前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学建模方法与分析主题范文,仅供参考,欢迎阅读并收藏。
一、数学建模思想的内涵分析
数学建模思想产生于上个世纪的六七十年代,在“新数运动”和“回到基础”的数学教学研究之后,数学教育的问题意识逐渐增强,数学建模作为问题素养培养的重要方法也逐渐被人们所认识到。在我国,以华罗庚为代表的数学家通过中学数学竞赛与数学讲座等方式向中学生介绍数学建模思想,虽然此时并没有明确采用数学建模的名称,但数学建模在解决数学问题中的应用已受到重视。在几十年的发展过程中,数学建模思想取得了很大发展。目前,我国初中数学建模思想在初中数学教育中广泛应用,新课程改革和素质教育的实施,推动了学生数学应用意识的加强,促进数学建模的教学方法的应用。但由于教师教育理念的陈旧和教学方法的不科学,导致数学建模思想的应用受到限制。数学建模思想的重要性在于以下几点:
首先,数学建模思想作为一种学习方法,可以将初中数学知识结合起来,在知识的相互渗透中挖掘出数学学习的规律。数学建模是一种综合性较强的数学解题方法,初中数学建模教学中,不仅包括实际的生活内容,还包括了多种学科,数学建模的范围比较广阔。
其次,数学建模可以简化信息。数学建模的目的是将繁杂的数学信息通过科学的模型直观反映出来,将问题的主要方面表现出来,以所学知识对问题进行解读。数学建模能够让学生体验建模的过程,教师将建模思想传授给学生,让学生在小组讨论中找出最佳的建模方法,将学生的独立思考和团队合作结合起来,为学生的建模活动提供良好的空间。
再次,数学建模将简化后的信息抽象为数学问题,利用已知条件,对数学问题进行分析,以数学思维将文字语言数学化,以解决问题,通过模型的建立,以简化、抽象的方法将数学学习中的问题进行有效解决。再者,数学建模强调教学中的因材施教,对学生的学习水平和认知差异进行分析,发挥学生的学习潜能和优势,提高学生的数学思维能力。
最后,数学建模的应用性强。随着经济社会道德快速发展,数学知识已深入到人们生产生活的各个方面,数学思维能力及数学应用能力的要求也越来越高,数学建模思想不仅能提高数学应用能力,还能极大促进数学思维能力的发展。在高考应用题解答中,建模思想能够方便学生的解题,情景模拟式的考题形式,对学生的语言能力及数学分析能力要求较高,数学建模思想体现了素质教育对学生全面发展的要求。
二、数学建模的实施步骤
(一)审题,即建模准备阶段
在初中数学的学习中,首先应仔细阅读题目,对问题的背景进行分析,将相关的已知数据进行整合,分清题目中的已知量与未知量之间的关系。在审题过程中,一定要把握住题干中关键字词的数学含义,如增加、减少、不大于、不小于、至少等等。在审题过程中,可以在头脑中形成一套解题思路,再根据已知量情况,选择最佳的问题解决方法。初中数学的审题有一定的难度,教师应引导学生对题目进行分析,找出问题的关键内容,提取有用的解题数据。在这个过程中,教师应加强对学生阅读能力的培养以及数学思维的培养,将形象繁杂的语言转化为抽象简洁的数学语言,为建模和解题做好准备工作。
(二)建立数学模型
在对题目信息进行准确分析之后,就应该着手建立数学模型。将繁杂的语言文字抽象化为简洁的数学语言,从题干中提取相关的数量关系,将该数量关系以数学符号或数学公式进行分析,从而建立起一个完整的数学模型。数学建模过程对学生来说有一定的难度,对于比较抽象的模型或相对复杂的建模方法,教师应先给出相应的范例,同时可以采取小组讨论的方法来激发学生的学习兴趣,根据学生的建模类型的适用性、可行性、效率等进行对比分析,根据题目类型选择最恰当的数学模型。
(三)求解数学模型
根据已建立的数学模型,运用所学知识选择最佳的问题解决方法,简化运算方式,以最短的时间求解出该问题的解。同时,应对求解过程中的变量范围和其他限制性条件予以注意。在模型求解过程中,应该重视算法简化及工具的使用,还包括跨学科知识的应用等方面的内容也应该予以重视。教师可以充分利用模型求解的过程,拓展学生的知识面,激发学生的学习兴趣和欲望,培养学生的数学思维。模型求解过程的难度不是很大,可以通过学生独立完成或者在分组中完成。
(四)模型验证
通过问题的求解,检验该求解结果是否与实际要求相符合,同时也应对该求解结果与数学模型的匹配性进行检验,实现最佳解决方案的实施。模型验证应在具体的问题中来检测,以实际问题现象和数据对结果进行分析,保证模型结果的适用性、合理性和准确性。如果检验结果不符,则要修改模型结构,通过不断改进以符合实际情况。模型验证环节是学生最易忽略的地方。在数学模型求解完成之后,由于模型与实际问题存在着一定地位问题,导致模型设计的不合理。这些都需要在模型验证过程中予以解决。因此,在模型求解完成之后,教师应要求学生将模型与公式对照检验,发现模型存在的问题,进而解决问题。在多次的测量中,得出比较准确的解题结果,之后则可以进行模型参数变化及扩展等教学内容。
三、数学建模的实施效果
[关键词]数学建模;商务数据分析与应用专业;实施路径
前言
数学模型是连接实际问题与数学问题的桥梁,是对某一实际问题,根据其内在规律,作一些必要的简化与假设,运用适当数学工具转化为数学结构,从而用数学语言描述问题、解释性质、预测未来,提供解决处理的最优决策和控制方案。数学建模是架设桥梁的整个过程,是从实际问题中获得数学模型,对其求解,得到结论并验证结论是否正确的全过程。数学建模是用数学语言和方法,借助数学公式、计算机程序等工具对现实事物的客观规律进行抽象并概化后,在一定假设下建立起近似的数学模型,并对建立的数学模型进行求解,然后再根据求解的结果去解决实际问题。在这个过程中要从问题出发,充分发掘问题内涵,按照问题中蕴含的内生动力,寻求合适的模型,经过实践检验后多次修改模型使之渐趋完善,同时还要进行因素灵敏度分析,找出对问题影响较大、更大或最大的因素。随着社会的发展,大数据时代的来临,数学建模越来越引起人们的重视,很多高校将数学建模纳入课程体系之中,以提高学生运用专业知识、数学理论与方法及计算机编程技术综合分析解决问题的能力,特别是数学建模竞赛能有效提升学生的计算机技术与运算能力、团队协作能力、写作表达和创新实际能力。近年来,随着互联网技术的迅速发展,形形的数据环绕着我们,数据分析方面的人才需求陡增,造就了商务数据分析与应用专业的问世。商务数据分析与应用专业虽是2016年才增补的新专业,但它是一个跨数学、电子商务、计算机应用等学科的边缘专业。培养主要面向互联网和相关服务、批发、零售、金融等行业,掌握一定的数理统计、电子商务及互联网金融相关知识,具有商务数据采集、数据处理与分析、数据可视化、数据化运营管理等专业技能,能够从事商务数据分析、网店运营、网络营销等工作的高素质技能型人才。商务数据分析与应用专业的学生毕业后主要从事电商数据化运营过程中的数据采集与整理、调整与优化、网店运营与推广等工作。从2019年开始1+X证书制度试点工作拉开了序幕,职业教育迈入考证新时代,商务数据分析与应用专业作为第二批试点专业正在如火如荼地进行着,这将拓宽学生就业创业渠道,提高学生就业创业本领。但作为一名优秀的数据分析师要对数据敏感,熟知业务背景,认知数据需求,具有超强的数据分析与展示能力。若将数学建模融入商务数据分析与应用专业的人才培养体系中去,不仅使学生运用数学思维解决问题的能力得到提升,更使学生思路变得富有条理性,让学生养成敏锐观察事物的习惯,对学生的未来发展产生深远的影响。
1将数学建模融入商务数据分析与应用专业的可行性分析
将数学建模融入商务数据分析与应用专业不是牵强附会的关联,具有一定的可行性。
1.1在课程体系上具有可行性
数学建模是源于实际生活的需求,借助于数学的思维及知识去解决问题,需要学生具备一定的数学基础和计算机编程相关知识。商务数据分析与应用专业的课程体系中含有统计基础、数理统计与应用、C++、数据分析与处理等课程为学生学习数学建模奠定了基础。
1.2在教学团队上具有可行性
数学建模相关课程需要一支专业基础扎实、年轻、富有创造力的教学团队。教学团队中的教师不仅要有较为宽广的数学知识,也要具备较强的计算机编程和操作能力,这样才能培养学生从实际问题中刻画问题的本质并抽象出数学模型的能力。我校商务数据分析与应用专业的数学建模相关教师共9人,由来自于统计专业、计算机专业、电子商务专业等专业背景的教师组成,完全可以胜任数学建模相关课程的教学与指导。
1.3在教学环境上具有可行性
本专业校内教学条件比较完善,校内实训室基本上能够满足所有专业课程及专业实操课程的教学需要,学生可以在仿真的环境中进行练习。鉴于现有校外实训基地的实习内容与学生所学专业并不对口或融合度较低的现状,学校还要积极拓展校外实训衔接度高的校外实训基地,让学生真正参与到企业活动中去,着实提升学生的商务实践技能。校内教学条件完全可以胜任数学建模相关课程的教学。
2将数学建模融入商务数据分析与应用专业的实施路径
任何的教学改革都不是一蹴而就的,是时间沉淀出来的产物,从无到有、从有到优需要一个漫长的过程。要将数学建模融入商务数据分析与应用专业,需要从课程体系、教学团队、管理制度等方面着手。
2.1构建数学建模的课程体系
将数学建模融入商务数据分析与应用专业,首先要制定融合数学建模的人才培养方案,明确数学建模在培养方案中的知识、素质、能力等培养目标和要求,设置数学建模在教学计划中的相关理论、实践等教学环节的课时与学分分配。对大一学生增设数学建模课程,将数学建模与统计学、经济应用数学并行教学,其中涉及数学建模思想、基本数学模型、Matlab软件入门等内容,使学生了解几类基础的数学模型、常规的数学建模步骤及方法。在教学中加入商务数据分析案例,根据问题需求先建立数学模型,然后通过Matlab编程求解出结果,并运用软件进行计算、仿真和模拟,这样将数学建模、数学实验和商务数据分析三者有机衔接起来,不仅可以激发学生的学习兴趣,提高学生运用数学建模进行商务数据分析及预测的能力,也为之后的数学建模竞赛铺路。
2.2组建数学建模的教学团队
数学建模的教师不仅要熟悉初等几何、微分方程、优化、图与网络、概率等机理分析性建模,还要熟悉统计、预测、检测等测试分析性建模;不仅要掌握差分方程、插值与拟合、回归分析、线性规划等数学建模方法,还要熟练掌握Matlab、LINGO等各类建模语言的使用。作为数学建模的教师,面对商务数据方面的实际问题,要全面深入细致地了解问题的背景,准确无误地明确问题的条件,在查阅、收集、阅读掌握相关的数据、信息和资料的基础上,清晰准确地形成问题的主要特征,初步确定模型类型。然后根据特征和目的,找到问题的本质,忽略一些次要因素,给出必要的、合理的简化与假设。在分析与假设的基础上,利用数学工具和方法,描述对象内在规律,建立变量间关系,确定数学结构,建立商务数据的问题模型。数学建模的一系列过程需要教学团队的合理分工与协作,在日常教学过程中既要重视数学理论,又要重视实践案例教学。使学生了解基本的数学模型和编程思想,把教学重心放在案例的分析、模型的选择、程序的实现、灵敏度的分析等过程之中。通过对大量问题的数学模型的建立及计算机编程的求解,让学生触类旁通地处理一些实际问题,使学生体会到数学的魅力所在及学以致用的道理,从而提高学生商务数据分析与应用能力,为学生今后的创新创业奠定基础。教学团队不仅要完成数学建模相关课程的教学,还要加强数学建模教学的研究和应用,加强与外界的交流,推动教学改革,以提高数学建模的水平和质量。
2.3成立数学建模的学生社团
除了数学建模融入商务数据分析与应用专业教学之外,还可以在学校成立数学建模社团,吸纳学校中对数学建模感兴趣的学生,特别是商务数据与分析专业的学生进入社团。由数学建模老师定期对社团学生进行指导,将数学建模相关的数学公式、数学方法,数学建模的流程,竞赛论文的撰写要领,编程技巧等以讲座的形式传授给学生。同时,社团学生之间成立互助小组,互助小组中选择商务数据分析与应用专业的学生为组长,由组长带领其他组员共同探讨数学建模的学习方法与技巧,分享数学建模的编程技术与相关资料,交流数学建模的解决问题的思路。这样由一个专业带动多个专业,一个社团辐射到整个学校,在提高学生的数学建模能力的同时,也为数学建模竞赛选拔人才做好准备。数学建模社团的建立在丰富学生业余生活的同时,也给那些对数学有兴趣的学生提供了一个相互交流的平台,不仅可以开阔学生数学发现和研究的思维,还可以加强数学理论与实际问题之间的联系,提高学生运用数学思维方式解决实际问题的能力。
2.4参加数学建模的相关竞赛
为了更好地发挥数学建模在培养大学生创新创业能力过程中的引领作用,学校组织学生参加数学建模的相关竞赛,并将其发挥到极致。大学生数学建模竞赛是提高学生数学建模能力最好的平台,美国在1985年开始创办数学建模竞赛,我国大学生于1989年开始参赛并逐步成为参赛主体,到2019年共有15个国家25370队注册参赛,其中中国大陆地区代表队约占98%。我国第一届大学生数学建模竞赛(CUMCM)于1992年创办,2019年1490校区42992队报名参赛,现已呈现出一派繁荣景象,其他数学建模竞赛,如:深圳杯、电工杯等也如火如荼地开展起来。想在竞赛中取得优异的成绩是一个系统的工程。数学建模参赛团队通常由3名学生组成。在学生选拔时,就要综合考虑学生的知识、能力、性格等因素,这3名学生不仅要有较好的计算机技术与运算能力,更要有吃苦耐劳的精神和较好的团队合作意识。在教学指导时,不仅为学生讲解一些基础的数学建模方法和技巧,更要注重综合分析解决问题、逻辑思维、语言文字理解与表达、科研创新等能力的培养。在模拟训练时,指导教师严格把关,让学生合理安排三天时间在网上查阅资料,分析问题之后建模与解答,检验与分析,再完成竞赛的论文的写作。通过多次有针对性的模拟训练,学生摄取新知识、新技能的能力得到提升,定量与定性分析的思维能力得到锻炼,责任意识得到加强,自主学习的习惯逐渐养成,不畏艰难的品质得到磨练,团队创新能力得到提高。指导教师通过对数学建模的研究和学生的指导,教学相长,自身的建模能力也将得到大幅提升。面对一些实际的商务数据问题,能够通过建立一些相关的数学模型,探索出解决实际问题的方案,并从这些方案中选择出最合理、最科学、最恰当的方案。
2.5搭建数学建模的管理体系
将数学建模课程融入商务数据分析与应用专业难度不大,但是要让学生组队参加数学建模竞赛并出彩,就需要学校领导重视及相关职能部门支持,在校内建立健全数学建模管理制度,如将数学建模竞赛作为二级学院考核指标、数学建模指导教师的工作量计算办法、学生在奖学金与评先评优等方面优先考虑等。只有建立健全校内管理体系,才能激励更多的教师主动承担数学建模相关课程的教学,参与数学建模社团的指导,同时激发学生学习数学建模的兴趣与参加数学建模竞赛的积极性。
“数学模型是对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,作出一些必要的简化假设,运用适当的数学工具而得到的一个数学结构。”数学作为一门技术的应用,是在深入调查、充分了解研究对象的信息、作出简化假设的基础上,用数学的理论和数学的思维方法以及相关知识去解决实际问题,可以直接利用现有的数学模型,也能够创新建立新的数学模型和方法,然后,对数学模型进行分析、计算,用得到的结果来解释实际问题,并接受实际的检验。这个全过程就称为“数学建模”。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学实现科学技术转化的主要途径。数学建模是一项创造性的工作,其特征是:问题具有现实性和挑战性,分析结果具有非唯一的开放性,强调了数学方法的过程性与发展性、各学科知识的综合性和应用性。数学建模的思想和方法已渗透科学、技术、工程、经济、管理及社会生活的各个方面,在分析与设计、预报与决策、控制与优化、规划与管理等诸多方面都有着非常具体的应用。一般认为,数学建模对能力的要求有以下几个方面:第一是具有较强的“数感”,对给定的复杂问题背景进行数学化分析的能力;第二是对数学知识与方法的综合应用和创新、建立数学模型的能力;第三是数学模型的求解能力,包括对计算机和数学软件的使用能力;第四是调查研究和搜集资料的能力;第六是良好的协调和合作能力;第七是较强的数学语言和文字语言的表达能力。可以归结称为“数学建模的能力”。对数学建模能力的培养是数学教育的一个重要方向,可以认为,数学建模教育以其独特的内容和方式契合了复合型人才的培养目标要求。
二、数学建模教学的内容和师资准备
随着科学技术的迅速发展和计算机技术的日益普及,数学的应用从传统的物理、力学等领域逐渐扩展到经济、金融、信息、环境、医学、管理、服务等各个学科及交叉领域。数学建模的专业领域涉及面广、建模方法形式灵活,基本方法包括初等分析方法、概率统计方法、微分方程方法、评价方法、优化方法、预测方法、决策分析方法等。数学建模教学的一般方式是以学生为主,教师利用一些事先设计好的问题激发学生的学习兴趣,引导学生主动查阅文献资料,帮助学生建立并完善相关的知识储备,鼓励学生积极开展讨论和辩论,并对困难和问题进行及时分析和评价等。数学建模教学要求教师具备良好的知识基础、数学素养和较强的教学指导能力。从知识准备上主要有以下三方面:1.数学专业知识。数学理论知识是数学建模必不可少的知识基础。数学建模的基本方法实际是应用数学的各个分支,涵盖了运筹学、统计学、数学规划、最优化方法、图论、数学实验等多门课程内容,要掌握其中最核心的技术和方法。2.数学应用背景知识。数学建模教学的问题都来自工程技术和社会生活,具有较强的实际专业背景,如全国大学生数学建模竞赛的赛题2004年的“电力市场的输电阻塞管理”、2006年的“艾滋病疗法的评价及疗效的预测”、2008年的“数码相机定位”、2009年的“汽车制动器试验台的控制方法”等,对实际背景的认知是解决问题的关键。3.应用软件知识。常用的综合应用软件如Matlab、Mathematica、优化软件Lingo/Lindo、统计软件SPSS、图论工具软件等一些专业应用软件包。在教学实践中,教师应能根据实际问题应用计算机技术辅助教学,对软件进行合理的使用,并能对学生利用计算机分析处理实际问题能力进行培训,以缩短教学理论与实际问题的距离。从知识结构来看,数学建模的全部教学不可能由一位教师单独完成或单独完成的难度非常大,因此,很多学校是由教师团队来共同协作完成教学和竞赛培训的。一般是每个专题模型的教学由一位教师负责。但各个专题又不完全是相互独立的,每位教师必须具备对应用数学各学科的宏观驾驭能力,才能对学生进行方向性的指导。而数学应用的背景知识往往是数学教师所缺乏的,因此必须要求教师具有较强的合作意识,能与不同学科专业的人进行广泛的合作与交流,才能促进知识的横向联系,形成优势互补。
三、数学建模教育在独立学院的创新模式探索
(一)独立学院的办学特色国家依靠“新机制、新模式”推动高等教育的规模扩张,由普通本科院校和社会力量合办独立学院,人才培养目标以应用型为主。独立学院在中国高等教育领域还属新生力量,必须在教育教学管理、人才培养模式、学科专业建设方面开拓创新,力争形成特色,创出品牌,赢得社会影响力和美誉度。从以下三点可以看到独立学院在办学机制和教育资源优化方面对应用型人才培养有着独特的优势。1.灵活的专业设置,创新的教学体系。与公办普通高校相比,独立学院拥有更多办学自,专业设置以市场需求为导向,以应用型专业为主,有良好的就业前景和发展潜力,其理论教学体系依据培养高素质应用型人才的要求,按职业活动实践的需要来重新组合课程,培养出的学生不仅应掌握扎实的基础知识,更重要的是具有较强的实践能力。2.年轻化的师资队伍。独立学院的师资队伍一般由母体学校的聘任教师、退休教师、本学院的专职专任教师、外校或社会上的专家教师等组成。根据《普通高等学校独立学院教育工作合格评估指标体系》要求,专职专任教师占教师总数不低于1/2,其中具有高级职称和具有研究生学位的比例均占30%以上,目前主要以引进优秀硕士毕业生为主,这样一支年轻的教师队伍在思想上更具有与时俱进的创新理念,大胆尝试新的教学模式,既善于从老教师身上学习宝贵的经验,也敢于向传统挑战。3.资源优化与共享。独立学院通常以文、理、工、法、商、管理等多专业共存,是小规模的综合性大学,不同专业的学生和老师有更多的交流,在资源配置方面具有灵活的适用性;为更好地培养学生的自主创新实践能力,独立学院积极组织学生开展各种课外科技创新活动,为学生提供自主开展科学实验和实践创新的专业实验室,不同专业资源共享;与社会力量合办的模式有助于学校充分利用各种社会资源,到企业去开展实践,建立校外实习基地,使得学生有更多机会接触到行业专家的专业指导,有效地使理论和实践相结合。
四、数学建模教育在独立学院的发展现状
在独立学院“基础知识够用,应用特性鲜明”的整体教学原则的基础上,数学课程的教学改革提出了“精讲多练,去掉理论性太强的内容,增加实践性教学内容,注重提高学生的应用能力”的目标。但在实际教学中发现,单学科的知识能够解决的实际问题是很少的,由于课程的基础性特征及课时限制,也未能很好体现出数学知识与技术在解决更广泛的专业问题的宏观指引作用及实现功能。在大部分学生的基础相对较弱的独立学院,更直接影响了学生学习的积极性。但从每年组织全国大学生数学建模竞赛时学生的报名情况可见,独立学院的学生并不缺乏学习的积极性和主动性,正是数学建模所突出的数学应用的特点和技术功能激发了学生的求知欲望,希望学以致用。但是,一方面,开设数学建模课程的课时不会太多,参加建模培训班的同学更是有限。目前针对各类数学建模竞赛所采取的赛前短期集训方式,虽然在一定程度上可以有针对性地提高学生的竞赛能力,但从长期目标来看,数学建模的能力并不是短时间集训突击能获得的,学生也普遍感觉很累,而且对数学方法的深入领悟是经过实践应用的长期坚持和循序渐进而慢慢形成的。另一方面,独立学院的专任教师都比较年轻,对于数学建模教学经验不足。最初的模式是由学院教师负责组织学生参与,而由学院聘请主办高校的有经验的教师对学生进行授课,这在一定程度上缓解了师资缺乏的压力,但外聘教师上课来,下课走,没有太多时间与学生进行沟通和交流,也容易造成教学与实践交流脱节的局面。另外,部分教师依然受传统教育方式的影响,填鸭式的教学违背了数学建模教育的初衷,使得大部分学生逐渐望而生畏、敬而远之。
五、数学建模教育在独立学院开展的创新模式
为了更好开展数学建模教育,我们结合独立学院独特的灵活办学机制和资源共享优势,提出“优势+全面”的数学建模教育模式。
(一)创新的教学体系改革,为数学建模教育提供切实保障
1.将数学建模教育渗透到基础课程教学中
高等数学或微积分等基础课程是绝大多数专业的必修课程,课时多,当前大多数教材的例子多是几何应用或物理应用,理论上大都是连续型的,而且信息量较少,不能较好体现现代数学思想和现代数学方法,相对于应用型人才的培养而言,有些理论已滞后于实际的需要,有些对于新的科研成果并没能及时更新,急需改进或推广。在独立学院的教学改革体系下,基础课程的教学改革也能广开思路,制定适合学生发展需求的教学大纲,选择或自编应用功能较强的教材,立足于基础教学,从不同的细节和角度渗透、穿插适当的数学建模知识,注重培养学生的建模意识。如在教学中除了讲清高等数学的产生背景、研究对象、知识体系外,更要介绍其应用概况;通过工程实例和经济实例强调分段函数、复合函数的概念,介绍函数的拟合和分析方法;在第二个重要极限公式教学中介绍连续复利模型和人口增长模型;作为零点存在定理的应用,介绍“椅子在不平的地面上能放稳吗?”的数学模型;由最值推广产生最优化方法等。将数学建模教育渗透到基础课程教学中,做好数学基础课和数学建模课之间的衔接工作,这应该成为数学建模教育中最基础的部分。
2.基础选修和阶段性竞赛培训相结合
每学期开设40学时左右的数学建模选修课,允许不同专业不同年级的学生一起选课,学习基础的数学建模方法和软件技术。同时,建立网上教学平台和资源建设,为学生提供课程学习资料,提供网上答疑和开设讨论区,让学生加强学习交流。通过延长学习周期和延伸学习空间,让学生不致于倍感压力和难以消化,轻松学习。针对数学建模竞赛的赛前集中培训也可以分段开展,分初级、中级和强化培训,一般是鼓励二至三年级已参加过选修课的学生参加。主要是按照数学建模竞赛的规范和要求全面展开练习。初级阶段为建模培训做好准备工作,如应用计算机网络资源实现文献查找和资料搜集,以及实际调查取证等相关技能培训,数据分析和处理的技术方法,如常见的回归分析、相关分析、聚类分析等数理统计中常用的数据分析的方法等;中级培训主要以案例分析和论文选读为主,选择有学科代表性、方法代表性和综合性较强的典型建模问题和论文进行分析学习,这是培训过程的重心;强化培训是进行竞赛模拟实战训练,选定模拟题目让参赛小组按照竞赛的要求完成问题分析、模型建立和求解、论文写作等全过程,指导教师针对学生的论文写作过程中存在的问题进行点评和指导。对数学建模的这种开放式教学模式,要建立开放的评价体系,相信学生有独立创新的能力,只要学生有兴趣参与,成果的好坏是次要的,坚持培养学生良好的思维品质,如自觉的创新意识、积极的求知欲、顽强的毅力、良好的分工合作能力。
3.数学建模文化活动纳入教学大纲,加强对数学建模文化和成果的宣传
很多大学都有数学建模协会,其宗旨是传播数学建模文化、组织学习活动,如名家讲座和经验交流等,同时为全国大学生数学建模竞赛选拔队员。通过协会精心策划的活动,让更多学生感受到原来数学与生活是那么的贴近,数学的应用那么广泛,真正理解数学、热爱数学。与其他实践应用型竞赛活动相比,数学建模的成果很难以成品的形式直观展示出来,但可以通过学生以报告的形式发表自己的创意和演示模型,让学生通过现场讲演分析和与同学互动,让更多学生了解建模的过程和分享成功体验。要更好发挥社团活动的作用,首先,要建设规范的管理制度,将数学建模协会活动的组织与开展纳入数学建模教学大纲,设立创新学分,形成完整的数学建模教育体系。另外,还要形成一套较为成熟的活动开展监督机制,聘请专业老师指导,以保证活动的健康发展。
(二)高学历年轻化的教师队伍,为数学建模教育注入新的活力
1.加强数学教师与其他专业教师的交流和开展联合教学
为了更好开展数学建模教育,独立学院应大胆选拔培养本院教师作为教学骨干力量。我国目前的硕士研究生的培养仍以单一的科研型、学术型为主,新进的青年教师长处是学科理论基础好,对于实验室研究方式和论文报告驾轻就熟,但是缺乏对实际问题的深切了解,缺乏从理论向实际成果转化的实践经验,而且教师的单一知识结构已不能适应数学建模教学的需要。在独立学院多专业共存发展的格局下,可充分发挥其他学科专业教师对数学建模内容实际应用背景分析的优势,促进知识的横向联系,形成优势互补。也可以组织不同学科专业的老师参与数学建模教学,与学生有更直接的交流。通过具体指导学生开展数学建模竞赛,也能使年青教师获得全面发展和提高。这对独立学院的年青教师培养也起到促进作用。同时加强与其他同类院校的交流学习,切实制定符合独立学院学生特点的教学和培训模式。
2.开展师生合作型创新实践项目课题研究
很多数学建模的题目都是很好的科研题材,可通过设立学生“数学建模创新实践项目”活动专项资金,由学生自主选题或指导老师申请项目课题,创造条件让学生有更多机会参与科研工作,真正实现从调查研究、数据收集、统计分析到解决问题、实践应用和信息反馈等实际实践活动的全体验,提高学生数学应用意识和创新能力。另外,数学建模可以为学生提供很好的毕业设计题材。青年教师充满热情,乐于与学生交流,在师生合作的过程中,更容易产生思想的碰撞和创新的灵感。数学建模活动是以“微科研”的方式进行的,教师要加快教学观念的更新,只有提高自己的科研意识、研究水平和洞察力,才能以严谨的科研风格影响学生,以良好的科研能力指导学生。
(三)优质资源共享,为数学建模教育提供实践基地
1.不同专业的学生合作学习,取长补短
现代各学科的不断交叉和融合,学生的知识面也要求以专业为核心的多向发展。通过数学建模内容的实际背景分析,了解不同科学领域的分析方法。数学建模教学是促进学生跨专业学习的很好途径。数学建模教学一般以学生的合作学习方式开展,可以鼓励不同专业的学生组队,发挥各自的专业特点、优势,在解决问题过程中取长补短。独立学院多专业共存发展的机制使得各种资源共享,使得学生跨专业学习有了强大的依托,对数学建模问题所涉及的一些其他专业技术原理增进了了解。例如,广西大学行健文理学院建立的“创新实验教学中心”已建有计算机软件开发与实训室、电子产品设计室、机电产品制作室、生物工程设计室等,并拥有了计算机、计算机网络、工业控制计算机、单片机开发装置、可编程控制器、印刷电路板设计制作装置等软硬件设备,建立起了一支勇于创新、相对稳定的指导教师队伍。这些优质资源的共享也为数学建模教学实践提供了便利,特别是有助于对一些工科技术背景的理解。
2.利用独立学院的企业和社会资源,互补互足
从全国大学生数学建模竞赛的社会影响来看,赛题一般来源于工程技术和管理科学等社会多方面经过适当简化加工的实际问题,有些是直接由企业直接提供的,如2006年“出版社资源配置”就是由高等教学出版社提供的素材形成,因此赛题的实用性也引起了一些有关企业的关注,希望通过对赛题的进一步研究,使研究成果在生产和管理实践中得到直接应用。独立学院独有的校企合作模式以及广阔的多专业校外实习实践基地资源,有利于实现教学和社会资源互补互足。在校方的全力支持下,选择合适的数学建模应用项目促进横向科研及其成果的转化,让学生真正体验到建模的实用性。
【关键词】高中学生数学建模思想
数学建模就是用数学语言、数学符号描述实际现象,用数学知识解决实际问题的过程。它是将纷繁复杂的实际事物进行一种数学简化,抽象为合理的数学结构用它来解释特定现象之间的数学联系。数学本身就是实际应用中产生发展的,要解决实际问题就需要建立数学模型。数学建模对于高中学生的培养,不仅仅是数学定理和公式的简单掌握,更重要的是使学生系统掌握相关的基础理论、基础知识和基本技能,受到良好的科学思维和科学方法的基本训练,在思维方法上得到提升,以联系的观点来进行知识的汲取、归纳、分类和应用。
数学建模是学习数学知识和提高能力的最佳结合点。在用数学知识解决问题的过程中可使学生的积极性、主动性和创造性得到充分的发挥。理解实质,注意变式,要抓住模型的组成结构、性质、特征,摒除本质以外的东西,特别是要抓住几何大量的基本定理、公式模型。加强比较,注重联系,模型之间有区别,条件图形的丝毫改变,都可能涉及模型的改变。有时一个题目往往是多个模型的综合运用,一方面狠抓基础,另一方面多练综合题。归纳总结,提炼模型。模型不只是书本上的,还有是在练习中归纳总结的。对平时练习中的重要结论、规律要注意把这提炼成一个模型。建立数学模型是数学知识与应用的桥梁,学习和研究数学模型对培养学生分析和解决实际问题的能力是非常重要的,是数学教学的主要目的之一,因此,在数学教学中更重视从实际问题中引出新概念、新知识并注意培养学生敏锐的观察力,丰富的想象力,创造性的思维能力及抽象、分析、归纳、综合的能力,使学生逐渐理解和掌握数学建模的方法,以培养学生的学习兴趣、创新意识、实践能力。
数学建模、高中数学、应用数学来源于实际生活,解决现实生活中的问题,涉及到如何把实际问题转化为数学问题。数学就是对于模型的研究。 在高中数学中,应用题与实际生活联系最为密切,是实际问题的一个缩影,解答问题主要表现在建立数学模型。如果在数学应用题教学中能够运用好数学建模这个杠杆,不仅能提高解题速度和解决问题,还培养学生的创新能力和思维能力。 数学建模并非一朝一夕的事,教师针对任何问题都要引导学生用数学思维去观察、分析,然后从繁琐的具体问题中抽象出我们熟悉的数学模型,从而解决问题。
引导学生树立建模思想,利用建模思想解决问题与普通的课堂解题思维有明显的不同,这就需要学生能够转变思考角度,灵活地将数学知识应用到实际问题中去,而这个过程教师的引导是必不可少的。⑴创设生动的问题情境激发学生情感 :要发挥多媒体技术手段的优势,根据具体教学内容、学生的认识水平设计和应用多媒体课件创设生动的问题情境为学生提供主动发现、主动发展的机会,激励学生积极参与建模活动。⑵重视知识产生和发展过程:由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,例如数学概念的建立数学公式的推导,因此老师既要重视实际问题背景的分析、参数的简化、假设的约定,还要重视分析数学模型建立的原理、过程。数学知识、方法的转化、应用,不能仅仅讲授数学建模结果而忽略数学建模的建立过程。⑶采用启发式和讨论式教学法:教学时应当采用启发式和讨论式教学法,通过多种途径、多种方式渗透数学建模方法,努力推广学生自主发展的空间,让学生独立思考、让学生动脑、动手、动口,将有效地提高学生运用数学解决实际问题的能力。建立数学模型是一个从实际到抽象、再从抽象到实际的转换过程要让学生接受这样一个复杂的过程,教师就应对建模教学有一个清晰透彻的认识。要突出学生主体地位建模的教学环节是将实际问题抽象简化成数学模型,求得数学模型的解,检验解释数学模型的解,并将其还原成实际问题的解,从而最终解决实际问题。课程特点决定每一个环节的教学都要把突出学生主体地位置于首位,教师要激励学生大胆尝试,鼓励学生不怕挫折失败,鼓励学生动口表述、动手操作、动脑思考鼓励学生要多想、多读、多议、多讲、多练、多听让学生始终处于主动参与主动探索的积极状态。
关键词:数学建模;教学改革;实践; 科学素质; 创新能力
数学思想已成为现代科技发展的原动力,微观的机理性研究离不开数学,宏观的决策也离不开数学,人们已逐渐习惯了用数学的思维去思考问题、用数学的语言去表述客观的现象、用数学的方法去分析和了解事物发展的客观规律。而架起各门科学与数学的桥梁,正是数学建模!大学生是未来的工程技术人员、科技工作者、工矿企业和政府机关管理人员,理应具备扎实的数学基础和良好的数学素质,数学建模教育也就成为培养大学生综合科学素质和创新能力的必经和有效途径。
一、数学建模对学生能力的培养
数模竞赛是培养学生综合科学素质和创新能力的一个极好载体,而且能充分考验学生的洞察能力、创造能力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代科技最新成果的能力等。学生们同舟共济的团队精神和协调组织能力,以及诚信意识和自律精神的塑造,都能得到很好地培养。通过数学建模的教学和训练,应对大学生从以下七个方面进行培养和引导[1,2]。
1.将实际问题抽象和简化成数学问题。引导学生在遇到实际问题时反复理解问题的本质,我们已有哪些条件?需要哪些相关的知识?与数学的哪些概念可能有关联?通过阅读题目,仔细推敲每一句话、每一个概念,客观正确地理解问题,根据研究对象的具体情况,抓住问题的核心和关键,进行必要的合理假设,然后根据自己已掌握或通过查阅而及时了解的相关知识,建立起相应的数学模型。同时,培养学生对其运用数学手段处理的研究结果做出通俗合理的解释,使读者较为容易地理解自己的思想。
2. 数学方法和思想的综合应用能力。随着数学向经济、人口、生态、地质等领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展的基础。在国民经济和社会活动的诸多方面,数学建模都有着非常具体的应用,如通过药物浓度在人体内的变化以分析药物的疗效;数值模拟设计新飞机的机翼;预报与决策方法对产品质量指标的预报、气象预报、经济增长预报、经济收益最大的价格决策、费用最小的维修决策;控制与优化方法用于生产过程的最优控制、零件设计的参数优化;规划与管理模型用于生产计划、运输网络规划、排队策略、物资管理等[3]。这些都依赖于平时的积累,一方面要求学生有博览群书的习惯,更重要的是任课教师的知识扩展。例如,讲授微积分学课程的教师,不能仅仅介绍数学符号的运算,在讲到微分、级数等内容时应让学生知道它可用来做近似计算等。
3. 观察力,洞察力,想象力和创造性。学生面对的建模问题是一个没有现成答案和模式的问题,只能依靠充分发挥自己的创造性去解决。这就需要学生具有丰富的想象能力,从大量的文献资料中摄取有用的思想和方法,从貌似不同的问题中窥视出其本质的东西,加工处理,创造出新的形象;同时要具有把握问题内在本质的能力,即洞察力。例如,当你遇见诸如速度、变化率、衰减、增长、边际、弹性等字眼的时候,你是否想到了导数和微分?进而可建立一个微分方程模型来分析运动的机理?当你遇见诸如使什么最大(极大或尽可能大)、最小(极小或尽可能小)、最佳、最省等字眼的时候,你是否会想到要建立一个目标函数呢?进而去建立一个优化决策的数学模型?
4. 熟练使用计算技术手段。即运用计算机编程解决模型的数值解。学生在学习计算机课程时,教材所提供的问题只是为了熟悉掌握一些编程的命令和语句,计算机编程能力相对较差。数学建模教学的开展,给学生提供了综合运用各种命令和语言编写程序的机会,学生针对教师所精选出的不同模型编写出许多较大的程序,并通过运用程序求出模型问题的数值解,使学生编程能力和解模能力大大提高,为以后从事科研工作奠定必要的基础。
5.学生的自学能力和善于使用文献资料的能力。学生仅靠课堂上学习的知识远远不能满足建模工作的需要,一方面,通过集中的培训和讲授,可补充一些知识;另一方面,通过让学生实际做一些建模题目,给学生布置一些没有学过的数学内容和没有接触过的建模问题,有意识地培养其自学能力和善于使用文献资料的能力。并让学生尝试完成在网站上搜索他们感兴趣或认为比较重要的建模题目,以此提高其自我评价意识、自觉性、积极性和主动性。
6. 交流和表达能力,团结合作精神。竞赛是集体项目,现代的科技开发也越来越需要多人多方面的合作。应在平时就开始注重培养学生密切合作、集思广益、取长补短的团队精神,使其善于倾听别人的意见,并能从不同观点的讨论中综合出最优的方案。这种相互协作的集体主义精神,是学生在未来的工作和生活中非常需要的。
7. 科技论文写作能力。学生在参加数学建模学习之前,科技论文写作的能力普遍较弱,有的甚至是一片空白,对如何写摘要、提取关键词、使用数学公式编辑器等,都需要教师指导。不少学生初次写出的建模论文根本无法阅读。教师应手把手地教,一字一句地改,让学生知道为什么要这样写?这样写的目的和意义是什么?这样才能使学生的写作水平得到提高和稳定地发挥。
二、数学建模课程教学改革的实践探索
有了正确的认识和理念,才会有明确的行动方案和实效。我校的数学建模工作起步于1994年,通过数学建模工作者的不断探索,开辟了现在的良好局面。
1.好的政策和稳定的教师队伍是数学建模教改成功的保障。在我校的数学学科中有一批稳定而热情的数学建模教师队伍。他们团结、协作,从过去的三人发展到现在的十多人,并有主教练负责。学校出台了对学生和指导教师具有相当吸引力的鼓励和奖励政策,建立了校级数学建模实验室,指导学生成立了全校的数学建模协会,为数学建模工作在本校的深入开展提供了有力的保障。
2.教学内容的选取是提高学生参与度的核心环节。教学内容是培养目标和教学目的的直接反映,在提高教学质量和培养学生创新实践能力中具有决定性作用,教学内容的先进性和科学性,是直接关系到学生参与度的核心环节。
起步时期的建模教学内容,是以数学相关知识介绍为主。大致介绍数学建模的思想和一些简单的建模案例,让学生初步了解数学建模的意义、基本方法和步骤,了解数学建模的特点、分类和作用。内容较为平淡,其收效不大,当学生遇到真正的数学建模问题时,就难以下手解决,学与用存在脱节的现象,特别是学生参加全国大学生数学建模竞赛成绩不理想。
在数学建模教练小组的努力下,成功申报了一个省级教改项目“加强数学建模课程建设,提高大学生综合素质”,深入开展教学改革研究。首先,组织编写了数学建模竞赛培训资料,并作为该课程使用教材,这也有利于让该课程与大学生数学建模竞赛接轨;其次,教材依据数学建模中常用的一些方法,如数据分析方法、线性规划和非线性规划、概率统计、微分方程、方差分析、聚类和分类、图论、综合评价、预测方法、满意度评价以及科技论文的写作等,并有机地结合相关的一些典型建模案例的分析和求解。这样,使教材变得生动,大大提升了学生的学习兴趣。
3.好的教学方法和手段是提高教学质量的保证。培养学生的综合实践能力,是开展数学建模教育的根本目的。科学有效的教学方法,可以提高学生的效率和创新实践能力。因此,在教学活动中,注重理论教学的同时更应加强实践环节。
数学建模的整个过程是学生能力的综合体现。在教学过程中,按照数学建模竞赛的模式进行专题教学和训练,我们的具体作法是:(1)按照全国大学生参赛办法,将三个学生组成一个队,以队为单位和教师一起参与经常性的讨论,讨论地点放在数学建模实验室。(2)免费开放数学建模实验室,方便学生查阅资料和建模训练。(3)通过多媒体教学课件,介绍数学建模方法,让学生随时都可以反复学习和查阅。(4)精选训练题目,按竞赛要求,让学生在一定时间内完成并提交论文。(5)对完成较好的论文,让学生自己讲解所完成题目的思想、方法,提出解题中的优点和不足,达到互相学习的目的。(6)指导教师和学生一起讨论所写论文中存在的问题并进行修改。通过这种训练式的教学方式,学生无论是在分析问题处理问题方面,还是在论文写作方面,都有了很大提高。
4.数学建模课程的考评应不同于传统的考核模式。由于数学建模注重的是综合能力的培养,因此,在该课程考评方面,应不同于传统的考核模式,我们的具体作法是:(1)由老师提供若干论文题目。
这些题目尽可能没有现存的论文。(2)学生事先组好队,依据所学专业的性质,每队完成2~3篇论文。(3)为尽可能避免相互抄袭,每个题目最多不超过5个队做,如果出现雷同,则返工重做。(4)根据教师制定的评分标准,按质量高低给分,并对每篇论文写出评语,指出论文中的优缺点。(5)期末不再进行考试,该门课程的期末成绩由几次论文质量决定,每次论文在期末成绩中所占权重基本相同。
通过对数学建模教学改革的努力探索,我校在全国大学生数学建模竞赛中成绩发生了根本性变化。2006年以来共获得了国家一、二等奖13队,省级奖45项,平均获奖率达86%。
参考文献:
[1] 李凝. 数学建模竞赛缘何受大学生青睐[N]. 科学日报. 2007-01-18.
关键词: 数学建模 大学数学教学 教学意识和方法 素质教育
新时期的今天,伴随着科技的发展和生活的日益数字化,数学建模意识和方法的应用也日益广泛。当前,根据数学建模应用的作用,并针对大学数学教学中的现存问题,强调数学建模意识和方法的培养对推动大学数学教学的改革和我国素质教育发展意义十分巨大。文章对此展开论述及分析,并提出了一些相应的有效途径及对策。
一、数学建模的实质涵义
数学建模是指建立数学模型的过程。人们通过在调查研究、了解对象、作出假设、分析规律等工作的基础上,运用数学中的语言及符号,把实际中研究的对象或者问题转化为数学式子即数学模型的过程,并把计算而来的结果经过实际的检验等。所以,数学建模整体而言是一个系统而多面的过程,需要多种技能、方法、知识及分析的辅助和运用。
数学建模是一种意识,也是一种方法。它要求运用数学的语言及方法,通过系列活动,形成一种数学手段,解决实际生活和工作中的具体的或者抽象的问题与对象。数学建模理念可以说是巧妙地将数学学科领域与其他学科领域结合起来孕育而生,以适应新时展的需要,也是对素质人才发展方向的适应。
二、大学数学教学存在的问题及培养数学建模意识的必要性
1.大学数学教学存在的问题。
我国数学教学长期的历史传统等因素造成了授课中重理论知识及数学分析方法,轻视了对于实践生活的结合,重视逻辑严密地学术知识的灌输、片面强调分析过程,轻视了学生认知能力和水平的实际限制、结果的精确性等,造成了理论与实践的脱节。同时,在教学中多以教师传授为主,轻视学生学习及认识能力自主性的培养,缺乏对学生良性思维思考能力的引导,对于素质教育的发展及素质人才的培养明显不利。
2.培养数学建模意识的必要性。
培养数学建模意识和方法是大学数学教学改革及素质教育发展的需要。数学建模是指通过在调查研究、了解对象、作出假设、分析规律等工作的基础上,运用数学中的语言及符号,把实际中研究的对象或者问题转化为数学式子即数学模型的过程,并把计算而来的结果经过实际的检验。可见,数学建模的过程是在融入了包括数学在内的多种学科领域的知识信息、方法及技能的过程,是把数学知识技能同应用实践能力相结合的过程,是可以拓展创新思维意识及能力、培养高素质人才的过程。
总之,将数学建模意识和方法融入到大学数学教学中,有利于促进数学与其他相关学科的融会,提高数学在社会领域中的应用价值,实现教学改革和素质教育发展的需求。
三、培养大学数学教学中数学建模意识和方法的途径
1.遵循数学教学及学生的认知规律,循序渐进,树立数学建模理念。
在大学数学教学中,教师要树立数学建模理念,注意将其融入到教学之中。针对目前大学数学教学存在的问题,教学工作应尽量避免晦涩难懂、专业逻辑性极强的理论语言的运用和附加,强化对现实实践问题的解决和联系。尽量通过通俗语言、结合时代现实,循序渐进的演绎分析及引入理论的学习,并渐渐引导学生对数学用语严谨性的认可与学习。如此,才能加强理论与实践、时代的结合,强化数学与其他相关学科领域的联系,激发学生学习的乐趣及对数学融入这个时代现实的认可与理解力。
2.回归自然、强化与生活的联系,激发学生认识、解决实际问题的兴趣。
在大学数学教学中,教师应精而少地选择数学例题,引导学生对数学建模意识的培养,鼓励学生通过数学理论知识认识及解决实际生活问题。同时,我们应较少对理论知识、经典例题、技巧方法的片面倚重,着重强化实际应用及与其他学科领域的联系,拓宽学生的视野,以“授之以渔”的教学方式,提高他们对数学学习的研究乐趣,拓展他们的思维理解和思维方法,激发他们认识与思考世界问题的兴趣及能力。
通过对我国大学数学教学中现存的问题及教学中融入数学建模思维和方式必要性的分析,了解到应时展需要,我们需要将数学建模思维和方式融入到大学数学教学中。相信,如此,有利于促进学生树立正确的认识观与价值观,也必将实现学生知识、能力及素质的全面提升,真正适应新时期大学数学教学改革与素质人才教育的需要。
参考文献:
[1]朱世华,李学全.工科数学教学中数学建模技术的嵌入式教学法[J].数学理论与应用,2008,(4).
(北京农学院,北京 102206)
摘 要:本研究运用层次聚类法,建立了一套大学生数学建模能力评价方法,使评价工作变得更科学、合理、公正.最后通过实例验证了此种方法的可行性.此种方法可以公正客观地评价大学生数学建模能力,有助于教育研究机构对学生数学建模能力的调查和研究,既能对学生的个人发展提出改进措施和努力方向,又能为教育科研工作者开展数学建模培训提供更全面具体的指导,为数学建模竞赛选拔更优秀的人才.
关键词 :层次聚类法;数学建模能力;评价;模型
中图分类号:O242.1 文献标识码:A 文章编号:1673-260X(2015)04-0001-03
基金项目:北京农学院教改立项(5046516450)
目前,随着数学建模在各个领域的广泛应用,许多学校开始把数学建模能力作为一个重要的研究方向.数学建模能力是综合运用知识解决实际问题的数学能力,是一个比较模糊的难以简单量化的能力.因此,要更好地对大学生数学建模能力进行评价,并因材施教,扬长避短的培养数学建模能力,需要一个科学的评价体系来对大学生的数学建模能力进行科学准确的评价.
积极有效地开展大学生数学建模竞赛,提高大学生的数学建模能力,亟需建立一套完备的大学生数学建模能力评价指标体系.目前,对大学生数学建模能力的研究主要集中在:(1)对大学生数学建模能力培养的研究[1-3],主要是从教育工作者的角度对大学生数学建模能力培养提出若干对策与建议,这方面研究较多,但这些建议往往是由工作经验或感想得出,没有理论依据,说服力不强;(2)对大学生数学建模能力评价的研究[4,5],有层析分析法和主成分分析法.这些研究虽然简单地列举了评价指标,但形不成体系,由于忽略了数学模型的应用,因此主观因素较大,客观性和准确性受到质疑.针对以上问题,笔者通过搜集整理众多学者的理论和观点,建立一套适用于大学生的数学建模能力评价体系,采用层次聚类法,并通过我校学生的实例验证评价体系的实用性和可行性.
1 基于层次聚类法的大学生数学建模能力评价模型
层次聚类法又称为分层聚类法,是研究样品(或指标)分类问题的一种多元统计方法.所谓“类”是指相似元素的集合.聚类分析能将样品(或指标)按其在性质上的“亲疏程度”进行分类,产生多个分类结果.
假设研究对象为n个学生,记为A={x1,x2,…,xn},学生的m个分类特征记为B={y1,y2,…,ym}.每个对象相应于这些指标所取数值的向量记为
X={xi1,xi2,…,xim} (i=1,2,…,n),
其中xik表示第i个学生的第k个指标,于是得到m×n矩阵,称为原始矩阵,记为
层次聚类法的基本步骤如下:
(1)首先将数据各自作为一类,每个类只包含一个数据,此时类间距离就是数据间的距离,这时有n类,计算n个数据两两间的距离,得到数据间的距离阵;
(2)合并类间距离最小的两类为一新类,这时类的个数减少一个;
(3)计算新类与其它各旧类间的距离矩阵.若合并后类的个数等于“1”,转到(5),否则回到(2);
(4)画谱类聚类图;
(5)决定分类的个数和各类的成员.
本文采用马氏距离法定义类与类之间的距离,dij2(M)=(Xi-Xj)’∑-1(Xi-Xj)其中,∑表示指标的协方差矩阵,即:
马氏距离不但排除了各指标之间相关性的干扰,并且还不受各指标量纲的影响.除此之外,它还有一些优点,例如,可以证明将原始数据做一些线性变换后,马氏距离仍不变.若在某一步,第i类和第j类合并成第r类,则新类其它旧类之间的距离公式为drk=max{dik,djk},(k≠i,j),其中dik,djk分别表示新类中所包含的第i类和第j类与没有被合并到新类中的某个k类的类之间的距离.
2 实例分析
2.1 确立数学建模能力评价指标体系
建立科学准确的评价指标体系,是评价工作最基本、最关键的一步,必须遵循一定的原则,这些原则包括:(1)具有普遍性.指建立的指标体系面向的是全体学生,因此在设计量化方案的时候,必须具有普遍性,符合学生的知识结构和认知规律.(2)具有科学性.指设立的指标体系要符合科学发展规律,反映学生的数学建模能力,指标要素之间要避免重叠,并具有整体完备性.(3)具有指导性.能正确体现教学指导思想、教学改革与发展方向,并能反映数学建模能力的正确导向作用.(4)具有可测性.要求指标可通过实际观察对事物某一方面的情况, 能加以度量并获得量化的结果.
按照上述原则,分析和吸取大多数学者的观点和共同之处, 经课题组共同讨论后,确定了以下指标体系:(1)创新能力,包括创新思维能力和创新实践能力,是对已有的知识和理论,进行不同程度的再组合、再创造,从而获得新颖、独特、有价值的新观念、新思想和新方法的能力;(2)协作能力,指能综合地运用各种交流和沟通的方法进行合作,尊重理解他人的观点与处境,评价和约束自己的行为,共同确立目标并努力去实现目标;(3)基础知识掌握程度,用数学建模选修课的分数来衡量;(4)分析解决问题能力,指能阅读、理解对问题进行陈述的材料,通过分析、比较、综合、抽象与概括,运用类比、归纳和演绎进行推理,能合乎逻辑的、准确地加以表述并解决问题.分析能力强的人,往往学术有专攻,技能有专长,在自己擅长的领域内,有着独到的见解和成就.看似非常复杂的问题,经过梳理之后,变得简单化、规律化,从而轻松求解,这就是分析解决问题的魅力;(5)计算机应用能力,指利用计算机软件的强大数据处理功能和网络巨大的信息量,通过编程和查找资料,对数学模型进行求解的能力.
最后,通过构造比较矩阵,计算比较矩阵的特征值和特征向量,并对其进行一致性检验,一致性比例指标符合要求,说明构造合理.数学建模能力评价体系如表1.
2.2 大学生数学建模能力评价
现以我校2013届学生为例,调查时抽取一定数量的学生,考察学生的五项数学建模能力,即创新能力、协作能力、基础知识掌握程度、分析解决问题能力和计算机应用能力.每项能力采取百分制记分,通过被试者做一组试题或问题解决的方式,主对学生在各组问题上的完成程度和表现出的个人能力进行量化评价,采取定性和定量相结合的方式,客观问题定量评价,主观问题由老师定性进行打分,评价数据如表2.通过spss软件得到聚类结果表3和使用平均联接的树状图表4.
2.3 评价结果分析
表2所示显示了系统聚类法的聚类结果,可以看到聚类结果分为以下几类.第一类:学生1、2、4、8、9、10、12、13、15;第二类:学生3、5、7、11、14;第三类:学生6.其中第三类学生6非常优秀,在协作能力,基础知识掌握程度,计算机应用能力方面有显著优势,具备良好的创新能力和分析解决问题能力,是数学建模的一流学员;第二类学生良好,有一定的数学基础,具备良好的创新能力和计算机应用能力.如学生7在基础知识掌握程度方面有显著优势,学生11在协作能力和分析解决问题方面表现突出,是数学建模的优势学员;第一类学生创新能力不足,思维有些僵化,虽然具备一定的建模思想,有良好的分析解决问题能力,能与人进行交流和合作,但个人素质相对平均.如学生1、2、12、13对数学建模的思路和方法还停留在简单模式中,不能多角度多侧面地看问题,没有思考和创新,不能在条件相同的情况下提出较多的观点和意见,发散思维能力较差.究其原因,是因为学生还没有从高中阶段的学习状态调整过来,思维模式单一,创新能力不够,对于数学建模的模式不习惯,这类学生对数学建模有一定的兴趣,但能力不够,需要多加培养,是数学建模的潜在学员.
3 结束语
本文运用层次聚类法对大学生数学建模能力进行评价,力求评价更具科学性,为数学建模人才的选拔提供参考.与其它评价方法相比,本方法具有以下优点:(1)融合了定性分析和定量分析的双重优势;(2)操作简单,只需输入数据即可得出结果.(3)评价体系适用面广,方法具有普遍性,可作为学院内部选拔学生,也可作学院之间的比较,聚类结果科学合理,较符合实际.评价结果表明,该模型可以科学公正客观的评价大学生数学建模能力,使学生了解自己的实际水平,找到自己的优势和劣势,既可以对学生个人发展提供改进措施和努力方向,又能为教育科研工作者开展数学建模教育和辅导提供更全面具体的指导,有助于教育研究机构对大学生数学建模能力的调查和研究,为数学建模竞赛选拔更优秀的人才.
参考文献:
〔1〕朱建青,谷建胜.数学建模能力与大学生综合素质的培养[J].大学数学,2013,29(6):83-86.
〔2〕郎淑雷.关于提高学生数学建模能力的思考[J].中国科技信息,2007(24):243.
〔3〕刘大本.浅谈学生数学建模能力的培养[J],江西教育,2006(22):34.
〔4〕张明成,沙旭东,张鑫.专科学生数学建模能力的分析及评价研究[J].淄博师专学报,2009(4):60-64.
〔5〕刘贵龙.模糊聚类分析在文本分类中的应用[J].计算机工程与应用,2003,12(6):17-23.
关键词:高等数学 教学改革 数学建模
首先我谈一下数学建模在高等数学教学中的重要作用:
一、数学建模融入数学教学中可激发学生学习数学的兴趣
由于数学建模是社会生产实践、医学领域、经济领域等生活当中的实际问题经过适当的简化、抽象而形成的某种数学结构或几何问题,它体现了数学应用的广泛性,所以老师在教学过程中利用所学的数学知识引导学生积极参与到数学建模实例中,可以使学生感受到数学的生机与活力,感受到数学的无处不在,感受到数学思想方法的无所不能,同时也体会到学习高等数学的重要性。如我们在高等数学中极限的章节里的讨价还价问题、经济数学中的边际分析与弹性分析问题、各种教材中提到的函数极值问题的实际应用的例子,实际上都是数学建模的问题。数学建模融入数学中教学可以充分调动了学生应用数学知识分析和解决实际问题的积极性和主动性,学生充满了把数学知识和方法应用到实际问题之中去的渴望,把以往教学中常见的"要我学"真正的变成了"我要学",从而激发了学生学习数学的兴趣和热情。
二、数学建模融入数学教学中可培养学生的创新能力
开展数学建模教学可以培养学生多方面的能力:①培养学生综合应用数学知识及方法进行分析、推理、计算的能力。在数学建模过程中需要反复应用数学知识与数学思想方法对实际问题进行分析、推理和计算,才能得出解决实际问题的最佳数学模型,寻找出该模型的最优解。所以在建模过程中可使学生这方面的能力大大提高。②培养学生的创造能力、联想能力、洞察能力以及数学语言的表达能力。由于数学建模没有统一的标准答案,方法也是灵活多样的,学生针对同一问题可从不同的角度、利用不同的数学方法去解决,最终寻找一个最优的方法,得到一个相对来说最佳的模型,所以有利于发挥学生的创造能力。而对一个实际问题在建模过程中能否把握其本质,抽象概括出数学模型,将实际问题转变成数学问题,需要敏锐的洞察力和数学语言的表达能力。另外,不同的实际问题,在同一知识水平下可以建立相同或相似的数学模型来解决。这需要学生在建模时能够做到触类旁通,充分发挥联想能力。数学建模的过程是发挥学生联想、洞察、创造能力的过程,同时也是将实际问题用数学语言表述的过程。③培养学生团结合作精神,交流、表达的能力。建模过程中学生每人的思想必须通过交流才能达成一致,其结果还要用语言表达清楚。好的想法、大胆的创新,如果不表达出来是不会被人们所理解和接受的。
三、数学建模思想融入教学的途经
数学建模思想可以在概念的讲授中渗透;数学建模思想可以在定理的证明中渗透;数学建模思想可以在作业的布置中渗透;数学建模思想可以在考试中渗透;数学建模思想还可以在习题中渗透给学生,习题课是教学环节中不可缺少的一部分。通过老师的讲解,使学生对所学知识得以巩固,提高解题能力。在传统的的习题课中我们只讲解教材上提到的一些习题,涉及到应用的问题很少,有也是答案和结果确定的一些问题。这很大程度上遏制了学生创新能力的发展。为此,我们应该选一些好的、能解决实际问题的案例,启发学生自己发现问题并用已有的知识解决实际问题。这样学生不仅可以掌握数学建模的思想而且可以巩固所学的知识。我们可以对某些例题、习题进行改编成应用问题:也可以有选择性地补充一些与所讲内容相关的数学建模问题,提高学生学习数学的积极主动性。
高等数学的作用表现在为各专业后续课程的学习提供必要的数学知识,培养各专业学生的数学思想与数学修养,全面提高大学生的创新思维和应用能力。只有把数学建模思想融入数学教学中,才能调动学生学习数学的积极性,培养学生的创新能力,才能实现提高学生综合分析问题的能力和实现使用现有数学知识能力的最终目标。
参考文献:
【1】刘来福、曾文艺编著 《数学模型与数学建模》
北京师范大学出版社
【2】韩中庚编著 《数学建模方法及应用》
关键词:财务建模 财务建模能力 实证研究 研究性教学 课程建设
笔者多年来从事财务建模研究和教学的过程中,深感实践中对财务建模技能的迫切需求以及现有大学生甚至研究生财务建模能力的缺失。因此,本文欲探讨如何提高大学生财务建模能力的问题。
一、什么是财务建模
财务建模是用数学术语或者计算机语言建立起来的表达财务问题各种变量之间关系的学科。在该定义中,财务建模不仅包括财务问题的数学建模,也包括计算机建模。所谓数学建模就是把一个称为原型的实际问题进行数学上的抽象,在做出了一系列的合理假设以后,将原型用一个或者一组数学方程来表示。所谓计算机建模是将一个复杂的财务问题用计算机模拟,从而了解和掌握它的内在规律,预测它的未来发展(段新生,2008)。
财务建模的研究在财务理论研究和实际问题的解决方面具有非常重要的意义。
首先,财务建模在财务理论研究中占有非常重要的地位。从理论上深入研究如何建立财务模型不仅可以追溯前人科学研究的足迹,而且可以为财务理论研究提供很好的方法论基础。财务建模对推动会计和财务理论的发展将起到不可忽视的作用。
另外,财务建模着力于用定量的方法刻画和解决实际问题。财务建模不仅可以用于验证已有理论的观点和方法的正确性和严密性,同时也可以成为新理论诞生的土壤、契机和工具。
财务建模不仅有助于财务理论的发展,而且有助于实际问题的解决。特别是,在新会计准则财务与会计日益融合的前提下,财务建模对会计人员更好地处理会计事务具有非常重要的意义。因此,财务建模是财务会计人员必备的一项技能。财会人员在大学学习期间应该学习、培养并努力掌握此项技能。
财务建模的理论基础包括数学、统计学、经济学、财务管理学、金融学、会计学、计算机程序设计等(段新生,2009)。财务建模的方法有数学中的逻辑演绎法,统计学中的统计分析法以及计算机模拟法等。因此,财务建模能力体现的是学生综合运用各学科知识的能力,是学生综合素质能力的集中体现。
二、财务建模能力
财务建模能力具体应包括以下几方面的能力。(1)逻辑推理能力。是从事一切工作所必备的能力,是学生应该掌握的最基本技能。(2)数学应用能力。财务建模首先考虑用数学语言对财务变量之间的关系进行表达,因此数学应用的能力应为财务建模的基本能力。(3)计算机应用能力。对于不能用数学语言表达的财务变量之间的关系,如果我们能够用计算机模拟的方法找到它们之间相互影响的规律,那么对于变量之间的关系也会有一定的认识。因此计算机应用能力也应成为财务建模的一项基本能力。(4)统计分析能力。财务变量之间的关系可能表现为确定的函数关系,也可能表现为不确定的随机关系(段新生,2007)。随机关系需要根据统计学的理论予以建立,因此统计建模是财务建模中很重要的内容,而统计分析也是财务建模的一项重要技能。(5)实证研究能力。实证研究是当今会计研究最重要的方法。实证研究不仅可以验证已有理论的正确性和有效性,而且可能发现变量之间新的关系。因此实证研究也是财务建模的方法之一。甚至有文献认为,财务建模本身就是一种实证研究(段新生,2008)。因此实证研究能力应为财务建模的一项重要能力。(6)实践创新能力。财务建模不仅可以用来验证已有理论的正确性和有效性,而且可能发现新的理论。因此善于思考,勇于创新应该是财务建模要培养的一项重要能力。
三、会计专业学生财务建模能力的提升方法与路径
以下将以会计专业学生为例探讨大学生财务建模能力的提升方法与可能路径。
(一)课程建设
本文认为,为了提升大学生财务建模的能力,首先应该在课程设置上尽量开设一些有利于财务建模能力培养的课程。例如,以下课程对于提高财务建模能力是必不可少的。(1)基础性数学课程,如:微积分、线性代数、概率论与数理统计等。这些课程对培养学生逻辑推理能力以及数学应用能力的提高具有非常重要的作用。(2)与计算机理论与操作有关的课程,如:Excell应用、MATLAB应用、数据库编程、XML标记语言等。这些课程对培养学生计算机应用的能力有至关重要的作用。(3)与会计信息化有关的课程,如:计算机会计(会计信息系统)、会计软件应用、XBRL财务报告等。这些课程对于培养会计专业学生的计算机应用以及财务数据处理与应用能力具有直接的作用。(4)与实证研究有关的课程,如:统计分析软件、计量经济学等。这是做实证研究必须用到的理论和工具,因此为了提高实证研究的技能学生必须掌握这样的课程。
(二)课堂训练
参考文献2提出了实证研究的一种学习和教学方法,称为研究性教学方法和研究性学习方法(段新生,2010)。该法让学生通过文献查找、文献阅读、数据收集、数据处理与分析、结果再现与对比、演讲与讨论、结果点评与总结等七个步骤完成文献研究与实证结果再现的研究性学习,达到掌握实证研究的方法和实证论文写作的目的。这一方法既可以提高学生文献检索、文献阅读和文献理解的能力,还可以了解财务、会计领域实证研究的最新进展,掌握实证研究的基本理论和方法。另外,通过这一训练,不仅提高了学生的逻辑推理和统计分析的能力,而且也激发了学生的研究潜能,培养了他们的创新能力。
本文认为,研究性教学法和研究性学习法可以用于各门课程的课堂教学中。通过这种方法的使用,学生可以积极参与到课堂教学中,变被动式学习为主动式学习。
(三)课外活动
学生可以尽可能多的参加一些课外活动以提高自己的财务建模能力。学校可以为学生参加课外活动提供一些机会和组织保证。全国大学生数学建模竞赛就是一个很好的活动,建议大学生都能参加。全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2012 年,来自全国33个省、市、自治区(包括香港和澳门特区)及新加坡的1 284所院校、21 219个队(其中本科组17 741队、专科组3 478队)、63 600多名大学生报名参加本项竞赛(全国大学生数学建模竞赛官网,2013)。本文认为参加数学建模大赛不仅可以扩展知识面,增加同学之间的交流,而且可以促进大学生数学应用、逻辑推理以及创新能力的提高。学校应鼓励尽可能多的学生多参加这样的课外活动。
(四)课外研究
鼓励学生尽可能多的参加教师的各项学术研究活动,充分利用一切机会和资源使学生尽早培养和提高自己的学术研究能力。学术研究能力的提高也同时意味着财务建模能力的提高,为将来学生走入社会奠定很好的基础。参加学术研究活动更可以提升学生脚踏实地、勇于创新的品质和能力。
四、总结
首先,本文提出了大学生财务建模能力应包括逻辑推理能力、数学应用能力、计算机应用能力、实证研究能力、创新能力等五个方面的能力,因此要探讨大学生财务建模能力的提高可从这五个方面入手。
其次,本文探讨了大学生财务建模能力的提升方法与可能路径,提出了在课程建设、课堂训练、课外活动以及课外研究等方面的一些建议和措施。其中,在课程建设方面,数学类、计算机类、会计信息化类以及实证研究类课程是提高财务建模能力必开的课程;在课堂训练方面,本文提倡使用研究性教学和研究性学习的方法;在课外活动方面,大学生数学建模大赛是提高学生逻辑推理以及数学建模能力的很好的课外活动;最后,鼓励大学生尽可能多的参加教师的学术研究课题以提高自身的学术研究能力。
本文研究对于高等财经院校学科专业建设、人才培养方案的制定以及人才培养模式的改革具有一定的参考意义。J
(注:本文系首都经济贸易大学2012教改项目“大学生财务建模能力的培养与提升研究”的阶段性成果)
参考文献:
1.段新生.MATLAB财务建模与分析[M].北京:中国金融出版社,2007.
2.段新生.文献研究与实证结果再现――实证研究的研究性教学与研究性学习[J].财会月刊,2010,(3).
3.段新生.试论财务建模的理论、方法和工具[J].中国管理信息化,2009,(22).