前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的减少二氧化碳排放主题范文,仅供参考,欢迎阅读并收藏。
关键词:二氧化碳排放效率;减排潜力;规模方向距离函数
DOI:10.13956/j.ss.1001-8409.2015.03.15
中图分类号:F124.6;F205 文献标识码:A文章编号:1001-8409(2015)03-0070-04
1引言
面对日益严峻的环境问题,减少温室气体排放和发展低碳经济已成为国内外关注的焦点。中国作为全球第二大经济体和二氧化碳排放最多的发展中国家,面临着来自国际和国内的双重压力。我国正处于社会经济发展的关键时期,提高二氧化碳排放效率是提高经济发展水平的同时削减二氧化碳排放量的关键,同时国家总体目标的实现必然要从区域层面的减排行动着手,因此,测度我国各省市的二氧化碳排放绩效并计算各省市提高二氧化碳排放效率的改进目标值对于了解我国各省市二氧化碳排放水平、科学制定减排方案具有重要意义。
目前,国内外学者对二氧化碳排放水平等展开了大量研究,从其评价指标角度来看主要可分为两类。一是以二氧化碳排放总量与某一要素的比值的单要素评价指标对二氧化碳排放绩效进行评价,如谌伟等对上海市工业碳排放总量与碳生产率进行测算[1];Zhao等计算了我国电力行业二氧化碳排放的年增长率,并分析了二氧化碳排放影响因素[2];部分学者对我国各省市二氧化碳排放绩效进行了评价[3~6]。二是从全要素角度出发、运用生产理论对二氧化碳排放效率进行评价。Zhou等将二氧化碳排放绩效视为考虑了二氧化碳排放的生产技术效率,并对其进行测算[7]。此后许多学者从环境生产技术视角对碳排放效率进行了研究。如王群伟、进、Wang等测度分析了我国各省市的二氧化碳排放绩效[8~10];孙作人等对我国工业二氧化碳排放强度进行测算和分解[11];Zhou 等构建了非径向DDF模型,并对电力生产行业的能源和二氧化碳排放效率进行评价[12];王喜平等运用DDF对我国工业行业在二氧化碳排放约束条件下的全要素能源效率水平进行测算[13]。
单要素评价指标具有容易测算的优点,但无法反映二氧化碳的生产过程,忽略了能源结构、经济发展及要素替代作用对二氧化碳排放绩效的影响[14]。因此,近年来许多学者侧重从全要素角度评价二氧化碳排放效率并提出了多种不同的测度方法,其中由Chung等提出的方向距离函数(DDF) [15]在二氧化碳排放效率评价中得到了广泛的应用[16~19]。DDF方法能够根据不同的决策需要来自定义方向矢量而得到不同的效率值,因而能够实现在二氧化碳排放量与经济产出反向同比例变化目标下的效率测度,但DDF存在以下缺点:一是在确定方向矢量时有任意性、主观性的缺点;二是没有考虑投入松弛和产出松弛的影响,使得测度的效率值存在偏差。Ramli等对DDF进行了扩展,建立了基于松弛变量的测度模型(SBM)的规模方向距离函数(SDDF)模型[20],弥补了DDF的上述缺陷。
因此,本文将在全要素和生产技术的框架下,探索性地将SDDF模型应用到二氧化碳排放效率的评价中,以期对二氧化碳排放效率做出更精确的测算,同时测度欲达到效率最优期望产出和非期望产出的改进目标值,为提高二氧化碳排放效率相关决策提供参考。
2研究方法
21二氧化碳排放效率测度
在全要素和生产技术的框架下测度二氧化碳排放效率,首先应构建生产可能性集合。假设生产系统有N个决策单元(DMU),y∈RI+和b∈RJ+分别代表第K个DMU的期望产出向量和非期望产出向量,x∈RK+为第n个DMU的投入向量。定义生产可能集合如下:
P(x)={(y,c):投入x可以产出(y,c)}(1)
根据Fre等的研究[21],P(x)满足以下条件:①P(x)为有界闭集,在P(x)中有限投入只能生产出有限的产出;②投入与期望产出具有强可处置性;③非期望产出伴随着期望产出;④非期望产出具有弱可处置性。
为达到期望产出增加的同时非期望产出减少的目标,Chung等通过引入方向矢量g=(gy′-gc),构建了方向距离函数[15]如下:
D(x,y,c;gy′-gc)=max{β:(y+gy′c-βgc)}∈P(x)(2)
现有研究中多以式(3)所示的线性规划求解D(x,y,c;gy′-gc)[10,22]。
D(x,y,c;gy′-gc)=max βm
∑Nn=1λnxkn≤xim;
∑Nn=1λnyin≥yim+βmgy;
∑Nn=1λnCjn=cjm-βmgc;
λn≥0;
k=1,2,…,K;i=1,2,…,I;
j=1,2,…J;n=1,2,…N(3)
这一求解过程未考虑松弛变量,会带来高估偏差。本文参考Fre和Ramli等的研究[20,23],建立如下模型:
max βm=∑Ii=1syi+∑jj=1scj
∑Nn=1λnxkn≤xim;k=1,2,…,K
∑Nn=1λnyin≥yim+syi;i=1,2,…,I
∑Nn=1λncjn=cjm-scj;j=1,2,…,J
λn,syi,scj≥0;n=1,2,…,N(4)
其中,syi、scj分别为期望产出的扩展因子和非期望产出的伸缩因子。当βm=0时,说明第m个DMU效率达到最优;βm∈[0,1]越小,效率越低。βm实际为第m个DMU的非效率值,其效率值为:
am=1-βm(5)
22改进方向矢量和目标值测度
选择有效的方向矢量是应用DDF时的首要任务。本文应用SDDF方法的计算结果来确定各DMU趋近生产前沿面的方向矢量。
当∑Ii=1syi+∑Jj=1scj>0时,即DMU不在生产前沿面上,DMU的第j个期望产出和第k个非期望产出的规模方向矢量如下:
gy=syi∑Ii=1syi+∑Jj=1scj;gc=scj∑Ii=1syi+∑Jj=1scj(6)
方向矢量是由期望产出和非期望产出的松弛变量决定的。
当∑Ii=1Syi+∑Jj=1scj=0时,即DMU在生产前沿面上,gy和gc为任意值。
根据SDDF的计算结果可以得到非有效的DMU欲达到效率最优,期望产出和非期望产出的目标变化量分别为:
∑Nn=1λnyjn;∑Nn=1λnckn(7)
3指标与数据
本文研究对象包括除和港澳台以外的中国30个省市,以劳动力、资本、能源为投入变量,GDP为期望产出,二氧化碳排放量为非期望产出。劳动力投入、GDP数据源自《2011年中国统计年鉴》。能源的消耗量数据源自《2011年中国能源统计年鉴》。资本存量参考单豪杰的研究[24]进行估算,并将其折算为2010年不变价,四川和重庆的资本存量按两地1998年的GDP比例分配。二氧化碳排放量按IPCC指导目录所提供的参考方法和《中国统计年鉴》、《中国能源统计年鉴》中的能源消耗数据估算。2010年我国各省份的二氧化碳排放强度如图1所示。图12010年中国各省份二氧化碳排放强度
4计算结果分析
41二氧化碳排放效率分析
作为径向DEA模型的推广,DDF能够将非期望产出引入到模型之中,但效率测度时不具备单位不变性[25]。为解决此障碍,本文在求解之前应用成刚等提出的DEA数据标准化方法对数据进行处理[26]。在DDF中,g=(y,c)表示欲达到最优,期望与非期望产出同时变化的比例。得到2010年中国各省份二氧化碳排放效率,如图2所示。图22010年中国各省份二氧化碳排放效率
由图2可知,我国二氧化碳排放效率的区域差异化明显,沿海和东部省份的效率值明显优于西部地区。这说明二氧化碳排放效率与经济发展水平相关。
在传统DDF下的结果中,二氧化碳排放效率等于1的省份包括北京、天津、河北、山西、内蒙古、上海、广东;青海、云南、吉林、新疆、宁夏的二氧化碳排放效率值在05以下,二氧化碳减排潜力很大。宁夏的效率值最低,为0262,说明欲达到效率最优,在投入不变的情况下,宁夏的GDP应增加262%,同时二氧化碳排放量应减少262%。
在考虑了松弛变量的SDDF计算结果中,处于生产前沿的省市为北京、上海、广东3个省市,少于DDF方法下处于生产前沿的省市。天津、海南、重庆的二氧化碳排放效率值较高,均在09以上。二氧化碳排放效率最低的省份为河北省,效率值为0201,宁夏的二氧化碳排放效率略优于河北省,效率值为0280。
整体来看,DDF下的全国各省份二氧化碳排放效率均值为0726,SDDF下的结果为0687,低于DDF的结果。主要原因是引入松弛变量的SDDF弥补了DDF高估效率值的偏差,这与预期结果相同。
42改进方向矢量与改进目标值
在利用SDDF计算各省份二氧化碳排放效率的基础上,本文计算了各省份欲达到效率最优,GDP和CO2的方向矢量、改进目标值和变化率。结果如表1所示。
表12010年中国各省市二氧化碳排放绩效
改进方向矢量、目标值及其变化率
总体来讲,我国各省市CO2排放量的削减量明显大于GDP的增加量,减少CO2排放量是我国大多数省市的当务之急。各省市间的期望与非期望产出的改进变化率呈现较大的差异,其中GDP变化率最大的省份为宁夏,其GDP增加6181%,才能实现效率最优;CO2排放量变化率最大的省份为内蒙古,变化率为8078%。
5结论
本文在全要素和生产技术框架下,使用SDDF方法对我国30个省份2010年的二氧化碳排放效率进行了测算,并在此基础上计算了各个省市趋近生产前沿面的方向矢量,以及二氧化碳排放效率欲达到最优各省市期望产出与非期望产出的目标值和变化率,以此测度减排潜力,得到以下结论:
(1)SDDF能弥补传统DDF测算二氧化碳排放效率的高估缺陷。SDDF与DDF两种方法的计算结果存在偏差,整体来看SDDF对各省市二氧化碳排放效率的测算结果低于DDF的计算结果,位于生产前沿面上的省份也不同。传统DDF方法评价二氧化碳排放效率时未考虑松弛问题,存在计算结果高估效率水平的问题。SDDF是基于DDF的SBM方法,弥补了这一缺点,同时解决了传统DDF确定方向矢量具有任意性的问题,从而能够更真实、准确地测度二氧化碳排放效率。
(2)我国二氧化碳排放效率区域差异明显,经济发达的沿海和东部地区的效率值大于经济欠发达的西部地区。在SDDF方法下,除北京、上海、广东三地均处于生产前沿面上外,其他省份均未达到效率最优。趋近于生产前沿面的省份位于东南沿海地区,而东北三省、欠发达的西部地区以及河北省、山西省和山东省的二氧化碳排放效率值低于我国二氧化碳排放效率的均值。
(3)不同地区的期望产出与非期望产出改进变化率差异较大,削减二氧化碳排放量是各省市提高二氧化碳排放效率的首要任务。由于经济发展水平、产业结构、资源禀赋等不同,为提高二氧化碳排放效率,各省份期望产出与非期望产出的改进方向、改进目标值亦不同,在满足我国全局利益的情况下,应根据各省市实际情况和改进目标制定相应的二氧化碳排放效率提升政策。但整体而言,二氧化碳排放量的削减变化率明显大于GDP的增加变化率,各省份应首先努力减少二氧化碳排放量。此外,未达到二氧化碳排放效率最优的省份的二氧化碳排放量改进变化率很大,从短期看提高二氧化碳排放效率的工作艰巨,应将改进变化率作为制定相关政策的指导方向,逐步实现二氧化碳排放效率的最优化。
参考文献:
[1]谌伟,诸大建,白竹岚.上海市工业碳排放总量与碳生产率关系[J].中国人口.资源与环境,2010,09:24-29.
[2]Zhao X,Ma Q,Yang R.Factors Influencing CO2 Emissions in Chinas Power Industry:Cointegration Analysis [J].Energy Policy,2012,57:89-98.
[3]潘家华,张丽峰.我国碳生产率区域差异性研究[J].中国工业经济,2011,05:47-57.
[4]谌伟,诸大建.中国二氧化碳排放效率低么?――基于福利视角的国际比较[J].经济与管理研究,2011,01:56-63.
[5]籍艳丽,郜元兴.二氧化碳排放强度的实证研究[J].统计研究,2011,07:37-44.
[6]李涛,傅强.中国省际碳排放效率研究[J].统计研究,2011,07:62-71.
[7]Zhou P,Ang B W,Han J Y.Total Factor Carbon Emission Performance:A Malmquist Index Analysis [J].Energy Economics,2010,32(1):194-201.
[8]王群伟,周鹏,周德群.我国二氧化碳排放绩效的动态变化、区域差异及影响因素[J].中国工业经济,2010,01:45-54.
[9]进,杜克锐.对外贸易、经济增长与中国二氧化碳排放效率[J].山西财经大学学报,2013,05:1-11.
[10]Wang Q W,Zhou P,Shen N,et al.Measuring Carbon Dioxide Emission Performance in Chinese Provinces:A Parametric Approach [J].Renewable and Sustainable Energy Reviews,2013,21:324-330.
[11]孙作人,周德群,周鹏.工业碳排放驱动因素研究:一种生产分解分析新方法[J].数量经济技术经济研究,2012,05:63-74+133.
[12]Zhou P,Ang B W,Wang H.Energy and CO2 Emission Performance in Electricity Generation:A Nonradial Directional Distance Function Approach [J].European Journal of Operational Research,2012,221(3):625-635.
[13]王喜平,姜晔.碳排放约束下我国工业行业全要素能源效率及其影响因素研究[J].软科学,2012(2):73-78.
[14]Ramanathan R.An Analysis of Energy Consumption and Carbon Dioxide Emissions in Countries of the Middle East and North Africa [J].Energy,2005,30(15):2831-2842.
[15]Chung Y H,Fre R,Grosskopf S.Productivity and Undesirable Outputs:A Directional Distance Function Approach [J].Journal of Environmental Management,1997,51(3):229-240.
[16]Riccardi R,Oggioni G,Toninelli R.Efficiency Analysis of World Cement Industry In Presence of Undesirable Output:Application of Data Envelopment Analysis and Directional Distance Function [J].Energy Policy,2012,44:140-152.
[17]李静,陈武.基于方向性距离函数的中国省区碳排放驱动因素研究[J].合肥工业大学学报:自然科学版,2012,35(3):381-386.
[18]Wang Q,Zhang H,Zhang W.A Malmquist CO2 Emission Performance Index Based on a Metafrontier Approach [J].Mathematical and Computer Modelling,2013,58(5):1068-1073.
[19]程云鹤,齐晓安,汪克亮,等.基于技术差距的中国省际全要素CO2排放效率研究[J].软科学,2012(12):64-68.
[20]Ramli N A,Munisamy S,Arabi B.Scale Directional Distance Function and Its Application to the Measurement of Ecoefficiency in the Manufacturing Sector [J].Annals of Operations Research,2013,211(1):381-398.
[21]Fre R,Grosskopf S,Pasurka Jr C A.Environmental Production Functions and Environmental Directional Distance Functions [J].Energy,2007,32(7):1055-1066.
[22]刘明磊,朱磊,范英.我国省级碳排放绩效评价及边际减排成本估计:基于非参数距离函数方法[J].中国软科学,2011,3:106-114.
[23]Fre R,Grosskopf S.Directional Distance Functions and Slacksbased Measures of Efficiency [J].European Journal of Operational Research,2010,200(1):320-322.
[24]单豪杰.中国资本存量的再估算:1952~ 2006 年[J].数量经济技术经济研究,2008,25(10):17-31.
如今,减少二氧化碳等温室气体的排放,已成为人们面临的重要课题之一。
减少二氧化碳的排放有很多技术手段。比如提高现有设备的燃烧效率,尽量少使用煤炭、石油、天然气等化石燃料;利用风能、太阳能、水能、核能等洁净能源,使用生物质燃料,等等。
谁排放了二氧化碳
对我国来说,在相当长的一段时期内,煤炭仍然是主要的能源。如何有效处置燃煤产生的二氧化碳,对实现节能减排目标,保护环境都至关重要。
根据粗略统计,交通运输业是排放二氧化碳的主要行业,大约占二氧化碳总排放量的1/3。交通运输所排放的二氧化碳是由成千上万辆机动车产生的,这些二氧化碳很难被统一捕集。
火力发电厂则是排放二氧化碳的最大行业。火力发电厂燃烧化石燃料后排放的二氧化碳大约占全球人类活动排放的二氧化碳总量的24%。
除火力发电厂外,建材、陶瓷、水泥、玻璃、冶金以及化工等行业,也燃烧化石燃料,不过,排放量要小得多。
由于化石燃料的燃烧是在锅炉等工业设备中进行的,比较容易在管道系统中进行二氧化碳的分离和捕集。因此,首先处理火力发电厂排放的二氧化碳是切实可行的减少温室气体排放的办法。
科学家们目前研究的重点是对工厂排放的二氧化碳进行捕集和分离,然后将其压缩成液体,输送到合适的地点,封存于地下。
最新研究显示,未来50年内,深埋二氧化碳可能成为减少温室气体的重要方式。
地下 二氧化碳好去处
我们人类生活、居住在地球表面,地下的岩石结构非常复杂。地质学家把地球表面到地下平均厚度17千米深处的这一部分,称为地壳。一般情况下,人类发现并开采的矿产,如铁矿、铜矿、金矿等,最深处也就在1~2千米。目前,煤矿开采深度普遍为几百米至1千米,往更深的地下开采的并不多;石油、天然气的埋藏深度相对深一些,可达几千米。
如果我们充分认识了解、利用我们脚下的岩石结构,就可以把捕集的二氧化碳储存起来。
在联合国政府问气候变化专门委员会(IPCC)的评估报告里,就介绍了埋存二氧化碳的几种主要技术,包括:注入衰竭油气田:注入油气田提高采收率;注入海洋或陆地咸水层:注入深部不可开采煤层与可开采煤层,增加煤层气产量;还有一些其他方法,如注入玄武岩、油页岩及岩石洞穴等。
使用这些方法,都离不开对二氧化碳性质的了解。
二氧化碳是一种无色、无味、比空气重的气体,在标准状况下,密度是1.977克/升。在空气中,二氧化碳占0.03%。当温度/压力高于31℃/74大气压时,二氧化碳处于超临界状态(超临界点温度是31.1℃,压力7.384兆帕大气压)。处于超临界状态的二氧化碳,密度近于液体,黏度近于气体,扩散系数为液体的i00倍,是一种很好的溶剂,它的溶解性、穿透性均超过水、乙醇和乙醚等溶剂,具有很强的溶解能力。利用这个性质可以从多种物质中提取出有效成分,因而,二氧化碳在医药、食品、香料、烟草与化学工业中得到了广泛的应用。
油田埋存储法提高石油采收率
利用超临界萃取理论的原理,把二氧化碳注入到产量正在递减的油气田,可以提高油气产量,这是不少发达国家正在采用的技术。
从20世纪70年代开始,发达国家开始尝试把超临界二氧化碳流体萃取理论应用到石油工业,即把二氧化碳注入到油田的储油层,增加油气产量,并且取得了很好的效果。由于二氧化碳对烃类物质的萃取有自己的特点,超临界流体把原油中较重的碳氢化合物萃取出来后,这种液态混合物具有较好的流动性,容易流向生产井,进而被抽提到地表。在石油工业中,这种方法被称为二氧化碳驱油。
目前,比较成熟的处理技术是在距地面800米以及更深处进行二氧化碳的储存。在800米或更深的地方,地热梯度为25~35℃/千米、压力梯度为10.5兆帕/千米,游离的二氧化碳处于超临界状态,它的浓度变化范围为440~740千克/立方米。因此,在多孔和可渗透的储存岩层中,不需要特别的压力条件就可以储存二氧化碳。
世界上达到一定规模的工业性试验首推加拿大萨斯喀彻温省韦本(Weyburn,或称韦伯恩)油田。这是国际能源署(IEA GHG)温室气体研究的监测和储存项目,也是加拿大能源公司(Encana)涉及1.5亿美元、周期达30年,用二氧化碳增加石油采收率的商业项目。其目的是通过把加压的二氧化碳气体注入到油田储层中,以增加石油产量1.3亿桶。同时,通过综合监测,查明二氧化碳在被灌注到地下以后的运移规律,最终作为建立长期、安全的二氧化碳地下储存技术和范例。
通过研究,地质学家发现韦本油田的地质构造适宜进行注入试验。制定好方案后,项目首先于2000年9月在加拿大能源公司韦本19井阵(1平方千米范围的注一采井群组)中进行,初期注气量为2.69百万立方米/天(或5000吨/天)。现在的注气量为3.3g百万立方米/天,其中,每天有0.71百万立方米的二氧化碳通过生产井进行再循环。在实验区块中,每天的石油产量(20560桶)有1/4(超过5000桶)是由二氧化碳的注入所贡献的。到2008年生产周期,二氧化碳注入到75个井阵,注气量达108亿立方米(2000万吨)。
我国也在积极开展这个领域的研究与试验,科技部支持开展的973项目――温室气体提高石油采收率的资源化利用及地下埋存,就是通过二氧化碳提高石油采收率并且实现地质封存的示范工程。如今,这项工作已经取得了显著成效。
海洋埋存储法限制虽多潜力大
除了上面这种方法外,把二氧化碳注入地下深部咸水层,也是一种主要实现环境效益的措施。不过,由于没有其他经济补偿手段,注入成本昂贵。
研究表明,在沉积盆地的咸水层封存二氧化碳的温度/压力条件是:深度必须大于800米。只有在这样的深度,才能达到二氧化碳的超临界压力。
尽管采用深部咸水层储存二氧化碳有着诸多限制,但深部咸水层储存二氧化碳有很大的潜力。目前,世界各地区正在进行估测咸水层封存二氧化碳容量的研究,比如在美国的陆地和加拿大阿尔伯塔盆地、欧洲西北部的海洋、澳大利亚东部海洋等。
其中,比较有名的是20世纪90年代欧盟启动的一个咸水
层封存二氧化碳项目(Sal ineAquifer CO2 Storage,简称SACS)。
1998年,挪威国家石油公司(Statoil)与挪威、丹麦、荷兰、法国及英国的科学研究机构组成SACS计划集团,并开始收集有关二氧化碳注入到北海地区Utsira地层及其他类似地区的资料。SACS涉及了多学科方法,包括地质、地球化学、地球物理以及储库的工程、数值模拟。
在北海的斯莱普内尔(Sleipner)气田,人们将二氧化碳从产出的天然气中分离并注入到ut sira地层中。1996年10月开始注气,每年注入100万吨。Ut sira地层从南到北延伸400多千米,从东到西延伸50~100千米,面积2.61万平方千米。那里有两个沉积中心,一个在斯莱普内尔南部,厚度达到300多米:第二个在斯莱普内尔北部,厚度200米,该地层的局部厚度为200米,下面还有一层砂岩,进一步增加了储集层的总厚度。
据估算,utsira地层可储存欧洲几百年的二氧化碳排放量,数量还是相当可观的。
煤层埋存储法置换甲烷保安全
煤层是富甲烷气体存储的岩层,一般情况下,每吨煤中会产生4.3~6.2立方米甲烷,所产生的甲烷集结在煤层中,吸附在煤的表面上。煤岩内部多微孔,具有吸附大量气体的能力。在煤层压力条件下,煤对甲烷的吸附可高达25标准立方米/吨。煤的年代越久远,含气量越多。不同种类的煤对甲烷的吸附情况不同,褐煤的吸附量最少,烟煤和无烟煤每吨可含有30立方米的煤层气。
其实,煤同样可以吸附二氧化碳,而且煤与二氧化碳的亲和力比甲烷大,在相同的压力下,煤对二氧化碳的吸附量是甲烷的1.8~2.8倍。可被煤吸附的CO2/CH4的体积比有一个变化范围:从无烟煤的1到褐煤的10以上。
由于二氧化碳与煤的吸附力比甲烷大,把二氧化碳注入煤层,可以保持储层的压力并很快置换出甲烷。
美国圣胡安盆地的煤田试验表明,注入3份体积的二氧化碳,可以得到1份体积的甲烷。一直到大部分甲烷都被置换出来以后,被注入的二氧化碳才会少量地从钻井口溢出。
我们知道,引发煤矿发生瓦斯爆炸的主要是甲烷等气体,既然二氧化碳可以把煤层中的甲烷置换出来,那么在较浅的煤层中,通过置换反应将甲烷置换出来,既利用了这部分煤层气,同时可有效避免发生瓦斯爆炸的危险,一举两得。
但是,在实际中,这种处理方式并不可取。因为浅层煤最终是要被采掘的。在采掘过程中,煤层吸附的二氧化碳又会被重新释放出来,还是没有达到减少温室气体排放的目的。
好在煤层的采掘是有限度的,超过1500米深度,再继续开采,经济上就不合算了。为了得到深部的煤层气,也同时为了实现二氧化碳的永久储存,可以在深部煤层注入二氧化碳,采集深部的甲烷。
只不过,现在的研究对深层煤圈闭二氧化碳的机理以及二氧化碳可能与煤发生的反应等问题,尚缺乏研究,相关项目的开展还需要进一步的研究试验。
我国是煤炭资源大国,至少有33个世和世以上的地质时代、有数量不等、质量各异的煤层沉积。对于煤层埋藏深度超过1800米以上的矿山,现有技术很难开采(我国现在有的煤矿已经开采到1000米了),所以,对于煤层埋藏太深、太薄以及不安全的地区,可作为注入二氧化碳提高煤田甲烷的候选基地。目前,我国已在山西沁水盆地开展了注入二氧化碳提高煤层气采收率的微型先导性试验,试验煤层的深度为472~478米。
备选方法实在多
除了上面提到的技术,各国专家也都在尝试其他储存技术,比如将二氧化碳注入衰竭油气田。我们可以这样来认识这个方法:石油天然气是地球经过很长时间的演化(几百万年、几千万年甚至几亿年或更长时问)才形成的矿藏,把它开采出来后,它们原来在地下的空间,没有遭到多大的破坏,还可以再用来埋存二氧化碳。同时,原来的油气藏地质资料也可以为二氧化碳的注入提供技术支持。只是,现在国际上还没有工业规模试验的报道。
在海底开展储存二氧化碳的试验也仍处于研究阶段。科学家发现,在深海注入的二氧化碳会与水形成一种水化物,体积膨胀4倍:在不同深度,当把二氧化碳释放到海水中时,会产生气泡,并在气泡外面形成一层固态的水化物。这层外壳限制了=氧化碳与海水的接触;当海水深度大于2600米时,液态二氧化碳的密度比海水大;在3627米的海洋深处,液态二氧化碳表面能形成稳定的水化物外壳,与冬季池塘被冰覆盖的现象类似。
科学家做了一个实验来显示在海底储存二氧化碳的过程。他们在一个7升的大烧杯中放入3.5升(半杯)液态二氧化碳,在1小时内,由于每个二氧化碳分子与6个水分子连接组成一种新的水化物颗粒,结果原来的二氧化碳体积增大,这些化合物就漫溢过烧杯,流到外面了。
不过,人们还不清楚二氧化碳对海洋生物的影响,也不知道高浓度的水化物对深海环境会有怎样的影响?海洋生物又会发生什么反应?这些都有待于进一步研究。
科学家还有一种设想,是把二氧化碳注入相关的岩体,例如玄武岩,玄武岩在全球的分布很广。一般认为,玄武岩有很低的孔隙率,是一种低渗透率的岩石,并不适合于二氧化碳的储存。但科学家考虑这个问题时,想到了玄武岩的裂隙,当多孔隙、有渗透性和封闭的低渗透性夹层出现时,这些夹层可以封存二氧化碳。玄武岩比沉积岩更有潜力作为二氧化碳的圈闭层,因为在适合的条件下注入的二氧化碳与玄武岩中的硅酸盐反应,有可能形成碳酸盐矿物。目前,人们关于这种类型储存地点的知识很有限,需要开展进一步的研究来评估发生在玄武岩中的二氧化碳矿化作用的范围与速度。
【关键词】“碳减排” 新闻报道 误区
随着2009年11月25日中国宣布了“碳减排”目标,“低碳经济”的提法在2009年年底迅速兴起,“碳减排”也在2010年年初渐渐成为了最热的新闻关键词之一。然而,长期以来媒体“碳减排”的相关报道存在若干误区。笔者择其较为典型的部分,试辨析如下。
一、二氧化碳不是大气污染物
在媒体报道中不难见到这样的新闻标题:《商用车二氧化碳污染严重》、《“清洁煤炭”技术可减少二氧化碳污染》、《降低污染,把二氧化碳埋藏在海底》……这些文章中都把二氧化碳和二氧化硫等作为大气污染物来看待。实际上,从法律角度分析,目前在我国二氧化碳还并不是大气污染物。我国《大气污染防治法》没有明确列举大气污染物的种类,按照该法第七条规定,我国法定大气污染物的种类,实际是由国家《大气污染物综合排放标准》 (GB16297―1996)以及地方大气污染物排放标准、行业性大气污染物排放标准具体规定的。《大气污染物综合排放标准》规定了33种大气污染物的排放限值,“二氧化碳”并不在其列。而其他标准虽有的与规定略有不同,也都没有列入“二氧化碳”。如《广东省大气污染物排放限值标准》中规定了37种大气污染物,把“一氧化碳”列入其中,但是也没有把二氧化碳作为大气污染物加以限制。其实,二氧化碳是否应列入大气污染物名单,在法学理论界依然有争议。作为自然界不可或缺的物质,把二氧化碳简单地看成是一种污染物,也确实是值得商榷的。
二、“节能减排”中的“减排”,其实并不是“碳减排”
“节能减排”几乎成为有关“低碳”新闻报道中最常见的词语之一。实际上,作为我国一项政策的“节能减排”,现阶段是指实现《国民经济和社会发展第十一个五年规划纲要》中“单位国内生产总值能耗降低20%左右,主要污染物排放总量减少10%的约束性指标”。“节能减排”中的“减排”一词根本不是指“碳减排”,而是指“主要污染物减排”。“节能减排”作为政策名称出现时,“减排”的含义是非常明确的。如2007年11月17日《国务院批转节能减排统计监测及考核实施方案和办法的通知》,通知中的“减排”对象,就专门是指“十一五规划”确定实施排放总量控制的两项污染物:化学需氧量(COD)和二氧化硫。虽然,“污染物和温室气体主要源于化石燃料的燃烧,两者具有一定的同源性,其控制手段也有一定的一致性”、“以二氧化硫为主的污染物减排对温室气体减排有明显协同作用”①。但是,把法律上不是大气污染物的二氧化碳,当成了着眼于“主要污染物排放总量减少”的“节能减排”政策中的“减排”对象,无疑是一种误读。
三、节能未必减排、减排未必节能
现在,很多“碳减排”新闻报道默认了这样一个前提:“碳减排”是“节约能源”的必然结果。甚至认为“节约能源”和“碳减排”是一体的。于是,不少报道也就专注于《节约能源法》等法律法规和相关政策的实施,将之视为实现“碳减排”的“不二法门”。实际上,消耗的能源较少,不代表二氧化碳排放较少。以中美能源消耗和“碳排放”情况比较为例:美国2008年能源消费总量为2299.0百万吨标准油当量,中国为2002.52百万吨标准油当量②,美国消耗的能源远多于中国。但是,2008年 “中国和美国的二氧化碳排放总量大体相当”③。中国能源消耗少于美国的情况下,碳排放却与美国“大体相当”,主要原因是“以煤为主”的能源结构(煤炭的“单位热量二氧化碳碳排放量”高于石油和天然气),低碳能源使用偏少。通过比较也揭示了这样的事实:节约能源只是实现“碳减排”的途径之一。能源结构不调整的情况下,很有可能出现“节能不减排”的情况;而扩大能源结构中低碳能源的比例之后,消耗能源增多,碳排放未必增多。寻求“碳减排”的政策路径,不能视野单一,只在节约能源方面下功夫。
值得注意的是,其实存在“减排不节能”的情况――把排放的二氧化碳收集起来,用各种方法储存以避免其排放到大气中的“碳捕集与封存”(CCS)技术,是现阶段公认的短期实现“碳减排”最重要的技术之一。但是碳捕集与封存技术却是“一项高耗能、高成本的技术”,按我国目前火电厂的情况,使用这项技术“增加了1/4的耗电量、耗煤量”,“发一度电几乎要增加30%~50%的能耗”④。为了实现“碳减排”,在这种情况下其实和“节约能源”背道而驰了。■
参考文献
①《中国污染物减排显著带动二氧化碳减排》,新华网,09年12月15日
②《气候变暖变冷对中国都是巨大挑战》,中国能源网,2010年1月25日
③《中美二氧化碳排放总量大体相当》,《中国经济导报》,2008年10月30日
④《科学时报》2010年2月8日B3版
关键词 增氧设备;合理利用;二氧化碳排放;减排效果;节能效益
中图分类号 S969.32+1 文献标识码 A 文章编号 1007-5739(2014)21-0195-02
2001年,政府间气候变化专门委员会(IPCC)首次提出并评估了不同升温情况下气候变化“五个关切理由(综合影响指标)”的风险水平,证明了温室气体导致了全球气候变暖[1]。2012年我国CO2排放总量为89.5亿t,占全球排放总量的28.3%[2]。农业温室气体排放占中国温室气体排放总量的17%[3],根据《中国渔业年鉴2013》的统计数据[4],2012年我国渔业经济总产值达17 321.88亿元,占当年国民生产总值(GDP)的3.3%,可想而知其产生的CO2排放量是不可忽视的。
我国每年渔业生产领域总能源消耗为1 754万t标准煤,其中水产捕捞、养殖和加工所占的比重分别为66%、21%和13%[5]。淡水和海水池塘增氧设备耗电量在养殖中所占比率高达53.7%[6]。2009年国家正式出台增氧机列入农机补贴系列,加速了增氧机的推广与使用。
增氧设备的合理利用和正确配置可以达到节能减排的效果,但一直以来没有对使用增氧设备带来的温室气体排放进行评估,在一定程度上影响和制约了渔业节能管理、技术推广和科学研究的有效进行。评估我国水产养殖中增氧设备温室气体排放的现状,正确使用和合理配置增氧设备,可以为渔业节能工作提供数据支持,在一定程度上也可以为行业管理部门的决策提供参考。
1 研究方法
1.1 基本思路
随着我国渔业生产现代化程度的不断提高,水产养殖中养殖设备的利用越来越多,渔业生产的能源消耗主要来自捕捞和养殖行业,徐 皓等[6]对渔业能耗的分类测算表明,我国渔业生产能源消耗折合标准煤1 935.2万t,其中养殖占到近20%。
本文对2012年增氧设备排放的CO2量进行估算,然后结合相关研究结果对合理利用增氧设备进行分析,探讨增氧设备合理利用与配置对节能所做出的贡献,利用Oak Ridge National Laboratory(ORNL)[7]提出的CO2排放量的计算方法对CO2减排量进行估算和分析。并在此基础上,对增氧设备的CO2排放强度进行计算,从而评估目前我国增氧设备的能效。
1.2 计算方法
1.2.1 CO2排放量的计算公式:
QC=QE×FC×C×ξ(1)
公式(1)中[7]:QC为碳量(t);QE为有效氧化分数,为0.982;FC为每吨标煤含碳量,为0.732 57;C为耗煤量;ξ为1 kW・h电折算为0.356 kg标煤[8]。
Q■=QC×ω(2)
式(2)中:Q■为CO2释放量;ω为碳换算CO2常数,为3.67(以CO2的碳含量为27.27%计算)。
1.2.2 CO2排放强度的计算公式。CO2排放强度指的是单位GDP的CO2排放量,该指标反映的是能源利用效率,可以很好地引导各国提高能源利用效率,向低碳经济转型。其计算公式如下[9]:
二氧化碳排放强度=■(3)
2 结果与分析
2.1 2012年我国增氧设备CO2排放总量
根据《中国渔业统计年鉴2013》提供的数据:2012年池塘养殖面积为809万hm2,其中淡水及海水池塘养殖面积分别为591万hm2和218万hm2,单位面积年耗电量分别为9 837.66(kW・h)/hm2和46 875.00(kW・h)/hm2[10]。淡水和海水池塘养殖中增氧设备耗电占总耗电比分别为53.7%和63.2%[6],由此推算出我国淡水和海水池塘养殖中增氧设备的单位面积年耗电分别为5 282.82(kW・h)/hm2和29 625.00(kW・h)/hm2。由此可见,池塘养殖增氧设备效能的提高对池塘养殖的发展有着重要作用。
由公式(1)、(2)计算可以得到2012年我国水产养殖增氧设备的单位面积CO2排放量和排放总量(表1)。
我国2012年水产养殖中池塘养殖增氧设备的CO2排放总量为10 461.83万t,我国2012年全国CO2排放总量为89.5亿t。可计算得到,我国池塘养殖增氧设备的CO2排放量占我国CO2排放总量的1.17%。
2.2 增氧设备合理选用与配置的节能效益
2.2.1 增氧设备的正确选用的CO2减排估算。叶轮增氧机具有增氧、曝气和搅拌水体等功能,也是水产养殖取得高产高效的必备装备之一,它能将整池水体维持在一个合理的溶氧浓度和温度[11]。叶轮式增氧机的市场占有率为65%[12],那么保守估计叶轮增氧机占所有增氧设备所带来的CO2排放量的65%,那么2012年我国池塘养殖使用叶轮式增氧机产生的CO2排放量为6 800.19万t。
前期研究通过对3 kW叶轮式增氧机、1.5 kW水车式增氧机、1.1 kW射流式增氧机及2.2 kW曝气式增氧机在自然状态下的增氧能力及效果进行研究比较。由研究结果可知,3 kW叶轮式增氧机可使距增氧机10.0、1.5 m深处水体溶解氧增速约0.86 mg/(L・h),单位功率增氧值0.287 mg/(L・h)。而在相同试验条件下,1.1 kW射流式增氧机的单位功率增氧值为0.436 mg/(L・h),是叶轮式增氧机的1.5倍之多。利用公式(1)、(2)计算可知在达到相同的增氧量的条件下,若用射流式增氧机取代叶轮式增氧机,2012年叶轮式增氧机产生的二氧化碳可以减少2 323.92万t,相当于当年增氧设备排放二氧化碳的22.21%。
由此看来,叶轮式增氧机的增氧能效还有很大的提升空间。用射流式增氧机来取代或部分取代叶轮式增氧机,可以有效实现能源的高效利用。
2.2.2 增氧设备的合理配置的CO2减排估算。顾兆俊等[13]通过研究在日照条件下养殖池塘表层水和底层水溶氧量的变化差异,分别使用叶轮式增氧机和耕水机进行了水体溶解氧的调控试验,并对这2种养殖机械的调控效果和经济效益进行了比较,结果表明:在白天日照条件下,在0.46 hm2的养殖池塘中,3 kW叶轮式增氧机开启2.0~2.5 h与开启60 W耕水机8~9 h后效果相当。
为使水环境保持理想的状态,完成晴朗白天(6:00―18:00)池塘增氧目的,3 kW的叶轮式增氧机需要工作6 h。而达到同等增氧量可以用60 W的耕水机工作替代,即将耕水机与增氧机结合使用,在白天开启耕水机,晚间使用增氧机。以每年池塘有200 d需要增氧,其中140 d为晴天来计算,用该方法结合增氧,达到相同的增氧效果,池塘年节约的电量达2 419.2(kW・h)/hm2,利用公式(1)、(2)计算可知该电量相当于4.5 t二氧化碳排放量。
按目前叶轮式增氧机使用率占总的增设备65%计算,设使用增氧机的养殖面积为80%,若将耕水机与叶轮式增氧机结合使用替代叶轮增氧机的单独使用,2012年池塘养殖增氧设备排放的二氧化碳可减少2 061.17万t。占我国2012年水产养殖中池塘养殖增氧设备的二氧化碳排放总量的19.70%。
由此看来,根据各类养殖机械的功能特点,适时、合理、经济地使用养殖机械进行水体环境的调控,不仅能促进各类鱼类生长,提高养殖经济效益的有效措施,而且能显示出明显的环境优越性。
2.3 二氧化碳排放强度
从排放量来看,虽然水产养殖增氧设备带来的二氧化碳排放量占我国二氧化碳排放总量的比例仅为1.17%,但排放总量并不能很好地反映出我国水产养殖业的二氧化碳排放情况,更加合理的指标是二氧化碳的排放强度。2012年美国的全国GDP为15 6760亿美元,全年二氧化碳排放量为52.7亿 t,利用公式(3)可知其二氧化碳排放强度为0.34 kg/美元。
根据《中国渔业年鉴2013》提供的数据,我国2012年海水和淡水养殖生产总产值(GDP)为17 321.88亿元,淡水养殖产值为4 194.82亿元。
由公式(3)可得,2012年我国池塘养殖增氧设备的二氧化碳排放强度=10 461.83×10 000×1 000/4 194.82×108÷6.285 5=1.57 kg/美元(以2012年1美元=6.285 5元人民币计算),为美国二氧化碳排放强度的4.62倍。
从排放强度来看,我国池塘养殖增氧设备由于技术和设备的能源消费强度大,致使我国水产养殖增氧设备的二氧化碳排放强度相对较高。据相关数据显示,2010年在全国池塘养殖中增氧机械的总配套功率达18亿 kW之多,且由于养殖控制技术落后,导致能耗损失达40%,是二氧化碳排放强度高的原因之一。这也说明,我国水产养殖业产值的增加更大程度上依赖于能源的消耗,而不是技术的进步。
3 结论与讨论
3.1 结论
(1)仅从达到相同增氧效果方面考虑,若用射流式增氧机取代叶轮式增氧机,那么2012年叶轮式增氧机产生的6 800.19万t二氧化碳可以减少为4 476.27万t,减排量为2 323.92万t,相当于当年增氧设备排放二氧化碳的22.21%。
(2)若要达到相同的增氧效果,将耕水机与叶轮式增氧机结合使用,即在白天开启耕水机,晚间使用增氧机,相比单独使用叶轮式增氧机,2012年池塘养殖增氧设备排放的(下转第199页)
(上接第196页)
二氧化碳可减少2 061.17万t。占我国2012年水产养殖中池塘养殖增氧设备的二氧化碳排放总量的19.70%。
(3)我国池塘养殖增氧设备的二氧化碳排放强度为1.57 kg/美元,是美国二氧化碳排放强度的4.62倍。
3.2 本研究不足之处
(1)造成增氧设备二氧化碳排放强度高的主要原因包括:渔民对增氧机的合理使用和正确配置认识不够。
(2)目前对增氧机合理配置的研究不多,在养殖过程中为减少排放,多种增氧机结合使用的情况并不多见。
本文的局限性在于仅仅从理论上得出不同增氧机结合使用达到相同增氧效果达到减排目的,而增氧设备的实际使用要受到多种因素影响,包括养殖对象、场所,以及增氧量、时间等。为达到保护环境、节约能源的目的,针对不同养殖需要,有针对性地研究多种增氧设备结合使用应提上日程[13]。
4 参考文献
[1] 徐文彬.了解气候变化风险 推动灾害风险管理――解读IPCC第五次评估第二工作组报告[N].中国气象报,2014-5-22(3).
[2] 中国碳排放交易网.2012年全球的二氧化碳排放量创历史新高[EB/OL].[2013-07-03].http:///.
[3] 董红敏,李玉娥,陶秀萍,等.中国农业源温室气体排放与减排技术对策[J].农业工程学报,2008,24(10):269-273.
[4] 农业部渔业局.中国渔业年鉴2013[M].北京:中国农业出版社,2013:3.
[5] 徐皓,张祝利,张建华,等.我国渔业节能减排研究与发展建议[J].水产学报,2011(3):472-480.
[6] 徐皓,刘晃,张建华,等.我国渔业能源消耗测算[J].中国水产,2007(11):75-76.
[7] MARLAND G,BODEN T A,GRIFFIN R C,et al.Estimates of CO2 emissions from fossil fuel burning and cement manufacturing:Based on the United Nationals energy statistics and the U.S.bureau of mines cement manufacturing data[M].Oak Ridge,Tennessee:Carbon Dioxide Information Analysis Center,Oak Ridge National Laboratory,1989.
[8] 赵翰森,李慧.高价能源促进电力行业高效节能[C]//2009中国能源发展报告.北京:社会科学文献出版社,2009:123-161.
[9] 何建坤,张希良.与限控CO2排放有关的若干指标分析[J].中国人口资源与环境,2004,14(1):23-26.
[10] 车轩,刘晃,吴娟,等.我国主要水产养殖模式能耗调查研究[J].渔业现代化,2010,37(2):9-13.
[11] 江山.水产养殖中如何正确使用增氧机[J].水产养殖,2010(6):24.
【关键词】碳排放;水泥;工艺;影响因素;数学建模
引言
众所周知,大气环境的污染主要是由于工业废气的排放造成的。水泥工业中碳排放又是其中的重点。本文从水泥工业的生产工艺、燃烧的原材料、碳排放的源头和影响因素等方向来研究影响碳排放的因素,并介绍相应的一些处理措施,希望能为水泥工业的科学技术水平提高和减少碳排放,治理综合环境,提供一些建设性的帮助。
1 水泥工业二氧化碳排放现状与分析
随着中国城市建设的高速发展,对于水泥工业的需求量越来越大,研究表明我国水泥生产量年平均增长0.25亿吨,年平均增长率为8%以上。而水泥工业中排放的废气大多为二氧化碳,据统计,水泥工业中二氧化碳的排放比重从1992年的5.68%上升为2010年的12.54%,因此对水泥工业碳排放量的控制迫在眉睫。
下面我们分析一下,水泥工业中二氧化碳的生成形式。可以分为两大类:一是水泥熟料燃烧,化学式为C + O2CO2 ;二是燃料燃烧的过冲中碳酸盐的分解,主要为碳酸钙,其化学式为CaCO3CaO+CO2 。
计算表明:每生产1 吨水泥成品,原材料的燃烧过程,再加上运输用电力、燃料等方面的二氧化碳排放,约1 吨左右。所以这个量是相当庞大的。
2 影响 CO2排放的因素
研究表明,二氧化碳的排放量大小依次顺序为:工艺排放,燃烧排放,电力消耗。依次介绍如下:
(1)水泥从生产窑上分为立窑(包括机立)和旋窑(回转窑),从生产进料的方式上讲分为干法、湿法。水泥由石灰石、粘土、铁矿粉磨碎后按一定比例进行混合,这时候的混合物叫生料。 然后将这些混合物投入容器内进行高温煅烧,一般温度在1500 度左右,煅烧后剩下的物质叫熟料。最后将这些熟料与石膏混合后磨细,按设计比例混合,就是成品的水泥,也就是我们常说的普通硅酸盐水泥。 如果是用其它可燃物质或者以废弃物作为替代燃料来进行辅助燃烧,可以使含钙质含量少的原材料与空气充分接触,燃烧的过程中减少了钙质的化学反应,随之也减少了二氧化碳及一氧化碳废气的排放。
(2)不同品种的水泥由于其组成原料不同、掺合料的比例不一样,排放的二氧化碳含量也会有很大的差别。通用硅酸盐水泥中中加入其他掺和料和可燃物、助燃物的比例, 可以加强原料的燃烧程度,因而有效地降低了废气排放。如果采用低能耗、含碳化合物含量少的原料,(如硫酸盐水泥)由于其主导矿物质碳含量低,所以在燃烧过程中,碳排放量会相应减少。
(3)水泥熟料热耗,企业水泥熟料的燃烧程度是影响二氧化碳排放的直接影响因素。而企业的管理水平、采用的生产工艺、技术力量、人员素质等都直接影响着水泥窑的熟料热耗。 因此采用先进的生产工艺, 降低水泥熟料热耗,将原材料充分进行煅烧是控制和减少水泥工业中二氧化碳排放的重要途径。
3 减少水泥工业碳排放的措施研究
3.1 减少碳酸质原料的用量
根据水泥的生产原理和工艺,我们知道,生产水泥的原材料主要是石灰石及碳酸钙,因此减少碳酸质原料在水泥生产中的用量,或用其它物质来替代是减少二氧化碳排放最直接有效的措施。或者直接使用非碳酸质原料,因为从生产原理上讲,燃烧碳酸盐物质所吸收的热量是整个原材料煅烧的40%左右。使用非碳酸钙物质进行燃烧,可以节约能耗同时提高原料的利用效率。并有效减少二氧化碳的产生和排放。
3.2 提高生料易烧性
水泥生产的原材料,如果在煅烧的过冲中不能充分进行燃烧,就会产生大量的二氧化碳甚至是一氧化碳废气。因此原材料的燃烧性能和易燃率是减少碳废气的直接因素。在煅烧之前,加入矿化剂或其他化学物质来加强燃烧性能,将原材料进行充分的磨细和颗粒化,在燃烧的过程中均能加速其充分燃烧,减少热能好,同时二氧化碳的产生也会随之减少。
3.3 利用可燃性废弃物
从生产工艺讲,可以用很多不含碳酸钙的物质来作为水泥生产的代用燃料。利用这些可燃性废弃物代替部分或大部分燃煤和燃油,既处置了废料,又节约了能源,同时也减少了二氧化碳等有害气体排放量。
3.4 提高燃烧器效率
燃烧器的主要功能就是将燃料和空气导入炉膛和回转窑中,在高温作用下将其进行煅烧。目前,水泥窑燃烧器效率偏低,随着新型高效低污染燃烧器的研制开发和投入使用,燃烧器效率在不断提高,煤耗也相应降低,二氧化碳等有害气体排放量也随之减少。计算表明,如果燃烧器能减少煤耗10%,二氧化碳废气体排放量至少减少2.0%。
提高燃烧器效率. 燃烧器的作用主要是将燃料和空气进行充分接触, 来提高燃烧的充分程度,达到提高燃烧器效率的目的,。随着燃料的充分燃烧,产生的废气就会相应减少。
3.5 提高熟料质量以便增加各种工业废渣的掺入量
水泥的质保期通常只有三个月,如果遇到雨水,保质期就会更短。这主要原因就是水泥生产的原材料质量达不到设计要求。熟料的质量越好,在燃烧器中的燃烧程度越充分,可以参入的各种工业废弃物品就更多,一方面可以节约材料,还可以加强炉体内的燃烧。这样生产出来的水泥质量可以得到更大的提升,排出的废气也可以得到大幅度的降低。
3.6 调整水泥制造业的产业结构
传统的生产工艺中由于设备限制的因素,很多材料无法进行充分的燃烧。为了解决这一问题,新型干法技术在市场中得到大力的推广。新型干法主要是增设了窑尾预热器和分解炉, 并将回转窑燃料由分解炉加入, 使燃料燃烧的放热过程与熟料煅烧中耗热最大的碳酸盐分解的吸热过程迅速地进行, 具有生产过程效率高、能耗小、质量高、产生废气量小的多种优点。
4 结语
现代建筑工程越来越多但是钢筋混凝土结构,而作为混凝土和抹灰用的主材-水泥,其市场必然越来越广阔,需求量会越来越大。随之而来的就是在水泥生产过程中的废气排放量也会加多,对环境产生较大的影响。因此我们必须要优化水泥的生产工艺、调整生产结构、加强人员素质,严格控制并采用各种技术来减少二氧化碳等废气的排放,才能使人类发展与环境友好相协调。
参考文献:
【关键词】森林;碳汇功能;森林吸收二氧化碳;放出氧气
1.森林的碳汇功能
自20世纪80年代以来,全球气候变暖已成为不争的事实,由此引起的一系列生态问题日益引起国际社会的广泛关注。预测到2100年,全球平均气温将升高1.8~4摄氏度,海平面升高18~59厘米,将给人类生产、生活和生存带来诸多重大不利影响。导致全球气候变暖的主要原因是由于工业革命以来,煤炭、石油、天然气等矿物能源的大量开采和使用,向大气中过量地排放了以二氧化碳为主的温室气体的结果。排放到大气中的二氧化碳浓度大大增加,打破了地球在宇宙当中的吸热和散热的平衡状态,导致全球气候变暖。
应对气候变化,关键是减少温室气体在大气中的积累,其做法是减少温室气体的排放(减排)和增加温室气体的吸收(增汇)。减少温室气体的排放主要是通过降低能耗、提高能效、使用清洁能源来实现。而增加对温室气体的吸收,主要是通过森林等植物的生物学特性,即光合作用吸收二氧化碳,放出氧气,把大气中的二氧化碳固定到植物体和土壤中,这个过程和机制实际上就是清除已排放到大气中的二氧化碳,因此,森林具有碳汇功能。由于森林吸收二氧化碳投入少、成本低、简单易行,有利于保护生物多样性。我国政府把林业纳入减缓和适应气候变化的重点领域,要求全力打好“森林碳汇”这张牌,充分发挥林业在应对气候变化中的特殊作用。
森林是陆地生态系统中最大的碳库。研究显示: 全球陆地生态系统中存储了2.48万亿吨碳,其中1.15万亿吨碳存储在森林生态系统中。在生长季节,l公顷阔叶林每天可以吸收1吨二氧化碳;森林每生长1 立方米木材,就能从空气中吸收1.83吨二氧化碳,同时释放1.62吨氧气。从20世纪80年代到现在,工业排放的二氧化碳由森林生态系统吸收的达到24%~36%, 足以说明森林碳汇功能的重要意义。
2.森林森林生物量与碳储量
我国通过发展和保护森林,固定了大量二氧化碳等温室气体,在减缓气候变暖方面发挥了巨大作用。1980年-2005年,我国通过持续地开展造林和森林经营、控制毁林,净吸收和减少碳排放累计达51.1亿吨。仅2004年中国森林净吸收了约5亿吨二氧化碳当量,占同期全国温室气体排放总量的8%以上。据中国林科院依据第七次森林资源清查结果和森林生态定位监测结果评估,目前我国森林植被总碳储量高达78.11亿吨,森林生态系统年涵养水源量4947.66亿立方米,年固土量70.35亿吨,年保肥量3.64亿吨,年吸收大气污染物量0.32亿吨,年滞尘量50.01亿吨。发展碳汇林业是黑龙江省经济社会可持续发展中的一件大事,也是黑龙江的优势所在。
全省现有森林面积1923.2万公顷,森林蓄积量15.7亿立方米。从森林面积、森林总蓄积和木材产量上看,均居全国首位,丰富的森林资源形成了巨大的碳库。按照全省森林蓄积量15.7亿立方米计算,黑龙江省森林现有碳库储量为(储存二氧化碳)27.34亿吨。随着天保二期和退耕还林的深入实施,碳储量及碳汇效益会更加显著。不同纬度森林生态系统的二氧化碳通量具有显著的差异。随纬度的增高,森林二氧化碳碳汇的功能减弱,甚至成为大气二氧化碳的源。森林的二氧化碳通量特征存在日变化、季变化、年变化与不同发育阶段变化。我国科学家利用野外实测资料,结合森林资源清查资料,推算了我国50年来森林碳库及其动态变化,并分析了中国森林植被的二氧化碳源/汇功能。利用森林资源清查资料从不同角度对我国森林生态系统的碳贮量进行分析后指出,我国森林正起着碳汇的作用,我国主要森林生态系统碳贮量为28.11PgC,其中森林生态系统植物碳贮量为3.26~3.73PgC,占全球的0.6%~0.7%。
3.碳储量及其碳汇功能研究中存在的不足
国内外在陆地生态系统与森林生态系统的碳循环和碳储量方面进行了大量的研究,从有代表性的文献来看,还存在以下不足:
3.1研究的规模和尺度问题
一是全球尺度和国家尺度,二是局部典型的陆地生态系统和森林生态系统,而对于中尺度或区域森林生态系统的碳储量和碳汇功能的研究却较少。森林退化、土地利用变化所引起的森林生态系统碳的源/汇变化关系研究等方面,目前仍存在很大的不确定性。
3.2研究方法和手段问题
森林生物量的测定以经典的手工方法为主,整体上不重视现代高新技术的应用。对于区域尺度的森林生态系统碳的源汇变化监测还缺乏有效的手段和方法。
3.3数据等信息的标准化问题
由于森林生态系统本身的复杂性,在生物量和碳库的估测中所使用的数据还不够全面和完善,各种估计模型及其使用的参数并不一致,无统一标准。
3.4“碳汇”贸易问题
在国际范围内,发达国家通过为发展中国家提供造林资金或技术等可将其排放数额通过贸易形式减轻或转移,在陆地生态系统中,森林生态系统是最大的碳库,其碳贮量约为1146PgC(PgC指1米深度的土壤有机碳总质量,1pg=109)t,占全球陆地总碳贮量的46%。1995年~2050年全球森林植被保存和吸收碳的潜力可达60~87PgC,可能吸收同期石化燃料排放碳的11%~15%,森林系统的碳收支状况对于大气二氧化碳的循环具有重要地位。中国森林面积虽仅有世界森林的3%,人工林面积却居世界第一。目前人工林贡献了中国森林总生物量的20%和碳固定量的80%。随着中国林业战略目标的实施和重点工程的推进,中国人工林面积将进一步扩大,这就意味着,继续增加的中国森林碳汇会对中国未来的二氧化碳减排和国民经济的增长作出巨大的贡献,森林的碳汇功能进一步增强。
【关键词】碳税;包容性增长;税制
一、包容性增长下征收碳税的必要性
包容性增长(inclusive growth),由亚洲开发银行在2007年首次提出。包容性增长寻求的是社会和经济协调发展、可持续发展。与单纯追求经济增长相对立,包容性增长倡导机会平等的增长,最基本的含义是公平合理地分享经济增长。亚行当时在中国提倡“包容性增长”,比较重要的一个观点是:保持较快经济增长的同时,增长也要是可持续的、协调的、更多关注社会领域发展的。这种增长不是单纯的经济增长,而是考虑到其他方面,尤其是社会领域的,使更多的老百姓能够享受到这种发展的成果。“包容性增长”,包括经济、政治、文化、社会、生态等各个方面,经济增长应该是互相协调的。碳税是针对二氧化碳排放征收的一种税,更具体地看,碳税是以减少二氧化碳的排放为目的,对化石燃料(如煤炭、天然气、汽油和柴油等)按照其碳含量或碳排放量征收的一种税。目前,开征碳税可以涉及到环境发展的各个方面,有利于、有助于实现包容性增长这一目标的实现。
二、碳税征收的可行性
1.理论上的可行性。碳税是以减少二氧化碳的排放为目的,从而对化石燃料(如煤炭、天然气、柴油和汽油等),按照其碳含量或碳排放量征收的一种税。从理论上来讲对化石燃料按照其含碳量征收碳税,则会使得燃料的使用成本上升,而使用成本的上升会在一定程度上减少化石燃料的使用及促进资源的节约,削弱化石燃料的市场竞争力,同时促进清洁能源的研发及推广,使二氧化碳污染减少到帕累托最优水平。碳税通过减少化石燃料使用,从而减少二氧化碳的排放量,同时促进新能源推广,提高能源利用率,促进经济的可持续发展。
2.政策上的可行性。我国政府在2009年哥本哈根气候会议上已经提出了“到2020年我国单位国内生产总值二氧化碳排放比2005年下降40%~45%”的减排目标和承诺。2009年9月,财政部财政科学研究所了《中国开征碳税问题研究》的研究报告,提出我国可以考虑在未来五年内开征碳税,其路线图为2009年进行燃油税改革,2009年或之后择机推行资源税改革,在资源税改革后的1~3年期间择机开征碳税,预计开征时间2012~2013 年。2010年我国也开展了低碳省区和低碳城市试点工作。国家发改委还表示“十二五”能源规划的制定,将重点围绕加快新能源、电动汽车、智能电网等低碳技术的开发利用展开,占领国际技术制高点,并实现对国际低碳技术市场的控制权。这些政策和决议为我国开征碳税提供了政策上的可行性。
3.技术上的可行性。与其他环境税相比,碳税有计量简单、操作容易、便于检测的特点。碳税的税基是碳的排放量,各种能源的含碳量是固定的,所以其燃烧排放的二氧化碳量也是确定的,再考虑减排技术和回收利用等措施计量真实的碳排放量,所以碳税计量相对简单,对税务人员来说操作相对容易,也不需要复杂的检测。同时,其他国家的碳税实践为我国碳税政策的实施提供了很多有益的经验和借鉴,包括合理设计碳税的税负水平,充分发挥碳税的调节功能,并规避其对低收入群体和高耗能产业的冲击等。
4.国外碳税制度的实践。欧洲国家征收碳税的实践起步较早,芬兰是最早对二氧化碳排放征税的国家,于1990年开始征收碳税。此后,瑞典、挪威、荷兰、丹麦、斯洛文尼亚、意大利、德国、英国等国家开始先后征收碳税。迄今为止欧盟27国已经全部开始开征环境税。并且碳税的征收对于二氧化碳的减排起到了一定的作用。国外的实践证明,碳税是一种有效的可以促进二氧化碳减排的政策手段,碳税的征收,不仅可以促进二氧化碳排放量的减少,而且可以在一定程度上促进企业节能技术的革新,并且对新能源的研究与推广,经济的可持续发展有促进作用。
三、碳税税制设计的思考
1.征税范围和对象。我国现阶段碳税的征税范围和对象可确定为:在生产、经营等活动过程中因消耗化石燃料直接向自然环境排放的二氧化碳。其中,化石燃料的范围包括褐煤、烟煤、无烟煤、焦炭、泥炭、柴油、重质燃料油、轻质燃料油、液化石油气、煤油、焦油、天然气等。二氧化碳排放来源于三个方面:生产经营、交通、生活。二氧化碳税只将在生产、经营活动过程中排放二氧化碳的行为纳入征税范围。运输工具排放的二氧化碳可通过对消费税改革,使汽油、柴油的税负与碳含量挂钩;还可通过对车船税改革,使税负与排气量大小挂钩来实现。出于民生考虑,暂时不对居民生活使用的煤炭和天然气排放的二氧化碳征税。
2.纳税人。在我国境内生产、经营过程中排放二氧化碳的单位或个人。其中,单位包括各类企业以及事业单位、社会团体及其他组织;个人是指个体经营者。
3.计税依据以化石燃料的使用量折算的二氧化碳排放量为税基。计算公式为:二氧化碳排放量=燃料使用量×碳强度系数。虽然直接以二氧化碳的排放量为税基,有利于鼓励企业采取各种措施减少二氧化碳排放,但技术上不易操作。考虑到目前尚无有效措施去除二氧化碳,二氧化碳排放量单纯由燃料中的碳含量决定,税基的选择可用燃料代替实际的排放量。单位能量的化石燃料中煤的含碳量最高,与之相应,煤的折算系数最高,天然气最低。一般来说,碳元素是组成煤的有机高分子的最主要元素,并且碳含量随煤化度的升高而增加。整个成煤过程也可以说是增碳过程。因此,碳强度系数可以测算而且具有较好的区分度、可计量性。
4.税率。理论上,二氧化碳税率的确定应考虑二氧化碳的边际损害成本。但边际损害成本实际上是难以确定的,因此,税率的确定应综合考虑减排目标、企业国际竞争力、与其他税种的协调等因素。为了保护能源密集型企业的国际竞争力,可区分能源密集型企业和其他加工企业实行差别税率,对能源密集型企业实行优惠税率。
5.税收优惠。二氧化碳税的实施应鼓励二氧化碳减排技术的发展,同时也应考虑对企业国际竞争力的影响,因此,二氧化碳税的税收优惠应集中在以下两个方面:对积极减排的能源密集型企业的优惠。为了鼓励企业节能减耗,企业可与政府有关部门签订二氧化碳减排协议,对于签订并履行协议的企业,可实施税收返还;对于积极采用技术减排或回收二氧化碳(例如实行碳捕获和封存技术等)并达到一定标准的企业,给予减免税优惠。
6.收入的归属与使用。由于碳税的征收涉及行业的发展、国际间的协调与平衡,从中央税、地方税的性质来看,碳税宜作为中央税,而不宜作为地方税。但考虑到调动地方税务机关的积极性以及增加地方税收入比重等因素,碳税可作为中央地方共享税,实行收入分成,中央分成比例应大于地方分成比例。从收入的使用上来看,为了强化碳税节能减耗的特定目的,碳税宜实行专款专用,主要用于减排降碳,如鼓励节能技术、植树造林等。
参考文献
[1]Lee,C.Flin,S.J.& Lewis,C.Analysis of the Impacts of Combining Carbon Taxation and Emission Trading on Sifferent Industry Sectors [J].Energy Policy.2008(36)
使用节能灯
节能灯是现在节能减排形势下普通白炽灯泡的理想替代品,不但节省电费,而且使用寿命更是白炽灯的好几倍。紧凑型荧光灯(CFL)非常节能。和白炽灯相比,紧凑型荧光灯(CFL)能在同样的照明效果下节省75%到80%的电力,而且使用寿命是白炽灯的10倍。紧凑型荧光灯的成本是白炽灯的三到五倍,但电力使用是白炽灯的四分之一,而且使用寿命会更长。如果在2030年之前把所有旧白炽灯泡都换成紧凑型荧光灯,那么全世界每年能节省的电力相当于650座发电站,而且还能将释放到大气层中的二氧化碳减少7亿吨。
将衣服拧干晾晒
衣服也与二氧化碳排放有关?当然,衣服的清洗方式决定了它是否环保。有关数据显示,一件衣服76%的碳排放来自其使用过程中的洗涤、烘干、熨烫等环节。不使用洗衣机将衣服拧干晾晒,也不使用烘干机,这样洗衣可以减少90%的二氧化碳排放。
重织旧毛衣
将旧毛衣收集起来加工成新毛线和毛衣,这样比使用新毛线加工要减少76%的能耗,并减少71%的温室气体。
多穿旧衣服
你的衣服都对环境有影响。制造和加工新衣服要消耗很多能源,排出二氧化碳,因为衣服的一些化纤是由石油产品制成的,棉制品也消耗部分杀虫剂。旧衣比新衣更加环保。目前,旧衣翻新不仅是一种环保行为,也逐渐成为一种时尚趋势。旧衣服还有一种常见的处理方式,即旧物利用。旧衣通过一定的处理,比如剪裁、缝纫等,变成生活中所需的其他物品,包括抹布、墩布、口袋等,既可以避免旧衣被当做垃圾扔掉,对环境造成污染,同时又可以开发出新的用途。
乘公交车出行
以美国为例,美国交通的二氧化碳排放占总量的30%多,减少排放的最好办法之一是乘公交车。公交车每年节省14亿加仑的气体排放,相当于150吨二氧化碳。我国各级政府正在大力发展公交运输,让人们出行更加快捷,为了减排,选择公交出行吧。
适时开窗和关窗
多开窗,不用空气净化器,就能降低二氧化碳排放量。夏天将空调温度调高2度,冬天则将暖气调低2度,密封好你所有的门窗。墙和屋顶做好隔热,安装低流速的沐浴喷头,这样做,一年可减少4000磅二氧化碳的排放。
少用一次性塑料袋
少用1个塑料袋节能约0.04克标准煤,相应减排二氧化碳0.1千克。塑料袋多是由聚乙烯制成,有数据显示,每年有5千亿塑料袋流入市场,只有不到3%的塑料袋被回收,绝大多数当成垃圾被掩埋,而掩埋后得要1000年才能被生物降解,并发出有毒的温室气体。所以减少白色污染的简单办法就是用环保袋代替塑料袋。
支持本地农民
买本地农民的蔬菜、水果、牛奶,这些农产品的生产离家越近,运输距离和时间就越短,花费的汽油就越少。离产地近,因此本地蔬菜就更加新鲜,味道也更好。
举行绿色婚礼
如果你要到外地举行婚礼,同时邀请你的朋友参加,坐飞机或坐火车就会产生碳排放,必然会增加碳排放量。基于此,专家建议取消新婚旅行,婚礼在当地举行,以减少因婚礼而引起的二氧化碳的大量产生。
不系领带好散热
日本为节能,将夏天的办公室温度调到22摄氏度,让员工不系领带,打开领口,穿蓝色工作服上班。此政策虽然让裁缝乱了阵脚,但日本的碳排放减少了。一个夏天,日本减少79000吨二氧化碳的排放。
关掉电脑
据美国能源部数据显示,家里75%的电消耗在待机状态的电器上,包括电视、DVD、电脑、显示器和音箱。电脑比其它电器更耗电,屏幕保护并不能节能,一台台式机(不包括显示器)平均一天耗电250瓦。相对一天24小时持续使用的电器,电脑一天用4小时,其余时间关掉,一年可以省70美元左右。关掉电脑一年可减少83%的排放,相当于63公斤二氧化碳。
人走关电源
走出房间时看一下电脑、显示器、台灯、打印机和其它电器是否关了。并给空调和顶灯设定每天的关闭时间,这不是什么大事,但能省电,减少碳排放,更可以延长产品使用寿命和降低维护费。
节约用纸
纸是由树制成的,每年有9亿吨树木变成了纸。我们可以用再生纸代替白纸,这样可节省60%的能源。每一吨再生纸可节省4000度电、7000加仑水和17颗树。每一颗树还能过滤空气中60磅的污染物质。节约用纸,减少碳排放,过绿色环保的生活。
使轮胎饱满
轮胎饱满有力才能保持车子的稳定行驶,轮胎饱满还可以提高汽油消耗定额(一加仑汽油所行驶的里程)3%以上,如果你将汽油消耗定额从20提高到24,你每年就可以减少200磅二氧化碳。
面对环境的恶化,科学家都鼓励人们过低碳生活。那么,什么是低碳生活呢?
低碳生活涉及碳足迹,碳足迹表示一个人或者一个团体的碳耗费量,是测量某个国家和地区的人口因每日消耗能源而产生的二氧化碳排放对环境影响的一种指标。第一碳足迹是因使用化石能源而直接排放的二氧化碳,比如一个经常坐飞机出行的人会有较多的第一碳足迹,因为飞机飞行会消耗大量燃油,排放出大量二氧化碳。第二碳足迹是因使用各种产品而间接排放的二氧化碳,比如消费一瓶普通的瓶装水,会因它的生产和运输过程中产生的碳排放而带来第二碳足迹。碳足迹越大,说明你对全球变暖所要负的责任越大。碳足迹越小,说明你对环境的保护做出的贡献越大。
就个人而言,每个人可以从自我做起,从生活中的细节做起,尽量减低碳足迹,选择低碳生活。例如,少开一天车,少吃一顿肉食大餐,少用一次性筷子,少开一盏灯等等,都可以减少碳足迹;甚至用餐做菜时选择烹饪方式也可以减少碳足迹。以土豆为例,用烤箱烘烤土豆产生的二氧化碳比用锅煮的要多,而用锅煮产生的二氧化碳又比微波炉做产生的多。所以,用微波炉做土豆就是一种更好的低碳生活。
另外,棉布衣服与化纤衣服,爬楼梯与坐电梯,走路与开车等等,都是前者是低碳生活,后者是高碳生活。生产化纤衣服要消费更多的石油和能源,排放更多的二氧化碳,所以应当选择棉布衣服。在家居用电上,使用风电或水电等清洁能源产生的碳排放会比使用热电低。在交通出行方面,小排放量汽车在同距离时碳排放量较少,应大力推广小排量节能环保型汽车。
尽管低碳生活值得提倡,但是,由于工作需要或其他原因,人们不时会进入高碳生活。这时就应当对自己的高碳生活进行补偿。这种补偿就是所谓的碳中和。这种补偿就是碳中和。碳中和指的是,人们可以计算自己日常活动(生产)直接或间接制造的二氧化碳排放量,如果过高,则可以通过植树等方式把这些排放量吸收掉,或者计算抵消这些二氧化碳所需的经济成本,然后个人付款给专门企业或机构,由他们通过植树或其他环保项目抵消大气中相应的二氧化碳量,以达到降低温室效应的目的。可以说,碳中和就是人们对自己高碳生活的补偿。
因此,人类的低碳生活处处可为。