前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人体工程学的研究方法主题范文,仅供参考,欢迎阅读并收藏。
[关键词]人机工程学;设计的实践性;实践性教学
[中图分类号]J022 [文献标识码]A [文章编号]1005-6432(2011)49-0209-02
社会的发展、技术的进步、人们生活方式的改变……这一切的一切皆赋予了设计“以人为本”的理念,设计从产生到发展始于人类生活的开始。人类的历史、文化遗产等都产生于设计,在此,设计所进行的是一种文化活动,借设计把人类社会推向未来。那么,设计学科如何全面适应社会科学技术的发展、如何最大限度地满足人类社会的生产方式、生活方式、人类交流及思维方式……这些无疑对设计及设计教育学提出新的更高要求。在探索设计基础课程――人机工程学的教学模式之时,首先,应明确设计的性质、目的,即设计的两个方面:一是创造;二是改良。所谓:“创造”是从无到有,根据人的需要,创造某种具有真正功能、全新方式的“物”。如果只是对“物”的外观、形态、材质、性格等方面进行改变,那只是借创造之名,实为“改良”;其次,应全面掌握人机工程学学科的性质、特点及内容,并与设计相融,有针对性地构建人机工程学的知识结构、教学内容、课程设置体系、教学模式等。
1 人机工程学理论知识
1.1 人机工程学基础理论
人机工程学又叫人体工程学、人间工程学、工效学等,是一门抓住人、物、环境的联系,以人体生理学、心理学为基础,结合各类相关学科知识,研究“人―机―环境” 三者之间协调、一致性关系的学问。其中,以人体科学中的人类学、生物学、心理学、解剖学、人体力学、人体测量学等为其一;以环境科学中的环境保护学、环境心理学、环境监测技术等学科为其二;而以技术科学中的工业设计、环境设计、视觉传达设计、系统工程、交通工程等学科相互整合,构成了本学科的体系,其目的是为设计和科学研究提供理论指导与依据,为人类社会建立一个舒适、安全、良好的工作与生存环境。其内涵包括:
(1)为设计中考虑“人的因素”提供准确人体尺度参数
人体工程学应用人体测量学、人体力学、生理学、心理学等学科的研究成果与方法,对人体结构特征和机能特征进行研究,为设计提供准确人体尺度数据。如人体感知特征、反应时间、各部分的尺寸、体重、重心以及人体生物学等人机学参数。
(2)为设计中“物”的功能合理性提供科学依据
设计中如何解决人与物相关的各种功能的最优化,创造出与人的生理和心理机能相协调的“物”,这将是当今设计中,在功能问题上的新课题。而人体工程学可提供操作简便、省力而又准确的依据。
(3)为设计中考虑“环境因素”提供设计准则
人体工程学研究各种环境因素对人体的反应和适应能力,分析声、光、热、电、振动、尘埃和有毒气体等环境因素对人影响程度,确定了人在生产和生活活动中所处的各种环境的舒适范围和安全限度,从保证人体的健康、安全、合适和高效出发,为设计提供了设计方法和设计准则。
(4)为设计中提高工作效率作出理论指导
人体工程学的研究成果是将人―机―环境三要素作为一个系统来指导具体设计,这就为设计中提高工作效率提出理论依据。
1.2 设计与人体工程学
作为一门新兴的边缘学科,人体工程学发展至今也不过四五十年的历史,其基本指导思想与工作内容与设计有很多的相关性。如:人机工程学的基本理论“设计要适合人的生理、心理需求”与设计的基本观念“创造物,应同时满足人们的物质与文化需求”具有一定的一致性。二者的相同点,即同样都是研究人与物之间的协调关系;反之,由于设计在历史发展中更多的融入美的探求等文化因素,包括视觉传达设计、饰品设计等,而人机工程学则在劳动与管理科学中有广泛应用,这是二者的区别。
设计迈入当代之际特别强调“设计的人本主义”,其意义在于提倡设计的人性回归,而人体工程学更加重视“以人为本”,讲求一切为人服务,强调人类的衣、食、住、行,从人的自身出发,在以人为主体的前提下考虑其他因素。诚如日本千叶大学小原教授所言:“人体工程学是探知人体的工作能力及其极限,从而使人们所从事的工作趋向适应人体解剖学、生理学、心理学等学科的各种特征。”人体工程学已广泛应用于当代设计,通过对人体计测、人体力学与运动测量、人的视觉与显示系统设计、人的行为与操纵系统设计等人体诸因素的研究,在设计领域,如:工业设计、环境设计、视觉传达设计、系统工程设计、交通工程设计等的应用已日臻成熟。
2 人机工程学教学模式探索
2.1 基础课程教学实践性特点
基础课程教学――人机工程学是专业设计基础教学的必修课之一,针对其社会性、实用性及与人的需求相互依存的特性,在教学的主要目的、教学方式、教学手段等方面着重强化学生设计的创造性思维、操作技能和实践能力的培养;作为寻求理论知识与具体的设计课题相互转换、虚拟与现实共生的教学方式,要求课堂教学与社会实践紧密结合、传统工艺与现代化表现手段的统一。在对人―物―环境感知、认知、理解、分析、重构的基础上,紧紧围绕专业设计的培养目标、特点及教学目的,注重借鉴、消化、融合国内外有关人机工程学教学的方法与经验,更重视与中国设计教学结合,为设计提供设计的依据,同时,所创造的“物”,能够使人―物―环境三者之间相互协调,其特点是由基础教学通向专业设计的桥梁。
总之,人机工程学以基础课程教学的实践性为主线,更强调课程设置的针对性。
(1)教学内容与形式结合
在人机工程学教学中,注重理论教学与动手能力的互动性,在传统工艺的基础上强化计算机辅助设计在教学中的作用,通过二者的教学整合,从而掌控着当代设计的脉搏。
(2)思维方式的培养
人机工程学以抽象思维为主线,具体的形象思维作为辅助方法;以理论知识为指导,强化工艺技能的培养。在教学过程中,贯彻“在学中做,在做中学”的理念。通过实践,培养学生视觉反应力,增强视觉接受信息的能力,即感悟能力;开发想象能动性及对未知领域自觉探索,即创新能力;培养分析能力、思维能力、锻炼对事物的把握能力、努力使基础课教学适应专业课的需要。
(3)基础课程教学实践性
一种理论只有用于实践才有其存在的价值和意义;如果不能指导实践,那便是毫无意义的空话。人机工程学的实践性,依专业教学特点,强调基础教学理论的实践性,着眼于培养综合素质、技术全面设计人才。在“初步实践―理论与实践并行―系统实践”的模式中,通过人机工程学实验性特征,以实际课题或模拟课题的形式,采用讲、做(操作)结合,在做(操作)中,强化对理论知识的理解、实现理论知识和实践教学的交替渗透。
2.2 人机工程学教学模式
(1)任务引领式课程模式
即按照课题任务的相关性原则进行课程设置,它不同于以学科界限进行课程设置体系,是通过以课题任务为中心引领知识、技能和态度,让学生在完成课题任务的过程中,学习相关理论知识,融“教、学、做”为一体,借生产性实训、实习等教学改革措施,培养学生的实践能力、创新能力及理论与具体课题相结合的人才培养模式。
(2)人机工程学任务引领式课程模式的形式与特点
在整个艺术设计教学体系中,理所当然地将整个体系划分为基础课、专业基础课、专业课三大类。教条式的划分使三者严重脱节,成为设计教与学最突出的滞后点。任务引领式课程模式是以某一具体的设计任务及设计课题贯穿基础、理论及技能三者之间的系统框架,加大三者之间课程结构的转换,形成以服务于社会需求、突出设计的实用性、强调发挥学生主动探索精神的新型“媒介”式课程模式。如:设计的思维训练、命题设计的程序与方法、人机工程学与实践教学等。
3 结 论
设计学科随着时代的发展,而不断改变着其存在的形态。我们在探讨人机工程学教学模式的同时,必须明白人机工程学边缘学科这一本质,在人类科学与文化不断进步、创新的时代,对于作为艺术与科学、物质与精神、人―物―环境三者和谐之纽带的设计基础学科“人机工程学”,变是永远不变的原则,只有如此,才能最大限度地满足人类社会的需要。
参考文献:
[1]姜绍华.实践性教学环节的改革初探[J].江苏高教,1999(6):105-106.
[2]尹定邦,吴寄.实践就是我的设计哲学[J].美术学报,2005(1):2.
[3]李文彬,朱守林.人体工程学[M].北京:中国林业出版社,2001.
[4]刘佳,李宏伟.人体工程学今昔研究[J].山东轻工业学院学报,2000(2):3.
[5]许其春,兰凤崇.人体工程学及其在采运系统中的应用[J].东北林业大学学报,1987(4):94-101.
【关键词】《人体工程学》 展示设计专业 融合创新
“人体工程学(Human Engineering),也称人类工程学、人体工学、人间工学或工效学(Ergonomics)。工效学Ergonomics原出希腊文“Ergo”,即“工作、劳动”和“nomos”,即“规律、效果”,也即探讨人们劳动、工作效果、效能的规律性。人体工程学是由6门分支学科组成,人体测量学、生物力学、劳动生理学、环境生理学、工程心理学、时间与工作研究学。
人体工程学作为独立学科有40多年的历史。它诞生于第二次世界大战之后的欧美,主要产生于工业社会大量生产和使用机械设施的情况下,探求人与机械之间的协调关系。早期的人体工程学主要研究人和工程机械的关系,即人机关系。其内容有人体结构尺寸和功能尺寸,操作装置,控制盘的视觉显示,这就涉及到了心理学、人体解剖学和人体测量学等,继而研究人和环境的相互作用,即人―环境关系,这又涉及到了心理学、环境心理学等。至今,人体工程学的研究内容仍在发展,并不统一。在迅速发展的设计行业里,人体工程学发展速度非常快,特别是室内设计行业,未来则将向着多元化、人性化和智能化的方向发展。
人体工程学是展示设计艺术专业教学中重要的专业必修课程之一。设计师必须具备人体工程学方面的知识和修养,并且能妥善地解决和处理人体工程学问题,才能取得设计上的成功。随着人们生活品质的提升和文化事业的蓬勃发展,人们更追求空间的舒适和愉悦。按照人体工程学基础而进行的展示设计是舒适愉悦的前提。本课程通过对人在某种工作环境中的生理、心理学等因素的研究;培养学生树立一种科学态度,达到人―使用物―环境的相互结合;通过设计使得在展示空间中提升信息传递的效率,确保人的健康、安全和舒适等问题,使设计真正地服务于人。通过本课程的学习,使学生得到人体基本形体构造的知识,同时使学生懂得人体一些重要尺寸在展示设计专业中的应用,为展示设计的后续课程及今后实际工作打下扎实的基础。
由此,我们的课程教学就不能泛泛讲解《人体工程学》中的基础内容,我们要将该课程的基础内容与展示设计专业进行改革与融合创新,使之成为为我专业所用的专业基础课程。
2013年,由北京印刷学院设计学院会展方向陶海鹰老师主笔,根据专业特点,形成了《人体工程学》课程的本专业教学大纲。成果如下:《人体工程学》通过对人在某种工作环境中的生理、心理学等因素的研究;培养学生树立一种科学态度,达到人―使用物―环境的相互结合;通过设计使得在展示空间中提升信息传递的效率,确保人的健康、安全和舒适等问题,使设计真正地服务于人。
基本要求如下:第一章,展示中的尺度问题。了解人体工程学的发展与应用,并熟悉展示空间环境中人的各种尺度关系。了解人体工程学在展示设计中的意义。第二章,展示的通道分布于陈列设计。了解展示的观众通道分布是按人流股数计算的,大型展示活动一般采用多线通道;了解和熟悉展示设计的陈列密度,以及与展厅空间跨度、净高的关系;了解阅读心理及阅读习惯并能设计视觉流程;从人体工程学的角度分析展示中的陈列高度,以及与参观者视线的相对位置;了解展示设计与视觉特征的关系。第三章,展示信息传达效率的提升。了解展示信息传达的有效途径;熟练运用展示设计语言来更好地传递信息。第四章,展示设计的色彩与照明。了解并掌握展示空间环境中的色彩与照明设计原则,研究展示空间中色彩与照明对人的心理作用。了解掌握展示设计中的色彩应用规律。了解掌握在展示设计中对光源、光照的要求。
【关键词】室内设计;人体工程学;应用
1 前言
随着人们生活水平的不断提高,人们对于室内环境的要求也越来越高。近年来,人们不断寻求完善室内设计的理论依据,使室内设计更符合当代人的需求,人体工程学作为一门具有完善室内设计功能的综合性学科应运而生。人体工程学应用于室内设计的范围较为广泛,包括室内光设计、声环境设计、光环境设计以及家具尺寸、摆设设计等内容。
2 室内设计及人体工程学相关理论
2.1 室内设计的含义
现代的室内设计内容已远远超出室内装修的范畴,具体是指运用经济手段及物质技术方法,以建筑物所处的具体环境情况为基础,对建筑物的内部空间重新组织及创造,创设舒适、安全、优美以及卫生的生活、工作环境,满足人们不断增长的精神以及物质功能需求。
2.2 人体工程学的含义
人体工程学(Human Engineering),又称为人类工程学或工效。人体工程学的理论起源于欧美国家,其作为一门独立的综合性学科由来已久。先后应用于工业社会领域和战争技术、工业生产、空间技术、建筑施工以及室内设计中。无论人体工程学应用于哪个领域,所追求的都是人、物及环境的协调统一,以人为本。
人体工程学应用到室内设计,其具体是指以人为主体,运用人体、心理以及生理计测的方法以及手段,对室内环境与人体的心理、结构功能以及人体力学之间的协调关系进行研究,使室内环境能更好地适应人体身心健康的要求,达到理想的使用效能。室内设计的目标是为人们生活、工作提供舒适、安全、健康的室内环境,以提高人们的生活水平及工作效率。
3 人体工程学在室内设计中的具体应用
人体工程学在室内设计中的应用主要体现在能为人在室内空间的活动范围设计提供可靠的标准,确定室内的家具形状、尺寸选择以及确定摆放位置,为室内设计提供与人体相适应的气候、温度、光照以及声音环境参数。
3.1 人体工程学确定室内设计中人在室内的具体活动范围
人体工程学应用于室内设计,可以根据人的体型以及人的交际表现确定相应的室内活动范围。建筑物室内空间的确定需要以人体的相关数据为依据,比如要从人的高度、体型、心理空间、动作范围来对室内空间进行设计。室内设计中融入人体工程学,要求所确定的空间范围必须满足人体以及日常交往的要求,生活起居力求舒适。形状不同的空间对人的心理影响是不一样的,方形、圆形等规则严谨的空间,会使人产生平稳、严肃、凝重以及端正的感觉,而多边形、八角形等不规则的空间,会使人产生自然、无拘无束以及随意的感觉。小空间能使人产生亲切、温馨、亲切以及人情味较浓的感觉,而高且广的空间则使人产生开阔、高远、宏伟甚至是神秘的感觉。
以起居室的设计为例,从现代建筑物来看,起居室是人们活动的主要场所,在设计起居室的空间范围时必须综合考虑其功能性,可以供人们进餐、玩耍、睡眠、休息,又可以供人们学习、会客、娱乐。基于此,在起居室空间确定时,尽量保证其范围够大够宽,且为了人们生活起居的灵活、方便,起居室的形状设计不宜过长。相对而言,厨房的空间范围确定却有不同的标准,厨房的功能主要是进行日常食物的烹饪,功能相对较为单一,一般情况下空间形状设计以狭长、方形为宜,将洗涤、储藏、配料以及烹调设施的安放位置安排在同一面墙的平台上。这样以人体的活动以及交际为前提,确定不同空间的功能,并针对空间功能设计该功能区的形状以及确定其面积大小,这样就能将无形的、静态的空间与人的心理、生理感受联接起来,将其综合考虑,寻求最适宜的空间形式。
3.2 人体工程学确定室内设计中家具的摆设位置以及形状
科学合理的室内设计,不仅可以使建筑物的空间范围符合人们生活的需求,还可以使人们对室内环境产生舒适、美好的感觉。家具是建筑物室内的主要功能设备及主体,因而家具的形状选择以及摆设位置应与人体工程学的原理相一致。家具的设置是为了满足人对其功能的需求,在为人们提供服务时,必须适当、舒适,使人们产生愉悦、美好的心理感受。基于此,在进行室内设计时,要考虑到家具的形状、尺寸、大小以及摆放位置,使家具的设置符合人体的高度、体型以及活动、交际规律,以实现室内设计舒适、安全、方便的目的。
在进行室内设计时,以人体的站立、坐下以及躺下的尺度为基准来确定人与家具以及家具与家具之间的关系,并以此确定家具的形状及尺寸,这样才能确保家具设置符合人的基本要求。如在设置不配有凳子的工作台或者是衣柜等立式家具时,可以家具的立位高度及宽度进行定位,不需要考虑人体的尺寸,只需考虑人体活动的范围。如电视柜的高度为65厘米左右,宽度为45-60厘米之间;橱柜高度为2米左右,宽度为50厘米左右。而设置桌椅等坐位的家具时,不仅要考虑家具的坐位基准点,还需要考虑人体的构造,如要以人体的坐骨结节点位基准进行定位,沙发或者凳子以37厘米左右为宜,靠背角度则以105°为宜;床或者是躺椅的高度以20厘米为宜,靠背角度以115°为宜,这样的家具设置才能符合人体的结构要求,提供舒适、健康的服务。[5]
此外,人体工程学要求,在进行室内设计时必须要考虑到人在使用家具以及相应的设备时,在家具及设备周围保留人体活动所需要的空间,不能随意的堆放,不仅缺乏美感,还严重影响人们的生活。
3.3 人体工程学为室内设计提供符合人体要求的温度、光照以及声音环境参数
室内的温度过低容易引起人体颤抖、麻木、疼痛等。与之相反,室内温度过高会造成人体能量的过度消耗,使人的注意力容易不集中,降低动作的正确率,减弱人的协调能力。由此可见,室内温度影响着人们的生活质量以及工作效率。有鉴于此,在进行室内设计时,要充分考虑温度因素,使室内保持舒适的温度。舒适温度的确定主要有两种测量方法,一种是以人体现阶段的感受为基础来确定舒适温度,另一种则是以人体的生理温度为基础确定舒适温度,如人体温度为35℃左右。两种测量方法虽然侧重点各有不同,但是都是以人的感受为基准的,人体工程学从人的生理、心理感受出发,为室内设计提供温度参数。
人体对于光照有不同的要求,包括自然光的要求以及人造光的要求。因而在进行室内设计时,要充分考虑光照因素。人体工程学从人的需求出发,能为室内设计提供照明参数,如舒适的照度范围、相邻空间的适宜照度以及不同工作面的临界照度等。
众所周知,噪音会损伤人的听力、造成人体心血管系统的紊乱,使人产生烦躁心理。目前解决噪音问题的主要方法有,一是选用具有隔音或吸音功能的建筑材料;二是,通过室内设计防止噪音。室内设计可以通过对室内房间的布局来实现噪音的隔离,如休息房间及需要进行脑力劳动的房间应远离交通要道,用其他房间(如厨房、厕所)等将噪音隔开。
4 结束语
综上所述,人们对环境质量以及身心健康的关注促进了人体工程学的发展,人体工程学的原理被广泛应用于建筑物室内设计中,人体工程学对室内设计发挥着有效的指导作用。在进行室内设计时,以人体工程学中的人体测量数据为依据,确定适宜的室内空间范围,确定家具尺寸以及摆放位置的选择,并提供室内气候、温度、光照以及声音环境参数,这样的室内设计才是以人为本的人性化设计,实现室内设计使人们生活、工作更加舒适、安全、方便、高效的目的。
参考文献:
[1]张斌.浅谈人体工程学在室内设计中的作用[J].湖北成人教育学院学报,2010,(04).
[2]朱学颖.设计中不可忽视的人体工程学与环境心理学[J].中国商界(下半月),2009, (04).
[3]肖晨凯,朱晓娟.浅谈人体工程学在室内设计中的应用[J].改革与开放,2011,(02).
【关键词】人体工程学;环境艺术设计;应用;科学
一、人体工程学的概念
人体工程学是一门关于技术和人的协调关系的科学,也是一门多学科的交叉学科。它首先是一种理念,把使用产品的人作为产品设计的出发点,要求产品的外形、色彩、性能等,都要围绕人的生理、心理特点来设计;然后是整理形成的设计技术,包括设计准则、标准、计算机辅助设计软件等;这些设计技术再和特定领域的其他设计技术及制造技术相结合,就形成符合人体工学的产品,这些产品让使用者更健康、高效、愉快地工作和生活。人体工程学研究的核心问题是不同的作业中人、机器及环境三者间的协调,研究方法和评价手段涉及心理学、生理学、医学、人体测量学、美学和工程技术的多个领域,研究的目的则是通过各学科知识的应用,来指导工作器具、工作方式和工作环境的设计和改造,使得作业在效率、安全、健康、舒适等几个方面的特性得以提高。
二、人体工程学的起源
人体工程学起源于欧美,原先是在工业社会中,开始大量生产和使用机械设施的情况下,探求人与机械之间的协调关系,作为独立学科有40多年的历史。第二次世界大战中的军事科学技术,开始运用人体工程学的原理和方法,在坦克、飞机的内舱设计中,如何使人在舱内有效地操作和战斗,并尽可能使人长时间地在小空间内减少疲劳,即处理好:人――机――环境的协调关系,并伴随着人类技术水平和文明程度的提高而不断发展完善。
三、人体工程学研究的内容
早期的人体工程学主要研究人和工程机械的关系,即人机关系。其内容有人体结构尺寸和功能尺寸,操作装置,控制盘的视觉显示,这就涉及到了心理学,人体解剖学和人体测量学等,继而研究人和环境的相互作用,即人-环境关系,这有涉及到了心理学,环境心理学等。
四、人体工程学在环境艺术设计中的体现
由于人体工程学是一门新兴的学科,人体工程学在室内环境设计中应用的深度和广度,有待于进一步认真开发,目前已有开展的应用方面如下:(1)确定人和人际在室内活动所需空间的主要依据;(2)确定家具、设施的形体、尺度及其使用范围的主要依据;(3)提供适应人体的室内物理环境的最佳参数;(4)对视觉要素的计测为室内视觉环境设计提供科学依据。人在室内环境中,其心理与行为尽管有个体之间的差异,但从总体上分析仍然具有共性,仍然具有以相同或类似的方式作出反应的特点,这也正是我们进行设计的基础。
五、环境心理学在室内设计中的应用
(1)室内环境设计应符合人们的行为模式和心理特征。(2)认知环境和心理行为模式对组织室内空间的提示。从环境中接受初始的刺激的是感觉器官,评价环境或作出相应行为反应的判断是大脑,因此,“可以说对环境的认知是由感觉器官和大脑一起进行工作的”。认知环境结合上述心理行为模式的种种表现,设计者能够比通常单纯从使用功能、人体尺度等起始的设计依据,有了组织空间、确定其尺度范围和形状、选择其光照和色调等更为深刻的提示。(3)室内环境设计应考虑使用者的个性与环境的相互关系。环境心理学从总体上既肯定人们对外界环境的认知有相同或类似的反应,同时也十分重视作为使用者的人的个性对环境设计提出的要求,充分理解使用者的行为、个性,在塑造环境时予以充分尊重,但也可以适当地动用环境对人的行为的“引导”,对个性的影响,甚至一定程度意义上的“制约”,在设计中辩证地掌握合理的分寸。
六、人体工程学与环境艺术设计的关系及作用
人与环境之间的关系如同鱼与水的关系一样,彼此相互依存,人是环境的主题,在理想的环境中,不仅能提高工作效率,也能给人的身心健康带来积极的影响。从环境艺术的角度来说,人体工程学的主要功能和作用在于通过对人的生理及心理的正确认识,是一切环境更适合人类的生活需要,进而使人与环境达到统一。人体工程学在环境设计中的作用主要体现在它为确定空间场所范围提供依据,为设计家具、设施提供依据、为确定感觉器官的适应能力提供依据。因为影响场所空间大小、形状的因素很多,但最主要的因素就是人的活动范围及设施的数量和尺寸。
关键词:人体工程学;室内设计;室内环境
现代社会对于“装修”一词大家并不陌生,一般而言就是进行室内设计与改造。主要指根据个人的审美要求,通过室内环境的装饰与调整,使之形成舒适、卫生、自然、安全的空间环境,并且在精神层面赋予鲜明的含义。随着时代的进步,人们生活水平进一步提高,室内设计面临的要求(美观、健康、环保、舒适等)越来越高,而且室内设计已经扩展延伸至生活的方方面面:住宅、店面、办公、旅馆、医院、学校、图书馆等等,与人们息息相关。科技水平的提高,天马行空,人们的想象无止境,因而人体工程学也应运而生,并且在室内设计中所占比重越来越大,因此也越来越引起人们的关注,本文将为你揭开人体工程学的面纱,具体的看以下的介绍:
1 人体工程学的含义与发展
(1)〖JP3〗人体工程学的含义。人体工程学(Human Engineering),〖JP2〗又叫人机工学、人类工程学,或工效学(Ergonomics),主要是对环境中的人体活动、心理、生理等进行综合性研究的学科。工效学(Ergonomis)源于希腊文“Ergo”,是指 “工作、劳动”,“nomos”就是“规律、效果”,更可以理解为人体工程学是探究人们的工作效果、劳动效能的规律性。[1]
(2)人体工程学的发展。人体工程学是起源于欧美,在1857年被波兰的雅斯特莱鲍夫斯基教授提出的。此概念象征着健康、安全、舒适和高效能。起初在工业社会,为了探求人与机械设备之间协调关系而大量使用与机械设备上,直到二战在军事上广泛使用,在坦克、飞机的内舱中,运用人体工程学原理和方法为了有效战斗和操作,并且使人在小空间(人―机―环境)中尽量达到协调,减少人员疲劳,大大提高命中率和安全等问题。[2]二战结束后,人体工程学迅速渗透各个领域(空间技术、建筑设计、工业生产、日常生活用品)等,成为当代室内设计的参考基础之一。随着时代的发展,1960年创建了国际人体工程学协会,使得人体工程学在空间技术、建筑、工业生产及室内设计等领域得到有效运用。一直到当今社会,信息化自动化的发展,室内设计开始更加重视“以人为本”的融合理念,其中日本千叶大学小原教授认为:人体工程学可以探知人体的工作能力及其极限,进而使得人们所从事的工作能够适用生理学、心理学以及人体解剖学的各种特征。人体工程学是以人为主体,将先进的人体计测、心理学计测、生理学测量等手段,使得“人――物――环境”紧密地联系在一个系统中,让人们能更主动地、高效能地支配生活环境。并且人体工程学所涉及的学科也较为广泛,如人类学、心理学、生理学、工程技术学、医学等诸多学科,各学科互相作用能更好适应时展的需求,提高生活质量。
2 人体工程学在室内设计中的重要应用
跟随时代的步伐,人体工程学在美国、英国、德国及日本等已经成为一个比较成熟的学科,强调人与自然的协调统一的呼声越来越高,人们在面对紧张快节奏的压力下,想通过室内设计得到调节情绪、安全舒适的空间环境,人体工程学在室内设计中的应用也尤为突出。
(1)确定了人以及人际关系所需要的室内活动的空间大小的依据。运用人体工程学知识,将人的尺度、姿势、动作、心理、人际交往等进行相关计测,来确定空间范围的大小。[3]具体分析:一般而言人所需空间既包括单人自身和心理空间,也包括两人以上平行、相对等互为交叉空间;姿势和动作不同,设计座椅或者工作台高度也就不同;此外某些国外工作环境设计注重人际交往和团队合作在空间隔断设施布置上都有多层含义的探索。
(2)确定了设施的形体、尺度、家具合理设计提供依据。家具是人们最为常见的设施,主要是实用,人体工程学确定了家具设计基准点(座位、立位),涉及生活各方面座椅、柜台、书桌及床等,运用人体工程学为指导,使得人体尺寸与家具设计相协调,才能达到安全舒适,舒缓疲劳等功效。
(3)提供适应人体的室内物理环境最佳参数。室内热环境(高温低温)、光照环境(照明参数)、重力环境(压力和温度)、辐射环境、声音环境(听得更清楚和噪音)等是室内物理环境的主要参数,通过这几方面的参数测量,来确定人体最为舒适的设计环境。
(4)视觉四要素的计测为室内色彩环境设计提供依据。视力、视野、色觉、光觉就是人的视觉四要素,色彩的冲击力和最佳的视野区域都可以通过人体工程学的计测数据来进行最佳的室内设计,满足人们的生活需求。
3 结语
在千变万化的现代社会,每天人们都在步履匆匆地为生活和工作而奔忙,身心疲惫不堪。更加之互联网的普及,人们的生活、生存的空间更加缩小,人们面对残酷的现实更渴求一种有人情味、安抚情绪的舒适环境。室内设计的作用不仅仅在于普通的坐、卧、睡,日常生活中的娱乐、购物、消遣、吃喝等可以通过环境一览无余。人体工程学为重心的室内设计对人们生活有潜移默化的作用,能呈现出人们的喜、怒、哀、乐等截然不同的内心感受。房屋不单单是住所,更是居住者情感思想的强烈体现。通过人体工程学进行的室内设计,可以使沉重的心灵得以减压和释放,在轻松舒适的环境下心绪得以平静,更突出了人、机、环境相互协调统一,更能积极地为人们创造更安全合理的室内空间。
参考文献:
[1] 王丽萍.浅谈人体工程学在室内空间设计中的应用[J].美术教育研究,2013(11):9191.
摘要:
在生产线上实行员工岗位轮转是预防职业疾病和损伤的一种重要手段.针对生产线员工岗位轮转问题,采用在欧洲自动化工业中广泛使用的人体工程学风险测定方法EWAS,模糊测定相应岗位的人体工程学风险值;其次,以生产线所有员工最大风险值中的最小值为目标函数,构建了岗位轮转调度模型和求解方法,并运用启发式算法对模型求解进行优化,最终得出岗位轮转的最佳方案.
关键词:
岗位轮转;汽车生产线;人体工程学风险;EWAS
岗位轮转是在保证组织工作正常开展的情况下,让员工从一个岗位流动到另外一个岗位上工作,以改进人力资源管理的活动[1-2].岗位轮转是一个组织策略,有益于组织内管理工作的展开和生产线员工的工作,在生产制造系统中得到越来越广泛地应用.岗位轮转可避免因在某岗位上工作时间过长而出现个人资源垄断对企业发展造成的潜在风险;同时,工业装配线高灵活性的特点也要求每个操作者能够胜任任何一个岗位,即员工不能只满足于掌握单项专长,必须是多面手、全能复合人才[3];通过岗位轮转可以提高员工的全面操作能力、激活组织活力、促进人力资源的优化配置、提升企业业绩.
岗位轮转对生产线操作工也尤为重要.长期工作在同一岗位,易使得操作工面临较大的人体工程学风险.人体工程学风险是指不合理的工作环境、工作方式、工具和物料,使得作业者身体和心理出现不好结果(如压力、烦躁、职业疾病和损伤等)的可能性.在生产线上,较高的人体工程学风险不仅会伤害操作工的身体、降低其生活质量,还会使得其工作效率低下,不合格产品数量增加,进而损害企业和消费者的利益,因此,应尽可能降低操作工所面临的人体工程学风险.人体工程学风险不仅取决于工作岗位的设计和条件,还受到工作内容、特定任务的重复性和工作姿态的影响[1,4],而岗位轮转可以通过不断调整工作内容和工作姿态,减少工作重复次数,有效地减小或避免可能产生的风险,使得一线员工处于健康的工作状态[5].
国外企业实践岗位轮转起步较早,国内也逐渐意识到岗位轮转带来的改变.马勇[6]从岗位轮换目的出发,结合管理实践,将岗位轮换分为培训新人、晋升提拔、认识风险防范和工作丰富化4种类型.杨从杰[7]针对岗位轮换中出现的问题,引入工作岗位分享制,并分析了具体的实施模式与步骤.Viteles[8]通过工作设计研究提出了岗位轮换制度,即在不改变工作流程和工作岗位职责的情况下,让员工在性质类似、要求相近的不同岗位间相互轮换,以减少员工长期从事单一工作的厌烦与不满,抑制由工作专业化衍生出来的工作劳损率、疲倦感的上升和工作动力及生产效率的下降.Costa和Miralles[9]具体将岗位轮转计划集成于装配线平衡问题.Keir[10]通过大量的实验证明岗位轮转可以减少员工面临的风险,且提出目前观察到的岗位轮转效果取决于工作所涉及的肌肉群.
现有研究以岗位轮转方法为主,但却未从降低人机工程学风险的角度研究岗位轮转方法,且缺乏对生产线操作工岗位轮转的深入研究.运用欧洲议会工作表方法测定岗位的人体工程学风险,在体现生产线岗位轮转安排计划的基础上,构建了基于人体工程学风险的岗位轮转调度模型,并运用启发式算法求解模型以得出最佳方案.
1人体工程学风险测定方法
在欧洲,测量工作场所的人体工程学风险对于制造企业来说不仅是一种常规工作,也是法律要求.EAWS[9,11]是一种非常广泛的评估人体工程学风险的方法,该方法假设在一次转变中,同样的工人从事另一个工种的条件下该岗位的工效学分值.作为欧洲广泛应用的方法,EWAS是大众和菲亚特等汽车制造商以人体工程学为工具产生的一种有效的风险测定方法,且与其他制造业评估方法有相似的结构.EAWS的测量结果有两个总风险值:整个身体的风险点和上肢的风险点.风险点越高,操作者患上肌肉群疾病的风险也越高.EWAS方法建议使用3个风险区域来解释:0~25为低风险绿色区域;26~50为可行黄色区域;高于50则为高风险红色区域.整个身体风险点(RP)由4个部分组成:RP=PI+MMHI+FI+EP.式中,PI表示姿势指数、特殊姿势的风险点的总和;MMHI表示人工物料搬运指数;FI表示动作力量指数;EP表示其他未考虑的风险点.
2基于人体工程学风险的岗位轮转模型
岗位轮转方案为:生产线上的员工依据岗位设置以合适的时间间隔依次轮转,测定出员工在每个岗位可能面临的人体工程学风险值,综合某个工人在3次轮转中面临的人体工程学风险值所在的范围判定此时的岗位安排是否合适.同时,适宜的岗位轮转方案应使3次轮转中每个工人的综合人体工程学风险值在可行域内且较为平均.要得到可行且均衡的方案,需要不断调整每个工人所在的岗位,使得每个工人最终都处于身心最佳状态,减少员工患上各种生理、心理疾病的可能.如何在短时间内找出综合风险值最小、且使所有员工人体工程学风险均衡的轮转方案是所要讨论的问题.
3基于案例的模型求解及分析
对芜湖奇瑞汽车生产线安装尾灯和天窗的工作岗位轮转情况进行跟踪分析,采用EWAS方法对员工的实际人体工程学风险进行测定,构建岗位轮转调度模型并求解,以获得最佳岗位轮转方案.
3.1现有岗位安排方式及人体工程学风险测定
汽车生产线上有3个岗位可安排轮岗,分别为a1、a2、a3,将8小时的工作时间分为3个区间,在每个时间区间内,每个工人被安排从事一项工作,具体如表1所示.同时根据EWAS方法,测得各岗位的人体工程学风险及每次岗位轮转的总风险值如表2~表5所示.
3.2启发式解决方案程序
基于人体工程学的岗位轮转调度问题复杂,而启发式算法则可以很好地求解此类复杂的调度问题[12].启发式算法解决问题分为两个部分,即改进算法和平滑启发式,改进算法是平滑启发式的前提,其得到的方案作为平滑启发式的初始解.在改进算法的基础上对轮转方案进一步优化,直至达到最优解.
(1)改进算法.假设每个工人依据岗位依次轮转,即可得到最简单的轮转方案:如果某个工人在上个阶段内从事最高人体工程学风险的岗位,那么在接下来的期间内该工人就会被分配到人体工程学风险值最低的岗位.同时,如果在8h内岗位a1测得的人体工程学风险值为16,那么在第一个轮转阶段的2h内岗位a1的EP值为2.具体形式如下:在阶段1中,可以任意分配工人的工作,例如工人i分配到岗位i,即πt(i)=i,根据以上原则再次分配工人到各岗位.本例中,在阶段1时,将工人1分配到岗位1,工人2分配到岗位2,工人3分配到岗位3;在阶段2时,将最简单的工作1分配给目前人体工程学风险值最高的工人3,工作3分配给工人2,工作2则分配给工人1.目前的EP值分别为20、36、28,因此,在阶段3时,工作1分配给工人2,工作2分配给工人1,工作3则分配给工人3.工人的分配安排可表示为{a1,a2,a3},{a2,a3,a1},{a3,a1,a3},相应的人体工程学风险总值为40、40和53,初始优化方案如表7所示.由表7可知,工人在岗所面临的最大风险值为E=53,因此,轮转方案S1明显优于初始安排.
(2)平滑启发式.在改进算法中得到了初始可行解,将初始可行解作为当前解,循环运用改进算法中平衡风险的方法以寻求改进.如果目标函数值变小,则当前的轮转方案记为新的当前解.重复以上步骤直至满足停止的条件,最后的当前方案则为最佳方案,停止的条件为:①如果在改进操作时轮转方案没有任何的改变,则终止程序,因为接下来的优化改进也不会改变结果;②为了避免发生重复循环,设定在目标函数值没有改变时最多进行连续10次的改进步骤.在本例中,初始解即为在第一个程序中得到的方案S1.在不考虑阶段1的情况下,工人所面临的人体工程学风险总值分别为35、24、33.采用第一步中平衡的方法在阶段1分配工作,将工作1分配给工人1,工作2分配给工人3,工作3分配给工人2,这样即可得到新的轮转方案S2,具体工作分配为{a1,a2,a2},{a3,a3,a1},{a2,a1,a3},其优化方案如表8所示.由表8可知,此时的最大风险值E=49,因此,轮转方案S2可行且优于方案S1
4结论
以安装汽车尾灯和天窗的生产线为对象,详细分析了汽车生产线员工在各自岗位上不断重复操作时可能面临的人体工程学风险.利用EWAS对人体工程风险进行测定;依据所有员工人体工程学风险最大值最小的目标,构建了员工岗位轮转调度模型,并采用平滑启发式算法优化了员工的人体工程学风险最大值,以解决不同阶段员工与岗位的组合优化问题.研究表明,岗位轮转可以作为一种有效的工具来降低操作工的人体工程学风险,减缓员工的职业损失;岗位轮转问题的求解难度随员工数量的增多而大幅增加,启发式算法能够有效解决该问题.
参考文献:
[1]肖鸣政,萧志颖.当前管理人员岗位轮换的问题与改进[J].中国行政管理,2009(4):16-20.
[2]魏争光.以岗位轮换的方式培养具有多种能力的图书馆员[J].农业图书情报学刊,2005(1):89-91.
[3]张军,王佳佳.如何成功实施岗位轮换[J].中国人力资源开发,2010(8):42-44.
[5]高小洁.岗位轮转的“人挪活效应”[J].企业改革与管理,2005(9):56-57.
[6]马勇.岗位轮换的分类与成功实施———基于目的的岗位轮换管理技术[J].中国人力资源开发,2006(4):85-88.
社会的发展、技术的进步、产品的更新、生活节奏的加快……等等一系列的社会与物质的因素,使人们在享受物质生活的同时,更加注重产品在“方便”、“舒适”、“可靠”、“价值”、“安全”和“效率”等方面的评价,也就是在产品设计中常提到的人性化设计问题。
所谓人性化产品,就是包含人机工程的产品,只要是“人”所使用的产品,都应在人机工程上加以考虑,产品的造型与人机工程无疑是结合在一起的。我们可以将它们描述为:以心理为圆心,生理为半径,用以建立人与物(产品)之间和谐关系的方式,最大限度地挖掘人的潜能,综合平衡地使用人的肌能,保护人体健康,从而提高生产率。仅从工业设计这一范畴来看,大至宇航系统、城市规划、建筑设施、自动化工厂、机械设备、交通工具,小至家具、服装、文具以及盆、杯、碗筷之类各种生产与生活所创造的“物”,在设计和制造时都必须把“人的因素”作为一个重要的条件来考虑。若将产品类别区分为专业用品和一般用品的话,专业用品在人机工程上则会有更多的考虑,它比较偏重于生理学的层面;而一般性产品则必须兼顾心理层面的问题,需要更多的符合美学及潮流的设计,也就是应以产品人性化的需求为主。
那么,对于一件产品是如何来评价它在人机工程学方面是否符合规范呢?以德国Sturlgart设计中心为例,在评选每年优良产品时,人机工程上所设定的标准为:
1)产品与人体的尺寸、形状及用力是否配合;
2)产品是否顺手和好使用;
3)是否防止了使用人操作时意外伤害和错用时产生的危险;
4)各操作单元是否实用;各元件在安置上能否使其意义毫无疑问的被辨认;
5)产品是否便于清洗、保养及修理。
一般情况下,在设计教育中常以上述第三项较为强调,而消费者在购买商品时,则是以产品的视觉效果、商场气氛及价值来决定购买行为的成立与否,但作为一名好的设计师应为产品长期使用的效果及舒适性负责,尤其是避免伤害与危险的防止更是不可忽视的考虑因素。如,在操作计算机的上机姿势中,在现行的上机条件下,操作员常常是手臂向前悬空着来操作键盘和鼠标的。手臂的悬空形成了肩颈部的静态疲劳,使得操作员不得不将背部靠在椅子靠背上作业(后靠姿势会加大悬空的手臂的前伸程度,从而增大肩部所需要的平衡力矩,加快肩颈部的疲劳),而当操作员脱离靠背又手臂悬空时,体重就全部需要由脊柱来承担,其结果或者是腰背的疲劳酸痛,或者是腰肌放弃维持直坐姿势而塌腰驼背,或者是把手腕抵在桌沿而引发腕管综合症。那么,要解决诸如此类的问题,设计师就必须充分考虑人机工程学的因素。
所谓人机工程学,亦即是应用人体测量学、人体力学、劳动生理学、劳动心理学等学科的研究方法,对人体结构特征和机能特征进行研究,提供人体各部分的尺寸、重量、体表面积、比重、重心以及人体各部分在活动时的相互关系和可及范围等人体结构特征参数;还提供人体各部分的出力范围、活动范围、动作速度、动作频率、重心变化以及动作时的习惯等人体机能特征参数,分析人的视觉、听觉、触觉以及肤觉等感觉器官的机能特性;分析人在各种劳动时的生理变化、能量消耗、疲劳机理以及人对各种劳动负荷的适应能力;探讨人在工作中影响心理状态的因素以及心理因素对工作效率的影响等。
人机工程学因素往往是企业提高其竞争力的手法之一。若说“人性化产品”是与“人”合为一体的产品设计,“人机工程因素”则是设计工业产品时的人机界面所必须考虑的因素。在我国即将加入WTO所面临的冲击下,中国的制造业无不是严阵以待,企图在竞争中保持优势。管理大师麦克·波特(MICHAELPORTER)曾说过,企业具备竞争优势的两个方式,一是扩大生产规模,走向规模经济,才能占有成本上的优势;另一个便是创造企业或产品的附加值,制造消费者趋之若鹜的心理。在现今产品和质量逐步提高,且消费者对商品品质要求越来越高的情况下,各产品制造商们无不力求突破,希望能出奇制胜,打动消费者的心。拿当今世界上提出的“健康”人机工程学的新要求为例,即是用某些考虑人机因素的辅产品,如:电动腰靠、紫外线阻隔(UV、CUT)等来提高产品人性化的层次,籍此创造其他品牌无法模仿的优势,而赢得消费者青睬的。
究竟什么样的产品需要人机工程呢?在设计上又如何表现,才能成为符合人机工程学的产品呢?
工业设计师指出,就电脑的相关部件和设备而言,如键盘、鼠标等输入装置,因使用者可能长时间利用其从事工作或娱乐,接触的时间较长,在使用时也可能十分投入。因此,人机工程学就成了设计上最主要的条件之一。
人机工程学的显著特点是,在认真研究人、机、环境三个要素本身特性的基础上,不单纯着眼于个别要素的优良与否,而是将使用“物”的人和所设计的“物”以及人与“物”所共处的环境作为一个系统来研究。在人机工程学中将这个系统称为“人——机——环境”系统。这个系统中,人、机、环境三个要素之间相互作用、相互依存的关系决定着系统总体的性能。本学科的人机系统设计理论,就是科学地利用三个要素间的有机联系来寻求系统的最佳参数。
系统设计的一般方法,通常是在明确系统总体要求的前提下,着重分析和研究人、机、环境三个要素对系统总体性能的影响,如系统中人和机的职能如何分工;如何配合;环境如何适应人;机对环境又有何影响等问题,经过不断修正和完善三要素的结构方式,最终确保系统最优组合方案的实现。这是人机工程学为工业设计开拓了新的思路,并提供了独特的设计方法和有关理论依据。
作为一个全息系统的局部,一个产品中包括了我们这个商品社会中的全部信息。一件设计优良的产品,必然是人、环境、经济、技术、文化等因素巧妙融合、平衡的产物。开始一项产品设计的动机可能来自各个方面,有的是为了改进功能,有的是为了降低成本,有的是为了改变外观,强化“柜台效应”,以吸引购买者,更多的情况是上述几方面兼而有之。于是,对设计师的要求就可能来自功能、技术、成本、使用者的爱好等各种角度。不同的产品设计的重点也大不相同,暖水瓶的设计显然就要比香水瓶的设计考虑更多的人机问题;再以肇及设计所设计的电脑游戏遥感器为例,乍见此产品时,看似不符合人机工程学,但实际使用时却很合手,操控性良好,而且遥感器外型颇酷,用此摇杆玩空战游戏,有操控战斗机的味道。相比于市场上其他同类型的产品,即使售价比一般产品高出许多,也一样大受欢迎,足见其魅力所在。但也有这样一种产品,在市场上受到欢迎,是因其外型讨好且成本不高所致,但缺点是产品轻,因此,在使用时本来一只手操作很方便,却不得不双手并用才行,这就是该产品在人机工学上的不足之处;但在成本、售价及市场因素的考虑下,厂商还是推出此种产品。而对于专业用品就不同了,例如美发师每天所使用的吹风机,除草机工人所使用的修剪机就绝对不能轻视人机工程学在生理层面上的考虑。
然而,一个好的产品设计是可以涵盖形态和人机因素的,产品的外形一样也可以有机会作人机工程的发挥。以TEAGE为微软所设计的易用鼠标球而言,该鼠标是特别为儿童体验电脑而设计的,在方案决定之前对儿童的抓握方式进行了研究,黄白两色相间的鼠标球使儿童们在学习电脑时,增加了趣味性和功能性。该产品已经超脱了产品造型上的束缚,除让其更好用之外,也同时赋予了产品新的意义与想象空间。
除了一般的大众消费品之外,专为特殊族群所设计的产品在人机工程学上也有更多的考虑。如,残疾人用的瓷器套具,此套设计是专为残疾人做的餐具,又不让人直接看出它们是专为残疾人做的。故而,设计师在充分考虑了人机工程学的基础上,特别处理手把的凹凸,使患者拿在手里有一种心态上的平衡感,既能看到,又能摸到,但又不那么显眼。
再以医疗设备来说,病床、医疗椅等产品,在设汁上不只是考虑操作要符合人机工程学,在材料上也应力求人性化,增加产品的亲和力,以提高产品的“EQ”。
由于学科来源的多样性和应用的广泛性,人机工程学中采用的各种研究方法种类很多,有些是从人体测量学、工程心理学等学科中沿用下来的,有些是从其他有关学科借鉴过来的,更多的是从应用的目标出发创造出来的。其中常用于一般产品设计领域的方法有如下几类:
1,测量方法
测量方法是人机工程学中研究人形体特征的主要方法,它包括尺度测量、动态测量、力量测量、体积测量、肌肉疲劳测量和其他生理变化的测量等几个方面。
2.模型工作方法
这是设计师必不可少的工作方法。设计师可通过模型构思方案,规划尺度,检查效果,发现问题,有效地提高设计成功率。
3.调查方法
人机工程学中许多感觉和心理指标很难用测量的办法获得。有些即使有可能,但从设计师工作范围来看也无此必要,因此,设计师常以调查的方法获得这方面的信息。如每年持续对1000人的生活形态进行宏观研究,收集分析人格特征、消费心理、使用性格、扩散角色、媒体接触、日常用品使用、设计偏好、活动时间分配、家庭空间运用以及人口计测等,并建立起相应的资料库。调查的结果尽管较难量化,但却能给人以直观的感受,有时反而更有效。
4.数据的处理方法
当设计人员测量或调查的是一个群体时,其结果就会有一定的离散度,必须运用数学方法进行分析处理,才能转化成具有应用价值的数据库,对设计产生指导意义。
当今的工业设计师面临着多种活动和课题,例如:电视资讯、互动电视、通用遥控器等,与企业合作的范围也很广,在实施产品的人性化设计过程中,通常采用如下的设计程序:
1)建立并运用资料库(这在前面已有论述);
2)决定研究主题;
3)观察阶段:
*目标轮廓*访识/观察*使用模式/议题
4)发展阶段:
*关键议题*产品概念*测试与评估
在整个研究过程中,人机工程师和工业设计师都必须全程参与,但在各个阶段为主为辅的角色会有不同。例如:产品概念由工业设计师主导,测试则由人机工程师主导,每个步骤以剧本的形式来串连沟通。每件产品都有各自的在人机工程学上的特色,特别是消费性产品。以汽车内部设计来说,就有三个表达人机工程需求的方式:一是操控界面,如方向盘的设计;二是座椅及内装设计,如一些大客车座椅,或者老板椅的靠背上部,都有一道鼓起来的凸包。对于大多数的中国人来说,这个凸包常常是顶在后脑勺,使得身体后靠在椅背时,不得不稍稍低头。从设计上来说,这道凸包本来是用来垫靠颈部凹处,使人的头颈更舒服的。问题的出现是由于这些座椅的设计和生产直接从国外引进,而生产者又没有重新考虑中西方人在身材方面的不同,尺寸上完全照搬。结果西方人垫颈的凸包就顶住了我们的后脑勺;三是情报沟通系统,如导航系统设计及安全警报功能。
在新的世纪里,我们以新的方式来感知世界,人们越来越多的在追求一种新的生存环境和生存空间,毫无疑义,未来的人性化设计具有更加全面立体的内涵,它将超越我们过去所局限的人与物的关系的认识,向时间、空间、生理感官和心理方向发展,同时,通过现代高科技技术如虚拟现实、互联网络等多种数字化的形式而扩延。IDEO设计公司的数字化收音机正是基于这一观念上的最新数字广播概念设计,通过对使用者状况的设计构想,研究收音机的可能外观和操作方式。无论在造型上还是在界面设计上,都使人机交互关系达到物我两忘的状态。该收音机上的显示屏幕以图形界面来说明音频节目的内容。设计范围包括个人化家用收音机、个人可携式收音机和演艺工作者的专业收音机。
中国未来的产品设计必须以创意与革新为首要条件,唯有真正好用且务实的商品才能在市场上脱颖而出,让消费者感到贴心且实惠的产品方是企业制胜的绝佳利器。符合人机工程,人性化的设计是最实在,同时也是最前沿的潮流与趋势,是一种人文精神的体现,是人与产品完美和谐的结合。使人性化的设计真正体现出对人的尊重和关心。
[参考文献]
[1]<人机工程学>.丁玉兰.主编.北京理工大学出版社.
在人机工程设计实践中,大部分学生采用了提出问题分析问题解决问题的方法,应用部分以人机知识来展开设计,但受现有教材限制,学生设计过程中缺乏创新,即使有创新,受三维建模技术和设计方法的限制及落后,三维建模结果与设计构思相差较大,达不到预期效果。
主要改革内容
随着计算机辅助设计技术的发展,计算机辅助人机工程设计已逐步完善,具有以下优势:在设计前期对设计方案和设计布局进行仿真评价,减少设计返工和实物原型的制作,缩短从设计到制造的周期和成本。计算机辅助人机工程设计的发展为工业设计人机工程的教学提出了新的发展方向,将计算机辅助人机工程内容引入到人机工程学课堂教学中,充分利用CreoParametricManikin提供的人机工程和人体因素分析两个模块功能,针对全球人群模拟和显示人机之间的交互,在一定程度上改进了传统的设计表现方法,也避免了专业实验设备不足、无法进行准确的设计验证等问题。
1教学内容及教学方法改革
根据工业设计专业的研究内容和专业研究方向,在教材选择上主要在保持课程内容完整的前提下,对现使用的教材内容进行了筛选,工业设计专业人机工程学主要教学内容包括:人体尺寸、桌椅设计、显示装置、操控装置、环境设计、工作空间与工作岗位设计等内容。对与工业设计不是密切相关的热环境和声环境等内容进行了删减,同时增加计算机辅助人机工程内容的讲解与操作训练。在设计表现方法上,增加自顶向下设计方法的讲解,在CreoParametric中应用该方法进行人机工程的设计与分析。
在理论讲授过程中,摆脱传统讲授方式,结合计算机辅助人机工程操作进行直观演示,以加深理解和应用。如在人体尺寸讲解过程中,可充分结合CreoParametric中人体库的知识,其Manikin全球人群库包括中国、意大利、日本、荷兰、美国男女各P5、P50、P95三个不同的百分位1850年龄组的数据,便于人体尺寸分布数据状态和各部分尺寸的直观展示;在显示装置章节中结合manikin的视觉分析功能,查看最佳视角等效果;在控制装置中结合manikin的可触及分析功能,展示手足的功能尺寸。将传统比较枯燥的理论知识通过计算机辅助人机分析的方式直观的展示出来,从应用的角度进行理论知识的讲解。
2计算机辅助人机工程的具体应用
计算机辅助人机工程在人机工程学教学中的具体应用主要有以下3个方面:CreoParametric(以前称为Pro/engineer)的基础操作学习、ManikinExtension专门培训、自顶向下设计(Top-DownDesign)方法的学习与应用。CreoParametric是PTC全新推出的设计软件系列,是3D产品设计领域的标准。目前国内大部分高校在计算机辅助设计教学中采用了该软件,大连大学机械工程学院工业设计专业一直将该软件作为计算机辅助工业设计课程教学的必选之一。新版培养方案中该课程与人机工程学课程在同一学期开设,为人机工程学课程改革提供了便利条件,在计算机辅助工业设计课程中能掌握CreoParametric的基本草绘、实体及曲面建模、装配和工程图等模块的基本操作,该课程的设置为计算机辅助人机设计的应用提供了软件操作基础。
ManikinExtension是完善数字化人体建模解决方案,为设计者在以人为中心的设计中打开一扇窗,是CreoParametric的新模块,因操作复杂,在人机工程学教学中必须增加该部分内容的讲授。主要讲授Manikin全球人群库的选择与替换,标准的3D人体模型的插入、定制和操控精确,宏观和微观及自定义人体姿势库的使用,可触及包络调整及分析,视野分析,重力分析,人体模型运动分析以及国际各类主流人机工程标准如姿态(RULA)、推拉(SNOOK)、举放(NIOSH)、能量消耗(GARG)等操作的过程与方法。通过该模块内容的讲解与具体操作,结合CreoPara-metric的基础操作知识,结合人机工程学基本理论知识,为计算机辅助人机工程的设计提供了软件操作基础及人机工程分析仿真操作基础,可完成比较完善的人机产品设计。
传统的人机工程设计方法已经不适合先进的计算机辅助人机工程的设计方法。传统的设计方法主要采用手绘草图、确定基本尺寸、三维建模仿真、物理样机的制作及人机分析的过程,花费了大量时间后发现没有达到用户需求或设计指标,而需要反复修改。采用CreoParametricManikin可改善此问题,在设计的初期将人机工程学作为首要考虑的因素,采用三维数字人体模型进行三维数字化建模仿真,此方法可通过自顶向下设计(Top-DownDesign)方法实现。在CreoParametric的装配模块中利用自顶向下设计方法,根据设计要求导入Manikin三维数字人体模型,进行产品三维模型的创建,在创建过程中充分考虑相关人机工程学要素,并进行相关的分析,可在一定程度上增加实物模型验证的准确性。采用自顶向下设计的方法,可增强人机设计的准确性,弥补实验室人机设备不足的问题。
人机工程教学改革实践案例展示
1生物医学工程专业内容特色概述
生物医学工程是一门新兴的边缘学科,它综合了工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化。其学习内容包括以下几个方面。
1.1医学影像技术
即通过X射线、超声、放射性核素、磁共振、红外线等手段及相应设备进行成像的技术,现还有正在兴起的阻抗成像技术等。
1.2医用电子仪器装备
分为诊断仪器和治疗仪器两大类。诊断仪器主要是用以采集、分析和处理人体生理信号,现在使用较多的是心脑电、肌电图仪和多参数的监护仪等,而通过体液来了解人体内生物化学反应过程的生物化学检验仪器也已逐步完善并走向微量化和自动化。治疗仪器设备则是采用X射线、γ射线、放射性核素、超声、微波和红外线等仪器设备,如X射线深部治疗机、体外碎石机、人工呼吸机等。手术设备如γ刀、激光刀、呼吸麻醉机、监护仪、X射线电视等。现代化医疗技术中还将设备功能更加多样化、复杂化。
1.3生物力学
主要是研究生物组织和器官的力学特性,人体力学特性和其功能的关系。其中包括生物流变学(血液流变学)、软组织和骨骼力学、循环系统动力学和呼吸系统动力学等。
1.4生物材料
即人工器官、组织工程所需要的物质与材料,其大多数是需要植入人体,需要具备耐腐蚀、化学稳定性,需要具有与机体组织的相容性、血液相容性、无毒性。作为材料,根据所需还应满足各种器官对材料的各项要求,包括强度、硬度、韧性、耐磨性、挠度及表面特性等各种物理、机械等性能。需要掌握的知识包括金属、非金属及复合材料、高分子材料的合成工艺条件和表征、成型制备、性能等。
1.5生物效应与生物控制
生物效应是指在医疗诊断和治疗中,光、声、电磁辐射和核辐射等能量在机体内的分布、变化等作用。而生物控制则是机体自身的调节控制现象。采用生物、化学的方法对这些情况加以认识。其他还有介入式诊断、治疗等。生物医学工程最为竞争激烈的领域在医学成像技术上,其中以图像处理、阻抗成像、磁共振成像、三维成像技术以及图像存档和通信系统为主。而对医学信号的处理分析,包括心脑电、五官、语言、心音呼吸等信号和图形的处理与分析,以及神经网络的研究处理也是目前世界各国研究与学习的热点。作为生物医学工程专业的本科学生,将从业于该领域的研究、设备研发及制造、使用、维修养护等。所具备的知识体系是从物理化学基础、工程学到医学,十分广泛,仅四年内进行如此庞大的知识学习,学生将会呈现基础知识欠缺而专业知识也不深入的问题。为此,我们就医科大学、理工科大学、综合性大学各自特点进行了调研与分析,在此基础上,提出了生物医学工程本科学习建立特色课程体系的见解。
2生物医学工程专业人才的培养特色的研讨
我国生物医学工程本科专业分别在医科类大学、综合大学与理工科类大学中均有设置。由于生物医学工程具有典型交叉特性,该专业的毕业生的就业方向有运用医学影像学技术、医学信息学技术等在医院进行疾病诊断及治疗,有运用基础数学、物理、化学知识进行理论创新与实践,更多的是运用工程技术进行医疗器械、设备装备的研发、制造与维护管理等。由于生物医学工程庞大的知识体系,无法由某一个从业人员掌握,需要各方向的协作与合作,由此认为,设置于医科类大学、综合大学与理工科类大学的生物医学工程专业应有各自的特色。
2.1医科类大学生物医学工程专业人才的培养特色
2.1.1人才培养目标
作为医科大学,其专业人才培养具有鲜明的医学特色与优势。医科类大学生物医学工程相关专业的人才,其就业方向更多应以进入医院从事常规放射学、CT、核磁共振、DSA等的操作及计算机操作,运用各种影像、信息等诊断技术进行疾病诊断或治疗,所以其培养的人才首先应学习并具备医学的专业知识,然后才是具备基于医学专业领域需要的现代医疗仪器的研发与使用、管理能力的知识体系的学习,成为拥有工学知识及应用能力的医学应用型、复合型高级人才,毕业后所从事的仍是医药卫生领域工作,在医院设备使用、维护、管理方面起重要作用。因此其课程的设置应该与工科类生物医学工程侧重点不同。如在一般医科大学中都设有生物医学工程专业,以及与此相关的医学影像学专业、医学信息学专业等,其培养目标就应以“培养具有基础医学、临床医学和现代医学生物医学工程(如影像学、信息学等)的基本理论知识及能力,能在医疗卫生单位从事医学诊断、治疗(或信息管理等)和医学成像(或医学信息等)技术等方面工作的医学高级专门人才”为主。相应的培养要求应在于“学习基础医学、临床医学、医学影像(或信息学、医学超声学等)的基本理论知识,受到常规放射学、CT、核磁共振、DSA、核医学影像学、信息学、医学超声等操作技能的基本训练,具有常见病的影像诊断、超声治疗和介入放射学操作基本能力,基本的仪器(装备)维修保养能力”上。
2.1.2课程设置
基于医科大学的特色,其主干课程应注重基础医学、临床医学,同时开设基于医学特色的工学、工程学课程。具体如基础类的基础数学类、物理类、化学类、计算机类,如高等数学、普通物理学、有机化学、生物化学、微机原理及应用等课程,基础和临床医学类课程,如人体解剖学、生理学、诊断学、内科学、外科学、儿科学、妇产科学、药学、中医学、中药学、卫生管理等课程,然后按照各高校侧重设置传统生物医学工程的工学类、工程类课程,如模拟电子、数字电子技术、传感器、数字信号处理、医学图像处理、医用仪器原理、医学影像仪器、检验分析仪器、临床工程学、人体形态学等,部分专业可设置如力学类、机械工程类、有机材料或金属材料类课程。虽然是同一生物医学工程专业,但需要按照本校特色来设置课程,切忌大而全无特色,或各高校均设置同样课程。这是违背了生物医学工程高度交叉学科的学科特色的。
2.2综合性大学工科以及理工科大学生物医学工程专业人才的培养特色
2.2.1人才培养目标
现今综合性大学工科以及理工科大学基本上都设有生物医学工程专业,如北京大学工学院、浙江大学生物医学工程与仪器科学学院、东南大学生物科学与医学工程学院,四川大学高分子科学与工程学院等,各具特色。以东南大学生物科学与医学工程学院为例,其前身是生物科学与医学工程系,创建于1984年。学院的科学研究及学生培养方向就是强调生命科学与电子信息科学学科的交叉与渗透,应用电子信息科学理论与方法解决生物医学领域中的科学问题,发展现代生命科学技术。其人才培养目标在于“培养掌握生物医学工程专业知识,掌握分析与健康相关的生物医学工程问题的方法,并具备综合应用所学知识和方法解决实际工程问题的能力,具备健全人格和远大理想的工医结合复合型优秀人才”。即更加注重于培养工程与医学相结合的复合型人才,这些专业人才的从事的工作更多是在用于医学诊断、治疗的仪器设备的设计、研发及制造、维护等上面。而四川大学的生物医学工程专业的培养目标,按照其特色制定为“以工程为主,以从事生物医学工程教学科研的相关学科为依据,培养从事生物力学、生物材料、人工器官等相关方面的研究、开发、生产的高级专门人才。”,偏向于材料工程学。由此可知,在综合性大学工科以及理工科大学中,生物医学工程专业应更注重工学、工程学内容,其培养目标就应以“培养具有现代医学生物医学工程(如机械、电子、材料、计算机在医学中应用等)的基本理论知识及能力,能在医疗设备相关企事业单位从事设备(或装备)设计研发、制造、维修维护、管理等方面工作的高级复合型专门人才”为主。相应的培养要求应更多的学习工学的基本理论知识,受到常规医疗装备、设备等设计、研发、操作、维护维修、管理技能的基本训练并具有相应能力”上。
2.1.2课程设置
基于工科特色,其主干课程应注重工科基础理论的学习,了解医学基础知识,同时学习机械、电子、材料、计算机应用于医学中而派生的专业课程。如将特色定在医疗设备制造等方向上的生物医学工程专业,其基础类课程更加强了基础数学、物理的学习,设置了较多学分的高等数学、线性代数、概率论与数理统计、大学物理及实验等,医学类课程设置了基础医学与实验,涵盖人体解剖学知识,专业基础课和专业课设置了生物医学数学基础、电路及模拟电子技术及实验、数字电路与逻辑设计及实验、微机原理与接口技术及实验、VisualC++程序设计及实验、信号与系统、EDA技术、计算机硬件控制基础、单片机原理及应用、医学成像原理、医学影像系统、生理信号检测、生理信号处理、医学图像处理、医学仪器设计与实现、医学传感器、医学光学、医学超声、医学材料等,同样,课程设置也应按照本校特色加以取舍。