与收入之间的关系,对收入以外影响二氧化碳排放的其他因素关注较少,缺乏对二氧化碳排放未来趋势方面的预测研究。Auci 等将EKC模型分为未调整模型和调整模型,在未调整模型中只有人均GDP一次项和二次项两个解释变量,调整模型在未调整模型的基础上加入了其他影响排放的控制变量,比如国际贸易、收入分配、能源消费、能源结构和产业结构等[6]。很多学者认为调整模型的估计结果比未调整模型有效[6-8]。我们基于Kaya恒等式在未调整模型中加入了能源结构因素和能源强度因素两个控制变量,防止模型设定误差,使估计结果更稳健。同时,Romero-vila和Wagner的研究均表明计量模型的选择对CKC假说的估计结果意义重大[9-10]。我们用VEC模型分析人均排放与人均GDP、非化石能源比重和能源强度之间的协整关系,对我国人均排放的趋势进行预测,考察我国政府提出的“十二五”节能减排目标和2020年的减排承诺实现的可能性。
一、模型构建
(一)基于Kaya恒等式的人均排放影响因素分解
Kaya在1989年IPCC 的研讨会上提出了著名的Kaya恒等式:
C=CE×
EGDP×
GDPP×P,其中C、E、GDP和P分别代表一国二氧化碳排放总量、一次能源消费量、国内生产总值和人口数量。这种通过构造链式乘积的方法将二氧化碳排放影响因素分解为能源碳排放强度CE、能源强度EGDP、人均GDP和人口四个因素。其中能源强度是用单位GDP能耗来衡量的,反映了一国经济对能源的依赖程度,能源碳排放强度CE可以转化成iEiE×CiEi,其中i表示第i种能源,EiE表示第i种能源在一次能源消费中的比重,CiEi表示第i种能源的碳排放系数。这样Kaya恒等式就可以进一步转化为
CP=iEiE×
CiEi×
EGDP×
GDPP。由于目前还没有成熟的二氧化碳减排技术,各种能源的碳排放系数基本保持不变,因此能源碳排放强度大体上就由能源结构决定[11]。转化后的Kaya恒等式意味着人均二氧化碳排放由人均GDP、能源结构和能源强度三个影响因素驱动。
(二)CKC调整模型
基于转化后的Kaya恒等式的分析,我们将能源结构因素和能源强度因素作为控制变量加入到未调整的CKC模型,特别地,我们用非化石能源比重代表能源结构因素。建立我国CKC调整模型的对数形式为:
ln(co2)t=β0+β1lnyt+β2(lnyt)2+β3ln(es)t+
β4ln(ei)t+εt (1)
其中co2表示人均二氧化碳排放,y表示人均GDP(按2005年不变价格计算),es表示非化石能源比重,ei表示能源强度,εt为随机扰动项。我们对所有的变量都作对数变化是为了把握其线性趋势。
二、实证分析
(一)数据来源及描述性分析
人均二氧化碳排放数据来源于美国能源部二氧化碳信息分析中心(Carbon Dioxide Information Analysis Center,CDIAC)。GDP和人口数据来源于宾夕法尼亚大学国际比较中心创立的Penn World Table
7.0,非化石能源比重和一次能源消费数据来源于世界银行WDI。样本区间为1971-2008年。在此期间我国二氧化碳排放和GDP分别增长了6.8倍和22.8倍,人均二氧化碳排放和人均GDP分别增长了4.0倍和14.2倍,非化石能源比重上升了4.4倍,能源强度下降了77.3%。从图1可知我国的人均排放除了在1996-1999年出现短暂的改善外,从总体上呈现随人均GDP增长而逐年恶化的趋势,而且从2000年开始加速上升。如果CKC假说在我国成立,那么式(1)中β1>0和β2<0应同时成立,这就是CKC假说声称的倒U形曲线,而预期人均二氧化碳排放会随着非化石能源比重上升和能源强度下降而下降,即β3<0而β4>0。
图1 1971-2008年人均二氧化碳排放与人均GDP散点图
(二) 平稳性检验
我们同时采用ADF检验和Phillips-Perron检验(PP检验)两种方法来对各个变量进行单位根检验以保证检验的稳健性。ADF和PP两种单位根检验方法均表明人均二氧化碳排放、人均GDP一次项、人均GDP二次项、非化石能源比重和能源强度的自然对数序列是差分后平稳序列即一阶单整序列(I(1),见表1)。
(三)Johansen协整检验
以上I(1)序列的矩,如均值、方差和协方差会随时间改变而改变,但这些序列的线性组合序列却可能具有不随时间变化的性质,假如这种平稳的或I(0)的线性组合存在,这些非平稳的时间序列之间被认为具有协整关系,即稳定的长期均衡关系。采用Johansen协整检验的迹检验方法可以在1%的显著性水平上拒绝“协整秩为0”的原假设,表明以上I(1)序列之间具有协整关系(见表2)。尽管无法拒绝“最大秩为2”的原假设,但考虑到人均排放与人均GDP、非化石能源比重、能源强度之间如果存在稳定的长期均衡关系,则这种均衡关系必定是唯一的,因此我们将协整秩设为1。
(四)协整方程与误差修正模型
VEC模型可以看作是带有协整约束的VAR模型,既可以考察长期效应,也可以考察短期效应。我们用VEC模型来探求人均排放与人均GDP、非化石能源比重和能源强度之间的长期均衡关系,以及各个解释变量的短期波动对人均排放的冲击。人均排放的1阶差分作为被解释变量的误差修正模型为以下形式:
Δln(co2)t=α1+β11Δln(co2)t-1+β12Δlnyt-1)+β13Δ(lnyt-1)2+β14Δln(es)t-1+
β15Δln(ei)t-1+λ1ecmt-1+εli
(2)
综合AIC信息准则、BIC信息准则和样本容量因素确定VEC模型对应的VAR系统滞后阶数为2,此时的VEC模型是稳定的,也通过了残差自相关的诊断性检验。
式(2)的解释变量由人均排放1阶差分的滞后项、式(1)中所有解释变量的滞后项和误差修正项组成。β12、β13、β14、β15反映式(1)中解释变量的短期变化对人均排放短期波动的影响。ecmt-1是误差修正项,反映变量之间的长期均衡关系,λ1为误差修正项的系数,表示当人均排放偏离其长期均衡状态时向均衡状态调整的速度。
由表3协整方程系数可知,从长期来看,人均GDP一次项、人均GDP二次项、非化石能源比重和能源强度对人均二氧化碳排放的影响都是显著的。与CKC假说相一致,式(1)中β1符号为正,β2符号为负,人均排放与人均GDP呈现倒U形曲线关系,说明我国人均排放会经历一个随经济增长先恶化而后逐渐趋于改善的过程。同时,与预期相一致,β3符号为负而β4符号为正,说明改善能源结构和降低能源强度将会促进二氧化碳减排,其中非化石能源比重每提高一个百分比,人均排放就可以减少0.239%,能源强度每降低一个百分比,人均排放就可以减少0.883%。在表3的误差修正模型中λ1为0.661,不仅显著且符号也符合预期,预示着当人均排放偏离长期均衡状态时它将以66.1%的速度向均衡状态调整。当发生人均排放的短期冲击时,这个调整速度是非常迅速的。值得注意的是,与CKC假说相反,β12<0而β13>0,说明人均排放与人均GDP之间为正U型曲线关系,可见在短期内经济增长对恶化二氧化碳排放的力量比较明显。同时,非化石能源比重和能源强度在短期内对二氧化碳排放没有显著影响。一个可能的解释是非化石能源在一次能源消费中的比重过小且在短期内很难改善,同时能源强度的降低即能源效率的提高在短期内也很难实现,因而无法对二氧化碳减排发挥作用,而在长期,非化石能源比重和能源强度在短期的影响逐渐累积从而对人均排放产生显著影响。
(五) 人均排放的方差分解
用方差分解方法可以分析每一个结构冲击对人均排放波动的贡献度,通过计算这个贡献度在总贡献中的比例可以分析每一个结构冲击的相对重要性。由表4可知,除了人均排放本身外,人均GDP(包括一次项和二次项)对解释人均排放的预测方差起到了重要作用,能源结构次之,能源强度起到的作用则非常微弱。在“十一五”期间,我国鼓励开发可再生能源,如风能、太阳能和生物燃料。“十二五”期间,我国将加快推进包括水电、核电等非化石能源发展,积极有序做好风电、太阳能、生物质能等可再生能源的转化利用,这将显著减少煤炭消耗,并弥补石油和天然气资源的不足。在中国科学院提出的能源科技发展规划中,我国将在2050年前后建成可持续能源体系,总量上基本满足经济社会发展的能源需求,结构上对化石能源的依赖度降低到60%以下,可再生能源成为主导能源之一。我国非化石能源在一次能源消费中的比重在1971-1999年间年均增长5.3%,进入21世纪以来,非化石能源建设速度有所加快,年均增长6.4%,但从世界范围看,我国非化石能源在能源结构中的比重是偏低的,以2008年为例,我国非化石能源比重为3.5%,远低于9.1%的世界平均水平,更低于发达国家的一般水平。因此,尽管能源结构因素对减排影响显著,但是非化石能源比重对人均排放预测方差的贡献度最高只有9.4%,现阶段我国能源结构因素对人均排放的抑制作用还很有限,能源强度对人均排放预测方差的贡献度则更小,最高仅为1.9%。我国能源消耗高、效率低、环境压力大,能源强度不仅高于许多发达国家,也高于许多发展中国家。能源强度对二氧化碳减排影响显著,但能源强度的改善、能源效率的提高是个长期而复杂的过程,现阶段改善能源强度对我国二氧化碳排放的抑制作用还没有发挥出来。
(六) 二氧化碳排放预测
用2006年以前的数据来估计VEC模型,然后预测2006-2008年三年的数据,并与实际观测值比较,如图2所示,预测都落在了99%的置信区间之内,对人均GDP和能源强度的预测比较准确,对人均排放和非化石能源比重的预测次之。表5给出了用VEC模型预测我国“十二五”到2020年期间人均排放、人均GDP、非化石能源比重和能源强度的变化趋势。根据测算,“十二五”期间我国单位GDP二氧化碳排放和单位GDP能耗分别会下降15.5%和12.0%,这和我国提出的降低17%和16%的目标有距离;我们预计2020年我国单位GDP二氧化碳排放比2005年下降39.0%,这与我国政府提出的下降40%至45%的承诺有差距。估计到2020年非化石能源占我国一次能源消费仍不到4%,我国政府提出:“十二五”期间我国非化石能源占一次能源消费的比重要提高到11.4%,到2020年要提高到15%,从预测看,我国的非化石能源建设过慢。过度依赖煤炭等化石能源的发展不仅严重污染环境,也是不可持续的,必须大力发展非化石能源,提高其在一次能源消费中的比重,才能够有效降低二氧化碳排放,保护生态环境,并降低化石能源不可持续供应的风险。
三、结论与启示
运用我国1971-2008年的经济、能源和环境数据来实证分析人均二氧化碳排放的影响因素并对人均排放的趋势预测,得出以下结论与启示:
1. 人均排放、人均GDP、非化石能源比重和能源强度在我国存在稳定的长期均衡关系, 且人均GDP、非化石能源比重和能源强度对人均排放影响显著。
2. CKC假说在我国是成立的,表明我国二氧化碳排放会经历一个随经济发展先恶化再逐渐改善的过程,但是,单纯依靠经济增长自身实现二氧化碳减排是不现实的,发达国家“先污染后治理”的老路在我国行不通。我国目前仍处在二氧化碳排放逐渐恶化的阶段,高投入、高消耗、高排放、难循环、低效率的粗放型增长方式在我国还没有发生根本转变。我国若要以较快的速度实现CKC假说声称的倒U型路径,必须调整能源结构,加快转变经济增长方式,才能使人均排放随经济增长而趋于改善。
3. 人均排放的方差分解方法表明经济增长因素对我国人均排放的解释程度最高,而能源结构因素和能源强度因素对我国二氧化碳排放的抑制作用则非常有限。
4. 经过对VEC模型进行预测,基于我国经济增长方式和资源使用现状,我们认为,我国政府实现“十二五”节能减排目标和2020年减排承诺任务非常艰巨。我国必须降低能源强度,提高能源使用效率,同时优化能源结构,加快发展非化石能源。积极应对气候变化,采取低碳型发展方式,不仅是国际潮流,也日趋成为一种国际压力,我们只有在发展方式的转型上增强紧迫感,深化节能减排,坚持节约发展和清洁发展,才能完成预定的减排任务、遵守我国的减排承诺,履行我国作为发展中大国的责任。
参考文献:
[1] Jalil A, Mahmud S F.Environment Kuznets curve for CO2 emissions: a cointegration analysis for China[J].Energy Policy,2009,(37):5167-5172.
[2] Acaravci A, Ozturk I.On the relationship between energy consumption, CO2 emissions and economic growth in Europe[J].Energy,2010,(35):5412-5420.
[3] Iwata H, Okada K, Samreth S.A note on the environmental Kuznets curve for CO2: A pooled mean group approach[J].Applied Energy,2011,(88):1986-1996.
[4] 杜婷婷,毛锋,罗锐.中国经济增长与CO2排放演化探析[J]. 中国人口资源与环境,2007,(2):94-99.
[5] 陆虹.中国环境问题与经济发展的关系分析 [J].财经研究,2000,(10) :53-59.
[6] Auci S, Becchetti L.The instability of the adjusted and unadjusted environmental Kuznets curves[J].Ecological Economics,2006,(60):282-298.
[7] Copeland B R, Taylor M S. Trade, growth and the environment [J]. Journal of Economic Literature, 2004,(42):7-71.
[8] Stern, D I.The rise and fall of the environmental Kuznets curve[J]. World Development, 2004, 32 (8):1419-1439.
[9] Romero-vila D.Questioning the empirical basis of the environmental Kuznets curve for CO2: New evidence from a panel stationarity test robust to multiple breaks and cross-dependence [J]. Ecological Eonomics,2008,(64):559-574.
(许昌学院经济与管理学院 河南 许昌 461000)
摘 要:全球变暖与环境污染日益引起来世界各国的高度关注,并引起理论界的探索研究。采用IPCC计算方法,对中国碳排放量进行估算,并定量研究了碳排放量与GDP,碳排放强度与能源消费结构、环境治理水平的关系。研究表明,碳排放量与GDP显著正相关,碳排放强度与环境治理水平显著负相关,最后,从调整能源消费结构等角度提出促进中国低碳发展的政策措施。
关键词 :碳排放数据;碳排放强度;环境治理
中图分类号:X784 文献标识码:A doi:10.3969/j.issn.1665-2272.2015.06.021
基金项目:教育部人文社会科学研究规划项目“基于CGE模型的我国低碳发展政策构建研究”(项目编号:12YJA790214);河南省高等学校哲学社科研究“三重”重大专项“新常态下河南省产业经济发展的机遇、挑战和对策”(项目编号:2014-SZZD-07)
收稿日期:2014-12-26
0 引言
根据联合国(NGO)世界和平基金会世界低碳环保联盟总会公布的数据显示,中国碳排放量已超过美国,成为世界第一大碳排放国家,但人均碳排放却远远低于美国。中国是发展中国家,现在正处于工业化、城镇化的重要阶段内,对于能源消费数量庞大,而且能源消费结构不合理。然而,随着全球气候变暖问题日益引起世界关注以及国内越来越严重的环境污染现象引起人民关注,减少二氧化碳等废弃物排放,加快发展低碳经济已经受到中国政府的重视。2009年中国在哥本哈根举行的全球气候大会中作出庄严承诺“到2020年,中国每单位GDP中碳排放比2005年下降40%~45%”。减少二氧化碳排放,首先要明确影响二氧化碳产生的因素,较为经济、准确地获得二氧化碳排放数据。本文将估算中国碳排放数据,为低成本、高质量获取二氧化碳排放数据以及减少二氧化碳排放提供参考依据。
国内外有关估算碳排放数据的方法的研究主要有,Druckman等采用类多维区域投入产出模型,结果显示英国碳排放量与收入水平、居所、职位和家庭组成有关;Ramakrishnan应用DEA方法研究了了GDP、能源消费、碳排放三者之间的联系;Ugur Soytas运用VAR 模型研究了美国能源消耗、GDP与碳排放量之间的因果关系。魏楚通过研究发现GDP增长与能源利用效率对碳排放影响较大;许士春采用LMDI加和分解法得出我国碳排放的最大驱动因素经济产出效应而最大的抑制因素为产业结构效应的结论;赵敏利用IPCC二氧化碳排放量计算方法估算出上海居民城市交通碳排放数据,并分析了碳排放强度;叶震参考了RAS双向平衡方法,利用投入产出表,估算出我国1995-2009年数据。现有文献研究结果表明,碳排放量与能源消耗、能源利用技术以及能源消费结构有重要的关系,然而现有研究方法有些过于复杂,所需要的参数较多,结果未必更真实接近真实碳排放量。
1 碳排放数据的估算方法
二氧化碳排放量的估算方法多种多样,常见的有如投入产出法、碳足迹计算器法、IPPC计算法等。IPCC 计算碳排放的方法是联合国气候变化委员会提出的,为世界通用的计算方法,IPCC的评估报告阐明大气中二氧化碳的来源主要为人工排放,而人工排放的途径主要来源能源消费。尽管各国减排技术或资源禀赋存在诸多差异,但是这种方法依然可以通过变换相应参数进行调整,这种方法为研究者提供了所需要的各种能源的参数以及排放因子的缺省值,计算十分简单。
采用IPCC碳排放计算指南中的计算方法,假设各类能源的碳排放系数为固定数值,将其结合能源消费数据:
式(1)中,A为通过能源消费向空气中排放的碳排放总量;Bi为能源i消费量; i为能源种类;i=1,2,3,估算的是由煤、石油、天然气三种能源产生的二氧化碳量;Ci为能源i的碳排放系数。
上述IPCC碳排放计算方法在连续进行时间序列数据估算时存在一个缺陷,即如果选定基年的碳排放系数,那么基年以后年份同样选择相同的碳排放系数,则明显没考虑废弃物循环利用和综合治理的因素,因为随着人类环境保护意识水平的提高,循环利用或综合利用产生的二氧化碳等废弃物的力度也在加大。但是很难获得二氧化碳回收等方面的数据,因此,选择“环境污染治理投资总额占国内生产总值比重”这一指标修正碳排放系数。
取某一种能源基年的碳排放系数为Ci1,基年环境污染治理投资总额占国内生产总值比重的值为,则基年以后任一年份碳排放系数为:
本文选择2000年为基年,利用以上公式估算中国2000-2012年碳排放总量(文中数据来源历年《中国统计年鉴》和《中国能源统计年鉴》),GDP以2012年价格计算,估算结果如表1和图1。
从表1和图1中可以看出,中国碳排放量总体呈现增长趋势,在总体增长的趋势中,出现几次阶段性下降现象,主要原因不是能源消费总量下降,而是环境污染治理投资总额占国内生产总值比重上升。中国碳排放量主要由煤炭产生,而石油和天然气所产生的二氧化碳较少,这主要是因为中国能源消费结构中煤炭所占比重较大,而其他所占比重较小,产生单位热量煤炭排放的二氧化碳多。碳排放强度的变化趋势见图2。
碳排放强度是单位GDP的碳排放量,其大小直接反映了经济发展对环境影响的大小。从图2可以看出,碳排放强度呈现出下降的趋势,这表明中国在节能减排上取得的成效,然而应该认识到中国碳排放强度依然较高,而且最近几年下降速度变慢。
2 碳排放量与GDP关系
中国经济正在处于高速发展之中,能源消费结构和环境治理水平也在不断变化,经济的快速发展依赖于能源消费的快速增长,能源消费的快速增长促进了碳排放量的增长,而能源消费结构优化和环境治理水平提高又减少了碳排放量。因此,有必要研究碳排放量与GDP关系以及碳排放强度与能源消费结构、环境治理水平的关系。
为解释变量,以2012年不变价格计算,碳排放量被为被解释变量,模型中参数采用普通最小二乘法(OLS)估计,则中国二氧化碳碳排放量与的线性回归模型如下:
用2000-2012年时间序列数据估计模型中的参数,则2000-2012年中国二氧化碳碳排放量与的关系为:
从上述建立的一次线性回归模型各参数可以看出,GDP对碳排放量显著,回归系数显示为正值,表明中国GDP显著正向影响碳排放量,随着GDP增长,二氧化碳排放量也将与之同步增长的趋势,并且GDP每增加1亿元,二氧化碳排放量增加0.24万t。由于GDP增长和二氧化碳排放量呈长期的单调递增关系,随着中国经济的不断发展,中国将面临着更多更大的减排压力。
用CI表示碳排放强度,f1、f2分别代表煤炭、石油占能源消费总量的比重,用表示环境污染治理投资总额占国内生产总值比重,2000-2012年,中国碳排放强度能源利用结构以及环境治理水平的回归如下:
括号中数据为相应参数的t检验值,1%显著。
碳排放强度和煤炭、石油占能源消费总量的比重变化的正向关系说明,煤炭、石油占能源消费总量的比重的提高都会使碳排放强度增加,但是从回归结果来看,煤炭占能源消费总量的比重提高1%要比石油占能源消费总量的比重提高1%促进碳排放强度增加得快一些,因此,从这个角度可以说,提高石油占能源消费总量的比重有利于降低碳排放强度。环境污染治理投资总额占国内生产总值比重的符号为负,表明环境治理水平能显著降低碳排放强度,系数的绝对值较大,表明在中国提高环境污染治理将会显著降低碳排放强度。
3 促进中国低碳发展的政策措施
3.1 转变经济发展方式,形成全社会参与低碳发展的局面
要把加快低碳发展作为贯彻落实科学发展观的重要内容,在全社会广泛开展宣传,使全社会认识到中国由于经济发展引起的过多碳排放量面临的国际减排压力,以及由于大量碳排放量引起的气候变化和环境污染问题,要明确中国作为发展中大国在碳排放方面享有的权利和应承担的义务。要牢固确立低碳发展意识,让转变经济发展方式以及保护环境等成为各级政府和企业的重要发展理念。要区别经济增长与经济发展,经济增长是经济发展的部分内容,经济发展不仅有经济总量的增加,更需要有经济效益、环境治理以及人民水平的提高。中国要避免走西方先污染后治理的模式就必须加快转变经济发展方式,加快低碳发展。
3.2 优化产业结构
当前中国产业结构不合理,主要表现在第二产业比重较大,第三产业比重较小,由于不同产业生产相同价值的产品其消耗的能源是不同的,一般来说,生产等值产品第二产业消耗的能源最多,排放的二氧化碳也最多,第三产业消耗的能源最少,排放的二氧化碳也最少。中国要想完成在哥本哈根举行的全球气候大会中作出的承诺,就必须加大产业结构调整力度,加快第三产业发展,力争在快速发展经济的同时,使碳排放总量最少。
3.3 调整能源消费结构
碳排放强度与能源利用结构显著相关,一般来说,产生等热煤碳排放的二氧化碳最多,石油次之,天然气最少,而清洁能源排放更少。长期以来,中国能源消费结构形成以煤炭为主,清洁能源较少的局面,在一定程度造成了碳排放量的快速增加。因此,要加大对风能、核能、水电等清洁能源的开发与利用,不断调整能源消费结构。另外,开发新的清洁能源在改善国内能源消费结构,降低碳排放量的同时,又可以显著促进经济增长。
3.4 加大环境治理力度
中国碳排放量的增加,影响因素很多,由前面研究可以看出环境治理能显著降低碳排放强度。从统计数据可以看出,中国环境污染治理投资总额占国内生产总值比重一直较低,而且其值一直难以稳定,处于不断变化中。当前,中国面临诸多问题,其中大部分问题都与环境污染治理投资力度不够相关,因此,有必要加大环境治理力度。加大环境治理力度可以逐步引入碳税制度。碳税可以迫使企业因为沉重的税收而放弃碳排放量较多的一些产品生产,从而降低二氧化碳排放量,它是最具有市场效率的减少碳排放的经济政策手段之一。
3.5 增加碳汇
减少二氧化碳除了减少二氧化碳的排放外,还应该尽量吸收已经排放的二氧化碳。碳汇的目的就是从大气中除去二氧化碳的一些方法过程、活动以及机制,主要依靠森林吸收并储存二氧化碳。陆地生态系统中森林是最大的碳库,通过树木和花草等植物的光合作用,吸收大气中的二氧化碳,制造出氧气并向外排出,这样会降低大气中的二氧化碳含量、减缓气候变暖的效果。当前,中国森林面积和森林覆盖率较低,需要继续增加森林面积。中国是能源消费大国,排放的空气中的二氧化碳十分庞大,要想保证空气质量,减缓二氧化碳对气候的影响,需要扩大森林面积来吸收空气中的二氧化碳。另外,国土的绿化会使国家的形象得到大幅提升,吸引更多的游客来旅游观光,不仅有利于降低二氧化碳,同时也可以加快发展第三产业,促进中国产业结构调整和经济发展。
参考文献
1 Angela Druckman. The Carbon Footprint of UK Households 1990-2004[J]. Ecological Economics, 2009(68)
2 Ramakrishnan. Factor Efficiency Perspectiveto the Relationships among World GDP, Energy Consumption and Carbon Dioxide Emissions[J]. Technological Forecasting & Social Change, 2006(73)
3 Ugur Soytas. Energy Consumption, income, and Carbon Emissions in the United State[J]. Ecological Economics, 2007(62)
4 蒋金荷.中国碳排放量测算及影响因素分析[J].资源科学,2011(4)
5 许士春,习蓉,何正霞.中国能源消耗碳排放的影响因素分析及政策启示[J].资源科学,2012(1)
6 赵敏.上海市居民出行方式与城市交通CO2排放及减排对策[J].环境科学研究,2009(6)
二氧化碳是所有温室气体中数量最人、影响最人的,据估计人气二氧化碳的温室效应占全部温室气体总温室效应的61%。从1860年左右开始的工业革命到现在,大气中二氧化碳浓度已由280ppm上升到353ppm,增K26%。日前的年增长速度为1.8ppm,即0.5%。按目前的增长速度计算,到2050年,大气中的二氧化碳浓度将达到550ppm。根据现有的研究确定,大气中二氧化碳的迅速增长主要是由于人类活动造成的,其中最主要的是由于工业的发展而大量使用化燃料造成的。当然,发达国家在过去一二百年中的工业发展并大量使用化石燃料是大气二氧化碳迅速增长的最主要原 因。此外,在工业发展过程中对森林的破坏也是人气二氧化碳迅速增长的主要原因。据某些研究估计,从1850年至1950年,由于化引燃料的燃烧,总计向大气排放的碳为1500亿吨~1900亿吨。而在1850年至1950年间,由于森林的破坏而排放的碳总量估计为900亿吨~1200亿吨。
森林对全球人气二氧化碳的影响,森林与温室气体的关系主要是指森林与大气二氧化碳的关系。森林在其生长的过程中吸收大气中的二氧化碳,形成光合物质,并把它保存起来。森林固定二氧化碳的速率与森林生物量的增长率成正比。森林被采伐利利用的过程即是二氧化碳排放的过程。
在全球范围内,大气中的二氧化碳按碳的重量来计算,含量约为七千亿吨,植物中(其中森林占90%)含有碳8270亿吨。每年由于使用化石燃料向大气净排放碳量为50亿吨,火山爆发向大气输送的碳平均每年为0.5亿吨,根据理论计算海洋每年吸收的碳量约为25亿吨,大气中碳的年增加是为23亿吨。如果全球的森林不被砍伐,它的生长每年可以吸收约六百亿吨碳。但是实际上,全球的森林每年正以1700万公顷的速度在减少。由于对森林的采伐利和破坏,使森林储的碳正在迅速地排放小米。这样,从总体上说,森林反而成了一个二氧化碳的巨大人排放源。
对森林砍伐造成的二氧化碳排放,已经有许多研究。70年代初期以前,人们普遍认为全球的森林起到吸收全球大气二氧化碳的作用,但70年代斤期开始发表的大多数研究结论认为,由于全球森林受到破坏,森林止向大气释放它过去储存的碳,成为大气二氧化碳的一 个主要排放源。
气候变化及其预测。很多学者认为当前的全球变暖和气候变化是由于温室气体大量集结造成的。从1880年至今地面气温已升高了0.5℃-0.7℃。从全球来说,高纬度地区增温幅度较大,在低纬度地区则不太明显。未来的气温变化是用一些全球环流模型进行预测的。根据人多数全球环流模型的预测,在未来一百年中,气温将增加1.5℃-3.0℃。
尽管现已观测到大气中温室气体的浓度在迅速上升和全球变暖,但定量地确定各因索的作用并对气候变化进行准确预测还有相当困难。气候变化是一个非常复杂的过程,除了地球上的因素,还有太阳变化和宇宙变化等因素。地球上的诸因素中还存在复杂的反馈作用。例如,升温可使蒸发加强、云量增多,而云量的增加则会阻挡太阳辐射,起到降温的作用。火山爆发一方面会使大气增加大量温室气体,而同时排放出的大量气溶胶也会阻挡太阳辐射而使大气降温。随着研究的深入,研究结果仍在不断改进。
气侯变化对森林的影响。气候变化会对森林、农业、社会发展产生什么影响呢?
有的研究认为,大气二氧化碳浓度增倍后寒带森林的南界有可能会向北移动256公里-900公里,而北界只移动80公里-70公里,所以寒带森林要人人减少。古气候和古植被的资料能给我们某些启迪,有益于判断气候变化对植被的影响。有人根据最近冰期古气候利古植被的相关研究,认为可以相当准确地确定,人气温度每升高一度,树木的分布区域北界会向北推移100公里,而树木的分布南界会相应退缩。我们根据中新世(2千万年以前)的植被分布和目前的植被分布相比较,发现亚热带南界约比现在偏北200公里~300公里。根据气候预测,下世纪中叶的温度要比现在高l.5℃~3.0℃。所以有理由认为,下世纪中叶的气候会类似于2千万年以前的气候,而二者的植被分布可能是很相近的。有人用森林演替模型来研究未来森林的变化。这些模型通常考虑环境因子,可用于预测较长时段的森林演替和动态变化。
有人研究了美国重要的用材树种秤,结果是某些树种的分布面积要缩小,在某些地区扩人。国内也就气候变化对我国主要用材树种的分布和生长影响进行了研究。我们的研究结果是大部分树种的分布面积会缩小,而单位面积的生产力却略有上升。近来有人认为,虽然气候变化会对森林产生较人影响,但人为影响可能自然变化的影响要人得多。由于人为的十地利用变化和不适当的农业可使全球的荒漠化十地增加13%,而二氧化碳增倍造成的荒漠化仅增加2%。
不确定性。温室气候、气候变化以及它们对人类的影响,虽然已普遍受到重视,但真正要把问题研究清楚还是非常困难的,因为每个问题都有着相当大的不确定性。在温室气体的计算方面,通常认为森林采伐对大气二氧化碳影响的不确定性最大,尤其是对十壤碳排放影响的计算误差更人。至于温室气体对气候变化的影响,它决定于气候预测模型,而气候变化预测模型到目前为止并不成熟。有人对14个全球环流模刑的预测结果进行比较,发现由于对云的反馈什刚采取不同的假定,预测的结果会有2个数量级的差别。全球气候模型的不确定性看来往5年至10年内不会有明显改善。 在气候变化对森林影响的预测中,都是根据某种“平衡式”的假定作出的,即植被经过数白年的时间完全适应于某种稳定的气候,达到一种平衡。但是在日前气候迅速变化的情况卜,植被可能跟不上气候变化的速度,所以达不到这种平衡。如果把气候变化对森林火灾的影响,对森林病虫害的影 响等方面考虑进去,就会使问题变得更加复杂。
国际社会的行动。尽管问题有很大的不确定性,但人们普遍认为,温室气体的剧增旨定是全球变暖及气候变化的原因之一,人量的森林砍伐肯定会造成温室气体的大量排放。人们普遍担忧,如果这—发展趋势保持不变或者加刷是否会危及钊人类的生存环境,破坏伞球生态系统,造成灾难性的结果。为此各国己开展了斤多与全球变化有关的大型研究计划,例如国际地图与生物圈计划(1GBP),生物地球化学循环及其相互作用(BCTl)利全球变化与陆地生态系统(GCTE)等。
论文关键词:出口贸易,碳排放,投入产出分析,碳污染转移
一、前言
19世纪初,Joseph Fourier 发现大气气体能够圈住太阳放射出来的热量。到1873年,John Tyndall 已经通过实验确定了大气中的H2O(水)和CO2(二氧化碳)是两种使全球气温变暖最重要的气体。目前,一致认为使全球变暖的六大气体是:CO2(二氧化碳),CH4(甲烷),N2O(一氧化二氮,即笑气),SF6(六氟化硫),氢氟烃,全氟化碳。然而,直到20世纪CO2在全球气温变暖进程中的作用才真正被人类认识(Arrhenius,1908;Sample, 2005;Weart, 2006)。至今,依旧有很多问题需要我们去解决,诸如自然环境如何吸收CO2 (Humphreys, 1920;Hulburt, 1931), 在生产CO2过程中人类行为和自然过程究竟扮演着怎样的角色(Crawford,1996)。1958年Charles Keeling在南极洲和夏威夷开始精确测量CO2浓度时投入产出分析,在研究CO2排放和全球变暖之间关系时出现了重大进展,这些较为准确的测量数据为接下来10年进一步研究其对气候的变化奠定了基础(Lovelock, 2006)。
Carbon Emission(碳排放)一词最早出现于“Man's emission of carbon dioxide into the atmosphere(1967)”一文中,指出二氧化碳是迄今为止人类活动中产生的含量最多的大气气体,尽管这种方式排放的气体量大约只占大自然产生的2%,但是已经打破了大自然平衡。计算结果表明由人类活动排放的二氧化碳几乎全部来源于燃烧过程,其中超过90%源自于化石燃料的燃烧。作为过去最被广泛使用的单一燃料——煤,已经相继由石油及其制品和天然气予以替代[1]。
最近十年来,经济增长和环境污染已经变成国内外的一个热点研究课题[2]。由于世界经济的不断增长,化石燃料消费量不断加大,致使环境中二氧化碳排放量日趋增加论文怎么写。在影响一国经济结构的因素中,对外贸易是主要的因素,并且扮演着越来越重要的角色(Porter1990;OECD 1997)。因此,本文将近年来国内外学者对出口贸易与碳排放及其相关问题的研究成果进行梳理,以期能为该课题的进一步研究找到新启示。
二、出口贸易中的碳排放概念
目前,相关研究或是从“内含能源”的角度,即隐含碳,或是从“出口碳”、“出口排放”、“碳连锁”等其他角度,揭示出如下事实,即贸易会导致“碳泄漏”。 从对外贸易的角度上来说,“隐含碳”、“转移排放”、“出口碳”、“出口排放”、“碳连锁”的含义基本相同,但“隐含碳”更具有科学性。在国际相关学术研究中,隐含碳被称之为“EmbodiedCarbon”。1974年的国际高级研究机构联合会(IFIAS)能源分析工作组的一次会议上就曾指出,为了衡量生产某种产品或服务过程中的直接和间接消耗的某种资源的总量,可以使用“embodied”这一概念。出口贸易的隐含碳排放(carbon emissions embodied in exports),即为了生产出口产品,而在生产国的整个生产链中所直接和间接排放的碳。商品生产过程中的隐含碳主要包含两个部分,即燃料燃烧所排放的二氧化碳和工农业生产过程所排放的二氧化碳[29]。
三、出口贸易中的碳排放测算
隐含碳的计算即对碳排放的计算,世界上主要有实测法、物料衡算法、模型法、生命周期法、投入产出法等多种方法。实测法和物料衡算法尽管方法严格投入产出分析,但是基于基础数据记录的完备性和详细性,不具有现实性。模型法是目前世界各国在气候变化政策、减排分析等相关领域研究主要采用的手段。当前,AIM、SGM、IMAGE等综合评估模型被广泛使用。但是,模型法主要是针对温室气体减排政策实施后对地球各生态系统、社会发展影响的评估,并非为了找到如何有效地估算某行业或部门的排碳量。生命周期法是估算某个项目从投入到结束整个过程中温室气体的排放量,但存在重复估算的弊端。刘强等(2008)利用全生命周期评价的方法,对中国出口贸易中的46种重点产品的载能量和碳排放量进行了计算、比较和分析,并在此基础上提出了相应的政策建议。
西方国家学者较早运用瓦西里·列昂惕夫于20世纪30年代研究并创立的一种反映经济系统各部分之间投入与产出数量依存关系的“投入产出法”对本国对外贸易中的能源消耗和环境污染问题展开了研究,这一问题后来随着日益严峻的全球气候状况而被发展中国家学者加以重视。投入产出分析法是目前研究国家贸易碳排放的主流方法,是已被广泛证实的一种有效的、从宏观尺度评价嵌入到商品和服务中的资源或污染量的工具。国外相关研究起步较早:Machado, Schaeffer和Worrell (2001)、Hayami和Nakamura(2002)、Sanchez-Choliz和Duarte (2003)、Tassielli和Notarnicola (2004)、Ukho-padhyay和Fors-sell (2005)、Peters and Hertwich(2005)、Paul B. Stretesky 和 Michael J. Lynch(2009)等,近几年来开展这方面研究的学者也多了起来,如齐晔(2008)、孙小羽(2009)、朱启荣(2010)等学者不同年份内以不同部门作为研究对象,运用投入产出法对中国的出口贸易中的隐含碳进行了测算,尽管结果不?牵崧刍旧隙际且恢碌模此孀胖泄隹诿骋字械囊己坑性龀さ那魇啤?
当前统计部门尚无碳排放量的直接观测数据,其中所涉及到的碳排放数据多为各学者根据已有能源数据进行折算,这其中多是基于直接能源需求(最终能源消费)进行折算。但最终能源的使用因受制于各产业的能源使用结构、使用效率等因素制约,不能客观全面地反应国民经济运行过程中所带来的所有碳压力。从全生命周期角度,考量经济运行过程中直接碳排放、间接碳排放、贸易输入输出过程中相关碳排放量,对客观认识我国碳排放水平将提供有益帮助(李慧明,2010)。
目前,出口国生产出口产品的碳排放都计入出口国名下,与消费产品的进口国无关。实际上,进口国在消费进口产品的同时,相当于间接消费了生产这些产品所消耗的能源,以及相应间接排放了二氧化碳等温室气体论文怎么写。为此,众多学者对于出口贸易中碳排放量进行计算,以便在国际气候谈判中发达国家需承担相应的减排义务提供依据。但是,由于目前计算方法较为单一——以投入产出分析法为主,计算过程中不同学者选取的部门/行业的种类和数量不尽相同投入产出分析,致使相同国家同一年份中碳排放量的计算结果差异很大;同时,投入产出表中的部门分类与海关进出口统计中的产品分类不一致, 在部门分类的对应上的技术处理,也影响到碳排放量计算的精确度。
另一方面,由于在计算过程中,更进一步的技术处理也会影响碳排放量测度的精度:
1、未考虑出口产品生产过程中排放的二氧化碳,而只考虑燃料燃烧排放的二氧化碳,所以测算出来的碳排放量会小于实际碳排放量。即不考虑工农业生产或运输等消耗的能源,而是只考虑生产某种产品本身发生的化学或物理变化而产生的二氧化碳。
2、未能考虑进口的中间投入品,现有的研究基本上都是基于最终需求的出口贸易中的碳排放量的计算,即未考虑加工贸易的影响[16,26,29-31],所以,计算出来的碳排放量会大于实际碳排放量。目前,国际上通常以投入产出模型为基本工具,从消费角度估计出口产品或服务在国内生产过程中燃料燃烧所排放的二氧化碳的直接或间接碳排放,但其中大部分方法都没有对生产投入中的国产和进口部分加以区分,因而在实际的评估中,会高估出口贸易在国内引起的碳排放(国内出口排放),而忽视国外的进口再出口排放,这对准确的了解出口贸易中的碳排放情况还具有局限性。
而且,现有相关研究多以宏观的国家为研究单位,或者以一国的中观层面的行业/部门为研究单位,以微观经济单位为研究对象少。
四、出口贸易中的碳排放转移
很多研究表明,能源消耗、环境污染和国际产业转移关系密切,即发达国家的经济发展不断转向更高附加值的部门的同时,发展中国家则集中生产能源密集型产品(Williams et al. 1987;UNIDO 1991;Park and Labys 1994)。国内外很多研究从国际产业转移角度,以世界系统论为理论基础,研究发展中国家因为发达国家污染产业的国际转移而沦为“污染天堂”。
按照世界系统论的观点投入产出分析,即把世界所有国家看成一个整体经济单元(Wallerstein,1974;Bollen,1983;Appelbaum andChristerson, 1997),PaulB. Stretesky,MichaelJ. Lynch(2009)认为“全球商品链有助于解释过去30年中国际生产的转移现象,即利润少的生产过程从富裕的发达国家转移到贫穷的欠发达国家”;因此,中心国家可以利用外围国家劳动成本低和环境规制弱的特点,为其提供原材料、劳动力甚至最终产品(Brunn, 2005)。 Grimes and Kentor (2003)持同样的观点,由于如今许多公司在不同国家生产产品组件,然后再把这些组件运送到另一个国家进行组装,所以“在全球经济链上,不太发达国家变成零部件供应商”。
针对Walter(1982)的“污染避难所假说”,一些学者对国际贸易中的高碳排放产业转移问题进行了实证研究,并认为发展中国家正成为国际高碳排放产业转移的“避难所”(Ahmed and Wyckoff,2003;Limmeechokchai andSuksuntornsiri,2006;Maenpa and Siikavirta,2007)。Weber et al.(2008)认为中国的碳泄漏、碳出口导致中国的碳排放增加,从而印证了“污染天堂假说”。根据环境库兹涅兹倒U曲线假说,“污染避难所假说”成立,发展中国家成为国际高碳产业转移的趋势成为一种必然(Berrah1983;World Bank1992; Grossman andKrueger 1995;Hayami1997)。因此,表面上看,中心国家的消费者受益于将污染生产转移到其它国家,但是,从二氧化碳污染全球化的特点来看,完全不是那么回事。实际上,最近研究表明,由于大气中较高的二氧化碳含量导致了气温的升高,进而加剧了全球与臭氧层相关的死亡。Jacobson (2008) 发现全球每年可能有7400-39000例死亡与二氧化碳污染有关。当污染水平达最高点时投入产出分析,大部分这些死亡可能发生在发展中国家城市。然而,就二氧化碳污染影响全球化来看,中心国家的城市也感受到了臭氧层破坏的死亡逼近,中心国家所有地区都受到了二氧化碳水平不断上升带来气候变化的影响。
随着发达的中心国家将更多产品转向国外生产,二氧化碳生产成本被外在化,而且隐藏了消费者导向性社会(a consumer-orientedsociety)对全球气候变化的实际影响。碳密集型产品在发展中国家生产减少了发达国家居民对于世界二氧化碳排放量增加的责任,而且容易让这些消费者疏忽或者说没有意识到他们的消费习惯对于对于碳污染的负面影响。假定FDI、人口密度和GDP增长不变,那么中心国家居民的消费习惯与全球二氧化碳排放水平关系密切,因而中心国家关于降低二氧化碳排放量的政策至关重要。短期和局部来看,外围国家可以通过控制向中心国家出口来减少全球二氧化碳排放量力求经济发展和世界环境保护之间找到一个平衡点,但从长期和世界范围内看,显然达不到预期目标[27]论文怎么写。在过去30年中,美国制造部门衰退的重要性就是减少产生全球温室气体,但同时,全球二氧化碳的生产发生了地理上的转移。这种转移是随着美国制造业的收缩和那些低劳动力成本国家和/或者较少限制环境规制国家制造业的扩张而发生的。尽管制造业发生了地理位置的转移,但是美国较高的生活水平和生活消费品的消费,间接加速了那些日益变成世界制造商品中心的发展中国家生产出口制造商品带来二氧化碳排放水平的增加[28]。
另外一些研究否定发展中国家成为国际高碳产业转移的“避难所”(Munksgard et al.,2002;Wyckoff and Roop,2003;Mukho-padhyay and Kakali.,2006)。Mukho-padhyay和Chakraborty (2006)运用投入产出模型测算印度1991~1992年和1996~1997年国际贸易引发的二氧化碳、二氧化硫等排放量,表明印度本土产品较进口品更趋于环境友好型,“污染天堂假说”在印度并未得到应验,贸易自由化和污染产业发展不存在必然联系,并对此做出了解释。
出口贸易中的碳排放问题的研究,其实是经济增长过程中环境污染问题的一个研究分支,因此,后者对前者在研究内容和研究方法方面有诸多可借鉴之处。但是投入产出分析,由于出口贸易只是一国经济活动的一个方面,而碳排放也只是环境污染的一种,而且其它类型污染具有本地化的特点,但二氧化碳污染的影响是全球化的(Lovelock, 2006),因此,出口贸易中的碳排放问题的研究应该有其自身的特点。随着发达国家产业的转移,发展中国家是否成为“污染避难所”这样的观点,继续在碳污染中进一步进行验证。
五、总结
自由化贸易条件下,出口贸易中的碳排放量也不断增加。在国际产业转移发生的同时,由于发展中国家的贸易增长模式是粗放型的,在出口产品中,资源密集型和污染密集型产品占很大比例,为此生产伴随的大量的碳排放留在国内,造成了“碳泄漏”,发展中国家因此成为了“碳污染天堂”。Mauricio Tiomno Tolmasquim等(2003)通过实证分析再次证实了Wyckoff 和 Roop (1994), Khrushch (1996),Munksgaard 和 Pedersen(2001)提出发展中国家的碳泄漏问题。
由于二氧化碳污染全球性的特点及其对环境和气候的负面影响,碳泄漏、出口贸易中碳排放影响因素的分解、出口贸易中隐含碳排放评价以及基于碳排放角度的进出口贸易生态利益评估及维护等问题有待深入讨论。
参考文献
[1]Man's emission of carbon dioxide into the atmosphereAtmosphericEnvironment (1967), Volume 15, Issue 5, 1981, Pages 719-727
[2]SusanSunila Sharma. Determinants of carbon dioxide emissions: Empirical evidencefrom 69 countries[J]. Applied Energy, 2011, (88) :376–382
[3]Stern DI. Therise and fall of the environmental Kuznets curve. World Dev 2004;32:1419–1439.
[4]Dinda S.Environmental Kuznets curve hypothesis: a survey. Ecol Econ 2004;49:431–455.
[5]Hettige H,Lucas REB, Wheeler D. The toxic intensity of industrial production:globalpatterns, trends, and trade policy. Am Econ Rev 1992;82:478–481.
[6]Cropper M,Griffiths C. The interaction of population growth and environmental quality. AmEcon Rev 1994;84:250–264.
[7]Selden TM,Song D. Environmental quality and development: is there a Kuznets curve for airpollution emissions? J Environ Econ Manage 1994;27:147–162.
[8]Grossman GM,Krueger AB. Economic growth and the environment. Quart J Econ 1995;110:353–377.
[9]Shafik N.Economic development and environmental quality: an econometric analysis. OxfordEcon Pap 1994;46:757–773.
[10]Holtz-EakinD, Selden TM. Stoking the fires? CO2 emissions and economic growth. J PublicEcon 1995;57:85–101.
[11]Dinda S,Coondoo D. Causality between income and emission: a country-group specificeconometric analysis. Ecol Econ 2002;40:351–367.
[12]Dinda S,Coondoo D. Income and emission: a panel data based cointegration analysis. EcolEcon 2006;57:167–181.
[13]AkbostanciE, Turut-Asik S, Tunc GI. The relationship between income and environment in Turkey: is there an environmental Kuznets curve? EnergyPolicy 2009;37:861–877.
[14]Lee C-C, LeeJ-D. Income and CO2 emissions: evidence from panel unit root and cointegrationtests. Energy Policy 2009;37:413–423.
[15]Paul B. Stretesky ,Michael J. Lynch Across-national study of the association between per capita carbon dioxideemissions and exports to the United States. Social Science Research 2009 (38):239–250.
[16]宁学敏.我国商品出口与碳排量关系的实证分析[J].统计与决策,2010, 303(03):111-113.
[17]Asafu-Adjaye, J. The relationship between electricityconsumption,electricity prices and economic growth: time series evidence fromAsian developing countries[J].EnergyEconomics, 2000, 22: 615~625.
[18]Ugur S, Ramazan S. Energy consumption and GDP:Causality relationship in G-7 countries and emerging markets[J].Energy Economics,2003, 25(1): 33~47.
[19]韩智勇,等.中国能源消费与经济增长的协整性与因果关系分析[J].系统工程, 2004,(12): 17~21.
[20]汪旭晖,刘勇.中国能源消费与经济增长:基于协整分析和Granger因果检验[J].资源科学, 2007,29(05):57-62.
[21]Hooi L,Smyth R. CO2 emissions, electricity consumption and output in ASEAN.Appl Energy2010;87:1858–1864.
[22]Soytas U,Sari R, Ewing BT. Energy consumption, income and carbon emissions in the UnitedStates. Ecol Econ 2007;62:482–489.
[23]Soytas U,Sari R. Energy consumption, economic growth and carbon emissions: challenges facedby a EU candidate member. Ecol Econ 2009;68:1667–1675.
[24]HaliciogluF. An econometric study of CO2 emissions, energy consumption,income and foreigntrade in Turkey. Energy Policy 2009;37:699–702.
[25]Ang JB. CO2emissions, energy consumption and output in France. Energy Policy 2007;35:4772–4788.
[26]许广月,宋德勇.我国出口贸易、经济增长与碳排放关系的实证研究[J].国际贸易问题,2010,(01):74-79.
[27]Machado G.,Schaeffer,R.,and Worrell E. Energy and Carbon Embodied inthe International Trade of Brazil:An Input-Output Approach[J].EcologicalEconomics,2001,39(3):409-424.
[28]Paul B. Stretesky ,Michael J. Lynch Across-national study of the association between per capita carbon dioxideemissions and exports to the United States. Social Science Research 2009 (38):239–250.
[29]齐晔.中国进出口贸易中的隐含碳估算[J].中国人口、资源与环境,2008,(03):8-13.
随着自然资源的急剧消耗、污染物的大量排放和生态环境的日益恶化,频频发生的严重雾霾天气使我们深刻体会和认识到发展低碳经济的迫切性和必然性。自2007年以来,我国二氧化碳排放总量首超美国,居世界第一位;2009年我国政府第一次以约束性指标的方式宣布,到2020年,中国单位GDP二氧化碳排放将比2005年下降40%~45%。然而,我国“富煤、少气、缺油”的能源现状以及伴随工业化、城镇化、现代化建设的巨量能源需求,使得我国未来碳排放形势日益严峻。随着国际气候谈判的进展和国内减排形势压力的加大,征收碳税已经迫在眉睫,但由于种种原因,我国迟迟没有实施碳税。从技术层面上讲,碳税如何征收,征收多少?征收碳税会对我国社会福利、宏观经济及相关行业生产什么影响?碳税的“双重红利”效应是否存在?这都是亟待解决和明确的问题。
由于碳税征收的影响度和波及面较广,涉及行业、居民、政府等整个经济系统,因此,从国际文献上看,大多部分学者均采用了具有严密理论体系、能够模拟分析经济系统内相互作用机理的可计算一般均衡(CGE)模型进行模拟分析,其中代表性文献主要有:Whalley和Wigle(1990)、Burniaux和Nicoletti(1992)、Floros和Vlachou(2005)、Galinato和Yoder(2009)、Allan等(2014)。总体说来,国外关于应用CGE模型进行碳税研究相对比较成熟。近年来,国内关于碳税的研究也不断增加。贺菊煌等(2002)建立了一个静态CGE模型分析了征收碳税对国民经济各部门的影响;朱永彬等(2010)基于一个静态CGE模型,通过引入碳税,假设六种情景对碳税政策的减排效果及其对宏观经济和各产业部门的影响进行了分析;郭正权等(2012)基于静态CGE模型分析了我国发展低碳经济中碳税政策对能源需求与二氧化碳排放的影响;石敏俊等(2013)利用CGE模型,设计了单一碳税、单一碳排放交易以及碳税与碳交易相结合的复合政策等不同情景,模拟分析了不同政策的减排效果、经济影响与减排成本。与以上国内文献不同的是,王灿等(2005)基于1997年投入产出表构建了一个动态CGE模型,并用该模型模拟分析了基准情景下N2Z117.jpg排放总量消减10%~60%假设情况下对边际减排成本、经济增长和就业的影响。
从文献上看,国内相关碳税CGE模型大多为静态模型,应用动态CGE模型分析碳税的国内文献寥寥无几,由于静态CGE模型只能在基准年度范围内进行模拟分析,不能动态模拟碳税的长期累积效应,因此静态CGE模型的模拟分析功能较为有限。虽然王灿等(2005)构建了一个动态CGE模型,然而该文的模拟假设缺乏现实意义,因为我国二氧化碳排放总量每年都在增加,在我国未完成城镇化、工业化发展阶段之前,二氧化碳总量减少的假设很难成立;国家“十二五”规划中的二氧化碳减排目标也是设定为单位GDP二氧化碳减排,属于相对指标,并非二氧化碳总量的减少。
在前人研究的基础上,结合我国经济特征,本文构建的可计算一般均衡模型主要有如下特点。从技术层面上,本文根据最新的动态经济学理论,构建出一个递归动态CGE模型进行碳税政策模拟;依据国家环境保护“十二五”规划,采用相对指标,即以单位GDP二氧化碳减排作为衡量目标;进一步把能源分为清洁能源和石化能源(石化能源进一步细分为煤炭、石油和天然气),采用多层CES函数嵌套方式进行组合,并从碳税征收方式和碳税使用方式上综合模拟分析碳税及相关二氧化碳减排问题。
一、动态可计算一般均衡模型构建
1.宏微观SAM表构造及数据来源
本文以中国2007年135部门的投入产出表为基础①,合并扩展成包含1个第一产业部门、15个第二产业部门和5个第三产业部门,行为主体分为政府、家庭、企业、投资和储蓄、国外部门的宏观社会核算矩阵(SAM)表,该表中的数据除了来源于2007年投入产出表外,还来自《中国统计年鉴2008》《中国金融年鉴2008》《中国环 境年鉴2008》《国际收支平衡表2008》《中国能源统计年鉴2008》等统计资料。在宏观SAM基础上构建微观SAM,其中一个重要的细节内容是对电力部门和石化能源部门的拆分(即使135部门投入产出表,石油和天然气作为一个部门;电力也作为一个部门,没有细分出火电、水电、风电等),拆分方法如下:根据《2008年中国电力统计年鉴》电力生产量的比重,把投入产出表中的电力部门按照火电占83.06%,核电、其他电力供应占16.94%的比例进行拆分,其中煤炭、石油、天然气只对火电的生产存在中间投入,对核电、其他电力供应不存在中间投入分解;石油与天然气开采的分解是根据我国2007年能源生产构成,其中石油占能源总消费量的19.70%;天然气占能源总消费量的3.50%,然后根据消费量的比例对投入产出表的数据进行拆分。宏观SAM表如表1所示。
N2Z128.jpg
2.生产函数结构设计
本文的动态CGE模型的生产结构采用五层嵌套结构,这也是目前国际学术界的主流方法之一,即中间投入的组合只包含非能源投入(列昂惕夫函数表述其关系),而将能源、资本和劳动力采用不变替代弹性(Constant Elasticity of Substitution,CES)嵌套。资本—能源—劳动力CES合成的嵌套结构中依照各种能源投入的替代程度自下而上依次组合,如图1所示。
3.N2Z117.jpg排放系数确定
N2Z117.jpg的排放系数的计算方法,从文献上看,目前主要有:方法一,采用联合国政府间气候变化专门委员会(Intergovernmental Panel on Climate Change,IPCC)编制的《IPCC国家温室气体减排放清单指南》(能源)中化石能源中的有效二氧化碳排放因子,再通过能源实物消费量与实际热量的相互转换来计算。方法二,直接引用《日本能源经济统计手册》中的能源排放系数,其中焦煤0.692 tc/tce、焦炭0.776 tc/tce、原油0.546 tc/tce、石油制品0.532 tc/tce、天然气0.394 tc/tce(tc/tce的含义为每释放出一吨标准煤的热量所需要排放的碳量)。方法三,是利用国际能源署的International Energy Statistics中的统计数据,通过我国三种化石能源的二氧化碳排放量,与能源的实际消费量来计算。
由于本文SAM中的基础数据来自投入产出表,该表属于价值变量表;同时,关于能源消费总量的数据可以直接从能源统计年鉴上获得,该数据相对准确,因此本文选用方法 三。二氧化碳的排放系数具体计算结果如表2所示。
N2Z102.jpg
图1 生产函数结构示意图
N2Z129.jpg
4.动态基准情景中相关参数假设及模型动态化运行机理
动态CGE模型首先需要对一些重要外生参数(替代弹性系数、劳动力数量、能源使用效率等)进行赋值,分别设定如下:
(1)劳动力数量估算。由于人口总量和年龄结构对劳动力供给有着重要的影响,而人口增长受计划生育政策、人民生活水平提高、生活方式变化等众多因素的影响,但主要是国家人口政策的影响。王德文(2007)研究表明,中国劳动年龄人口数量将在2015年达到高峰,2015年之后,中国劳动年龄人口数量处于不断下降趋势,在未来20年内,中国的劳动力供给将出现一个转折点,劳动力的供给量将会由增长转为逐步下降。同时,贾一苇(2009)研究表明,我国15岁~64岁劳动力年龄人口总量在2016年达到高峰,然后不断下降。
因此,关于未来劳动力供给的预测,两位学者得到的结果相距不大,参照其他文献,在未来劳动力供给预测上也没有重大分歧,因此,本文在借鉴上述学者研究结论,假定劳动力增长率②如表3所示:
N2Z130.jpg
(2)能源效率估算。能源效率主要是衡量单位能源产出量,目前主要有单要素法与多要素法。基于本文是研究我国整体能源效率的提高改进状况,且要素之间替代关系在生产函数层次上有所体现,因此选用单因素能源效率更为合适。本文根据以1978年不变价格计算的国内生产总值,能源投入为当年能源投入折算的标准煤数量等相关数据计算出1986-2007年我国的能源使用效率③。根据计算结果可以得到,1986-2007年按照不变价格计算的我国单要素能源效率年均增长率仅仅为0.28%。考虑到未来我国的节能减排政策力度可能继续加强,能源供需矛盾和能源价格将进一步扩大和提高,这种内逼机制很可能迫使我国能源使用效率有所提高。因此,本文在政策模拟时,将分别设定能源使用效率增长0%、0.5%、1%、2%四种情景假设。
(3)CGE模型动态化的运行机理④。模型的动态主要涉及技术进步(全要素生产率的动态变化),资本的积累以及新增资本在部门之间的流动等,具体描述如下所示:
N2Z131.jpg
N2Z132.jpg
二、碳税设计与模拟分析
1.碳税设计
(1)碳税理论。碳税(Carbon Tax)是“二氧化碳排放税”的简称,是针对化石燃料使用所引起的碳排放的外部不经济问题所征收的税。按照PPP(Polluter-Pays Principle)原则,可以根据污染造成的危害对排污者课税,将环境污染的成本加到产品价格当中去,从而消除这种私人成本与社会成本相背离的情况,以弥补两者之间的差距,这就是所谓的庇古税(Pigovian Tax)。因此,从福利经济学角度分析,碳排放引起气候变化的实质是外部不经济性问题,由此构成碳税的理论基础。
目前,碳税征收主要有两种模式,一种是按化石能源的产量向生产企业征收碳税,一种是按照化石能源消耗量向消费环节征收碳税。关于采用哪种模式征收碳税,依然存在着一些争议:选择前者征收碳税,一般来说所面临的社会压力较小,比较容易获得消费者的认同,但是由于能源市场的不完善性,难以有效地将价格信号传递给下游能源消费者,因此碳税的刺激作用可能有所削弱。选择后者征收碳税,比较符合税收的公平目标,也有利于提高能源消费者节能减排的意识;在具体的实际操作中,大多数的国家选择了在能源消费环节征收碳税,虽然日本、北欧等国家在上、下游都征碳税,但实际上还是以下游消费环节为主。因此,本文选择在能源消费环节征收碳税,即对生产部门的中间能源投入和需求部门(居民和政府)的能源消费征收碳税。
另外,征收碳税,对于生产者来说,由于生产成本的提高,将导致企业利润下降,产品价格提高。生产者首先自身承担一部分碳税,同时将转嫁部分税收负担,向前通过产品价格提高转嫁给消费者,向后可能通过降低劳动者报酬减少劳动者的收入水平(具体比例取决于产品市场产品的需求弹性与供给弹性,要素市场要素的需求与供给弹性),从而影响收入分配、经济发展和社会福利等,由此引发了关于碳税“双重红利”⑥的研究和争论⑦,因此,本文也将从碳税使用方式的角度模拟分析碳税“双重红利”效应的存在与否。
(2)碳税设计。本文应用CGE模型进行政策模拟中,计税依据为N2Z117.jpg排放量,并且采用国际常用的在化石能源使用环节 征税方式,具体碳税设计为以下方程所示:
N2Z133.jpg
N2Z134.jpg
计算出化石能源的碳税税额以后,就可以将碳税的税率转化为从价税率,即对某种化石能源征收的碳税税收与该化石能源的国内需求的价值量之比。计算公式为:
N2Z135.jpg
2.政策模拟一:碳税征收方式模拟分析
首先模拟2007-2020年不同碳税水平对我国二氧化碳排放强度及其边际变化率以及部门产出和价格等变量的影响。由于碳税的征收,石化能源使用成本增加,势必会使得企业通过研发或其他途径积极提高能源使用效率,因此,本文在征收碳税的同时,假定能源使用效率也发生改变,从而综合模拟碳税征收的减排效果。
(1)能源与碳排放影响分析。从表5可以看出:①当不考虑碳税时,当能源使用效率提高分别0、0.5%、1%和2%,可以使得2020年我国二氧化碳排放强度相对基准情景分别减少0、4.59%、8.70%和15.56%;考虑碳税时,当能源使用效率分别提高0、0.5%、1%和2%,可以使得2020年我国二氧化碳排放强度相对基准情景分别减少44.32%、47.15%、49.70%和54.04%;②要实现国家“十二五”规划中“到2020年中国单位GDP二氧化碳排放将比2005年下降40%~45%”的目标,在仅考虑提高能源使用效率和征收碳税两种手段的前提下,若能源使用效率年增长率为0,则需要征收碳税大约为80元/吨;若能源使用效率年增长率为0.5%,则需要征收碳税大约为70元/吨;若能源使用效率年增长率为1%,则需要征收碳税大约为60元/吨;若能源使用效率年增长率为2%,则需要征收碳税大约为40元/吨;③四种情景下的单位碳税的二氧化碳排放强度边际变化率均呈现逐渐减小的变化趋势,相比较而言,能源使用效率越高,单位碳税的二氧化碳排放强度边际变化率越大。
N2Z136.jpg
N2Z137.jpg
如表6所示,在其他条件不变情况下,单 纯依靠碳税可以实现国家“十二五”有关二氧化碳排放强度的规划目标,但这会引起化石能源价格的大幅上升。如表2所示,当碳税税率为80元/吨时,2007年,煤炭价格增长74.05%,石油和天然气的价格分别会增长5.61%和7.73%;2020年,煤炭、石油和天然气价格分别上升99.70%、8.48%和11.46%,这必然会引起较大的物价上升压力;但若通过实施碳税减排政策的同时,加强科技进步,提高能源使用效率(如情景Ⅳ),这样,碳税大约为40元/吨,就可实现我国“十二五”规划中的有关二氧化碳排放目标,此种境况下,2007年相应的化石能源价格分别上升31.24%、2.35%和3.18%,2020年化石能源价格分别上升47.27%、4.41%和5.09%,物价上涨压力明显减小。倘若能源使用效率进一步提高,相应的碳税将继续减少,同时化石能源价格上涨空间必将进一步缩小。
N2Z138.jpg
(2)部门影响分析。征收碳税必将导致化石能源价格上涨,从而提高生产成本,不同部门的化石能源投入占总投入比例差别很大,并且不同部门各级生产函数、各种生产要素的替代弹性也不完全一致以及对不同部门产品的需求差别,将对不同部门的化石能源需求产生不一致的影响。由此,对部门的产出价格、产出量、劳动、资本使用量、二氧化碳排放量、二氧化碳排放强度等将产生不同的影响。表7分析在情景Ⅰ中,能源使用效率年增长率为零(相对基准情景能源使用效率保持不变),碳税为30元/吨时,2010年、2015年和2020年各部门的产出及其价格相对基准情景的变化影响。
N2Z139.jpg
表7结果可以看出,21个行业中,产出价格都有所上升,主要是由于征收碳税,导致企业生产成本有所提高,其中,煤炭、石油、天然气行业和消耗化石能源较大的电力(火电)、非金属矿采选及非金属矿物制品业、金属矿采选及金属冶炼业等部门价格上升幅度比较大,而且从时间上看,其价格上涨幅度在逐年增加;而消耗化石能源较低的农业、金融及房地产业、批发零售和住宿业、食品制造与烟草加工业、科教文卫社会服务业等部门的价格上升幅度明显较小,而且,从时间上看,其价格上涨幅度在逐年减少。
从产出上看,21个行业中,煤炭采选及炼焦业、石油开采及加工业以及天然气开采业的产出降幅最大,而且随着时间的延长其产出降度在进一步扩大;虽然纺织业、化学医药业、电子通信、仪器办公品制造业的产出在期初产出降幅较大⑧,但与化石能源部门不同的是,其降幅随着时间的延长在逐步降低;另外,值得注意的是,低碳能源(水电、风电及核电)行业的产出在逐年增加,主要是由于化石能源价格提高后,低碳能源的替代作用开始逐步显现,社会需求有所增加,而且随着时间的延长,其替代作用逐渐加强。
3.政策模拟二:碳税使用方式模拟分析
一般说来,碳税会引起化石能源价格的上涨,从而导致企业生产成本提高、产品价格上涨,但是碳税的不同动态循环使用方式,可能导致不同的企业收益、居民收入、居民消费、政府储蓄、进出口、社会福利等社会经济变量发生改变。另外,学术界还存在征收碳税是否可以达到“双重红利”的效果,因此,本文以二氧化碳排放强度相对基准情景在2020年降低20%为例,模拟分析不同的碳税循环使用方式对社会经济变量的影响。具体情景设定如下:
N2Z140.jpg
N2Z141.jpg
根据表9的分析结果比较分析情景Ⅴ、情景Ⅵ、情景Ⅶ、情景Ⅷ中的各宏观经济变量的变化。情景Ⅵ中,相对基准情景,由于征收碳税,居民的资本收入有所下降,虽然政府在征收碳税的同时降低了居民的个人所得税,但同时政府对居民的转移支付也有所下降,由于减少的个人所得税额低于政府转移支付额,因此导致居民的税前总收入水平比情景Ⅴ下降幅度更大,但由于降低了个人所得税税率,居民税后收入有所增加,居民的消费需求有所提高,因此居民的社会福利状况比情景Ⅴ有明显改善。政府在总税收相对基准情景保持不变的情况下,由于碳税征收导致产品价格上涨,从而引起政府的实物消费减少。对于企业来说,征收碳税导致生产成本上升,从而引起资本价格相对下降,因而企业收入和消费水平均有较大减少,同时由于国内产品价格相对国外有所上升,造成出口明显减少,进口增加。实际GDP构成中,仅有居民消费相对增加,而政府消费、投资、进出口均减少,从而导致实际GDP有所下降。总体而言,情景Ⅵ在减少二氧化碳排放强度的同时使得社会福利水平有所增加,从而实现了碳税的“双重红利”效应。
情景Ⅶ中,相对基准情景,对于企业而言,由于征收碳税引起资本价格下降,从而企业收入减少,但由于降低企业所得税税率,企业储蓄水平有较大幅的提高。居民由于资本收入的下降、政府转移支付减少,居民总体收入下降,从而导致居民消费、居民储蓄、社会福利水平相比情景Ⅴ呈现更大幅度的下滑。政府的收入和储蓄虽然没变,但由于该情景下,产品价格上涨较大,因此,政府的实物消费降幅最大。实际GDP 下降原因同上,但相比情景Ⅴ和情景Ⅵ,实际GDP的下降幅度较小。总体说来,情景Ⅶ低企业所得税,使得企业储蓄和总投资有所提高,但也使得居民消费、社会福利水平与情景Ⅴ和情景Ⅵ相比降幅更大。这说明征收碳税的同时降低企业所得税不能实现碳税的“双重红利”效应。
N2Z104.jpg
图2 2008-2020年不同情景下社会福利变化
情景Ⅷ中,由于降低了间接税,而间接税发生在国内生产环节,企业可以将税负部分地转嫁给消费者,从而影响国内需求和出口。虽然该情景下企业收入有所下降,但下降幅度小于其他三种情景。对居民而言,居民的劳动收入和资本收入下降,政府转移支付也有所减少,因此居民总收入水平与情景Ⅴ相比略有下降,但由于降低了间接税,国内产品价格有所下降,因此,居民的消费需求、社会福利水平与情景Ⅴ和情景Ⅶ相比均有所提升。政府的收入和储蓄不变,但由于国内产品价格有所下降,因此政府的实物消费相比情景Ⅵ和情景Ⅶ均有所增加。由于居民消费、政府消费、净出口改善较大,因此,实际GDP的降幅相比其他三种情景降幅最小。从图2可以看出,情景Ⅷ中,社会福利降幅微小,并且随着时间的推移接近于零。这说明,征收碳税的同时降低企业间接税,可以使得碳税对社会福利的影响 微乎其微。
三、结论和建议
在其他条件不变情况下,单纯依靠碳税可以实现国家“十二五”有关二氧化碳排放强度的规划目标,但这会引起化石能源价格的大幅上升,这将会引起较大的物价上升压力;但在加强科技进步,在提高能源使用效率(年增长率为2%)的前提下实施碳税减排政策,40元/吨的碳税征收标准为就可实现我国“十二五”规划中的有关二氧化碳排放目标。另外,随着碳税税率的增加,单位碳税的二氧化碳排放强度边际变化率均呈现逐渐减小的变化趋势,相比较而言,能源使用效率越高,单位碳税的二氧化碳排放强度边际变化率越大。因此,提高能源使用效率可以有效地增强碳税的实施效果,我国应加强技术创新和管理创新,促使我国的能源使用效率不断提高。
从行业上看,21个行业中,产出价格都有所上升,其中,煤炭、石油、天然气行业和消耗化石能源较大的电力(火电)、非金属矿采选及非金属矿物制品业、金属矿采选及金属冶炼业等部门价格上升幅度比较大,而且从时间上看,其价格上涨幅度在逐年增加。消耗化石能源较低的农业、金融及房地产业、批发零售和住宿业、食品制造与烟草加工业、科教文卫社会服务业等部门的价格上升幅度明显较小,而且,其价格上涨幅度在逐年减少。另外,随着化石能源价格的提高,低碳能源(水电、风电及核电)行业的产出在逐年增加,替代作用逐渐加强。
若采用在能源消费环节征收碳税,同时降低居民所得税税率,保持政府财政收入中性的税收方案,可以实现在减少二氧化碳排放强度的同时使得社会福利水平有所增加,从而实现了碳税的“双重红利”效应;而保持政府财政税收中性,在征收碳税的同时适当降低企业所得税,并不能实现碳税的“双重红利”效应。因此,从社会居民福利水平的角度,要实现碳税的“双重红利”效应,我国碳税征收应与居民所得税改革相同步。
若采用在能源消费环节征收碳税,同时降低企业间接税率,保持政府财政收入中性的税收方案,比采用在能源消费环节征收碳税,同时降低企业所得税税率,保持政府财政收入中性的税收方案,更能减弱或消除因征收碳税对社会福利水平产生的负面影响。因此,从对碳税对社会福利水平产生负面影响的角度上考虑,我国在实施碳税的同时,适当降低企业间接税对社会福利水平产生的效果好于适当减少企业所得税的效果。
感谢匿名审稿人的修改意见,文责自负。
注释:
①目前国家统计局还未正式公布2010年细分的中国投入产出表,所以只能以2007年投入产出表为数据基础。
②严格意义上,使用就业增长率更为合适,但由于我国缺乏行业就业人数、失业率等翔实数据,因此用劳动力增长率代替之。
③1986-2007年,我国能源使用效率增长率分别为-0.69%、-1.85%、4.43%、4.14%、3.90%、1.64%、2.86%、8.38%、14.00%、6.40%、0.47%、2.36%、3.30%、-2.47%、-1.44%、-1.26%、-5.10%、-11.01%、-7.93%、-6.14%、-5.44%、-2.43%。
④CGE模型的动态方程主要是参考了Alfredo和Pereira(2014)、Alexandre和Arnaud(2013)等文献,具体推导过程详见这些文献。
全球经济的高速发展带来了高碳排放量和一系列的环境问题。工业化进程的加剧、煤炭、石油天然气的大量消耗使得温室气体排放量持续增加;人类在生产生活过程中大量的排放甲烷、氮氧化物和碳化物等温室气体;森林砍伐和草地退化沙漠化使得全球植被覆盖率逐年减少,尤其在发展中国家粗暴式追求经济增长的发展方式带来了一些列生存和发展问题。近几年,全球自然灾害不断、海平面上升、全球气温上升、海洋风暴次数增加,既是对目前不良发展方式的印证。在全球发展低碳经济、降低碳排放量的趋势下,碳排放空间已然被视为一种生产要素或者说是稀缺资源。
我国正处于工业化时期,以能源密集型产业为主要经济发展动力。而我国的自然资源储量可概括为“富煤、少气、缺油”。已探明的煤炭、天然气和石油的储量占比分别是:煤炭94%,石油5.4%,天然气0.6%。而煤的碳密集程度比较高,同等质量的化石燃料燃烧,煤所释放的二氧化碳量是石油的1.32 倍天然气的1.78倍。我国目前正处于工业化时期,以粗放型的发展方式为主要的经济增长方式,对资源的利用率水平较低,为了经济增长不重视环境污染问题。加之能源结构不合理、能源技术水平和管理水平比较落后。这就决定了我国工业生产中大量使用煤所释放的二氧化碳量更高。同时,煤、石油、天然气等不可再生能源的储量减少、价格不断上涨也在限制着当前经济的发展。转变经济发展方式和产业结构,提高能源利用效率,成为当前中国经济发展中面临的首要问题。研究表明中国的碳生产能力(即每排放一吨的二氧化碳所生产的GDP)仅是发达国家的1/5至1/4左右。早在哥本哈根气候大会前夕,中国政府响应国际上发展低碳经济的号召,提出到2020年单位GDP碳排放比2005年下降40%—45%的目标。
二、高碳产业低碳化转型路径
(一)关于产业能效和产业转型的研究
能源是经济发展的重要基础。研究表明一次能源消费的二氧化碳排放总量与人口、经济活动产出、能源结构以及能源效率密切相关。其中能源结构影响着不同能源品种的碳排放系数,碳排放系数是指燃烧或使用每种单位能源所释放的二氧化碳量。一般认为碳排放系数是固定不变的。有数据显示,从1978年改革开放到2008年,我国三次产业的比重变化分别为:第一产业产值由28.2%下降为11.3%;第三产业产值由23.9%上升为40.1%;而第二产业的产值在41.3%到48.7%之间浮动,变动并不大。可见,中国经济呈现了较快的增长,而重工业的比重仍较高且会在未来相当长的一段时间内保持这一比重状态。丁永波认为,发展低碳经济减少碳排放,首先要对当前的产业结构尤其是工业结构进行调整。工业结构优化升级是实现低碳经济发展模式的重要途径。
在实证研究方面,对于产业能效和碳排放影响因素的研究也不断发展。主要利用结构性因素分解法和指数因素分解法,对产业能源碳排放影响因素或者能源使用驱动因素进行分析,从而得出各种因素对碳排放的影响率大小。将碳排放影响因素主要分解为经济规模、经济结构、能源强度、能源结构和碳排放系数等。从实证分析的结果得到针对某个省或者某个市和地区的低碳化发展路径措施。
(二)关于低碳化技术创新的研究现状
减少全球温室气体排放量的行之有效的措施是创新产业低碳化技术。低碳技术创新能够提高能源利用效率和生产效率,有助于产业结构调整和能源使用结构的调整,从而在经济发展的同时达到减少碳排放的目标。有不少学者在促进产业低碳技术创新方面取得了一定的研究成果。周五七(2011年)在《促进低碳技术创新的公共政策实践与启示》一文中,阐述了促进低碳技术创新的公共政策驱动机制。文章从政府采购政策、知识产权保护政策、低碳技术国际转让政策、节能减排政策对低碳技术创新的作用进行了具体分析。并论述了现有的典型国家的低碳技术促进政策实践及其对中国的启示。文中结尾总结中提出,虽然对促进低碳技术创新的政策驱动机制进行了理论上的剖析,但并没有具体量化到各个驱动机制对低碳化技术创新的贡献率,认为这将是今后这一方面研究的方向。
低碳化技术创新的途径有两种:一种是通过直接引进发达国家的清洁生产机制。这种方式虽然成本低但是却很难获得核心技术,并建立起长期有效的减排机制。二是通过自主创新研发低碳技术,建立起低碳技术创新体系。对我国而言,减排的关键就是开发可再生能源的同时提高化石能源的利用效率。具体而言,就是减少煤炭的使用量,提高煤炭使用效率,减少煤炭使用中的碳排放量。王可达(2011)认为我国低碳化技术创新存在的问题是:企业投资研发的总量少且研发强度低,技术创新的主题缺位;企业的以营利为目的的特性和低碳技术研发的风险性,决定了企业没有长效的技术创新机制,而创新激励机制的缺乏使得企业在低碳技术创新方面动力不足;我国的低碳技术研发起步晚、缺乏专业人才、资金投入不足相应的导致低碳技术创新的研发能力薄弱;具体技术创新领域存在障碍没有形成一定的规模和体系,缺乏核心技术。因此他针对以上几个问题提出了相应的政策。
(三)关于低碳化管理的研究现状
发展低碳经济已成为全球共识,其中征收碳排放税成为了发展低碳经济的一条重要举措。肖泽群等人利用现有的内生增长模型的研究成果,研究了征收碳排放税对经济增长的影响。他们的研究结果表明,在内生增长模型中增加比例税(在原有的比例税基础上增加碳排放比例税)因素,经济增长与人力资本、平均储蓄倾向的增长成正相关关系,并在一定范围内与水平创新、垂直创新的增长成正相关关系。而且,如果政府执行平衡预算,新增碳排放税全额用于低碳技术的创新投入和设备投入,在一定条件下,经济增长与比例税、政府生产中间产品投入资本所占比例的增加,可以提高水平创新和垂直创新对经济增长的贡献度。由此得到开征碳排放税可以确保经济增长,有利于转变经济增长方式。
西方国家在通过环境法律和公共政策体系和部门管理有效结合共同推进产业低碳化发展方式方面进行了积极地探索。企业是处于微观经济领域的无数个个体。由于企业发展对环境造成的负外部影响并不能依靠市场调节机制来有效的抵御。这就需要政府从法律构建方面对企业发展的环境负外部效应进行规制。我国的环境法律体系正在随着经济发展而不断的完善。许多学者从这一方面对低碳化发展路径进行了深入细致的研究分析,并提出了许多政策建议。张露、冉景亮的论文《产业低碳发展的环境法律规制与政策体系建构》,在总结了目前我国的环境法律体系,并借鉴西方经验的基础上,对我国促进低碳经济发展的环境法律体系构建和政策体系构建提出了若干意见。他们认为,深入持续的推进产业低碳化发展需要形成 “以法律监督为主,政策管理为辅”的良好格局。
三、结语
1.1参考Chai[8]的研究成果,出口贸易引起的碳排放可以用公式表示为。式(2)中带撇的变量表示该变量在研究时序内的变化量,等式左边表示由出口引起的碳排放变化量,右边的第一项表示我国出口贸易的结构效应,即在总出口额和部门碳排放强度不变的情况下,由出口结构变化带来的碳排放量变化;第二项为技术效应,即在出口总额与出口结构不变的情况下,由各部门碳排放强度变化引起的碳排放量变化;第三项表示规模效应,即在出口结构和部门碳排放强度不变的情况下,由出口总额变化带来的碳排放量变化。
1.2数据来源与处理本文中的工业分行业增加值、分行业能源消耗量以及出口贸易总额数据均来源于2005年、2009年和2013年的《中国统计年鉴》,分行业出口贸易额数据来源于《中国工业经济统计年鉴》,要说明的是这里的分行业出口贸易额选取的是大中型工业企业的出口贸易额。为了剔除价格因素的影响,分别用居民消费价格指数和工业品出厂价格指数平减出口贸易额和工业增加值数据。鉴于统计口径的不一致及数据的可获得性,本文借鉴前人文献的分类方法,将中国主要工业分类归并调整为14个行业,具体如表1所示。
1.3行业碳排放量测算为计算各主要工业行业的碳排放强度数据,进而计算出口贸易影响碳排放的技术效应,有必要经测算获得各工业行业的行业碳排放量数据。本文将采用方程(3)所示的计算公式,通过一次能源消耗量及其碳排放系数来估算各主要工业行业一次能源消费活动的二氧化碳排放量。其中,C为行业碳排放量,E表示一次能源(煤炭、石油、天然气)的行业消费量,F为一次能源的碳排放系数。通过搜集不同机构研究确定的能源碳排放系数,取其平均值,确定煤炭、石油和天然气能源的碳排放系数F分别为0.728,0.549,0.416。
2出口贸易对碳排放量影响的因素分解分析
2.1结构效应根据模型(2)的计算方法,将2008年相对2004年、2012年相对2008年各主要工业行业的出口份额变化量,分别与2004年和2008年该行业的碳排放量相乘,加总后即得到出口规模和碳排放强度不变的情况下,在2004~2008年和2008~2012两个计算期内,主要工业行业由于出口结构变动而引起的碳排放量变化,计算结果如图1、图2和图3所示。由图1、图2和图3可以看出,在第一个计算期内,我国工业行业出口商品结构发生了很大的变化。其中,出口份额下降较多的行业有服装鞋帽制造业和纺织业,由此带来的碳减排量分别为142.002万吨和1536.27万吨。值得注意的是,煤炭、石油和天然气开采业出口份额的减少量虽然不是最多的,但其对我国工业碳排放量的增加发挥了最大的抑制作用,减排量为299.28万吨,此外,一些加工制造业出口份额的小幅降低也为碳减排起到了积极作用。出口份额增长较快的行业包括通信设备及其他电子设备制造业、交通运输设备制造业和金属冶炼及压延加工业。其中,通信设备及其他电子设备制造业与交通运输设备制造业属于技术密集型产业,这种行业的能源利用率高且碳排放量低,即使出口份额增长很快,带来的碳排放量占总量的比重并不大。而金属冶炼及压延加工业是加工制造行业,由该行业出口份额变动带来的碳排放增量最多,多达21006.23万吨。总的来看,在2003~2007年这一计算期内,出口商品结构的变化使碳排放量增加了20140.03万吨,结构效应为正。通过以上分析可以看出,我国工业行业的出口贸易结构处于从轻纺制品行业向机电产品和高新技术品行业转变的过渡阶段,出口商品结构已经在朝着清洁化的方向发展。从图4、图5和图6可以看出,在第二个计算期内,出口份额增长较快的行业有交通运输设备制造业、电气机械及器材制造业和通信设备及其他电子设备制造业,这主要是因为我国在这些年里逐步发展了机电产品和高新技术品的出口,由此带来的碳排放增量分别为819.425万吨、154.5555万吨和274.29万吨。由于这些行业本身属于技术密集型的低碳行业,所以由此引起的碳排放增量并没有对环境造成很大影响。出口份额减少的行业包括金属冶炼及压延加工业,金属制品业,金属、非金属矿采选业和煤炭、石油、天然气开采业,其中金属冶炼及压延加工业出口份额的调整对降低碳排放做出了巨大贡献,碳排放量减少了17810.1万吨。2007~2011年处于“十一五”规划期间,总的来看,在这一计算期内,工业行业出口结构不断向低碳低能耗转变,工业行业的碳减排起到了成效,减排量为167.81万吨,结构效应为负。由此可以说明,此计算期内,我国始终坚持以资本和技术密集型行业为主的出口结构,把减少资源密集型产品出口,作为优化出口产业结构的主要方向。结合这两个计算期来看,在第一个计算期内,我国初步确立了工业碳减排意识,但减排成效尚不明显。在第二个计算期内,各主要工业行业已基本实现了向高新技术产品出口的结构转变,并取得了较显著的碳减排成效。
2.2技术效应碳排放强度也称碳强度,是指单位国内生产总值的二氧化碳排放量。该指标主要是用来衡量一国经济同碳排放量之间的关系,如果一国在经济增长的同时,每单位国内生产总值所带来的二氧化碳排放量在下降,那么说明该国就实现了一个低碳的发展模式。鉴于本文的研究对象是各主要工业行业,因此这里的碳强度是指单位工业增加值中包含的二氧化碳排放量。根据模型(2)的计算方法,结合两个计算期各主要工业行业的行业出口额与碳排放强度变化量,二者相乘再加总便可得出主要工业行业出口对碳排放影响的技术效应,计算结果如图7、图8和图9所示。由图7、图8和图9中的碳强度数据可知,2004~2008年和2008~2012年两个计算期内,碳排放强度都较大的行业包括煤炭、石油和天然气开采业,金属冶炼及压延加工业,非金属矿物制品业,化学原料及其制品和造纸印刷及文体用品制造业,这些高碳排放行业以资源密集型和加工制造行业为主,其生产效率和排污处理水平较低,伴随着能源消耗而产生的碳排放量也较大。碳强度维持在较低水平的清洁型工业行业主要包括通信设备及其他电子设备制造业、电气机械及器材制造业,交通运输设备制造业,服装鞋帽制造业和金属制品业。总的来看,各主要工业行业的碳排放强度总体呈下降趋势,其中资源密集型和重度污染行业如煤炭、石油和天然气开采业,金属、非金属矿采选业,非金属矿物制品业和化学原料及其制品和医药制造业表现尤为显著。具体而言,第一个计算期内碳强度下降最多的行业依次为煤炭、石油和天然气开采业,非金属矿物制品业,金属、非金属矿采选业,金属冶炼及压延加工业和化学原料及其制品和医药制造业,由此带来的碳排放量分别减少了191.1万吨,215.83万吨,34.01万吨,295.23万吨和327.04万吨。在第二个计算期内,非金属矿物制品业仍保持着碳排放强度的大幅减少并跃居减幅量首位,给工业行业碳减排起到很大的推动作用。到第二个计算期结束,14个主要工业行业中有13个行业的碳强度水平已经降低到每亿元1万吨以下,表明我国在节能技术上的进步,使得工业行业获得了良好的减排效果,一些行业如各类机械、设备和器材制造行业的碳排放强度已经接近每万吨0万吨。综上所述,由于碳排放强度的变化,在第一个计算期内碳排放量减少了1233.08万吨,技术效应为负,在第二个计算期内碳排放量减少了1809.81万吨,技术效应为负。这说明在过去这两个计算期内,我国工业生产的环境保护意识明显增强了,工业生产的节能减排技术得到了大力的发展与应用,对国家的碳减排和环境保护起到了积极作用。
2.3规模效应根据模型(2)的计算方法,将2008年相对2004年、2012年相对2008年各主要工业行业的出口增长率,分别与2004年和2008年该行业的碳排放量相乘,加总后即得到出口结构和碳排放强度不变的情况下,在2004~2008年和2008~2012两个计算期内,主要工业行业由于出口规模变动而引起的碳排放量变化,计算结果如表2所示。在第一个计算期内,除金属、非金属矿采选业外,其余主要工业行业的出口规模都大幅增加,其中金属冶炼及压延加工业,交通运输设备制造业,电气机械及器材制造业,通信及其他电子设备制造业的出口增长率均超过了100%,通信及其他电子设备制造业更是高达730.01%。因而在该计算期内,由于出口规模的变动而带来的碳排放增量大大超过减排量,总计2230144.01万吨,规模效应为正,但一些机电产品和高新技术品行业的出口行业的出口规模显示出大幅度的增加。在2007~2011年也即第二个计算期间,各主要工业行业的出口规模均大幅缩小,其中,煤炭、石油和天然气开采业,金属、非金属矿采选业,金属制品业和金属冶炼及压延加工业,其出口增长率分别下降至-60.02%、-64.07%、-1.80%和-18.51%,由此带来的碳排放减量分别为792701.55万吨、37204.81万吨、352.78万吨和339860.07万吨,为工业碳减排做出了巨大贡献。在此计算期内,主要工业行业碳排放减少了204136.20万吨,规模效应为负,说明“十一五”期间,我国工业坚持走信息化道路,扩展机电产品和高新技术品行业的出口,提高了资源利用效率,加强了排污控制,工业碳减排取得了显著成效。3.4总效应综合来看,主要工业行业出口贸易的碳排放量变化是出口结构、生产技术和出口规模共同作用的结果。由表3可知,在第一个计算期内,主要工业行业出口对碳排放影响的总效应为正,其中出口规模的扩大是导致碳排放量上升的主要原因,技术进步给碳减排带来了积极作用,结构效应虽为正,但结合上述分析可知出口结构已经处于向低能耗、低碳排放的清洁化方向转型的过程中。在第二个计算期内,总效应为负,其中出口规模的减小是导致碳排放量下降的主要原因,而技术进步是减少碳排放的关键因素,出口结构的变化给碳减排起到了积极作用。
3结论与建议
[关键词]碳交易;碳排放;投资模型;系统动力学
[中图分类号] F062.2 [文献标识码] A[文章编号]1673-0461(2011)03-0062-04
当前全球面临着化石能源消耗增加、生态环境恶化、极端天气频现等问题,可持续发展道路面临前所未有的挑战[1]。中国需要在未来20年~50年间,在工业化发展和温室气体减排之间进行平衡。只能以继续化压力为动力,寻求低碳经济发展道路。低碳经济既要保证经济的持续发展,又要维护良好的生态环境;既要进行能源技术创新和制度创新,又要开展国际合作与交流,涉及经济、环境、能源、科技、外交等多方面[2]。因此,这一经济模式的建立和推广将是一个复杂的过程,应充分发挥政府在低碳经济发展中的主导作用[3]。根据英国的经验,政府促进低碳经济发展的措施主要包括两个方面:发展能源技术以提高效率和发展可再生能源,建立温室气体排放贸易市场机制、设立碳基金[4]。这在一定程度上给我国的低碳经济发展提供了借鉴[5]。但我国幅员辽阔,各地区经济发展水平差异较大。陈佳贵等针对中国当前不同的经济区域进行了比较分析,认为东部地区进入工业化后期,东北地区处于工业化中期,中部与西部地区整体处于工业化前期的后半期,四大经济区域的工业化水平差距巨大[6]。因此中国发展低碳经济也应该就各地的情况区别考虑。
谭丹等计算了1986年到2005年我国三大地区单位GDP 碳排放量,得出从历史数据看东部地区数值最小,中部地区次之,西部地区最大,在单位GDP 碳排放的递减速度上, 中部地区最快, 年均递减速度为9.8%,东部地区第二,年均递减速度为9.2%,西部地区最慢,年均递减速度为8.4%[7]。张雷利用产业-能源关联和能源-碳排放关联评价模型,解析了中国碳排放区域格局的变化[8]。李爱军给出了一个我国二氧化硫和二氧化碳减排的区域间可计算一般均衡模型[9]。也有一些研究工作把样本定位为省级区域[10]。
本文首先介绍低碳经济为各地发展带来的机遇与挑战,在第二节提出建立区域间碳汇投资机制,在第三节给出了实现这一机制的政策建议。
一、低碳经济兴起为我国各地区发展带来的机遇与挑战
在我国实行改革开放后,凭借传统资源与劳动力优势,我国工业化进程逐渐加快,在这一阶段东部沿海地区依靠高碳经济模式获得了先发优势,我国东、中、西部经济与社会发展水平被渐渐拉大,鉴此,国家出台了西部大开发计划以及中部振兴规划。于2008年爆发的国际金融危机使得我国面临空前挑战,内外条件都不再允许中、西部地区再接着按高碳经济发展,传统发展模式下解决我国区域发展不平衡问题愈发困难。中、西部地区要跳过累积关系,就需要新的机会,国际上低碳经济的兴起为中、西部地区的发展提供了新机遇。
低碳特别适合产业发展,它的产业链长,概括起来包括碳的吸收,这主要是生物、物理过程,还要碳的减少,这主要在碳产出时进行。碳的吸收对中、西部地区发展有益,通过在中、西部地区大量造林,依靠碳汇交易机制,中、西部地区的资源禀赋就可以被加以充分利用了。
另外,森林植被、森林资源的增长,是中国积极应对气候变化的例证之一,体现出中国是一个负责任的大国。据国家林业局统计,1980年至2005年,中国通过持续开展植树造林活动,累计净吸收二氧化碳46.8亿吨;通过控制毁林,减少排放二氧化碳4.3亿吨,两项合计51.1亿吨,相当于同期二氧化碳工业排放总量的8%,对减缓全球气候变暖做出了重要贡献。第七次全国森林资源清查结果显示,截至2008年底,中国森林面积已达1.95亿公顷,森林覆盖率为20.36%。人工林保存面积6,200万公顷,继续保持世界首位。在哥本哈根联合国气候变化大会举行前夕,中国宣布了控制温室气体排放的具体行动目标,其中之一就是,到2020年,森林面积比2005年增加4,000万公顷,森林蓄积量增加13亿立方米,这将为削减全球二氧化碳排放、保护生态发挥重大作用。
目前,在西部主要通过政府发放生态效益补偿金、合理采伐、林间养殖、生态旅游等,让树木为农民长期创造财富。如青海省发给林农的公益林(即用于生态保护等目的而禁止砍伐的森林)生态效益补偿金,已从每亩5元增加到10元。承包林地多的农牧民家庭,每年最多可拿到5万元。但现在政府提供的生态效益补偿金还是偏少,远远抵不上卖木材的收入。
根据《京都议定书》建立的清洁发展机制,发达国家出资在发展中国家实施造林和再造林项目,这些项目产生的实质性温室气体减排量可以用来实现发达国家在《京都议定书》中承诺的减排目标。如全球首个基于气候、社区、生物多样性(CCB)标准的森林碳汇项目――“中国四川西北部退化土地的造林再造林项目”2009年11月在成都完成交易,项目业主省大渡河造林局,以每吨不低于5美元的价格,向中国香港低碳亚洲公司出售了约46万吨二氧化碳减排当量,实现碳汇收益超过230万美元。但国际间碳交易进展缓慢,碳定价权又不由我国掌握,单纯依靠CDM项目难以实现中、西部跨域式发展。
如何把政府财政转移与市场化碳汇交易结合,通过两条腿加速中、西部发展,正是本文论述的要点。本文设计了一种我国内部区域间碳汇投资机制,通过区域间投资,带动中、西部地区碳汇建设,并实现减少我国净碳排放的目标。
二、区域间碳汇投资机制的建立
碳排放受社会、经济、自然、生态、技术等多方面的影响,但据徐玉高等对中国1970年~1994年间各因素对碳排放的影响分析,经济增长是中国20多年来碳排放迅速增加的最主要因素,仅此一项引起的碳排放变化占总量的94%以上[11]。另据文献[7],在我国东、中、西部间,东部地区的碳排放量在2005年达到全国碳排放量的一半以上,这是与东部地区较发达的经济紧密联系的。
有效减少净碳排放量的方式可归纳为两种:一要转变经济发展方式减少碳排放量;二是增加森林面积加大碳吸收量。但我国东部地区经济发展较为发达,投资收益率比中、西部要高,受土地等因素制约,大面积种植森林将减少宝贵的建设用地,而我国中、西部地区有大量土地资源闲置,要促进我国低碳发展整体格局的形成,需要体制机制上的改革。
为此,本文提出建立区域间碳汇投资方式,可用图1示意。该模型由三部分组成,东部、中部与西部,分别对应我国传统意义上的三大区域。在每个区域模型内部,包括由森林面积决定的碳吸收量,由经济水平决定的碳排放量,以及两者之差即该区域净碳排放量。
东部地区在自己经济发展的同时,在政府层面拿出一定比例的财政收入,在民间层面企业拿出一定利润所得,投资于中、西部地区的碳汇建设,从而在发达地区经济继续快速发展的同时,增加我国的森林种植面积,削减全国的净碳排放量。
图1可以进一步利用系统动力学流程图表述,如图2所示。其中标号1,2,3分别代表东、中、西部,Economics代表区域经济发展水平,经济发展速度由es决定;Forest代表森林种植,其变化速率是fs,fs由可用土地Useable-A决定,可用土地又有总土地面积Area决定,森林变化速率fs还由经济发展水平决定,影响水平为ef,由于经济水平对森林种植变化具有时间延迟,这种延迟用delayT表示;经济发展带来碳排放C-Emi,碳排放的变化用em表示;森林可用吸收碳,碳的吸收用C-Abs表示,变化速率为fa;用碳排放减去碳吸收就得到净碳排放C-Net,itemin,itemout表示单位进出速率。
这里我们用到了文献[11]的结论,即碳排放量可由经济发展程度来决定,具体定量关系可利用文献[12]对165个国家在1980年~2003年间进行分组检验后的结论,在0.944显著性水平下,pC-Emi与pGDP有二次曲线关系:
pC-Emi=7.836+2.95E-4pGDP-5.14E-9pGDP2(2)
其中pC-Emi代表年人均碳排放量,pGDP是人均GDP。
当然,子模型数量可以不局限于3个,事实上,我们可以以省份为子系统建立整体模型,相应机制可以做扩展。
三、政策建议
在各地区转变经济发展方式,减少化石能源消耗,变高碳增长为低碳化发展基础上,上节提出的区域间碳汇投资模型可从全国范围内有效减少净碳排放量,为此需要首先抓三方面工作。
(一)发挥全国碳排放交易市场作用
日前,国家发改委鼓励东部人均GDP高于1万美元、地方政府有意愿的地区开展碳排放交易试点,有些地区也已经有了这样的交易所,如设在天津滨海新区的全国碳排放交易所,但距离全国易还有较大距离。在各地发展碳排放交易所的同时,应建立排放所之间的交易信息沟通机制,实现数据共享,待各地交易试点发展良好后,整合成立全国性碳排放交易市场,原有各地交易市场成为全国市场的地方分支机构。
(二)开展区域碳排放联席会议
我国地区之间经济社会发展水平差距较大,而温室气体排放事关全国发展,应建立区域间研讨、信息交流会议机制。可首先在环渤海、珠三角、长三角、中部六省等主体功能区内成立低碳发展会议机制,平衡区域内净碳排放。在此基础上,建立全国性碳排放通气会。
(三)建立碳排放跨区域财政补贴机制
金融是低碳产业发展的主渠道,要发挥财政的引导作用,以弥补市场失灵部分。东部地区应从财政收入中拿出适当部分支持中、西部地区开展植树造林,增加森林碳汇。为管理好这部分资金,应成立全国碳排放专项资金管理中心,负责资金的收缴与发放。
[参考文献]
[1] 中国科学院可持续发展战略研究组,探索中国特色的低碳道路[A]. 2009中国可持续发展战略报告[C]. 北京:科学出版社,2009.
[2] 张坤民,等.低碳经济论[M].北京:中国环境科学出版社,2008.
[3] 邢继俊.发展低碳经济的公共政策研究[D].武汉:华中科技大学,2009.
[4] 社论.英国发展低碳经济应对气候变化和能源安全的理念和最新进展[J].中国石油和化工标准与质量,2009,29(1):43-45.
[5] 张坤民.低碳世界中的中国:地位、挑战与战略[J].中国人口・资源与环境,2008,18(3):1-7.
[6] 陈佳贵,等.中国地区工业化进程的综合评价与特征分析[J].经济研究,2006 (6):4-17.
[7] 谭 丹,黄贤金.我国东、中、西部地区经济发展与碳排放的关联分析及比较[J].中国人口・资源与环境,2008,18(3):54-57.
[8] 张 雷.经济发展对碳排放的影响[J].地理学报,2003,58(4):629-637.
[9] 李爱军.我国能源-环境-经济系统的区域间建模[J].数学的实践与认识,2007,37(6):11-17.
[10] 邹秀萍,等.中国省级区域碳排放影响因素的实证分析[J].生态经济,2009(3):34-37.
[11] 徐玉高,郭 元.经济发展,碳排放和经济演化[J].环境科学进展,1999,7(2):54-64.
[12] 韩玉军,陆 .经济增长与环境的关系[J].经济理论与经济管理,2009(3):5-11.
Research on the Establishment
of Interregional Carbon Sinks' Investment Mechanism
WuJianxin
(Tianjin Binhai Comprehensive Development Institute,Tianjin 300457, China)
关键词:空气污染指数;面板模型
一、引言
近年来,随着社会经济的发展,人们的生活质量逐步提高。但经济增长的同时,也给我们的生活环境带来了很大的影响,其中对城市空气污染的影响问题尤为严重。因而,对城市环境空气质量做出客观、全面的认识就变得尤为重要。
目前,学术界对空气质量的研究范围都比较窄,或只针对少数地区、城市,或没有从社会因素更深层次挖掘空气污染指数的影响因素。为此,本文选取克拉玛依、大同、潍坊、武汉、汕头、韶关、牡丹江及赤峰8个城市2008-2014年的样本数据,采用面板数据对空气污染指数的气候和社会影响因素进行实证研究。
二、实证分析
本文也采用空气污染指数(API)做研究,空气污染指数(API)就是将常规监测的二氧化硫、氮氧化物和总悬浮颗粒物浓度简化成为单一的概念性指数数值形式,并分级表示空气污染程度和空气质量状况,计算公式为:
(1)
其中,I为某污染物的污染指数;C为该污染物的浓度值。则空气污染指数API为:
(2)
(1)在气候因素方面,本文认为降水量、相对湿度、温度、平均水汽压都对城市环境空气质量产生重要的影响,据此构造回归模型如下:
(3)
其中Js表示降水量(10kin);SD表示相对湿度(103):WD表示温度(104℃);SQY表示水汽压(1MPa);μ为随机扰动项。根据Hausman检验,本文最终采用个体固定效应回归模型进行估计,结果见表1。
由回归结果可知:在其他变量不变的情况下,湿度每相对增长103,平均来说会引起空气污染指数下降2.3个百分点;温度每升高104℃,会引起空气污染指数下降0.3个百分点;水汽压每上升1,会引起空气污染指数下降0.9个百分点;降雨量对空气污染指数有滞后影响,平均来说降雨量每增长10km,空气污染指数就下降3.17个百分点。
(2)影响城市环境空气质量的社会因素主要有经济生产和环境保护两个因素。其中,经济生产中的工业生产总值、粉尘排放影响最为显著。在环境保护方面,本文考虑城市绿化面积这一因素。据此构造回归模型如下:
(4)
其中:人均粉尘排放量(百吨/人);表示人均绿化面积(公顷/人);表示人均工业产值(百万/人)。根据Hausman检验可知采用个体固定效应回归模型,结果见表2。
回归结果显示:在其他变量不变的情况下,人均粉尘排放量每增长1百吨,平均来说会引起空气污染指数上升5.99个百分点;人均工业产值每增长1百万,平均来说会引起空气污染指数上升1.46个百分点;人均绿化面积每增长1公顷,平均来说会引起空气污染指数下降1 10.95个百分点。
三、结论
据以上分析,得出主要结论有:气候方面,降水量、湿度、温度、水汽压均对空气污染指数呈显著负相关。人类经济社会活动方面,工业总产值、粉尘排放量对空气污染指数呈显著正相关,绿化面积对空气污染指数呈显著负相关。据此,本文提出以下建议:
1.推进园林城市建设,有效调节城市空气环境
首先,森林被成为“绿色水库”,能有效调节城市空气湿度。其次,园林绿地能有效净化空气。绿色植物能调节二氧化碳和氧气在空气中的相对平衡,改善和促进城市生态环境的良性循环。同时,园林绿地还可有效吸收影响人类健康的有害气体。
2.着重发展第三产业,有效控制污染物排放