公务员期刊网 精选范文 数学建模常见算法范文

数学建模常见算法精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学建模常见算法主题范文,仅供参考,欢迎阅读并收藏。

数学建模常见算法

第1篇:数学建模常见算法范文

【关键词】变量回归;灰色理论;神经网络;遗传算法

Comparative Study on Modeling Method of Book lending

CHEN Ying

(Henan Agricultural University,Zhengzhou Henan 450002,China)

【Abstract】This paper studies the predictive modeling principles and steps of multi variable regression, grey system theory, neural network and genetic algorithm, predict to law school of Henan Agricultural University library books borrowing model construction as an example, and the modeling process of four kinds of modeling methods were optimized and simplified analysis. With year lending books as sample data, forecast the loan amounts of two books in 2013, and compared with the recorded values, show that predictive genetic algorithm is more suitable for the library lending.

【Key words】Variable regression;Grey theory;Neural network;Genetic algorithm

0 前言

在信息社会,纸质图书的流通频率对构建学习型社会非常重要,一定周期内的不同类型的图书借阅量反映了该社会公民的整体素养。借阅趋势分析是图书管理员的日常工作之一,通过对借阅规律分析,管理员能够掌握师生的借阅兴趣和研究状况,各类图书和期刊的采购数量和质量,达到更好的为师生服务的目的。建立恰当的数学模型能够预测未来一定时间段内图书的借阅规律,常见的借阅规律预测模型建模方法有以下几种:多变量回归分析法、神经网络、灰色系统理论和遗传算法等[1]。在上述方法中,多变量回归分析方法是基础,其它几种方法都是基于该方法演变而来,是最通用的方法[2]。神经网络算法也是数学建模中常用算法,该算法有很强的非线性拟合能力,可映射任意复杂的非线性关系,学习规则简单,鲁棒性、记忆能力、能力和自学习能力强大,但该算法没能力来解释自己的推理过程和推理依据,训练模型的数据量庞大,计算过程容易造成信息的丢失;与神经网络建模方法相比,灰色系统理论建模过程清晰简单,模型稳定性比较好,但预测精度有待提高。遗传算法属于全局搜索算法,采用仿生学原理模拟自然进化过程择优搜索,该方法适用范围广,在一定域内总能找到目标解,但模型容易“早熟”,难以到达最优解,属于随机算法[3-4]。本文对上述四种建模方法的建模过程进行分析,对数学模型的优缺点进行评价,为图书管理员和图书管理科研工作者提供一定的参考。

1 多变量回归建模预测图书借阅量

1.1 建模原理

回归分析是一种分析变量之间关系的数理统计方法。对于待分析的数据和变量,虽然变量之间没有确定的数学关系,但可以找出最能代表它们之间关系的数学表达式:数学模型。在图书借阅规律研究方面,有两方面的应用,一是根据师生以往和现在的借阅状况,预测图书将来的借阅状况;二是对影响借阅状况的原因进行分析, 找出哪些是重要因素, 哪些是次要因素, 这些因素之间又有什么关系等等。

1.2 建模过程

使用多变量回归分析方法得到的图书预测模型通常表示为时间变量的多项式,并利用最小二乘原理求得多项式的系数,主要求解步骤如下:

(4)计算拟合残差,评估预测结果的可靠性。

2 神经网络建模预测图书借阅量

2.1 神经网络建模原理

神经网络建模的基本原理是:各种图书历年的借阅样本数据通过模型的中间层作用于输出层,经过非线形变换,产生输出的模拟值,模型训练的数据包括输入矩阵和期望矩阵。模型输出值和期望值之间的偏差量,通过调整输入层与隐层之间的加权值、隐层与输出层之间的加权值及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(加权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入数据,自行处理输出误差最小的经过非线形转换的信息。神经网络模型结果如图1所示。

图1 神经网络模型结构

Fig.1 The structure of a neural network model

2.2 神经网络建模过程

(1)模型初始化。给各节点间赋予一个初始权值,一般可以设为(-1,1),设定节点间误差函数e和计算精度ε,规定最大学习次数M。

(2)输入样本数据,计算各隐层神经节点的输入和输出数据值。

(3)利用模型的输出期望和实际输出,计算误差函数对模型节点的偏导数δm(k);计算隐层和输出层对神经节点的偏导数δn(k)。

(4)利用神经节点的计算值修正节点间的连接权值。

(5)计算综合精度,并判断预测值是否符合要求。

3 灰色系统理论模型预测图书借阅量

3.1 灰色系统建模原理

灰色系统模型预测,是指对系统行为特征的发展变化进行预测,对既含有白信息又含有灰色信息的系统进行预测。很多情况下,样本数据中所显示的信息具有随机性,但随机的信息中也包含了时序的特征,灰色模型预测就是利用这种规律来进行预测。当前使用比较多的灰色预测模型是一阶微分的GM(1,1)模型。它是基于随机的原始时序,经累加后所形成的新的时序,该时序的规律用一阶线性微分方程的解来逼近。

3.2 预测模型建模过程

(3)预测方程精度评估。精度评估主要是对模型方程的预测值和样本数据进行比较,计算预测残差和数据间的相对误差。

(4)预测实现。

4 遗传算法预测图书借阅量

4.1 遗传算法建模原理

遗传算法是本质上是一种寻优方法,该方法借鉴生命学上的生物优胜劣汰原则,不断的择优搜索系统解。该方法直接对待优化的系统进行求解,不需要对系统进行连续性限定和对系统求偏导数,因此在应用上更加灵活,并且有较强的全局搜索能力。能对所有的样本数据进行优化处理,并且自适应的调整搜索的方向,在样本数据的渐次迭代中找到最优预测解,而且得到的这个解象生物界的生命体进化那样,有更强的适应性。

4.2 遗传算法用于图书预测建模过程

建模的过程参看流程图2。

图2 遗传算法预测模型基本建模过程

Fig.2 Prediction model of genetic algorithm

5 实例分析和预测结果比较

5.1 借阅样本数据

表1显示的是河南农业大学文法学院图书室2005~2012年间两种图书的借阅量。

表1 2005~2012年 两种图书借阅量

Tab.1 Lending condition among 2005-2012 years

5.2 不同建模方法预测结果比较

(1)表2显示的是2013年的两种图书预测结果

表2 回归分析法年借阅趋势预测结果

Tab.2 Forecast results of year of variable regression

(2)表3显示的两种图书的灰色模型预测结果

表3 灰色模型借阅趋势预测结果

Tab.3 Forecast results of year of grey system theory

(3)表4显示的两种图书的神经网络模型预测结果

表4 神经网络借阅趋势预测结果

Tab.4 Forecast results of year of neural network

(4)表5显示的两种图书的遗传模型预测结果

表5 遗传模型借阅趋势预测结果

Tab.5 Forecast results of year of genetic algorithm

5.3 预测结果分析比较

从预测结果可以看出,遗传算法模型的预测结果比较精确,绝对误差和相对误差都比较小,灰色系统理论模型的预测结果相对比较弱,神经网络模型和回归模型的预测结果介于二者之间。灰色系统理论是对数据进行逐次累加,找到数据间的线性规律,当原始数据间跳跃比较大时,这种叠加出的规律线性度并不明显,所以预测结果比较弱。遗传算法在每一步计算时,都要进行智能择优搜索,而且对数据间的跳跃不敏感,所以在对这类数据进行处理和预测时,结果相对精确。神经网络模型的精度和中间层的数量有很大的关系,对原始样本数据量的要求也比较大,在不满足上述条件时,预测精度比较弱,而回归分析对数据的间的线性度要求比较高。

6 结语

本文分析了多变量回归、灰色系统理论、神经网络和遗传算法在河南农业大学文法学院图书室图书借阅量预测模型构建方面的问题,对四种建模方法的建模过程和建模结果进行了分析。用部分图书的年借阅量作为样本数据,预测了2013年这两种图书的借阅量,并与记录值进行了比较。比较得出了遗传算法更适合于图书室借阅量预测的重要结论。

【参考文献】

[1]刘思峰,等.灰色系统理论及其应用[M].3版.科学出版社,2007.

[2]陈英,王秀山.基于灰色系统理论的农业院校院系纸质图书借阅管理研究[J].科技视界,2003(3):114-116.

第2篇:数学建模常见算法范文

1.1液压容腔

液压系统主要包括液压元件与管路,一般情况下,液压元件自身具有若干油口,同时和管路相连,由上述元件组成的即为液压容腔。所以,在进行数字仿真的过程中,本文通过节点法塑造液压系统的数学模型,也就是将液压管路的汇交点看作节点,塑造所有节点的流量平衡方程,从而对节点压力与进出该节点流量之和的联系进行描述,获取一组方程。对每个元件的油口进行标号,从而直观地对液压元件的不同油口进行判断。完成每个容腔压力-流量方程的塑造之后,依次对每个液压元件的特性方程进行塑造,获取每个油口的流量计算公式,即可实现液压控制过程动态特性的有效描述。

1.2液压控制元件

液压控制元件主要包括定量泵、溢流阀、平衡阀以及换向阀。下面对上述元件在液压控制中的动态特性进行分析。

2液压控制过程的优化设计

2.1改进遗传算法

基于上节获取的液压过程数学模型,采用改进的自适应遗传算法,使得交叉概率与变异概率可自动随适应值变化,获取数学模型的最优解,为塑造液压控制过程的仿真模型提供可靠的依据。

2.2基于simulink的液压控制过程的仿真模型

对液压控制过程中所涉及到的元件进行数学建模后,即可通过Simttlink提供的仿真模块对所有元件的数学模型进行描述,一个子模块可描述一个元件。再将所有组成元件的Simulink仿真子模块之间相应的输入输出相连。Simulink可为液压控制过程的仿真建模提供需要的全部子模块。所以,本文首先塑造能够反映所有元件特征的微分方程,再通过Simulink对其进行描述。同时通过Simulink中非线性模块对液压控制过程中常见的某些非线性因素进行保存,从而获取存在非线性环节的仿真模型,使得液压控制过程的仿真模型更加精确。前文所述的元件子模块均未经封装,在对液压控制过程进行仿真时,若需调整某个参数值,只需打开其所处的子系统进行调整。经过封装的元件子模块,可通过一个参数对话框实现与外界的通信,更加便于使用,适用于已经定型的仿真模块。

3仿真实验分析

本实验依据自适应交叉与变异概率思想,采用群体规模是100,最大进化代数是200的改进遗传算法完成优化。给出每个变量的取值范围,获取优化参数值集,分别采用优化后与优化前的参数值完成液压控制过程中几个元件的仿真,获取动态响应仿真曲线。

4结论

第3篇:数学建模常见算法范文

同时,其他地区性和专业性的数学建模竞赛也蓬勃地开展起来,其中影响较为广泛的有研究生数学建模竞赛、美国大学生数学建模国际竞赛等。为了提高大学生运用数学工具分析解决实际问题的能力,借助于数学建模竞赛的推动,目前,数学建模课程几乎在我国所有的高等院校都在开设,成为我国高校发展速度最快的课程之一。西南科技大学作为传统的工科院校,工科数学课程教学在不同的工科专业课程教学中具有基础性的作用,所以,把数学建模的思想和学校工科数学课程教学结合在一起,既能促进学生对数学及应用的进一步认识,又更能培养学生的实践创新能力。

一、数学建模思想的作用与意义

(一)数学建模对工科数学课程教学改革的促进传统的工科数学教学在课程内容的设置上主要分三个部分:高等数学,概率统计和线性代数。这三门课程都存在着重经典,轻现代;重连续,轻离散;重分析,轻数值计算;重运算技巧,轻数学思想方法;重理论,轻应用的倾向。各个不同数学课程之间又自成体系,过分强调各自的系统性和完整性,忽视了在实际工程中的应用,不利于培养学生运用数学知识解决实际问题的能力,造成学生所学不知所用,并且影响到后续专业课程的学习。作为教师,面临着学生提出的“学数学到底有什么用?”这类问题。为了解决学生普遍的疑惑,首先可在工科数学课程教学中渗透数学建模思想。许多新的数学定义在引出的时候都会提供或多或少的引例,比如极限中的化圆为方问题、导数的瞬时速度问题以及定积分中的曲边梯形面积问题等等。在对基本数学概念进行讲述时,一方面让学生从具体的引例去掌握抽象的数学定义,另一方面更要学生理解数学建模思想的应用。

在课后进一步提供与之相关的生物、社会、经济等方面的数学模型,不但加大了课程的信息量,丰富了教学内容,而且拓宽了学生的思路,激发学生学习数学的积极性,初步培养学生数学建模的思想。其次,开设数学建模的必修和选修课程,以数学建模竞赛为导向,系统地向学生介绍数学建模方法,引导学生将数学建模思想和自己的专业课程相结合,组织丰富的数学建模和专业课程交叉结合实践活动,将其所学的数学基础知识进行整合,增强学生对数学的应用意识及能力,为其专业课程的学习打下坚实的数学基础。

(二)数学建模对工科大学生素质教育的推动

目前,数学建模课程作为全校的素质选修课程对全校学生开设,为数学建模思想在不同学科、不同专业中的渗透提供了更好的条件。由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题。高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解。无论是传统的机械、材料、生物等工科专业,还是通讯、航天、微电子、自动化等高新技术,或者将高新技术用于传统工业去创造新工艺、开发新产品,数学不再仅仅作为一门科学,它成为许多技术的基础,而且直接走向了技术的前台。技术经济来临,对工科大学生来说,既是机会,更是挑战。而学生素质能力的拓展,数学建模成为一个不可或缺的重要手段。数学建模课程内容的设置,由于面对的是全校学生,所以涉及面多为非专业性的社会、经济中的数学应用问题,看似数学建模对专业教育培养目标并没有起到很大的促进作用,其实不然。一方面,在课程教学中,针对具体的建模案例,补充一些优化理论、微分方程及差分方程理论、模糊评价方法和决策分析等相关的数学知识,可扩展学生的数学知识面。同时,数学建模的实践活动,可增强学生数学意识,提高数学应用等各方面的综合能力。因此当学生具备对问题一定的分析、抽象、简化能力之后,加之其丰富的联想能力,大胆使用数学建模中的类比法,不难将所学数学建模方法应用于本专业问题的分析与数学建模之中。

二、数学建模与工科数学相结合的探讨

(一)数学建模思想与高等数学课程的结合

长期以来,高等数学在高校工科专业的教学计划中是一门重要的基础理论必修课,主要内容是函数极限、连续、微积分、向量代数与空间解析几何、级数理论、微分方程等方面的基本概念,基本理论及基本运算技能,其目的是使学生对数学的思想和方法产生更深刻的认识并使学生的抽象思维与逻辑推理能力、分析问题、解决问题得到培养、锻炼和提高。

传统的高等数学教学主要是讲解定义、定理证明、公式推导和大量的计算方法与技巧等,在课堂中,填鸭式教学法仍占主要地位,在表达方法上一直采用“粉笔+PPT”的讲授法,教师在课堂上把所有知识系统而又完整地讲授给学生,教学内容还是比较单调,这种教学方式会使学生越来越觉得数学枯燥无味;再加上目前的学生深受应试教育的影响,学习主动性还不够,缺乏应用数学知识解决实际问题的意识和能力。教师如果能随时随处将数学建模思想渗透在讲课内容中,使学生对概念产生的历史背景有所了解,让学生在学习数学时,体会到知识的整体性、综合性及应用性,这样学生才能通过理解把新知识消化吸收并熟练运用。比如,在学习函数连续性的时候,可以介绍“椅子能否在不平的地面上放稳”这一简单的模型,让学生体会到抽象的介值定理在生活中的小应用;在学习利用函数形态描绘函数图形的时候,适当引入Matlab软件的介绍以及绘图功能,让学生掌握复杂的二维及三维图形的描绘;在微分方程一章,淡化物理模型,从人口计划生育的基本国策出发,提出人口增长的Malthus模型及Logistic模型,从数学角度阐述控制人口增长的必要性。

(二)数学建模思想与概率统计课程的结合

概率及统计学的应用在现实生活中更是随处可见,课程一般在高校大学二年级开设。在概率统计课堂教学中融入数学建模思想方法有利于培养应用型人才,特别是对管理类和经济类的人才,有利于提高低年级学生运用随机方法分析解决身边实际问题的能力。严格的说,概率论的理论推导比较繁琐,学生相关的理论基础也不具备,因此基本理论的讲授不过分强调全面性,讲清楚条件与结论,留给学生更多的问题让他们自己思考,讨论,培养自己利用概率统计建模解决问题的良好习惯。在每一个单元的教学中,可以适当安排几个例子让学生思考。如在随机事件与概率部分,从简单的摸球问题和硬币正反面问题,延伸到生活处处可见的彩票销售;在学习概率分布的时候,重点列举正态分布和泊松分布在现实生活中的常见例子,并提出简单的排队论问题让学生进一步讨论;在随机变量的数字特征部分,可以学习报童的收益问题以及航空公司的预定票策略。#p#分页标题#e#

而统计学的应用在各个学科更为常见,认真讲好实用统计方法,重点讲解回归分析法,选用一些没有标准答案的开放性统计建模问题给学生研讨,培养学生的建模能力。课堂讲授中介绍SPSS统计软件以及Matlab中的统计工具箱,引导学生利用计算机处理和分析数据,解决实际问题。课堂讲授时注意知识性与趣味性相结合,以数学建模例子为载体,培养学生的数学建模思想,提高学生的学习兴趣,创造培养学生创新精神与创新能力的环境。

(三)数学建模思想与线性代数课程的结合

线性代数课程内容包括矩阵运算、行列式、线性方程组、向量线性关系、矩阵的特征值和特征向量、二次型。虽然该课程的教学内容并不多,但它的教学仍然难以摆脱过于实用的“工具”思想。教学方式大都还是先由教师在课堂上讲清楚各类概念和算法,然后学生通过做作业来巩固掌握这些方法。基于线性代数的数学模型没有高等数学和概率统计课程里面的丰富,但是,在学习线性代数的同时,可以强化数学建模的计算机求解能力。强大的科学计算软件Matlab就是基于矩阵论的,线性代数里面的计算在Matlab中都已经实现。因此,在教学过程中,不断尝试用数学软件求解线性代数问题,可以让学生接触到先进的数据处理方式和科学计算方法,为数学建模思想的具体实现提供有力的支撑。

三、建议

为了促进学生的素质教育,配合学校教学“质量工程”的展开,全面提高以工科为主的学生数学知识的应用和拓宽专业实际应用的能力。针对数学建模教学研究中存在的问题,特提出以下建议:

第一,从学校以及学院两个层面加大对数学建模课程的宣传以及选课指导,让学生充分认识了解课程作用与意义,鼓励工科学生以及其它专业学生选修数学建模课程,扩大必修面,增加选修人数。

第二,加强数学建模课程体系建设,引进具有高学历或高职称同时具有课程教学和竞赛培训丰富经验的教师充实课程师资力量,并积极鼓励现有教师进行进修提高,继续推进精品课程数学模型的后续建设,大力推进数学建模题库及数学建模实践基地建设。

第4篇:数学建模常见算法范文

关键词:数学建模;数学模型思想;小学数学教学;实现策略

数学可以培养和锻炼学生的思维能力,帮助人们更好地探索客观世界的规律。数学模型是对现实世界事物之间关系的体现,通过数学模型,人们可以以数学的方式认识客观世界,也可以以数学的方式来描述客观现象。《义务教育数学课程标准》中新增了“发展学生的模型思想”这一内容,指出“模型思想的建立是学生体会和理解数学与外部世界联系的基本途径”。究竟什么是数学模型和数学模型思想呢?数学模型思想在小学数学教学中的作用体现在哪些方面呢?实践中如何培养数学模型思想呢?本文将就以上问题的思考与理解来进行探讨。

一、数学模型与数学思想

数学模型针对研究对象的数字特征或数量依存关系,采用形式化的数学符号和语言,概括或近似地表示出的一种数学结构。数学中的各种基本概念和基本算法及公式都可以称为数学模型。小学数学中常见的数学模型有:公式模型、方程模型、集合模型、函数模型等。

数学模型思想是指针对问题构建相应的数学模型,再通过对数学模型的研究来解决实际问题的一种数学思想。数学的本质是将实际问题符号化、公式化。就小学数学而言,更多的是用数学建模思想来指导数学教学,从学生已有的生活经验出发,让学生经历将实际问题抽象成数学模型并进行解释和运用的过程,促进学生思维能力的综合发展,提高学生学习数学的兴趣和数学应用的意识。

二、数学模型思想在小学数学教学中的作用

1.数学模型思想在小学数学教学中的应用能够培养学生的应用意识和创新能力

现代教育注重素质教育,如何能利用所学知识解决实际问题是素质教育的实际体现。通过数学模型理念的认识和理解,可以在小学数学教学中,让学生从实际问题情景中学会应用理论知识的能力和创新能力。

2.数学建模思想的培养可以提高学生的数学素养

数学素养是指学生通过学习和应用数学获得的数学知识、能力,技能和观念的素养。数学模型建立的过程可以使学生的多方面数学素养得以培养,包括基本技能和一些基本思想方法的掌握,得到一些经验积累,从而全面提高数学素养。

3.数学建模思想能够提高学生的学习兴趣

兴趣是最好的老师,小学数学的教学,是培养学生思维能力的开始阶段,学习兴趣的培养显得尤为关键。结合学生熟悉的实际问题,利用数学建模过程得以解决,可以激发学生学习的兴趣,提高学生的自信心,进而提高课堂效率。

三、在小学数学教学中培养学生数学模型思想的实现策略

1.将实际问题转换为数学模型

实际问题和生活原型是构建模型的基础。教学过程中教师应根据数学问题巧妙地构建现实情境,通过现实的生活原型引导学生以数学建模的方式解决问题。如,通过购物的支出和找回,来理解加减法和小数等。

2.数学模型的扩展应用

以旧模型为基础进行扩展应用是数学建模的精髓,也是数学素养的基本体现。数学的概念、法则、关系都是数学模型,建立在对其他数学模型的应用上,体现在对新知识的逐级构建上。教师要将复杂的问题引导学生进行分析和探究,调用已有的模型,从而把复杂模型转换为简单模型,是对简单模型的扩展调用,使学生用原有认知模型以不变应万变。如,工程问题、用量问题、相遇问题三者看似不同,实则用模型:工作总量/工作效率=工作时间。

3.让学生体验建立模型的全过程

如何将生活原型抽象为数学模型呢?设置实际问题情境,只是数学建模的开始。在后面的教学过程中,还要准确把握从具体到抽象的过程,并能够有效组织实施,否则就不能实现成功的建模。如,直线栽树问题(两端要栽),可以组织学生实施该过程,找出问题解决的关键,发现规律,再用发现的规律帮助解决问题。发现规律的过程,实质是学生推理的过程。体验建模过程是由简单的问题逐步过渡到复杂的问题,运用归纳的思想,再从复杂问题中找到规律,使学生自主完成对解题策略的构建,从而使他们加深对解题方法的理解。

综上所述,在小学数学教学中引入数学建模思想是可行且必要的,而且对小学数学教学有重要的作用。数学模型的建立和应用已成为数学教学过程的重要内容。因此,教师在小学数学实践中,应注重加强对数学模型思想的培养。

参考文献:

第5篇:数学建模常见算法范文

关键词:数字电路;测试;故障

中图分类号:TN79 文献标识码:A 文章编号:1674-7712 (2014) 04-0000-01

用来取得定量或是定性信息的基本方法就是测试。测试不仅是信息工程的源头,还是它的重要组成部分。随着如今大规模集成电路的广泛应用以及计算机网络、微电子技术以及通信技术的发展,各种先进装备系统设计还有制造都离不开测试。据资料显示,目前研制设备的总成本中,测试成本所占比重已达50%,甚至70%。能否使电子设备处于完好状态,使其维修更加准确、快捷,都与电路的测试有着紧密的关系。电路一般有模拟和数字两种,相应的可以把电路的测试分成模拟电路的测试和数字电路的测试两种。数字电路的测试基本思想是在电路输入端加上二进制测试矢量,再比较期望值和电路的实际响应,看其是否一致。

一、数字电路测试中关键技术

(一)数字电路的故障模型。模型在工程上是数学抽象与物理实体之间的桥梁,而故障模型是测试中最重要的模型,它是一系列故障或是所有可能发生的失效行为的故障的集合。故障建模需要遵循纪既要有准确性、典型性和全面性,又要具有简单和易处理性。一般建模很难同时满足以上两个相互矛盾的原则,大都采取折衷方案。数字电路中的故障种类多、数目差异大,因而数字电路系统的建模费时费力且不具有通用性。以下只介绍几种数字电路中的几种常见故障。

首先是桥接故障,通常为晶体管或门级的故障模型,一组信号间的短路用一个桥接故障来表示。短路网点的逻辑值可以是0、1或是不确定状态,取决于电路的实现技术。有反馈的桥接故障产生与组合逻辑不同的存储状态,而无反馈的桥接故障通常用固定故障测试,有很高的覆盖率,是组合逻辑。导致电路的组合延迟超过时钟周期的故障叫做延迟故障,有门延迟故障、路径延迟故障、线延迟故障、段延迟故障和传输故障几种。若将MOS晶体管视为理想的开关,则它的故障模型就是开关永久处于短路或是开路状态的固定短路和固定开路故障。固定故障是电路中较为常见的故障,最常见的是单固定故障,指的是每条线上有固定的0或1两个故障,当然也会有多种故障同时出现的情况,一个n条线的电路所有可能故障数=3^n-1。

(二)数字电路的故障仿真。故障仿真是故障诊断技术中不可或缺的重要环节,主要有四种方法,即并行故障仿真、串行故障仿真、并发故障仿真和演绎故障仿真。其中后两种故障仿真通常采用面向实践的表格驱动仿真器,而并行故障仿真一般采用编译驱动仿真器。

(三)数字电路的故障压缩。电路中所有故障的集合可以被划分成若干等价的子集,每个等价子集中的故障是相互等价的。故障压缩是从每一个等价集中选择一个故障的过程。它可以将电路中的故障总数进行压缩,使之达到一个相对较小的值,可以减少产生测试集过程中的工作量。压缩后的故障数与所有故障总数的比值就是压缩比。

(四)数字电路的可测试性度量。可测试分析具有线性复杂度和属于静态类型两个特征。信号的可观测性和可控制性称为数字电路的可测试性度量,其概念起源于自动控制理论。可观测性指观测逻辑信号状态的难度,而可控制性指的是设置特定逻辑信号为1或0的难度。

二、数字电路的测试生成方法

(一)布尔差分法。布尔差分法通过对数字电路布尔方程式进行差分运算来求得测试,可求出所给故障的全部测试矢量,获得测试集的一般表达式。主路径法是在布尔差分法的发展中具有代表性的方法,它将通路敏化的概念引入其中,使布尔差分法的效率得以提高。布尔差分法的理论价值较高,主要是因为它可以将电路描述抽象为数学表达式再进行严密的数学推导。布尔差分法的缺点在于测试复杂性较高的电路时运算量大,处理困难。

(二)D算法。相对于布尔差分法来说,D算法一般只用来测试一个或是一些测试矢量而不是全部,比较贴近实际。电路中的各节点状态用5个值(0,1,x,D, )来表示。算法步骤主要有故障激活、故障驱赶以及线相容等。D算法具有算法上的完备性,便于在计算机上实现,是目前应用最为广泛的测试生成算法之一。具有代表性的是PODEM(面向通路判定)算法,它具有穷举算法的优点,避免了许多的盲目试探,减少了D算法中判决与回溯的次数。D算法的缺点在于测试生成时的盲目试探时间占用太长,在规模较大的组合电路中太复杂、效率低。

(三)FAN算法。FAN算法是为加速测试生成而提出的,具有以下特点:头线和扇出源节点构成搜索空间;故障值分配给故障唯一确定或隐含的地方;尽可能多的在每一步中确定已唯一隐含的信号值;D边界元件唯一时,敏化通路的选择也是唯一的;知道搜索的启发性信息使用SCOAP;主导线处停止反向蕴涵,其值可以到最后再确认;扇出源的处理采用多路回退的办法。FAN算法的运算速度相对于PODEM算法来说有所提高,回溯次数少、故障覆盖率高,丰富和发展了测试生成算法的基本思想,目前具有代表性的测试性能较好的是SOCARATES算法。

三、数字电路测试的发展趋势

集成电路的设计与生产中电路测试的地位越来越重要,近年来人们不仅完善了已有的测试算法,同时还提出多种新的算法。目前数字电路测试生成发展有以下几个方向:一是对已有测试生成算法的效率进一步提高,同时研制新的测试技术和方法,如降低搜索空间、研制更加有效的搜索策略等;二是研制并行处理方法和专家系统,被测电路中可以相互独立处理的故障若能实现并行处理将会十分省时省力,测试生成若能有效结合专家经验和启发方式也会十分有益;电路与系统越来越复杂,若仍旧依照以往那种测试人员根据已经设计或是研制完毕的电路来研制测试方案的做法已实用,如今需要设计人员设计电路时充分考虑电路的可测试性,进行可测性设计。

如今电路复杂度和集成性都不断提高,这使得电路的测试困难不断加大。人们应开展可测性设计技术的研究,寻找降低集成电路制造、使用和维护成本的方法,提高故障诊断定位的效率,提高数字电路设计、生产以及测试生成的速度。

参考文献:

第6篇:数学建模常见算法范文

关键词:高等数学;数学建模;案例教学

中图分类号:G641 文献标志码:A 文章编号:1674-9324(2016)01-0156-02

一、引言

近年来,随着科学技术的飞跃进步和经济的快速发展,高校金融类专业对数学教学提出了越来越高的要求。以微积分为主要内容的高等数学课程是广大金融财经类高校学生的一门必修的重要基础课程,也是高校培养高层次金融人才必备素质的基本课程。高等数学课程为学生日后继续学习的概率论与数理统计、计量经济学、微观经济学等课程提供了必不可少的数学基础知识。同时也为培养学生的逻辑思维能力、分析和解决实际问题的能力打下了坚实的基础。

毫无疑问,数学作为一门主要的基础学科在高等院校的金融财经专业发挥着越来越重要的作用。当需要用数学方法解决实际生产生活中遇到的问题时,关键的一步是用数学的语言来描述所研究的对象,即建立数学模型[1]。数学模型的建立要求建立者对实际问题进行细致分析,同时合理地应用数学符号、数学知识、图形等对实际问题进行本质并且抽象的描绘,而不是现实问题的直接翻版。这种利用数学基础知识抽象、提炼出数学模型的过程就称为数学建模[2]。高等数学的教学要适应经济快速发展的潮流,更好地服务于社会,把数学建模思想融入其中不失为一个正确而且必要的选择。

二、金融类高校高等数学课程融入数学建模思想的必要性

随着全国大学生数学建模竞赛的影响力的不断扩大,数学建模的重要性被越来越多的教师与学生认可。

以微积分为主要内容的高等数学课程是一门逻辑性强、结构严谨、理论性较强的学科,也是不少金融财经类专业学生觉得比较难学的一门课程。高等数学重理论分析、逻辑推理这对于学生逻辑思维能力的培养是十分有好处的。遗憾的是,该课程比较轻视基本概念的实际应用背景,与实际生产生活的联系不足,这使得有一部分学生会产生数学无用论的思想。

2008年,李大潜院士在“大学数学课程报告论坛”上指出“如果割断了数学与外部世界的联系,割断了数学与现实生活的关联,单纯从概念到概念,从公式到公式,数学就成了无源之水、无本之木,数学的教学就必然枯燥乏味,失去活力,所传授的知识就不可能是全面深入的,更不可能给学生以数学的思想和方法与精神实质的启迪[3]。”

如何将数学建模的思想与方法更好地介绍给学生,如何让学生学以致用,怎么样将数学建模的内容与传统的高等数学课程相结合,以及采取什么样的考核方式更为合理,目前并没有十分成熟的理论体系。数学建模本质上是一门艺术,要将这门艺术与历史悠久的微积分更好地融合在一起,并且充分体现出授课对象的专业特色,这无疑是摆在所有数学教育工作者面前的一个难题。作为数学教师一定要多观察、多思考、多交流、勇于创新,努力将数学建模内容合理引入高等数学的教学过程中,努力构建一座高等数学与金融财经类专业的紧密联系的桥梁。

高等教育应该及时反映并服务于社会发展的实际需要。在高等数学的教学过程中,适当增加数学建模内容的教学,即顺应时展的潮流,也符合教育改革的要求[2]。

三、数学建模思想融入高等数学教学中的内容及方法

(一)培养兴趣

金融类专业在招生时,一般文理兼收。金融类专业的学生和理工科的学生相比较,数学基础略显薄弱。因此,在高等数学授课时,很显然不能把门槛抬得过高,要因材施教,循序渐进,逐步引导。对于金融类专业的学生,在讲授概念时,应该尽可能直观直接,可以首先使用形象的,甚至是不太严格的描述,让学生能直观形象地思考和理解。例题和习题的讲解应多采用源自客观世界,如自然科学、经济管理领域和日常生活领域中的实际问题,希望以此来提高学生学习高等数学的兴趣,让学生切实感受到高等数学的重要性。只有让学生感到学习不难了,能懂了,并且所学内容是与他们日后的生活与工作密切相关的,学生才可能有学下去的兴趣与动力。

(二)学生想象力的培养

用建模的方法解决实际问题,第一步需要用数学语言概括所需要分析的问题,只有在成功建模以后,才能用所学知识去解决问题。这就要求学生除了基本功扎实以外,还需要拥有广博的知识和丰富的想象力。因此,高等数学教师在平时授课过程中,就应该利用一些开放性的问题,给学生以指引,有意识地培养学生的想象力和洞察力。

(三)将案例教学融入到高等数学教学过程中

1.案例教学内容的选择。在高等数学课堂中,可以通过案例教学来讲解数学建模,提高学生分析问题和解决问题的能力。例如,在讲到函数概念的时候,可以为金融、财经、管理类学生介绍经济学中常见的成本函数、收益函数、利润函数、需求函数、供给函数,并引导学生通过分析讨论,在实际应用背景下去求收益函数、利润函数,讨论盈利与亏损问题。

在为学生介绍第二个重要极限公式的时候,面对金融财经类专业的学生,可以弱化此公式的证明过程,将授课重点放在公式的应用上。现实生活中,很多人会问,资金是存在银行好,还是放在支付宝里好,那么这两种存款计息方法的主要区别在哪里呢?目前,银行大多采用单利计息的方式,而余额宝采取的是复利计息的方式,也就是俗称的利滚利的,那么利滚利又怎么具体用数学公式的形式体现呢?引入到这里的时候,教师则可以按照不同的支付方式结合第二个重要极限公式,进行建模,推导单利计算公式、复利计算公式以及连续复利计算公式。推导完公式之后,还可以假定给学生一定的投资资金,让学生结合实际社会生活分组讨论,自主选择心仪的理财储蓄方式。作为高数教师,大家应该都深有体会,如果不介绍实际应用的例子,大部分学生会对第二个重要极限公式的学习产生茫然感,迷惑感,学生不知道学习这个枯燥复杂的公式有什么作用。但当我们将公式进行包装以后,与大家共同关心的热点问题相结合起来,枯燥的数字和公式也能变得有趣。

再例如,当讲授到导数的应用时,面对金融财经类专业的学生,我们需要相应地选择适合学生专业的案例。在为学生介绍了边际分析、弹性分析以后,我们可以结合目前热点的奢侈品购买问题,尝试让学生在实际背景下,去计算生活必需品和奢侈品的需求弹性,简单探寻商品的定价政策。

定积分的应用一直都是高等数学的授课重点,但是大部分教材的相关内容主要局限在利用定积分去计算平面图形的面积、旋转体的体积等问题上。作为面向金融财经类学生的高等数学,在授课的时候,可以适当弱化在体积方面的应用,增加和学生专业联系更紧密的内容。比如,可以假设某企业投资项目时,初始投入为X元,该企业在未来的N年中可以按每年Y元的收入获得均匀的收益。如果年利率为r,可以让学生尝试首先建模,再尝试用定积分去求N年后企业收入的现值。

由于数学建模内容涉及的知识面十分广泛,这无疑会对教师和教学单位提出更高的要求,教学案例的收集和研究是一个值得广泛关注的问题,没有好的、与时俱进的案例,何来能吸引学生的数学建模的教学?相关教学单位可以通过奖励机制比如设计教改基金项目等措施,鼓励数学模型与案例的收集建设,为广大数学教师的发展提供有力支持。

2.案例教学中教师角色的扮演。在高等数学的案例教学过程中,应该确立学生的主体地位,教师应该充当主持人即引导者的角色,引导开放讨论。教师应把握和掌控讨论进度、次序,要向学生说明讨论目的、讨论要求,对学生进行适当必要的引导,避免出现冷场、跑题等现象。

四、数学建模思想融入高等数学教学的教学手段和考核方式

(一)借助现代化教学手段进行教学

在高等数学的教学过程中,引入数学建模的内容,数学软件一定是不可缺少的。目前,应用最广泛的相关软件莫过于Matlab,Mathematica和Lingo等等。教师应对各种软件的操作进行示范,同时教学单位也应为学生提供上机操作的时间、场所、软件等必备条件。当然,这也对主讲教师与教学单位提出了与时俱进的高标准、高要求。

(二)考核手段

目前高等数学的考核方式大多数为重理论、轻应用的笔试,这必然造成学生盲目地为了追求高分,忽视自身应用能力的提高。要充分发挥高等数学课程在金融类专业中的作用,就需要在一定程度上进行高等数学课程命题改革建设。当然,改革也并不是要全盘否定过去的评价机制,可以尝试命题中传统题型与创新题型共存,尝试性地将数学建模意识融入命题中,在不忽略学生基础的同时,培养学生分析与解决问题的综合运用能力。

五、结束语

高等数学的教学要适应经济快速发展的潮流,更好地服务于社会,把数学建模思想融入其中不失为一个正确的选择。虽然此方法仍在探索中,但相信对同行在今后的教学中会有一定的启发。

参考文献:

[1]姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2011.

第7篇:数学建模常见算法范文

关键词:联系生活 数学的思考 创新意识 实践能力

《数学课程标准》强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到发展。 《数学课程标准》还指示,教学应结合具体的数学内容,采用“问题情境―建立模型―解释、应用与拓展”的模式展开。在小学阶段开展数学建模活动,培养学生的建模意识,我主要谈以下几点认识:

一、密切数学与现实生活的联系,让学生体会数学的应用价值

在数学建模活动中,学生从已有生活经验出发,用数学的眼光观察生活,经历从生活原型到数学模型的建构过程,用数学模型解决实际问题。这个过程能让学生充分地经历和体验数学知识是如何从生活经验提炼出来又应用于现实生活的。例如:在教学长方体表面积的知识时。我拿了一个生活中常见的剪开的长方体药盒,呈现展开活动,由此总结出长方体的表面积是六个面的面积之积,建立起计算长方体表面积的一般模型。即“长方体表面积=(长×宽+长×高+宽×高)×2”。同时,当向学生呈现粉刷教室这一实际问题时,学生又要结合实际想象;粉刷的面有哪些?其中哪些地方不粉刷(如窗户)。因此不能机械地套用长方体表面积的一般公式这一模型。要根据实际情况灵活运用。通过这一教学让学生亲身体会到了数学模型源于生活又回到生活,与我们的生活息息相关。

二、帮助学生学会数学地思考

在建模过程中,学生要不断思考,不断对各种信息进行加工、转换,同时要不断激活原有的知识经验,对当前问题作出分析、推论、综合、概括,形成假设,并对假设进行验证,从而建构自己的知识经验,形成自己的见解,建立一定的模型,这一过程为数学思维训练提供了理想的途径。数学模型的解释、应用,不能将模型看做确定的算法或思维程序进行机械的记忆、复述与应用,而必须灵活、合理地选择解决问题的策略。模型的拓展,将数学模型作为学生向更高点跳跃的平台,为发展学生的创造性思维提供了更大的可能性。建模过程的思维活动体现了数学活动的本质。例如:在教学五年级下册的方程一章里,对相遇问题的教学中,我通过图片和文本,以青藏铁路通车这一重大事件为背景,将必要的信息呈现出来,和学生一起理解“相对” 、“相遇”以及“共行路程” 、“速度的和”等意义。帮助他们分析题意,使他们能够顺利地确立等量关系,完成建模这一过程。

三、激发学生主动学习的积极性

数学建模活动为学生提供了充满探索与交流、猜测与验证的活动平台 ,能促进学生思维的发展,学习积极性和主动性的提升。例如:学生在数位上摆数,探索摆数规律的活动中,我让学生分组用2个圆片、3个圆片摆数。我提出:摆数时要动脑筋,怎样才能摆的既快又不遗漏,为学生发现摆数规律作铺垫。学生是在自主探索与合作交流中获取知识,一个个兴致盎然;学生用4个圆片、5个圆片摆数时,我安排让各小组介绍摆得快的经验,激发学生探索摆数的规律的欲望。当学生用6个圆片、7个圆片8个圆片……摆数时,我抓住时机提出,不摆圆片,能直接写出6个圆、7个摆出的数吗?使摆数规律的模型自然而然地产生。活动的设计非常巧妙,一步一个台阶,学生的动手和动脑密切相连。由于活动到位,我点拨及时,学生思维也非常活跃。几乎都发现用圆片在数位上摆数的规律,体验了成功的快乐,达到了活动的目的。

四、培养了学生的创新意识和实践能力

创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面提出了更高的要求,这些仅仅靠课堂教学是不够的,必须要有实践,培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立模型,从而形成比较完整的数学知识结构。如:在教学长方体表面积计算一课时,我让学生通过对不同模型或物体多次“摸”“剪”与“说”,感知“表面”含义,再借助学生已有的认知,让学生理解、解释对“表面积”的认识的同时,体会“体”与“面”的联系,发挥学生学习的主动性。在探索表面积的过程中,我主要是放手让学生自己去操作,给了学生充分的活动、交流和探究时间,使学生的潜能得以充分的释放,让学生在操作中探究知识、获取知识。通过小组活动,使学生有机会发表自己的见解,同时听取同学的意见,达到优势互补的效果。在小组与小组的汇报交流中,使学生学会了倾听他人的意见和想法,使他们的思维产生碰撞的火花。从而拓展了他们的视野,培养了学生的创新意识和实践能力,也让学生感悟到了探究新知的快乐。

五、培养提高学生的综合能力

第8篇:数学建模常见算法范文

关键词:生物医学数据;统计建模;预测模型;心得体会

随着生物信息技术的飞速发展,生物医学研究领域的数据呈几何级增长。近年来,生物医学大数据受到学者们的广泛关注。生物医学大数据具有典型的“4V”特征:体量巨大(volume)、种类繁多(variety)、实时更新(velocity)、价值隐藏(value)[1];“3H”特点:高维(highdimension)、高度计算复杂性(highcomplexity)、高度不确定性(highuncertainty)[2]。因此,综合利用生物学、医学、数学、流行病学、统计学、计算机学等多个学科的方法和手段,从中挖掘“有价值”的信息,为生物医学研究提供确凿有效的证据,显得尤为重要。笔者以肺癌全基因组关联研究(genome-wideas-sociationstudy,GWAS)为例,结合理论学习和案例实践的切身体会,浅谈利用GWAS数据建立肺癌风险预测模型的心得体会。

一、严谨的数据质量控制体系不容忽视

由于存在检测、观察、填写或录入错误,未经数据质控的原始数据极可能含有一些异常,甚至错误的观测值。在研究设计之初,便要尽可能考虑规避产生错误数据。另外,统计建模之前,仍然必须对原始数据再次进行质量控制。在GWAS中,要同时对行(样本)、列(位点)进行质量评价。例如,删除次等位基因频率低于5%、缺失率超过5%或哈代不平衡的位点;删除分型失败率超过5%、问卷性别与遗传性别不一致、存在血缘关系、属于离群值的样本[3]。另外,同时需要对流行病学问卷及临床数据进行核查。只有对数据进行清理后,才能用于后续关联分析、统计建模。

二、合理的建模方法和策略值得精雕细琢

对于GWAS高维数据,合理的方法和策略不仅要考虑统计学性能(一类错误、检验效能、预测精度),还需要考虑分析效率(计算速度)。因此,研究者应该要深入思考,为研究项目量身定制一套“合理”的方法和策略。然而,现有的统计学模型和方法往往都有相应的应用条件。实际数据由于其变量结构的复杂性,不一定完全满足所有的应用条件。并且,简单的算法速度快,但统计性能相对低;复杂算法需要牺牲计算速度来提升统计性能。因此,研究者可能需要制定多个备选方案。结合建模步骤,笔者将从以下几个方面,浅谈个人心得体会。1.初始模型:一般拟合logistic回归模型评价肺癌风险。模型中往往需要纳入一些协变量,例如:年龄、性别、吸烟、人群分层等。一般参考以下纳入原则:(a)在模型中有统计学意义(P≤0.05);(b)即便在模型中无统计学意义,但绝大多数同类研究显示其是公认的影响因素。某些协变量可能是位点的混杂因素,例如人群分层。如果GWAS中忽视调整混杂因素的影响,则有可能导致误报噪音位点的一类错误膨胀,或识别致病位点的检验效能降低[4]。此外,研究者还需要考察协变量进入模型的形式。一般而言,无序分类变量以哑变量形式进入模型。当某些类别样本量特别小,需要进行类别合并。有序分类变量、连续性变量则需要考虑是否以非线性的形式进入模型。一种最简单的方式是,将连续性变量转化为有序分类变量,并以哑变量形式进入模型。如果哑变量各组的系数呈现线性递增的趋势,则提示原始变量与结局变量间存在线性关系。否则,可采用哑变量、样条函数等方法处理非线性关系。2.因素筛选:研究者需要从GWAS数据50万位点中筛选出肺癌相关位点,加入初始模型,以提高模型的预测精度。常规做法是,在初始模型中逐个纳入位点,对位点的主效应进行假设检验。因检验次数达50万次,研究者必须要考虑多重比较所致的一类错误膨胀。常见一类错误控制方法有Bonferroni法和FDR法。前者较为严格,后者较为宽松。GWAS识别位点一般采用“宁缺毋滥”的原则,倾向于采用严格的校正方法。除此之外,研究者还要在多个独立的人群中验证初筛的位点。如果位点在多个人群中都显示与结局存在统计学关联,则认为该位点是潜在的影响因素。除基因位点主效应外,研究者还需要关注基因-基因、基因-环境交互作用。复杂疾病往由环境、基因相互影响,共同导致。因此,有必要在模型中对交互作用进行评估。例如,基因-环境交互作用可以显著提高肺癌风险预测模型的预测精度[5]。有效的降维策略能够提高因素筛选的效率。笔者曾采用“信息熵初筛对数线性模型再筛多因素lo-gistic回归模型确认”的降维策略进行全基因组基因-基因交互作用分析[6]。信息熵方法计算速度快,且其统计量总是不小于对数线性模型,不会出现漏检的情况。前两步可以检验次数将1011次缩减至105次。检验次数降低6个数量级。最后一步,利用调整协变量的logistic回归模型对关联结果加以确认,防止出现假阳性。当然,研究者也可以根据项目“量体裁衣”,选择其他降维方法,例如:随机森林(randomforest)、多因子降维(multifactordimensionalityreduction,MDR)等。3.预测模型:经过遗传因素筛选步骤后,研究者可通逐步回归、LASSO等方法,建立含有与协变量、遗传位点的主效应项、交互作用项的风险预测模型。根据受试者工作特征曲线(receiveroperatingcharacteristiccurve,ROC)确定一个风险阈值,使得风险预测的灵敏度、特异度同时达到最优。若样本的预测概率≥阈值,则预测该样本为肺癌。4.模型评价:从统计学的角度,可采用ROC曲线下面积(areaunderROC,AUC)来评价模型的优劣[7]。此外,还可以采用交叉验证的方式评价模型,即:训练集拟合的预测模型对测试集的样本进行风险估计,并计算AUC。然而,AUC并非衡量模型的唯一标准。如果预测模型形式简单,应用便捷,即便AUC稍有逊色,也是优秀的模型之一。所以,笔者认为需要综合考虑,权衡利弊。

三、熟练的软件操作和编程技能令人事半功倍

扎实的理论基础固然重要,熟练的软件操作亦不可或缺。笔者建议研究者不要拘泥于某一软件,本着“方便原则”利用多个软件进行数据处理、统计建模。根据笔者的经验,一般不太可能一次性完成建模工作,往往需要不断调整分析策略和分析方法。因此,笔者建议研究者适当撰写一些项目相关的通用程序。如果需要重新建模,只需要修改程序参数,微调代码就可以建立新的预测模型。因此,这就要求研究者“功在平时”以培养编程能力。基于肺癌GWAS风险预测模型的建模体会,笔者建议研究者需要重视数据质量控制体系、推敲建模方法和策略、培养熟练软件操作技能。

参考文献:

[1]王波,吕筠,李立明.生物医学大数据:现状与展望[J].中华流行病学杂志,2014,35(6):617-620.

[2]宁康,陈挺.生物医学大数据的现状与展望[J].科学通报,2015,(z1):534-546.

[3]陈峰,柏建岭,赵杨,荀鹏程.全基因组关联研究中的统计分析方法[J].中华流行病学杂志,2011,32(4):400-404.

[4]ZhaoY,ChenF,ZhaiR,LinX,WangZ,SuL,ChristianiDC.Correctionforpopulationstratificationinrandomforestanalysis[J].InternationalJournalofEpidemiology,2012,41(6):1798-1806.

[5]ZhangR,ChuM,ZhaoY,WuC,GuoH,ShiY,DaiJ,WeiY,JinG,MaH,DongJ,YiH,BaiJ,GongJ,SunC,ZhuM,WuT,HuZ,LinD,ShenH,ChenF.Agenome-widegene-environmentinteractionanalysisfortobaccosmokeandlungcancersusceptibility[J].Carcinogenesis,2014,35(7):1528-1535.

[6]ChuM,ZhangR,ZhaoY,WuC,GuoH,ZhouB,LuJ,ShiY,DaiJ,JinG,MaH,DongJ,WeiY,WangC,GongJ,SunC,ZhuM,QiuY,WuT,HuZ,LinD,ShenH,ChenF.Agenome-widegene-geneinteractionanalysisidentifiesanepistaticgenepairforlungcancersusceptibilityinHanChinese[J].Carcinogenesis,2014,35(3):572-577.

第9篇:数学建模常见算法范文

在现代信息实验教学中,积累经验并应进行改革探索,并针对应用型人才需采用虚拟和实际相结合、软件与硬件相结合的模式。可以看出,现代仿真技术在信息学科教学,特别是实验教学中具有广阔的应用发展前景。仿真技术的应用和发展,必将加快信息学科实验教学的深化改革,促进了教育观念的改变是培养创新人才的新的实验手段。

信息学科教学中仿真技术的应用

目前,国内外众多高校在信息类课程的教学过程中,对计算机的仿真技术做了大量有意义的探索,并取得了相对丰硕的研究成果。

(1)通信专业教学中的仿真技术。近年来,随着通信技术和计算机技术的快速发展,传统的设计手段和设计方法通常不能够适应目前通信系统急剧增加的复杂性要求。在通信专业的实际教学过程中,基于相关常用的仿真软件,通信系统的仿真技术也已逐渐成为现代通信系统设计以及对其定性进行验证的重要手段[5,6]。例如,对通信系统整体设计并测试其性能;同时,在复杂的环境中无线电通信以及抗干扰通信系统的抵抗衰落和多径效应能力。但由于现代通信系统的实际测试设备价格高昂,而且系统也往往具有不可测试特性。例如,在日常的实验教学中教育单位不太可能对实际营运中的通信网络性能进行测试。因此,这使得高校相关信息专业的教学实践环节面临挑战。这样,基于相关软件与算法对其进行仿真就成为一种理想的选择。通常,通信系统中各个功能模块的软件实现、通信过程中各个节点之间的智能化性能分析等系统及其部分功能的模拟大都基于现代计算机仿真技术来完成。其中,仿真算法可以直接映射为系统设计中的硬件。而基于仿真工具的软件无线电技术使得通信信号处理方法得到广泛应用。此外,计算机仿真技术对通信系统不同模块的性能分析也有着不可替代的作用。例如,在基带信号处理过程中可以通过合适的仿真软件来实现传输信号的相应变换。从而得出预编码、自适应均衡、信道编解码、信源编解码以及信息安全算法等等。此外,在复杂、时变的信息传输环境中,现代通信系统的数字信号处理相关算法更将会趋于复杂[7,8]。例如,在科研和教学中涉及到的信道估计的自适应算法、MIMO技术、通信网络中的多用户检测算法、信道编解码算法等技术的实现,必须利用仿真技术对算法在实际通信环境中的适应性进行验证和评估。

(2)基于硬件设计教学中的仿真技术。实现微处理器和数字信号处理芯片是现代信息系统设计的硬件基础。系统中各个硬件模块的实现通常基于硬件仿真技术的理论与先进的微型计算机的相互结合进行分析。因此,仿真技术在信息专业教学过程中硬件的控制实现中也就有着重要的应用[7]。在实际硬件仿真教学中,基于不同仿真平台,例如Max+plus、QuartusII等软件,通过VHDL、VerilogHDL等语言对系统进行设计,同时对系统的物理器件性能进行仿真。在目前很多信息系统的电路设计中,这主要表现为从基于硬件的集成电路模式逐步转为一些硬件仿真软件编程来实现的映射模式。

(3)网络协议教学中的仿真技术应用。在通常信息学科的网络协议教学中,其复杂性已经很难通过传统的数学分析来完成。而在更高层的协议设计教学过程中,通信网络协议中所涉及的仿真代码可以将其设为相应通信协议可以实现的核心代码。因此,在信息学科教学中,仿真方法在网络及其协议的复杂性中也有着重要的应用[9,10]。为了准确、快速地对信息学科教学过程中的网络协议性能完成评估。同时,如果采用计算机仿真技术可以避免掉大量的理论性能分析过程中出现的障碍。另外,通过对实验室中网络系统进行建模,从而进一步实现参数的选择和调整,并能够快速模拟系统在真实环境中的行为表现。基于上述的仿真技术,可对教学中所应用的信号处理算法、信息传输协议等及其相关性能做出评估以便进一步改进。因此,算法和协议的仿真成为实际系统中功能实现的重要手段。为了考查网络系统信息传输的实时性和利用效率,在实际的现代信息系统中提出了各种复杂且具有层次结构的协议,进而构建结合无数节点的通信网络。可以看出,基于仿真平台的仿真技术对实际环境中网络协议仿真分析评估中有着不可分割的地位。

总之,在信息学科的教学实践中,基于平台的计算机仿真技术有着重要的应用。透过仿真技术,学生基于已有的理论可以对比传统信息理论技术所研究的对象深入学习和研究。此外,通过仿真技术可以在仿真过程中实时修改系统参数,同时能够评估参数变化对系统整体性能的影响,使其更加接近真实环境。

常用仿真软件

目前,在信息学科的实际教学中,适用于系统中各个功能模块的软件仿真软件较多,例如Matlab,Labview,SystemView等。其中,Matlab/Simulink是目前广泛应用于科研和教学中较为常见的仿真与计算平台。均可完成教学中所遇到的仿真实验和数值计算,例如可以通过Matlab实现信息系统仿真中的数值计算、算法验证等分析等领域。而Simulink是Matlab中最重要的组件之一,它对系统能够提供一个动态建模、仿真和综合分析的集成环境,并具有适应面广、效率高和灵活等优点。此外,Scilab也是一个开放源码的科学计算仿真软件。而常用的硬件仿真软件早些时候所常用的Max+plus、QuartusII;英国Labcenter公司开发的用来电路分析与实物仿真软件ProteusISIS;以及FPGA的仿真软件Foundation和ISE等。

上述这些常用的软硬件仿真软件,在信息科学专业教学中的工程建模、科学计算以及性能分析等方面有着重要的应用,特别是在信息相关专业的课程实验以及毕业设计中有着广泛的作用。因此,开设计算机仿真课程能系统地利用科学计算和系统仿真工具,深入理解信息学科中专业课程的基本思想、原理和实践。