前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的垃圾渗滤液特性主题范文,仅供参考,欢迎阅读并收藏。
中图分类号:X703 文献标识码:A 文章编号:1672-3791(2015)05(a)-0116-01
垃圾渗滤液是指来源于垃圾填埋场中垃圾本身含有的水分、进入填埋场的雨雪水及其他水分,扣除垃圾、覆土层的饱和持水量,并经历垃圾层和覆土层而形成的一种高浓度的有机废水,以及堆积的准备用于焚烧的垃圾渗漏出的水分。垃圾渗滤液中CODcr、BOD5浓度最高值可达数千至几万,和城市污水相比,浓度高得多,所以渗滤液不经过严格的处理、处置是不可以直接排入城市污水处理管道的。一般而言,CODcr、BOD5、BOD5/CODcr随填埋场的“年龄”增长而降低,碱度含量则升高。
1 项目基本情况
某个生活垃圾填埋场位于浦城县。垃圾填埋场总库容约63.27万m3,设计使用年限为15年,日处理规模确定为130t/d;填埋场采用“改良型厌氧卫生填埋处理工艺”对城市生活垃圾进行无害化处理。浦城县是重点林业县,乡镇居民多以木材为燃料,因此,生活垃圾中煤渣成分较少,而以果皮、塑料袋、厨余垃圾为主。
填埋场操作顺序的总体规划为按单元依次逐层推进,层层压实,依次类推直至最终填埋标高。卫生填埋处理场的防渗处理包括水平防渗和垂直防渗两种方式,由于该填埋库区内不具备天然防渗的条件,为了保障人工衬层的安全性,采取环保型高密度聚乙烯(HDPE)土工膜作水平防渗工艺,同时采用复合防渗系统;渗滤液导流层位于场底,主要是有利于产生的渗滤液迅速汇集到主支盲沟中。
2 渗滤液污染特性
该项目处理对象为垃圾填埋场产生的渗滤液,渗滤液的水质受填埋垃圾的成分、规模、降水量和气候等因素的影响,通常而言,具有如下特点。
(1)渗滤液水质变化大:渗滤液的水质变化幅度很大,它不仅体现在同一年内各个季节水质差别很大,浓度变幅可高达几倍,并且随着填埋年限的增加,水质特征也在不断发生变化,如渗滤液的碳氮比、可生化性随着填埋年限的增加而降低。通常在填埋初期,氨氮浓度较低,用生物脱氮就可去除渗滤液中的氨氮,但随着填埋年限的增加,氨氮浓度不断增加,COD不断下降,最好采用物化法处理。
(2)有机物浓度高:垃圾渗滤液中的CODcr和BOD5浓度最高可达几万mg/L,与城市污水相比,浓度非常高。高浓度的垃圾渗滤液主要是在酸性发酵阶段产生,pH值略低于7,低分子脂肪酸的COD占总量的80%以上,BOD5与COD比值为0.5~0.6,随着填埋场填埋年限的增加,BOD5与COD比值将逐渐降低。
3 渗滤液的处理工艺
渗滤液的水质较为复杂,含有多种有毒有害的无机物和有机物,且还含有较高色度。以氧化沟为主的生化处理工艺,不适合处理高浓度有机物和高氨氮含量的垃圾场渗滤液,不能有效去除污水中难生物降解的有机物和氨氮,同时对色度的去除率较低,脱氮效率也不高,氨氮出水的稳定性较差,不能建立稳定的硝化反硝化功能。因此建议增加预处理工序,采取高级氧化技术进行预处理,推荐FEO技术,该技术是利用微电解以及催化氧化的原理来达到脱色、分解大分子难生物降解有机物的目的,可有效去除重金属。同时,将氧化沟改为A/O工艺,由兼氧段、好氧段组成,A池在利用原水中碳源进行反硝化的同时,也起一定的水解作用将不易降解的大分子物质水解为小分子物质,利于好氧的降解,提高COD的去除效果。
该填埋场使用:“渗沥液调节池FEO预处理A/O+MBR纳滤+反渗透消毒排放”的工序;浓缩液使用:“浓缩液储池一体化设备臭氧反应池搅拌澄清池活性炭过滤消毒排放”。工艺流程详见图1所示。
4 结语
渗滤液处理由于较高的投资和运行费用,在对其进行处理时应根据当地情况,采取综合处理的措施。对于北方降雨量少、且垃圾含水率较低的填埋场,采取回灌措施是比较经济、有效的方法,但对于南方部分城市,其应用却受到一定的限制。由于垃圾渗滤液的产生量直接与降雨量有关,因而垃圾填埋场的清污分流与防洪措施对于减少降水对渗滤液的影响起了至关重要的作用。一方面有利于减少进入垃圾堆体的雨水量,从而减少垃圾渗滤液的产量,另一方面合理设计防洪措施有利于降低渗滤液的事故排放。
参考文献
[1] 喻晓,张甲耀,刘楚良.垃圾渗滤液污染特性及其处理技术研究和应用趋势[J].环境科学与技术,2002(5):43-45.
1引言
随着经济的不断发展,生产规模的不断扩大,人来需求的不断提高,随之而来的固体废物产生量也不断增加。目前,工业发达国家的工业固体废物每年平均以2%—4%的增长率增加,同样的,生活垃圾的产生量也在不断增长。目前,我国城市生活垃圾的年增长率平均为10%。
近来,城市垃圾的处理方法主要有焚烧、堆肥和填埋等。其中垃圾卫生填埋法由于成本低、技术相对简单、处理迅速,是目前国内外应用最为广泛的垃圾处置方式。填埋法处理城市生活垃圾会产生大量的污染物浓度高、持续时间长、流量极不均匀且水质变化大的渗滤液,这些渗滤液不加处理则会对周围环境水体产生严重的二次污染。城市生活垃圾填埋场渗滤液的处理一直是填埋场设计、运行和管理中非常迫切而棘手的问题。
2渗滤液的污染特性
2.1营养元素比例失衡
相对于生物处理,渗滤液C∶N∶P的比例不合适。
2.2渗滤液水质的易变性
(1)渗滤液水质随水量变化而变化;
(2)渗滤液水质在日、时尺度内变化较大;
(3)渗滤液水质随填埋阶段改变而改变。填埋初期,渗滤液呈黑色,可生化性较好,易于处理,而随着填埋时间的延长,渗滤液逐渐呈褐色,可生化性变差,且C∶N∶P比例失调更加严重。
2.3金属离子含量不高
渗滤液中含有多种金属离子,其浓度与所填埋垃圾的类型、组分和时间等密切相关。不同类型填埋场渗滤液种所含的金属含量并不相同,但大都不超过排放标准。
2.4微生物含量及病毒
填埋场作为“生物反应器”,其出水中含有大量的微生物种群,其中微生物主要是杆菌、大肠杆菌、大肠链球菌等,并且随填埋时间和渗滤液中的化学成分不同而发生较大变化。虽然很多市政垃圾填埋场中含有粪便,但在渗滤液中很少能发现肠道病菌。
2.5渗滤液的生物毒性
渗滤液的毒性与其所含的有机污染物含量有关。Assmuth对芬兰的3个填埋场的研究标明,渗滤液的致死性与渗滤液中所含的离子,特别是Cl-、NH3-N和轻金属含量有一定的关联性,同时发现其致死性还与反映硬度的指标(Ca2+、Mg2+等)有关。在酸性条件下,渗滤液中的金属和S对鱼的毒害作用更强,所含的悬浮物也将增加毒性,但温度的升高对毒性影响不大。垃圾渗滤液对大麦的毒性作用与渗滤液中CODCr含量有直接的关系。
3当前垃圾渗滤液处理工艺现状及问题
当前,垃圾渗滤液的处理方法包括物理化学法和生物法。物理化学法主要有活性炭吸附、化学沉淀、密度分离、化学氧化、化学还原、离子交换、膜渗析、气提及湿式氧化等多种;生物法分为好氧生物处理、厌氧生物处理以及二者的结合。好氧处理包括活性污泥法、曝气氧化池、好氧稳定塘、生物转盘和滴滤池等;厌氧处理包括上向流污泥床、厌氧固定化生物反应器、混合反应器及厌氧稳定塘。垃圾渗滤液处理的投资、运行成本远远高于一般城市污水和工业废水,由于在垃圾体已经经历了厌氧过程,其生化性相对较差,生物处理的停留时间较长,导致设施设备的投资较大,同时垃圾渗滤液处理量一般相对较小,导致折旧、维修费较高。
各种处理垃圾渗滤液的工艺所存在的问题可归纳为如下方面:技术上可行的工艺在经济性上均较差,如膜处理,投资和运行费用均很高,且还有原液体积1/5—1/4的浓缩液需进一步处理;活性炭吸附和化学氧化,运行成本基本无法承受;经济性好的工艺在处理效果上无法达标,如生物处理,投资和运行费用均较低,但通常情况下处理出水无法达标。
4垃圾渗滤液新工艺简介
4.1电化学处理法
电化学处理法作为一种“环境友好”技术已广泛用于垃圾渗滤液的处理。利用金属腐蚀原理,以Fe、C形成原电池对废水进行处理。废铁屑是铁和炭的合金,由纯铁和Fe3C及一些杂质组成,当铁屑加入废水中则形成成千上万个细小的微电池,由于渗滤液内存在着稳定的胶体,当这些胶体处于电场中将产生电泳作用而被富集,从而沉降出来。在开展这方面研究的过程中,许多学者已对电流密度、pH值、不同电解质、氯离子浓度等因素对处理效果的影响进行了探讨,取得了较大的成果。
4.2Fenton试剂法
目前垃圾渗滤液的处理方法中生化法应用最为广泛,但由于其含有高度难降解有机物,不利于活性污泥法的运行。Fenton氧化法可以解决这一问题,它可使带有苯环、羟基、-COOH-S03-H、-NO2等取代基的有机化合物氧化分解,从而提高废水的可生化性,降低废水的毒性,改变其溶解性、混凝沉淀性,有利于后续的生化或混凝处理。
4.3高压脉冲放电技术
高压脉冲放电技术利用高功率脉冲电源对放电电极间的液体介质进行高电压、大电流的脉冲放电,本质是把较大的能量在空间和时间上进行压缩,使水介质在极短的时间内集聚极高的能量密度,形成等离子体通道,产生高温、高压、高密度活性粒子、强烈紫外光和超声波,实现对高浓度有机污染物的活性粒子氧化、光化学氧化、空化降解和超临界水氧化降解。该技术是一种降解能力高、无二次污染、适用范围广的有机污染物处理技术。
4.4蒸发处理
蒸发法主要在废水尤其是放射性废水的处理领域有较广泛的应用。它是利用外加能量蒸发废水中的水份,使其体积大大缩小。国内外关于渗滤液蒸发技术公开发表的文献很少。与传统处理工艺相比,渗滤液蒸发工艺对渗滤液的性质变化适应性强,包括BOD、COD、悬浮固体,溶解固体及进料温度等的变化。一般来说,渗滤液蒸发系统只对pH值较敏感,目前开发的蒸发器主要有热交换器式、浸没燃烧式和喷淋式三类。
5结语
显然,应进一步摸索各种技术可行、经济性又较佳的渗滤液处理新颖工艺,且主要应体现以下特点:降低运行费用;满足更严格的排放标准要求;适应渗滤液水质随时间的变化;去除难于处理的污染物,如总溶解性残渣;减少因渗滤液回灌或填埋场生物反应器运行方式而引起氨氮浓度的积累。
参考文献
[1]李颖,郭爱军.垃圾渗滤液处理技术及工程实例[M].中国环境科学出版社,2008.
[2]楼紫阳,赵由才,张全,等.渗滤液处理处置技术及工程实例[M].化学工业出版社,2007.
[3]石岩,王启山,岳琳,等.三维电极-电Fenton法处理垃圾渗滤液[J].天津大学学报,2009,(3).
[4]敖漉,周从直,冯孝杰,等.高压脉冲放电处理垃圾渗滤液的试验研究[J].环境科学导刊,2009,(4).
[5]刘咏,赵仕林,叶宣宏.Ph对电解处理垃圾渗滤液的影响[J].环境工程学报,2009,(4).
[6]张顺喜,王文清.紫外光—降膜反应器处理垃圾渗滤液的研究[J].武汉工业学院学报,2009,(3).
关键词:垃圾填埋场;渗滤液;处理技术
中图分类号:X703 文献标识码:A 文章编号:1674-0432(2011)-07-0276-2
随着我国经济的快速发展,城市垃圾量也随之增加,垃圾的妥善处理已成为人们急需解决的问题。我国大多数城市采用卫生填埋或焚烧的方式处理垃圾,由此产生了大量的垃圾渗滤液。垃圾渗滤液中含有多种污染物,包括重金属离子和有机物,不仅在水中存在时间长,范围广,而且危害极大,若不妥善处理将对环境造成严重污染。有效收集和处理垃圾渗滤液已成为城市环境急需解决的问题,垃圾渗滤液的处理技术成为研究者关注的热点和难点。
1 垃圾渗滤液的产生及特点
垃圾渗滤液,又称浸出液或渗沥水,是垃圾填埋场中不可避免的二次污染物[1],主要来源于降水、垃圾含有的水和微生物厌氧分解产生的有机废水[2]。垃圾渗滤液是高浓度有机废水,若未经处理直接排放或未达标排放,会对周围的地下水、地表水和土壤造成严重的污染。
垃圾渗滤液污染物含量受垃圾成分、填埋年限、气候条件和填埋场设计等多种因素的影响[3]。垃圾渗滤液水质特点可以概括为:①污染物种类多,成分复杂,浓度高。刘军等使用GC-MS 对垃圾渗滤液中有机组分进行分析,共有63种有机化合物,大多是难以生物降解的有机化合物,如酚类、杂环类、杂环芳烃、多环芳烃类化合物,约占渗滤液中有机组分的70%以上[3];有机物浓度高,COD和BOD5浓度高,最高可达几万mg/L。②水质、水量变化复杂。垃圾填埋场的水文气候条件、地质条件、地理位置、构造方式、填埋时间等不同,垃圾渗滤液的成分和产量也发生变化。而且生物可降解性随填埋龄的增加而逐渐降低。③营养比例失衡。渗滤液中氨氮含量高,C/N值常出现失调情况,同时p缺乏,微营养比例不能满足水处理的要求。
2 垃圾渗滤液处理工艺技术
在《生活垃圾填埋场污染控制标准》(GB16889-2008) 于2008年7月1日颁布实施后,对垃圾渗滤液的处理控制提出了更严格的要求。渗滤液水质水量受各种因素影响而变得非常复杂,存在大量生物难以降解的有机物,目前渗滤液的处理工艺主要有土地处理、物理处理、化学处理、生物处理等,但采用单一工艺处理,往往只能在某些指标上取得好效果,很难使出水达到排放标准。因此渗滤液的处理工艺不是一种方法能够完成的,而是多种方法的组合工艺。
目前,渗滤液处理的组合工艺主要有两种,一种是以生化反应为主的“生物法+膜法(纳滤/反渗透)”处理系统;另外一种是以DT盘式膜组件为主的高压膜过滤工艺。DT盘式膜组件是独家工艺,过滤原理即为常见卷式反渗透膜过滤的原理,在此不多作介绍,本文重点介绍“生物法+膜法”的处理系统。生化法处理设备和运行管理简单,成本低,对水质和水量的变化有很好的适应能力,适合我国生化垃圾有机物含量高、渗滤液可生化能力较高的特点,当前得到了广泛应用。
2.1 早期生物处理工艺
早期的渗滤液处理工艺缺乏设计经验,对渗滤液的水质特性考虑不够充分,处理工艺主要参照城市污水处理工艺,选择生物法中的氧化沟,SBR及接触氧化工艺的比较多,由于这些工艺在曝气量、停留时间上考虑的不足,最后导致了运行的失败。
例如北京阿苏卫渗滤液处理厂选择“厌氧+氧化沟+沉淀池”的处理工艺,要求出水达到GB16889-1997二级标准,但是由于渗滤液水质水量随时间变化大,尤其随着填埋场时间的增长,可生化性低,导致出水不能稳定达标;昆山市第三垃圾填埋场渗滤液处理采用的是“厌氧+生物接触氧化”工艺,运行过程中进水水质远低于设计值,结果造成厌氧效果大幅下降,整个系统出水无法达标。
另外,早期渗滤液生化处理工艺选择沉淀池进行泥水分离,但是由于高污泥浓度的污水在沉淀池中的沉降性差,抗污泥膨胀的能力差,从而造成生化池中的污泥浓度偏低,出水水质不稳定。
2.2 膜生物反应器(MBR)应用
针对早期生化法在渗滤液处理上的不足,MBR系统在设计生化反应部分时充分考虑渗滤液的水质特性,以反硝化池和硝化池为主,在停留时间、池体深度以及曝气量方面,充分满足渗滤液中有机物降解的需要。
膜技术在垃圾渗滤液处理中的应用引起了我国学者的极大关注。膜生物法(MBR)是近些年发展起来的一种集膜过滤和生物处理于一体的新型、高效的处理技术,在处理高浓度难降解有机物废水方面有着广泛的应用前景。在MF和UF基础上研发的MBR系统已经广泛应用于生化反应末端的泥水分离过程,利用膜的截留作用使微生物完全被截留在生物反应器中,实现水力停留时间和污泥龄的完全分离,使生化反应器内的污泥浓度从3-5g/L提高到10-20g/L,从而提高了反应器的容积负荷,使反应器容积减小,大大提高了生化系统的运行效果。
据相关实例数据表明,MBR系统对COD的去除率在90%以上,NH3-N在95%以上。任鹤云等采用MBR法处理渗滤液,生化部分采用硝化/反硝化工艺,膜部分采用的超滤+纳滤膜,出水COD小于60mg/L,SS小于50mg/L,氨氮小于18.8mg/L重金属等未检出[4];康建雄等应用UASB-A/O-膜工艺处理垃圾渗滤液取得良好效果,CODcr,BOD5和氨氮的去除率分别达97.3%、98.6%和92.8%,出水水质优于国家排放标准[5]。
2.3 膜处理技术
膜处理技术包括微滤膜(MF)、超滤膜(UF)、纳滤膜(NF)和反渗透膜(RO)等,常用于二级处理后的深度处理,多以微滤(MF)、超滤(UF)代替沉淀、过滤、吸附、除菌等常规深度处理中的预处理,以纳滤(NF)、反渗透(RO)进行水的软化和脱盐。在垃圾渗滤液处理系统中,由于渗滤液的生化性较差,单独依靠生化反应和MBR系统并不能完全实现水质达标排放,因此MBR的出水需要进一步深度处理。根据目前的处理技术,MBR出水还可通过NF或RO系统进一步处理,RO和NF都能去除细菌、微生物、溶解盐等,但RO效果更好。一般RO和NF之前的进水都必须进行预处理,对SS及浊度都有明确的要求,一般SS≤1mg/L,浊度≤5NTU,pH控制在中性左右。对RO、NF影响比较大的环境因素除进水水质外,还有压力、温度等,这些因素是可控的,因此系统运行的稳定性有了一定保证。
苏也研究表明,MBR-NF工艺经过4个多月的运行,运行稳定,在进水CODcr远高于设计值的情况下,出水状况仍然良好,满足设计要求[6]。
2.4 组合工艺流程
目前由于环境污染的不断加重,国家从加强环保的角度出发,颁布了《生活垃圾填埋场污染控制标准排放标准》(GB16889-2008),其中出水总氮成为一个重要的指标(非敏感地区40mg/L,敏感地区20mg/L)。为了满足新的垃圾渗滤液排放标准中对总氮的要求,原有MBR工艺进一步优化,增加一个二级硝化反硝化环节,如图1所示,MBR工艺优化为A/O/O+A/O+外置超滤膜(UF)可以保证出水总氮达标排放。
图1 工艺流程图
综上所述,渗滤液处理的工艺以“生物法+膜处理”为主,该工艺技术处理渗滤液可以达到2008年《生活垃圾填埋场污染控制标准排放标准》的排放要求。其中,生化处理过程可以有效地降解、消除污染物,膜分离处理过程可以有效地分离去除不可生化降解的残余污染物。
3 结论和建议
垃圾渗滤液是一种成分复杂的高浓度有机废水,其处理技术各有利弊,单独采用任何一种处理技术很难使渗滤液达标排放。因此,必须将处理工艺由单一化向多元化发展,通过组合工艺充分发挥各工艺的优势,以达到满意的处理效果。“生物法+膜处理”工艺技术处理渗滤液可以达到2008年《生活垃圾填埋场污染控制标准排放标准》的排放要求,但在垃圾渗滤液的处理过程中仍存在一些问题。
3.1 老龄化填埋场渗滤液可生化性差
渗滤液的可生化性差,新生渗滤液用生化法处理是可行的,但是随着填埋场时间的延长,渗滤液的可生化性降低,尤其是在填埋后期,可生化性很差,B/C不足0.1,生化法使用受到限制。应根据填埋场所处阶段来选择合适的工艺进行渗滤液处理。
3.2 浓缩液处理
膜分离过程可以有效地分离去除不可生化降解的残余污染物,但同时会产生浓缩液,浓缩液的最终处理也是目前水处理行业中一个亟待解决的问题。目前浓缩液的处理方法主要有回灌法、蒸发法、高级氧化+混凝沉降组合法、活性碳吸附和离子交换法等,但是回灌法势必造成盐的累积;蒸发法能耗相当大,而且蒸发器要有很强的抗腐蚀能力;高级氧化+混凝沉降法对有机物有很好的去除效果,但是对总氮去除效果不明显;活性碳吸附和离子交换法用来处理浓缩液很容易达到饱和容量,再生困难,运行费用昂贵。
渗滤液水质如果可生化性好的话,优先选择生化法,但是渗滤液中含有大量难降解的物质和毒性物质,生化出水仍需要深度处理,膜技术的应用解决了深度处理的问题,但是膜处理也存在膜污染和浓缩液处理的问题,如何通过技术改进和工艺组合降低运行成本和减少膜污染是今后研究的方向。
参考文献
[1] 陈玉成,李章平.城市生活垃圾渗沥水的污染及全过程控制[J].环境科学动态,1995,4:15-17.
[2] 王宗平,陶涛,金儒霖.垃圾渗滤液处理研究进展[J].环境科学进展,1999,7(3):32-39.
[3] 刘军,鲍林发,汪苹.运用 GC-MS 联用技术对垃圾渗滤液中有机污染物成分的分析[J].环境污染治理技术与设备,2003,4(8):31-33.
[4] 任鹤云,李月中.MBR法处理垃圾渗滤液工程实例[J].给水排水,2004,10:36-38.
[5] 康建雄,李静,闵海华,等.UASB-A/O膜工艺处理渗滤液工程设计案例[J].华中科技大学学报(城市科学版),2003,20(2):85-87.
近些年来,随着我国经济高速发展,生态环境保护已成为社会所关注的话题之一,尤其是在我们的城市垃圾处理这一领域上。因为,随着我国城市化建设的不断加快以及城市人口的不断增加,工业、农业、生活等大量的生活垃圾被直接丢弃、填埋,由此产生大量的渗滤液,对土壤、资源等造成一定的污染,严重影响了人们的生活质量。为此,如何有效的处理这些问题,正日益地成为了我国当前社会发展所面临的一个重大课题,已被越来越多的学者所研究。文中论述了城市生活垃圾填埋场场污垃圾渗滤液对生态环境造成的危害,并提出了相应的防治对策,希望能给给为同行提供一些帮助。
关键词:生活垃圾;垃圾渗滤液;治理技术;
一、垃圾渗滤液的产生及性状特征
80年代末以来,我国的城市垃圾填埋处理技术有了一定的发展,全国相继建成了一批较为完善的城市垃圾卫生填埋场。但是垃圾填埋场产生的垃圾渗滤液给生态环境带来了一定程度的污染,大多数垃圾渗滤液未经任何处理直接排入河道,严重污染了周边环境。垃圾渗滤液是垃圾在填埋过程中由于垃圾中有机物分解产生的水和垃圾中的游离水、降水以及入渗的地下水,通过淋溶作用形成的污水。就渗滤液的性质而言,属于高浓度有机废水,且水质相当复杂。
垃圾渗滤液有以下特性:
(1) 滤液水质十分复杂,不仅含有耗氧有机污染物,还含有各类金属和植物营养素(氨氮等),如果工业部门使用的垃圾填埋厂,渗滤液中还会含有有毒有害的有机污染物。
(2)BOD 5、COD浓度高,最高可达几万,远远高于城市污水。
(3) 垃圾渗滤液中有机污染物种类多,其中有难以生物降解的萘、菲等非氯化芳香组化合物、氯化芳香组化合物、磷酸酯、邻苯二甲酸酯、酚类化合物和苯胺类化合物等。
(4)垃圾渗滤液中含有10多种金属离子,其中的重金属离子会对微生物产生抑制作用。
(5)氨氮含量高,C/N比例失调,磷元素缺乏,给生物处理带来一定的难度。
可见,垃圾渗滤液用常规的生物处理是难以达标排放的。治理的重点是COD和氨氮的处理,尤其是氨氮的处理。
二、 当前我国垃圾填埋场垃圾渗滤液处理现状
近年来,我国垃圾产生及填埋进入了高峰期,城市垃圾填埋场渗滤液渗漏污染地下水的现象屡屡发生。垃圾填埋后该垃圾场周围的地下水,无论是污染程度还是污染的范围,都有逐年增加的趋势。表现为有机物和细菌总数严重超标,三氮、硬度和矿化度等水化学指标升高,导致垃圾场周围十多平方公里范围内的地下水已不能饮用。因此,为改善人居环境、促进城乡经济发展,治理垃圾渗滤液已是保护生态环境的一项紧迫的任务,对于垃圾填埋场来说渗滤液必须自行处理达标后才能排放。
三、垃圾渗滤液污染治理技术
垃圾填埋场渗滤液是世界上公认的污染威胁大、性质复杂、难于处理的高浓度的有机污水。具有BOD5和COD浓度高、金属含量较高、成分复杂、水质水量变化大、有机物和氨氮的含量较高,微生物营养元素比例失调等不同于一般城市污水的特点。目前,垃圾渗滤液处理主要有以下几种:
(1) 预吹脱:
通过对渗滤液的预处理,去除部分氨氮,对后续处理的顺利进行具有重要意义。目前预处理的研究有采用空气自由吹脱和加石灰吹脱预处理,这种方法易造成二次污染。
(2)好氧生物处理:
好氧处理主要是活性污泥法。低氧、好氧活性污泥法和SBR等改进活性污泥法比常规法更为有效。
(3) 厌氧生物处理
厌氧法包括厌氧污泥床、厌氧式生物滤池、混合反应器及厌氧塘等,它具有能耗少,操作简单,投资及运行费用低等优点。已报道的有:间歇厌氧反应器、间歇和连续上流式厌氧污泥床、上流式厌氧过滤器等。但占地面积大,污泥量大,现场容易产生臭味,造成二次污染,影响环境。
(4) 厌氧与好氧结合处理法
氨吹脱-厌氧生物滤池-好氧生物滤池工艺对垃圾渗滤液的中试研究达到较好的处理效果。由于生物法操作简单,运行费用低,且技术成熟,因此具有广泛的应用前景,但对于可生化性低、难降解有机物及毒性高的废水,生物法处理效果差,可用物化法弥补。
(5)生物膜处理技术
醋酸纤维在上世纪60年代产生,其促进了膜分离技术的快速发展与应用,也应用到了垃圾填埋渗滤液的处理方面。常用的膜处理技术中包括反渗透、超滤和纳滤等分离技术。反渗透和超滤技术联合处理垃圾填埋渗滤液的效果十分明显,能够将COD与色度等进行有效的去除,效率达到98%以上。膜处理技术也由于操作简单、处理效果较高等优势而得到了广泛的应用。当前,在国内很多大型的垃圾填埋场都使用或者是筹划使用生物膜处理技术。但是其中所涉及到的工艺中,反渗透工艺的重点环节的成本较高,而且消耗量很大。为了减少膜表面受到机械或者是污水中毒素的影响,需要在使用膜处理之前对渗滤液进行一定的处理,才能够确保膜的使用性能得到充分的发挥,延长膜的使用寿命。另外,使用膜处理技术进行处理的渗滤液中会遗留大量的污染物需要进行及时的安全处理,这样才能有效的消除渗滤液对环境和土壤造成的污染。
另外,还有垃圾渗滤液的人工湿地处理方法,包括人工湿地的组成、污染物去除机理、影响处理效率的因素等。通过对人工湿地处理渗滤液的工艺和国内外应用实例进行总结、与传统处理方法相比,对其经济性进行分析。可以看出,垃圾渗滤液的人工湿地处理法有成本低、构建和运行维护费用低、处理效果比较好等优点,在我国的许多地区有一定的适用性。
四、垃圾渗滤液处理技术发展趋势
随着我国城市的生活垃圾总量急剧增加,垃圾渗滤液的处理已成为城市建设中急需解决的技术难题,也是生态城市建设,尤其是小城镇示范工程建设必须配套解决的关键环节。
垃圾填埋场渗滤液处理对选择垃圾渗滤液生物处理工艺的方案设计提出了更高的要求。垃圾渗滤液的生物法处理依靠微生物的降解作用达到去除污染成分的效果,是目前国内外研究的重点,由于其无需专门处理设施投资、出水稳定、管理方便、运行费用低等特点,生物法处理也是该领域的发展趋势。同时对城市垃圾填埋场的渗漏进行检测至关重要,且迫在眉睫。目前普遍采用的通过在填埋场内观测、井中采样分析进行的检测,只能监测垃圾填埋场浅层部分点位的地下水水质状况,而对于深层更大范围内地下水的水质检测,则难度很大,在检测填埋场是否发生渗漏时往往漏掉,这是当前值得十分注意的问题。一种能快速检测垃圾填埋场大范围内污染渗漏状况的地球物理方法,通过先进的地球物理仪器设备来检测渗滤液渗漏后地下介质发生的物性变化(如电磁场的变化),再配合适当的地球化学分析手段,便可进一步分析判断其渗漏范围和污染程度。这一技术的应用,将使我国的垃圾处理建立一个新台阶。
结束语:
随着城市化进程的快速发展,生活垃圾产生量不断增加,垃圾填埋场产生的垃圾渗滤液给生态环境带来了一定程度的污染,因此城市生活垃圾安全处置已成为生态环境保护的重要内容,必须重视对垃圾渗滤液的处理。
参考文献:
[1] 梅特卡夫等.废水处理工程处理及回用(第4版)[M].北京:化学工业出版社,2004,6.
关键词:垃圾渗滤液;处理难点;处理对策
前言:
垃圾渗滤液,通俗来说就是指经过了垃圾处理之后经过一系列的化学反应物理反应,再加之降水污水排放等其他外部的来水的渗疏作用和淋溶作用下,产生的一种高浓度的污水,它也是一种高浓度的有机废水。通常有以下几各方面是影响垃圾渗滤液的关键因素:降水量、蒸发量、地面流失、地下水渗入、垃圾的特性、地下层结构、表层覆土以及下层排水设施情况。垃圾渗滤液中含有众多的高污染因素,存在大量的有毒物质,对环境的危害难以表述,一旦垃圾渗滤液不经过处理就排放到江河湖泊,将会产生难以估量的污染后果。会对动植物以及人体的健康产生严重的影响。所以对于垃圾渗滤液的处理是非常必要的,能够帮助我们拥有一个良好健康的生存环境。但是由于诸多因素,垃圾渗滤液的处理极具复杂性,垃圾渗滤液的处理已经成为一个较困难的难题。
1 垃圾渗滤液的处理难点
1.1垃圾渗滤液所具有的特点
垃圾渗滤液的特点基本上就决定了其处理的难度性。垃圾渗滤液的水质波动大,渗滤液的成分复杂,很难对症下药。而且垃圾渗滤液的成分并不是一成不变的,它会随着填埋时间的长短逐渐变化,这其中有众多的因素影响着它的变化,垃圾所含有的内含物质,降水对于土壤的渗透,填埋时间的长短,填埋时期的专业技术的人才的素质问题,填埋场地防渗透技术,填埋场中具体的操作细节,填埋场的运营状况等,特别是降水渗透量和填埋时间长短是两个关键的影响因素,甚至可以说,这两个因素已经决定了垃圾渗滤液的成分的复杂性特征。并且我们要看到所有这些变化都是不可控的,这也是一个垃圾渗滤液处理困难的一部分原因。另外,COD 和氨氮的浓度高,众所周知,氨氮过多会是水体产生恶臭,对人体的伤害是很大的,其中还含有很多的致癌物质,一旦不小心排放到环境,对我们的生存环境的恶劣影响可想而知。还有重金属的含量也是一个巨大的数字,艳丽的颜色中同样含着恶臭,对环境的污染极其严重。
1.2 垃圾渗滤液的处理现状
与城市污水一同处理。这种处理方式简单明了,它可以节约了处理城市废水和垃圾渗滤液的双重费用,降低了处理成本,基本上算是一种较为可行的方案。但是有的时候还是存在着一定的问题,比如一般城市污水处理工厂往往和垃圾填埋厂的距离很远,这样对于两者的共同处理的方便性提出了挑战。同时运输也会增加一定的经济成本和处理费用,垃圾渗滤液的水质特点和城市污水完全不在一个层次上,从某种程度上来说,是对污水处理厂的重负荷。还有一种处理方式就是运用渗滤液回灌技术,回灌技术是近年来发展起来的一种专门运用于垃圾渗滤液的处理的技术,它依靠简单的技术设备,操作简单,经济成本也相对较低,但是同样存在着问题,一方面产生大量可挥发的恶臭气体,这存在很大的安全隐患。最后一种方式是现场建立渗滤液处理厂进行处理,这是一项相对较为先进的技术,主要在发达国家和地区使用,就目前中国的现状而言,有一部分大城市也有这样的渗滤液处理厂,它需要坚实的技术支持,运用的范围现在还有待开发。其技术核心总结而言就是对污水处理的一种模仿。
1.3 垃圾渗滤液的处理难点
垃圾渗滤液的处理难点主要有以下几个方面:单一的处理方法无法满足排放标准,因为垃圾渗滤液的成分复杂,含有的物质水溶性差,难以分解,这就造成了在垃圾渗滤液处理过程中仅仅靠一项处理程序很难达到达标排放的标准,另外的垃圾渗滤液中的水质也存在很大的差异,单单靠一项处理技术对其进行处理不能实现对多种水质的处理;有较高氨氮浓度的垃圾渗滤液难以处理,垃圾渗滤液中重金属等有毒有害物质的处理难题,随着近现代技术的不断发展成熟,重金属对人体的危害已经成为大街小巷中的常识性问题,由于重金属的特殊性,只要有少量的重金属物质进入人体就可能造成严重的影响,出现畸形等各种生理变异,所以对于垃圾渗滤液的处理越来越严格,以确保不会在排放后对人体产生负面的影响。
2 针对垃圾渗滤液的处理难点所采取的应对措施
2.1 增强对垃圾渗滤液的全过程监控
全过程监控是指对于垃圾渗滤液整体性的一个把握,对于降低经济成本和节约不必要的开支,能加大对与垃圾渗滤液处理技术的投入,同时全过程包括在开始阶段,过程阶段,结束阶段都能都有一个好的监控,首先是开始阶段,开始阶段就是垃圾渗滤液的源头,控制源头能够取得很好的效果,一方面能够减少工作量,另一方面是能够培养人们对于垃圾再回收利用的意识。在过程阶段,注意对于技术的创新和新技术的应用,加大对于研究的力度,发展出更加有效的方式对待垃圾渗滤液;同时在过程阶段,应该严格对待每一项垃圾渗滤液的处理,不能马虎过关,严肃对待处理的每一项环节,保持高达标排放的效率。
2.2 加强对新技术和新设备的研发和利用
增强对于新技术的利用和研发对于垃圾渗滤液的处理相当于就是质的飞跃,只有有一项可观的技术支持,众多的垃圾渗滤液的问题都能迎刃而解,所以对与新技术的投资不仅仅是迫于形势,而且是必要的,能够给我们将来处理垃圾渗滤液带来很好的效果和发展前景。对于现在较为先进的技术设备要注意加大资金进行推广其使用范围,增强这项技术设备的使用效度,给垃圾渗滤液的处理带来更多实际的效果。实现一项新的技术设备的产业化结构,使之能够在垃圾渗滤液的处理行业中发展壮大,这是很有必要的,是符合市场现实需求的体现。
2.3 对于重点技术的运用
微电解处理工艺,主要原理是通过金属的腐蚀原理,通过物理沉淀和相关的化学反应来实现对垃圾渗滤液中的物质的吸附和处理,这个方法主要对于污水处理的模仿,但是对于垃圾渗滤液同样具有良好的效果;氧化沟处理工艺,是一种主要正针对垃圾渗滤液填埋的技术处理,这种工艺具有超强的耐冲击负荷、良好的脱氮效果,另外一个广受人们欢迎的特点是它有能够在一定程度上对产泥率进行有效的降低,近几年来得到了很好的推广和使用;砂滤处理工艺,主要是对于水中的杂质的处理,使用过滤层过滤掉垃圾渗滤液中的悬浮杂质,它能够一定程度上使水质澄清。
3 结语
总而言之,垃圾渗滤液已经成为了一种社会共同应对的问题和技术难题,不断有学者在孜孜不倦的进行着研究和创新,相信在未来垃圾渗滤液能够得到很好的处理。同时对于现有的各种技术应该加大对于它们的技术处理和管理,使之能够真正的有所作用,能够真正在垃圾渗滤液的处理中发挥正确的作用。
参考文献:
关键词:垃圾 渗滤液 厌氧折流板反应器 水解酸化 颗粒污泥
垃圾填埋场渗滤液中难生物降解有机物多,可生化性差,其BOD5/COD低达0.1~0.2[1],我国目前多将渗滤液与城市污水进行混合处理。为获得稳定而有效的处理效果,试验采用水解酸化—好氧工艺,而水解酸化段采用具有优良性能特点的ABR反应器。
ABR是一个由多隔室组成的高效新型反应器[2](见图1),具有水力条件好、生物固体截留能力强、微生物种群分布好、结构简单、启动较快及运行稳定等优良性能。运行中的ABR是一个整体为推流、各隔室为全混的反应器,因而可获得稳定的处理效果[3、4]。
1 试验方法
1.1 废水水质
【关键词】填埋场;垃圾降解;影响因素
一、填埋场操作方式
1.压实
垃圾填埋过程中,常对垃圾进行压实作业,但是这—操作方式会对垃圾降解有—定的影响。填埋作业时,对垃圾进行压实,能减少垃圾携带的氧气量,缩短垃圾好氧降解过程,不利于垃圾快速降解。同时,对垃圾进行压实、能改变单位体积垃圾的水分含量。当垃圾水分含量低于饱和状态时,垃圾压实密度越大,单位体积垃圾内的水分量越多,垃圾中微生物越易得到水分,微生物越活跃,因此越有利于垃圾的降解。当垃圾水分含量处于饱和状态时,垃圾压实密度越大,单位体积垃圾内的水分越少,垃圾中微生物可利用的水分量越少,不利于微生物的活动,因而不利于垃圾的降解。
2.填理层日覆盖与填埋场最终覆盖
在填埋作业时,一般每天在垃圾填埋层覆以15—30cm厚的土壤,以减轻填埋场的臭味、改善填埋场的卫生条件。垃圾填埋高度达到设计高度后,要在垃圾层上方覆以60—90cm厚的最终覆盖层,然后覆以30cm厚的粘土、压实并使表面保持2%的坡度,最后植以植被。日覆盖土壤与最终覆盖层,能减少进入垃圾层的氧气量、缩短垃圾好氧降解过程,同时也会大大减少进入垃圾层的降雨量,从而不利于垃圾快速降解。
3.铺设到气管
在填埋单元铺设导气管,不但可以回收利用填埋场的甲烷、消除填埋场甲烷爆炸的危险性,而且还可以加速填埋场垃圾的降解。填埋场内CO2和CH4的分压增大,不利于生成CO2和CH4的底物(多肽、多聚糖、葡萄搪、氨基酸、长链有机酸、酷酸)的分解,良好的导气系统,能及时地排除垃圾最终降解产物CO2和CH4,减小CO2和CH4的分压,从而有利于垃圾的降解。
4.筑造防渗层
为了防止渗滤液对地下水造成污染,必须在填筑单元四周特别是底层筑造防渗层,以确保渗滤液不向填筑单元四周特别是底部渗透;当垃圾层高于地下水位时,防渗层能使垃圾水分含量不因为渗滤液向四周渗透而降低,因而有利于垃圾降解;当垃圾层低于地下水位时,防渗层能使垃圾水量不因为地下水渗入填筑单元而增加,因而不利于垃圾降解。不过此时将会因为渗滤液向四周的渗透造成地下水的污染问题。
5.渗滤液回灌
填埋场渗滤液回灌,是国外填埋场常用的减少渗滤液量和处理渗滤液的方法。渗滤液回灌,能增大垃圾层的水分含量,并使渗滤液中微生物的营养成分返回到填埋场中。所以,渗滤液回灌能加快垃圾降解速率,使渗滤液浓度降低,提高填埋场甲烷速率,提高填埋场的沉降量和总沉降幅度。
二、垃圾预处理
1.破碎预处理
垃圾成分复杂,颗粘大小相差很大,较难压实。如果填埋前不破碎。则填埋场内垃圾降解极不均匀,给填埋场的维护与管理带来诸多不便。对垃圾实行袋装化收集,有利于垃圾运输。但在实际填埋场中,打包的垃圾处于相对“封闭”状态、袋内垃圾渗滤液流动不畅通,通过覆盖层渗入的雨水难以与袋内垃圾接触,不利于增大渗滤液中生物可降解大分子有机化合物的水解产物的浓度梯度,因而,不利于垃圾降解。垃圾填埋前先进行破碎,对垃圾降解既有有利的一面,又有不利的一面。—方面,垃圾破碎可减小垃圾粒径、改善压实效果、增加填埋场垃圾的纳入量,减轻垃圾降解不均匀给填埋场的维护与管理带来的不便,消除包装袋对垃圾降解的不利影响;同时,又能使垃圾比表面积增大,可扩大固液和接触面,促进胞外酶对垃圾中生物可降解大分子有机化合物的分解作用,使生物可降解大分子有机化合物的固态分解产物更快扩散到水中,从而有利于生物可降解大分子有机化合物的分解,加快垃圾降解速度。另一方面、垃圾的过度破碎延长了垃圾厌氧降解产酸阶段,使垃圾渗滤液长时间处于低pH值、高有机碳浓度状态下,不利于甲烷的产生,减慢了垃圾降解速度。
2.堆肥预处理
堆肥预处理,是指在常规填埋作业前,先将垃圾置于单元底层(厚度约为1m),不压实不覆盖,使其自然好氧堆肥l一2个月。在填埋场对垃圾进行堆肥预处理,能使填埋单元底层垃圾在填埋场封场后立即进入厌氧降解产甲烷阶段,有利于加快垃圾降解速率.研究表明,填冲场对垃圾实施堆肥预处理,在降低渗滤液COD浓度方面,其效果要明显优于实施滤液回灌的填埋场。
三、填埋场垃圾的组成
不同垃圾组分,分解速率不同。果类、蔬菜和粮食等食品类有机物分解的速率快,而塑料、橡胶等人工合成高分子材料的分解则很缓慢。适量的碳、氢、氮、钾、钠、钙、镁、磷和微量的铁、锰、钼、铜、锌、钴、钨等金属,都是微生物生长必不可少的营养成分。
垃圾中某些组分不利于垃圾的分解。垃圾中过量的重金属汞、银、铜及其化合物能与酶的SH基结合,使酶失去活性,或与菌体蛋白结合使之变性或沉淀,因此对垃圾的分解有抑制作用。卤素及其他氧化剂的杀菌能力很强。酚、醇、醛等有机化合物能使蛋白质变性,它们都会抑制微生物的活动,从而减缓垃圾的降解速度。当垃圾内作为电子受体的硫酸盐含量过高时,硫酸盐还原反应在与利用H2/CH4或酯酸盐产甲烷的反应竞争电子供体H2时处于优势地位,硫酸盐优先被还原成H2S,从而使H2/CO2或醋酸盐生成甲烷的反应受到抑制.所以,垃圾内硫酸盐含量过高,会减缓垃圾降解速度。
四、污染物的化学组成和结构
污染物质的化学组成和结构,决定其在环境中的微生物降解行为。生物降解是一个酶促反应过程,而酶与污染物质的结合是污染物可被酶催化降解的第一个关键步骤。这种结合常常是以某个基团的作用为前提,或者是污染物的空间结构形态等,即酶的活性中心具有特定的空间构象。如果污染物的空间构象正好能与酶活性中心的空间形态吻合,则两者在空间上具有了亲和力。酶与污染物质结合后生成一种复合中间产物,这种产物存在的过程就是酶对污染物质进行激活的相互作用过程。经过这一激活过程,污染物质可能在结构上发生某种变化,或者被部分地降解。酶将被激活或者降解的污染物释放出来,形成一种新的酶促反应产物,酶又恢复原有的性状,进行新—轮的酶促反应。污染物质的某个基团与酶蛋自质的表面基团的亲和性是酶能与污染物质结合的一个必要的性质。
参考文献
渗滤液水质概况
宝坻区生活垃圾卫生填埋场,采用边填埋、边覆盖的填埋工艺,利于臭气污染控制和雨污分流。由于渗滤液产生量小且浓度相对较高,尤其是夏季,易腐性物质含量相对较高,加之高温作用,浓度高,经过调节池停留及均质后,其CODcr浓度一般不超过30000mg/l。冬季氨氮浓度高,氨氮浓度不超过3000mg/l,冬季难降解物质含量高,因此CODcr浓度一般不低于3000mg/l。冬季pH可达5,极端情况下pH为4,夏季pH最高可达8,极端情况下pH为8.5。
表1 原水水质表
渗滤液处理出水限值
表2 出水限值计算表单位:mg/l(凡注明者除外)
渗滤液处理工艺概述
3.1 工艺流程
渗滤液自调节池由原水泵提升进入厌氧系统,在中温厌氧罐内,经过水解酸化、产酸、产甲烷等复杂的生化过程,把渗滤液中大部分有机污染物去除,使COD得到充分降低,出水自流进入膜生物反应器(MBR);在一级硝化反硝化系统中,由于一级反硝化罐内搅拌器搅拌作用使渗滤液与MBR机组浓水充分混合,在低溶解氧状态下,经过反硝化作用脱除总氮,出水自流进入一级硝化反应阶段;硝化反应阶段内,在高溶解氧状态下,经过充分的硝化反应,水中氨态氮转化为硝态氮,同时有机污染物浓度大幅降低;污水自流进入二级强化硝化反硝化系统,经过强化脱氮作用,大幅降低出水硝态氮;污水溢流进入MBR机组,经自吸泵抽吸作用MBR产水进入中间水箱,MBR浓水返回一级反硝化罐;MBR产水经纳滤高压泵加压进入纳滤膜处理系统,利用纳滤膜组件对溶质的截留作用,使各种污染物含量降低,纳滤产水暂存于中间水箱,纳滤浓缩液利用余压回流至调节池;纳滤产水经反渗透供水泵和高压泵加压进入超低压反渗透膜处理系统,在高压状态下利用反渗透膜的精细拦截作用,使水中各项污染指标降低并满足排放标准,反渗透产水达到《生活垃圾填埋场污染物控制标准》(GB 16889-2008)表2的标准达标排放,可用于绿化和地面冲刷,反渗透浓缩液利用余压自流至污泥池。
3.2 辅助设施
3.2.1 中温厌氧加热及换热系统。保证厌氧反应处理效率,保证处理系统稳定性。
3.2.2 曝气系统。保证好氧系统对氧气的需要和对系统的搅拌作用以及MBR膜组的气体擦洗污染控制。
3.2.3 加药系统:在二级强化反硝化系统中,可向外加碳源解决碳氮比失调问题,保证碳氮比不小于5。
3.2.4 膜污染控制系统:为提高MBR膜组、纳滤系统(NF)及超低压反渗透(RO)系统的的清洗系统。由于水的特殊性及膜技术的特点,为保证出水率、出水量和处理效果,必须对对膜定期清洗,所以配置膜清洗、防结垢加药系统。
3.2.5 冷却系统:考虑好氧反应对温度的要求,为了提高硝化反应速率与效果,好氧系统配置冷却系统控制好氧反应温度。
3.2.6 二次污染控制系统。
3.3.6.1 厌氧沼气燃烧器。原水污染物浓度高,产生沼气采用燃烧技术进行燃烧,生成的水气排放大气。
3.2.6.2 污泥及浓水采用回灌方式处理。中温厌氧和浸没式膜生物反应器(MBR)生物处理系统,为低产泥系统,生化系统产泥回流至厌氧反应器进行内源消化。
3.2.6.3 消泡剂投加系统。为防止特殊情况下好氧反应器出现泡沫,配置消泡剂投加系统。
3.3 应对水质变化措施
3.3.1 建场初期高氨氮浓度渗滤液应对措施
厌氧反应器的应用对于早期填埋场,渗滤液中氨氮浓度高,一些管理较好的填埋场,由于控制二次污染,填埋、覆盖同步进行,雨污分流充分,渗滤液产生量少但浓度较高,需要强有力的去除高浓度有机污染物的厌氧设备。
膜生化反应器(MBR)的应用,以膜组件代替传统污水生物处理工艺中的二沉池,通过膜组件的高效截流作用使得泥水彻底分离;并且硝化池中高活性污泥浓度(15g/L)和运行过程中污泥效菌(特别是优势菌群)的出现,提高了生化反应速率,因此适用于有机污染物浓度高的难降废水的处理。
由于膜生化反应器(MBR)实现了反应器污泥龄(SRT)和水力停留时间(HRT)的彻底分离,活性污泥不因产水而损失,在运行过程中,活性污泥会因进入的有机物浓度的变化而变化,并达到一种动态平衡,并且较大的动力循环导致了污水的均匀混合,因而使活性污泥有很好的分散性,大大提高了活性污泥表面积,这使系统出水稳定并且有耐冲击负荷的特点。
膜生化反应器由于滤膜的截流作用避免了微生物的流失,生化反应器内可保持较高的污泥浓度,从而提高了体积负荷,降低了污泥负荷,提高了污泥泥龄,并且营造了有利于增殖缓慢的微生物,如硝化细菌(脱氮优势菌群)的生长环境,提高了系统的硝化能力,并且由于硝化罐内采用了经过特殊加工的曝气头,使得氧利用率较其他曝气方式要高,使得高浓度氨氮得到有效去除。随时间延长,对应渗滤液中氨氮含量增加采取的相应措施:通过适当提高反应器内的污泥浓度,提高反应器内的微生物总量从而提高系统的硝化能力,并且提高反应器的曝气量以提高系统氨氮的去除能力。并且本工艺按最大硝化负荷设计,已经考虑了水量与水质的冲击负荷。
3.3.2 建场中后期营养比列失调的应对措施
渗滤液中的碳、氮、磷三种元素的比例。对于磷的缺失,只需在污泥培养阶段投加磷酸盐即可,而在运行阶段,膜生化反应器对于磷的需求不是很多。对于垃圾渗滤液而言,主要是碳、氮比例的失调。在填埋场运行初期,一般不存在该问题,随着填埋场运行时间的延长,渗滤液中的碳、氮比例将会失调,碳源缺少。
由于前置式反硝化在很大程度上降低了生化反应器的碳用量及需氧量,因此膜生化反应器采用了前置式反硝化与硝化后置的生化反应器,从部局上解决了碳、氮比例失调,碳源缺少的问题。而随着运行时间的延长,当渗滤液中碳源严重不足时,可向反硝化罐中投加外加碳源如甲醇、醋酸、甚至面粉等解决该问题。当渗滤液中的N/C大于0.2时(此种情况下碳、氮比失调较严重),MBR工艺的处理效率仍然能够保证很高的出水水质达标。
3.3.3 保障出水达标措施:超低压反渗透保证出水达标
本工艺设计了纳滤、反渗透处理系统,确保了出水水质的稳定达标。在夏季运行条件较好时,纳滤出水可完全满足设计出水要求,为了确保出水稳定达标,本工艺设计超低压反渗透处理系统,MBR出水可直接进入反渗透处理系统,反渗透的处理出水将会稳定达标排放。3.4处理效果
渗滤液处理设备在运行期间,平均年处理量约18000立方米,处理后的渗滤液能够全部达标排放。
关键词:填埋垃圾;污染;生物反应技术;好氧生物反应法
中图分类号:X38文献标识码:A文章编号:1672-3198(2009)18-0276-02
1 垃圾填埋后的污染情况
垃圾填埋后对环境造成的污染是多方面的,由于填埋垃圾的特性,封场后的填埋场仍然对周围环境造成危害,形成二次污染。而且在自然状态下这种污染是长期的。其污染表现在:
1.1 空气污染
填埋气体(LFG)造成严重空气污染和温室效应。
填埋场在压氧条件下会产生大量的填埋气体,其成分主要为CH4和CO2,还有少量的H2、N2、H2S等气体,其产生量和产生率取决于垃圾量、垃圾成分、水分、填埋时间、填埋压实度等多种因素。
甲烷(CH4)气体是潜在的温室气体,会导致生态失衡,它对臭氧层的破坏是CO2的40倍,产生的温室效应比CO2高20倍,它对全球变暖的危害仅次于CO2,居第二位。
(1)产生温室效应。沼气比空气轻还是重取决于CO2和CH4所占的比率。纯沼气的比重接近空气的比重,通常是1.0,当沼气比空气轻时,就会快速消散,形成损耗臭氧层和加剧全球温室效应的烟雾。
(2)存在爆炸隐患。当沼气比空气重时,沼气在低洼处积聚,当沼气浓度达到爆炸极限(甲烷气5%-15%的空气混合)时,一旦遇到明火就会发生爆炸,引发火灾事故。
(3)造成地下水源的污染。填埋气体中含有的挥发性有机物和CO2等都易溶于地下水,这有可能破坏原来地下水中CO2的平衡,导致地下水周围岩层的溶解,引起地下水硬度升高,影响饮用地下水人畜健康。
(4)造成填埋场场区及附近植物根区因缺氧而死亡。
(5)填埋气体含有令人讨厌的臭气,污染空气,对人体健康造成危害,其中含有多种致癌、至畸的有机挥发物。这些气体如不采取适当的措施加以回收处理,而直接向场外排放,会对周围环境和人员造成伤害。
(6)填埋气体具有迁移性,其迁移的范围超过50m。如果在垃圾填埋场上建设建筑物、填埋气体极易在建筑物内汇集,形成火灾及爆炸隐患。
1.2 水污染
(1)水污染。
垃圾填埋对水产生的污染主要来自于垃圾渗滤液。渗滤液是垃圾在堆放和填埋过程中由于发醇、雨水淋刷和地表水、地下水浸泡而渗滤出来的污水。渗滤液成分复杂,其中含有难以生物降解的奈、菲等芳香族化合物、氯代芳午族化合物、磷酸脂、邻苯二甲酸脂、酚类类和苯胺类化合物等。渗滤液对地面水的影响会长存在,即使填埋场封闭后很长时期内仍有影响。渗滤液对地下水也会造成严重污染,主要表现在使地下水水质混浊、有臭味,COD、三氮含量高、油、酚污染严重、大肠菌群超标等。地下和地表水体的污染,必将会对周边地区的环境、经济发展和人民群众生活造成十分严重的影响。
(2)土壤污染。
城市生活垃圾中含有大量的玻璃、电池、塑料制品、它们直接进入土壤,会对土壤环境和农作物生长构成严重威胁。大量不可降解的塑料袋和塑料餐盒被埋入地下,百年之后也难以降解、使垃圾填埋场占用后的土地几乎全部变为废弃地。
由于经济条件的限制,我国大多数城市的简易垃圾堆填场在建设初期未按卫生填埋场的标准进行设计及建设,缺乏对填埋气体垃圾渗沥液及其它污染物的有效控制,对周围环境已造成了严重影响。国家建设部《城市生活垃圾卫生填埋技术标准》CJJ17-2001规定:生活垃圾填埋场在未达到安全化和未经监测之前,不允许用于建设用地。一般垃圾场必须待封场15年以及达到稳定后方可作为建设用地。因此,如何对简易垃圾堆填场进行有效的治理,使其在短期同快速转化为安全稳定可以利用的建设用地是一项亟待解决的重要问题。
2 垃圾填埋场再生的概念
所谓垃圾填埋场的再生,就是将过去填埋在垃圾场内的垃圾进行加速降解,减少或解决垃圾场的污染后再度挖掘出来,分别筛选回收有价值物品后,再施以无机化过程等处理再埋回去的过程。
3 垃圾填埋场再生的优点
(1)增加原有填埋场处理容积,延长垃圾场的使用年限;
(2)可以回收有用资源,获取经济效益和环境效益;
(3)通过挖掘垃圾进行无害化处理降低垃圾体的体积;
(4)加快了垃圾分解的速度,减少了对环境污染的程度和时间。
4 垃圾填埋再生的方法
没有经过处理的垃圾场,对大气、地下水和垃圾场附近的土地造成严重污染,对环境和社会造成负面影响,我们要采取科学的处理方法,使原有的垃圾加速降解,减少或消除垃圾场的污染,再通过挖掘处理后填埋,这样可以增加垃圾场的使用空间,延长使用寿命,大大节省处理垃圾的用地;或者,不挖掘起来,经过降解技术,将填埋垃圾变成物理、化学成分相对稳定的无机物,使原来“不宜用于建筑”的场地,可以用于建筑,产生新的使用价值。
现今先进的治理方法就是就地治理,采用生物治理技术,使填埋场堆体内的有机物加速降解,达到稳定后,再采取其它方法和技术进行再开发和利用。生物反应器技术就可以达到上述目的,生物反应器技术主要分为厌氧生物反应器和好氧生物反应器,其技术特点比较见表。
采用好氧生物反应法处理有机填埋垃圾是近几年来垃圾填埋场治理新技术。以前,好氧法被广泛地用于地面上的垃圾堆肥、活性淤泥和有机废水的处理,但用于固体垃圾的处理,特别是对填埋垃圾的处理还是一个比较新的理念。采用好氧生物法进行有机垃圾降解,就是将新鲜空气加压后,用管道注入垃圾深处,同时把垃圾中的二氧化碳等气体抽出并对反应物的温度与垃圾气体进行监控,激活垃圾中的微生物,创造出一个比较理想的有氧反应环境,使反应达到最佳状态,从而加速有机物的降解,消除有毒有害物质的再生,从而增加填埋的空间,或者使在垃圾场上重新建设成为可能,这种方法,比传统的厌氧降解法提高降解速度30倍以上。
好氧生物反应法可广泛应用在有垫层或无垫层的正规或非正规垃圾填埋场上,使用于封场后或正在运行的垃圾填埋场。好氧反应处理能提高分解速率、减少有害和有气味气体的释放,并且提高渗滤液的品质。这些优点对改造填埋场、减少污染具有重大意义。
垃圾填埋场再生事业有利于缓解我国日益增加的垃圾处理压力,有利于节省宝贵的土地资源,并且最大限度地实现了垃圾处理的“资源化”目标。当然,我们也应清醒地认识到填埋场再生过程中可能会出现的二次污染、地基下沉和损坏等问题的严重性。因此我们应本着科学严谨的态度,在实行填埋场再生之前,必须多角度、多方面进行可行性评价,主要应该考虑的是填埋用地特性的调查、获取经济效益的评价、总体成本的衡算以及相关制约的规章调查和劳动安全保障计划的制定等。
参考文献