前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高分子材料的力学性能主题范文,仅供参考,欢迎阅读并收藏。
关键词:导热填料;热导率;绝缘高分子材料;应用
填充型导热绝缘高分子材料通常就是在普通的绝缘高分子材料当中加入适量的导热填料,借助导热填料之间相互的作用在体系当中会形成与网状或者是链状导热网对其导热的性能进行有效的改进和完善,这种材料在材料合成和加工的过程中会改变分子和链节结构,从而获得导热分子结构,当前,国外的高导热绝缘高分子下料主要是填充型的材料,能够有效的提高绝缘系统自身的导热性能。
1 氮化物填料极其应用分析
氮化物填料中主要由氮化铝、氮化硼和氮化硅等物质,这种物质自身具有非常高的导热率,同时,其还具备非常强的点绝缘性能,和耐高温的特性,所以这种材料也得到了十分广泛的应用。氮化铝通常是以四面体为单位结构所构成的共价键化合物,其自身具备六方晶体,此外在导热系数方面也相对较高,是一种白色或者是灰白色的晶体,这种材料本身具有非常好的力学性能,介电性能下降也不是非常的明显,此外氮化铝在吸潮之后会和水发生分解反应,水解所产生的氢氧化铝会使得导热通路出现中断的问题,这样也就对声子的传递构成了一定不利的影响,所以产品自身的导热率比较低。如果只是采用氮化铝完成填充过程,就能够体现出非常高的导热率,但是体系粘度会呈显著的上升的趋势,这样一来也对其推广和应用产生了较为不利的影响。
氮化硼在结构上是一种六方晶系的层状结构,其在结构上和石墨有着非常强的相似度,热膨胀系数也不是很高,热稳定性很好,但是其在价格上也相对比较高,虽然热导率比较高,填充之后粘度会在短时间之内上升,这样也对材料的应用构成了一定不利的影响。
氮化硅通常就是采用人工合成的方式将硅和氮元素组合到一起的新型材料,这种材料主要有α和β两种类型的晶体,都是六方晶体的形式,因为α-Si3N4的晶体颗粒当中含有晶格应力,自由能比β相更高,因此在稳定性上并不是很好,β-Si3N4结构当中不蹲在晶格应力,所以用这种物质当作填充材料能够形成颗粒网络,这样也就使得热导率有了十分显著的提升,在这样的情况下,其也具备非常好的力学性能,在生产的过程中βSi3N4应用更为广泛。研究人员将纳米氮化硅为热导材料来制作充硅橡胶。制成的橡胶具有非常好的热导性能、物理性能和加工的性能。
2 氧化物填料应用分析
氧化物填料比较常见的有氧化铝、氧化镁、氧化锌等物质。在实际的应用中,其具有非常好的导热能力,电热绝缘的性能也得到了非常显著的改善,氧化物填料主要是采用与氮化物填料相结合的方式来完成绝缘高分子材料的填充处理,这样就可以十分有效的提升材料自身的导热效率,确保电性能具有非常强的稳定性,从而是的生产的成本降到最低的水平。
针状的氧化铝在价格上存在着非常大的优势,但是其填充量不不是很大,在液体硅胶当中,普通的针状氧化铝最大的填充量是300份,所以产品的导热效率会受到一定的限制,球形的氧化铝填充量非常大没在液体硅胶当中,其填充量能够达到600-800份,同时其所得到的产品价格要比其他的方式更高。在研究中发现,采用氧化铝当作导热填充料对环氧树脂进行填充,其填充量达到9成的时候,其所制得的多层线路印制板热导率非常高。
氧化镁的价格低,在空气中易吸潮,增粘性较强,不能大量填充,且耐酸性差,很容易被酸腐蚀,限制了其在酸性环境中的应用。研究人员以MgO(40-325目)为导热填料共混填充聚苯硫醚(PPS),发现MgO填充量为80%时,PPS复合材料的热导率达到3.4W/(m・K),并保持较好的力学性能和电绝缘性能。
氧化锌的粒径及均匀性很好,适合生产导热硅脂,但其热导率偏低,不适合生产高导热产品;质轻,增粘性较强,也不适合灌封。
3 碳化物填料及其应用
碳化物填料主要是碳化硅和碳化硼填料。碳化硅(SiC)是一种共价键很强的化合物,常见的有六方晶系的α-SiC和立方晶系的β-SiC,类似金刚石结构。碳化硅具有耐腐蚀、耐高温、强度大、导热性能良好、抗冲击等特性,同时具有热导率高、抗氧化、热稳定性好等优点,在微电子工业中常用于封装材料中。但是碳化硅在合成过程中产生的碳和石墨难以去除,导致产品纯度较低,电导率高,限制了其在绝缘性能要求高的材料中的应用;而且其密度大,在有机硅类胶中易沉淀分层。
研究人员以SiC为导热填料来填充环氧,发现纳米SiC能够促进环氧树脂的固化,SiC粒子更易在树脂体系内部形成导热通路或者导热网链,减少环氧树脂内部空隙率,提高了材料的力学及导热性能。碳化硼(B4C)是一种耐火材料和超硬材料,热导率很高,但价格昂贵,在绝缘高分子材料中应用不是很广泛。还有一些研究人员以碳化硼为导热填料来填充天然橡胶材料,发现碳化硼的加入可以提高天然橡胶的热扩散系数,且天然橡胶的热扩散系数经过老化后也有所提高。
4 混杂填料的应用
将不同种类的填料按一定比例配合使用,可以充分发挥单一填料的特点,由于混杂效应,不但可以提高热导率,还可降低成本。研究人员将BN、AlN、MgO按照3∶2∶5的比例混合,再与聚醚酮、聚酰亚胺的二甲基甲酰胺溶液共混,结果发现模塑物具有较高的导热性能。还有研究人员用不饱和聚酯、固化剂、玻璃纤维、A1N粉末、CaCO3、硅烷偶联剂等混合加工制备成满足电器.外壳使用要求的导热高分子材料,其热导率可提高到1.13W/(mK),且其力学性能也较好。研究人员将不饱和聚醋、固化剂、玻璃纤维、A1N粉末、MgO,CaCO3、硅烷偶联剂等混合,制得材料的热导率为1.13W/(mK),可用于电器设备和仪器外壳。
在导热绝缘高分子材料的成型过程中,温度、压力、时间等因素会影响体系的综合性能,因此需选择合适的工艺方法,使导热绝缘高分子材料的综合性能最优化。
结束语
当前我国的机械、电子和电气等领域都得到了高度的发展,这样一来也就给导热绝缘高分子材料提出了更为严格的要求,热导率高同时在综合性能上也有着上佳表现的导热绝缘高分子材料是未来发展的一个重要的趋势,这类材料的应用会使得我国的很多领域有更好的发展前景。
参考文献
关键词:聚苯胺 复合材料 合成方法
The Synthesis Of Polyaniline Composite Materials
LiushengCaoming
(College of Chemical Engineering and Energy; Zhengzhou University,Zhengzhou Henan China 450001)
Abstract:In recent years,polyaniline has attracted much attention because of its excellent properties. The study on its synthesis and doped mechanism is always one of the major research contents of polyanline.In this paper, the synthesis methods of polyanline composite materials are reviewed
Keywords:polyanlineComposite materialsSynthesis methods
一、引言
半导体金属氧化物传感器是目前主要的商业化的气体传感器,但在应用中存在选择性差、操作温度高、稳定性也不令人满意等问题。而以聚苯胺(PANI)为代表的导电高分子气敏材料由于价廉易得、合成和制膜工艺简单且可在常温下工作等优点,已成为研究的热点。但是纯的聚苯胺气敏材料存在选择性性差、灵敏度低以及稳定性欠佳等缺点,并且聚苯胺为共轭的刚性链结构,在有机溶剂中溶解度低、成膜性能差,不易加工成型从而阻碍了它作为气敏材料在实际中的应用。所以,为了克服纯聚苯胺的缺点,通过选择合适的通用高分子材料与聚苯胺复合,提高其灵敏度和选择性;改善材料的加工成膜性能;同时使之具有很好的稳定性,从而能够更广泛地应用于气体传感器中。
二、聚苯胺复合材料的合成
复合材料的合成方法大致可分为:共聚法、共混法、“现场”吸附聚合法以及电化学合成法四种。
1.共聚法
该法是合成包含导电共轭链段的接枝或嵌段共聚物,也是获得可溶性导电高分子的一种方法。这种共聚物在溶液中因界面活性能够形成胶束,导电链段(硬段)处于核心,其含量多少决定共聚物在溶液中的凝聚性。用共聚改性的方法虽然可以在一定程度上改善聚苯胺的力学性能和加工性能,但同时使聚合物的导电性能下降,改善的效果并不明显,报道的研究成果也较少。
2.共混法
共混法又可以溶液共混法、机械共混法和乳液共混法三种。
2.1溶液共混法
溶液共混法有两种实施方法:(1)通过选用恰当的功能质子酸,使掺杂PANI与聚合物共溶于特定的有机溶剂中,通过溶液共混方法制备聚苯胺导电材料,其关键是掺杂剂和溶剂的选择。(2)将本征态聚苯胺和聚合物分别溶于有机溶剂中,按一定比例混合浇铸,得到本征态聚苯胺/聚合物薄膜,再将此薄膜浸于酸溶液中掺杂,从而得到导电复合膜。
在第一种方案中导电性能的掺杂剂功能质子酸中的功能基团、基体聚合物、溶剂、加工方法和所得共混材料的相结构的影响。第二种实施方法在酸溶液掺杂过程中,掺杂介质对掺杂效率有明显的影响。
溶液共混法分散均匀、使用方便、能够制得电导率较透明材料。但是导电聚苯胺在常用有机溶剂中溶解度小,需要耗费大量有机溶剂,容易造成环境污染。
2.2机械熔融共混法
机械共混法是制备聚合物共混材料的常用方法。将导电聚苯胺与基体聚合物同时放入混炼设备中,在熔融温度下进行混炼,即可得到聚苯胺/聚合物导电共混材料。
机械熔融加工法既可以把导电聚合物粒子分散于热塑性材料中,充分利用热塑性聚合物的加工特性,也可以用涂覆有导电聚合物的热塑性材料颗粒热压加工。基体聚合物、掺杂剂、温度和加工方法的选择,都会影响所得导电材料的性能。
2.3乳液共混法
乳液共混法有两种实施方法:一种是原位乳液聚合法,即用溶剂将聚合物树脂溶解后,加入表面活性剂制成乳液,再进行苯胺的聚合;另一种是两步法,即先制备PANI胶乳,再与基体聚合物的溶液或乳液共混。
两步法中,PANI胶乳的稳定是技术的关键,只有在稳定的胶乳体系中,才可以获得性能均一的共混材料。目前多是采用PANI-DBSA胶乳体系,胶乳中PANI粒径是纳米级的,在适当的DBSA存在下,胶乳体系是稳定的,其分散程度和稳定程度,随DBSA含量的增加而增加。其中一些DBSA是掺杂剂,过量的DBSA则充当表面活性剂。来保持体系稳定。甚至当PANI乳液与聚合物的溶液或乳液混合后,无须添加任何添加剂,所得分散体系也是稳定的。
乳液聚合对聚苯胺溶解性的改善得益于聚合过程中使用的乳化剂,乳化剂往往是大分子功能质子酸,不仅具有乳化作用,而且对生成的聚苯胺分子能进行有效的掺杂,起到模板或立体稳定剂的作用。
3.“现场”吸附聚合法
该方法是将苯胺单体吸附在非导电聚合物基材上,通过引发聚合苯胺单体在基材表面形成导电薄膜,从而获得功能性聚苯胺复合材料。例如,将纤维、纺织品、塑料等基材浸在新配制的过硫酸铵与苯胺的酸性水溶液混合物中,使苯胺在基材的表面发生氧化聚合反应,聚苯胺可均匀地“沉积”在基材表面,形成良好的致密膜,以制成导电材料。
复合材料的力学性能以及热力学性能主要由基材性能决定,这就为根据实际需要合成出具有不同热、力学性能的聚苯胺复合材料提供了可能。
4.电化学合成法
电化学方法通常用来制备膜制品。其方式有两种:一种是二段法,即在电解质溶液中,在预先覆有绝缘高分子膜的电极上电解聚苯胺单体。第二种是一段法,即将聚苯胺单体、支撑高分子一起溶于电解液中,一次电解得到所需复合膜。用电化学制备复合膜,不仅可以避免使用强烈的氧化剂和有害的掺杂剂,而且可以控制其膜结构。
三、结束语
近年来随着气体传感器的广泛应用和气敏元件性能的需求,聚苯胺已成为一种新兴的导电高分子材料而受到广大科研工作者的青睐。虽然聚苯胺的基础研究和掺杂机理的研究已经取得一定的成果,但是仍有很多问题亟待解决:聚苯胺的复合机制、导电机制以及进一步提高聚苯胺的性能。所以对聚苯胺这个新兴的导电高分子材料,仍需科研工作者投入大量精力去研究!
参考文献:
[1]Ester Segal,RozaTchoudakov,MosheNarkis,ArnonSiegmanm,YenWei. Polystyrene/polyaniline nanoblends for sensing of aliphatic alcohols[J] .Sensors and Actuators B,2005(104):140-150.
[2]谢丹,蒋亚东,李丹等.聚苯胺基LB膜的制备及气敏特性的研究[J].高分子学报,200(2):224-227.
[3]邓建国,王建华,龙新平等.聚苯胺复合材研究进展[J].高分子通报,2002(3):33-37.
[4]时会文,曾幸荣,杨卫.可加工导电高分子材料的研究进展[J].合成树脂及塑料,1995,12(4):46-50.
[5]宣兆龙,张倩.导电聚苯胺的改性技术研究现状[J].材料科学与工程学报,2004,22(1):150-153.
[6]马永梅,谭晓明,谢洪泉.聚苯胺导电复合材料制备的若干进展[J].材料导报,1998,12(4):65-68.
[7]闾兴圣,王庚超.聚苯胺/聚合物导电材料研究进展[J].功能高分子学报,2003,16(1):107-112.
关键词:高分子材料;加工;形态控制
一、引言
高分子材料的性能与大分子的化学与链结构有着密切的关联,且材料形态也是重要影响因素之一。聚合物氛围结晶、取向等几种形态,多相聚合物择优扩相形态。聚合物制品形态的形成源自于加工中复杂的温度场与外力场作用。由此可见,关于加工过程中高分子材料形态控制具有重要的研究意义。
二、我国高分子材料加工中形态控制研究现状
高分子材料形态与物理力学性能之间的关联十分紧密,这也是高分子材料的重点研究课题。相较于其他材料,高分子材料具有非常复杂的形态,具体表现为高分子链的拓扑结构、共聚构型以及刚柔性非常复杂,在分子设计与结构调整中,可以对一些合成方法加以运用;其次,在高分子长链结构的影响下,其熔体的粘弹性非常突出;此外,高分子具有非常宽的弛豫时间,就是受到很小的应变作用,其产生的非线也会非常强烈。
对于聚合物的成型过程而言,在非等温场、不同强度的剪切与拉伸场的影响之下,就分子尺度而言,其大分子链会发生一系列化学反应;就纳米与亚微米尺度而言,大分子会有结晶与取向现象发生,如此一来就会有超分子结构的形成;而根据亚微米与微米尺度,多相聚合物会有不同相形态的形成,甚至会出现一些缺陷。而这些形态的影响因素非常广泛,例如加工中的外场强弱、作用频率、作用方式以及时间等。然而,现阶段关于这些问题的研究虽然有所深入,但相应的理论体系尚未成熟。此外,随着新聚合物的开发不断深入,在高分子材料加工中涌现出越来越多的成型加工方法,显然这使聚合物加工中的形态控制成为了一个长期的研究课题,对于高分子物理领域的发展无疑有着重要的影响。
在我国,关于新材料的研究起步以跟踪模仿为主,在知识产权与创新理论方面有所欠缺,并且基础研究与技术推广的通畅性也有待提升。其次,相关人员并不重视传统材料的升级与优化,很多高性能材料品种对进口的依赖性依然较强。再者,材料成型与加工设备也没有得到应有的关注,与一些发达国家相比,我国材料研究与整体发展依然存在诸多不足,显然这与国民经济与设备的发展需求不相适应。
聚合物的性能取决于形态,因此,在高分子材料领域中,聚合物形态与性能关系的研究一直以来都受到高度重视,然而在实践中,我们在二者之间的结合方面的研究上依然有所欠缺,具体可以从以下几个方面得到体现:
第一,在剪切速率与剪切应力非常低的情况下,聚合物共混物相形态的演化研究不断深入,然而在实践中,一些主要聚合物成型加工的剪切速率主要在10?~104s-1范围内,显而易见,相关研究成果对实际生产的指导作用依然有所欠缺。
第二,基于不同条件的不同特性聚合物,其共混物形态发展与演化研究依然是主要研究内容,而形态与性能关系的研究依然有所欠缺。
第三,在加工过程中,受到部分特殊外场的作用,聚合物凝聚态结构与相形态结构的研究有待深入。
截至今日,在聚合物及其复合物的成型加工中,就算成型设备与工艺条件属于常规,在外场作用下,人们依然没有彻底了解结构形态受到的影响,仅仅对一些粗略的定性关系有所认识,甚至有的推断还是错误的。以双螺杆挤出过程为例,人们仅对不同螺杆原件组合下外力场作用的不同会改变温度场,进而对产品产量、外观与内在性能产生影响这一规律有所了解。然而这一影响的具体方式却没有清楚的认识,业界研究人员也无法制定出定量的指导方案。在管材生产中,不管是落锤冲击不达标,还是纵向收缩产生波动,都没有搞清楚原因,也无法拿出改进方案,大部分情况下都是凭借经验进行处理。因此,现阶段很多成型设备与工艺控制的效果是否取得理想效果,我们依然难以准确判定。
一直以来,关于生产实践中的问题研究一直没有得到基础工作研究人员的关注。在成型设备与工艺技术的研究与开发中,相关规划也缺乏系统性。现阶段,我国塑料制品年产量超过了2200万吨,塑料机械工业取得了迅猛发展。然而在很多企业生产实践中,整个效率与质量依然有待提升,产生的能耗也没有得到有效控制。鉴于此,高分子材料成型加工将会成为未来高分子材料领域的研究重点,必须将侧重点放在高分子材料制品的研究上来,而不是过分的关注材料这一因素,只有如此,才能够提高高分子材料志制品质量。
三、高分子材料加工中形态控制的研究趋势
第一,基于常规的成型设备条件,聚合物及其复合物典型制品成型或型材生产在成型加工时,在设备与工艺条件改变的情况下,其形成的外场会有所差异,进而发生相应变化,例如塑化、结晶、赋型以及流动等,这些变化会改变制品形态、结构以及性能。
第二,极端的加工条件极端会改变聚合物及其复合物的形态结构变化规律,例如结晶结构、晶体大小等,在这类条件下,还需要尽可能对大尺寸高分子晶体的制备进行探究。
第三,在对新外场条件的分析、推断以及设定之下,通过对聚合物及其复合物结构形态与性能受到的影响研究,才能够围绕新的成型方法或具有特殊性能的高分子材料的制备进行探索,进而实现高分子材料性能的改善,并将节能性、经济性等方面的优势充分发挥出来。
四、结束语
总而言之,在未来工业领域的发展中,高分子材料的应用具有重要意义,而高分子材料加工中的形态控制则成为发展高分子技术的关键。作为相关研究人员,必须结合高分子材料加工中的形态控制研究与实践中存在的问题,采取相应的改进与优化对策,提高高分子加工整体水平,如此才能够从真正意义上推动我国高分子材料加工领域的进步。
参考文献:
[1]李忠明,马劲.加工过程中高分子材料形态控制的研究进展[J].中国科学基金,2004,18(3):154-157.
[2]李又兵,申开智.形态控制技术获取自增强制件研究[J].高分子材料科学与工程,2007,23(1):24-27.
【关键词】高分子材料;废旧塑料;建筑材料;回收应用
以塑料、纤维、橡胶为主体的高分子材料在我们的生活当中随处可见,高分子材料与我们的生活息息相关,我们的生活与高分子联系也越来越紧密。随着社会和科学技术的飞速发展及人们消费习惯的改变,人们使用的高分子材料数量也迅速增加,由于通常高分子材料的使用寿命比较短,所以废旧高分子材料的数量也大量增加。由于大量的废旧高分子材料不能在大自然中自然降解,已经成为环境污染的一个重要来源。
日常生活中用量最大的热塑性高聚物聚乙烯(PE)、聚丙烯(PP),聚氯乙烯(PVC)、聚苯乙烯(PS)等树脂制品的消费量达1135万t/年。据调查,每年产生废弃物数量巨大,美国1800万t,日本488万t,西欧1140万t,我国也有90万t。
目前,废旧高分子材料的处理方式主要是焚烧、填埋以及回收再利用。回收循环利用高分子材料主要有两种,一是物理循环技术,物理回收循环利用技术主要是指简单再生利用和复合再生利用,回收废旧塑料制品经过分类、清洗、破碎、造粒进行成型加工。这类再生利用的工艺路线比较简单,生产量巨大,但再生制品的性能欠佳,一般制作档次较低的塑料制品。二是化学循环利用,通过对回收的高分子废旧材料的化学改性,生产达到同类或异类使用要求的产品。化学循环再生材料生产工艺复杂,投资高,产品改性彻底,但产量低,对回收高分子材料要求也高。
我国处理废弃的高分子材料的技术还是比较落后,大部分只是较简单地单纯再生及复合再生。大批量的废弃高分子材料都变成为垃圾,大量的废旧高分子材料已经严重影响了我们的日常生活如:分散在土壤中塑料地膜,易使土质板结,影响农作物对氧、空气、水分、光的吸收;地面上飞散的薄膜碎片易引起火灾、污染环境;部分废旧高分子材料在降解中释放对人体有害的气体及毒素。如何处理这些废旧的塑料、纤维、橡胶等已经成为一个日益迫切的环境和经济问题。
在我国,高分子材料使用量大,生产量也大,当然废旧高分子材料数量也巨大。建筑材料在我国的使用量巨大,如果这方面技术开发与应用得当,那么将是改善我国在高分子材料处理问题上的一条重要途径。
据统计,美国在20世纪末废旧塑料回收率达35%以上,废旧塑料品种的比例约为:包装制品占50%,建筑材料占18%,消费品占11%,汽车配件占5%,电子电气制品占3%。我国废旧塑料的回收率在20%左右,建筑材料占的比例更小。我国废旧塑料在建筑材料中的开发利用技术水平还比较低,还有广阔前景。
随着国家有关禁止使用粘土砖禁令的公布,开发使用新型墙体材料已经成为一种必然趋势,同时回收利用废旧高分子材料技术的发展,为废旧高分子材料复合成新型墙体材料提供了强有力的支持。目前已有许多这类技术发展相当成熟,并用于实际的生产当中。
英国威尔士Affresol公司开发出一种建造低碳住房(如下图)工艺,采用包装物废弃料和加工废料等再生废旧塑料及矿产品作为原材料,而且价格合理。每一座房屋约消耗18吨本应进行填埋的材料。
第一座这样的积木式房屋已被英国一家室内供暖和热水系统生产商伍斯特博世公司订购,房屋座落于英国伍斯特郡Warndon的工厂内。伍斯特博世公司向Affresol公司提供利用再生加热器回收的废旧塑料,将保证伍斯特博世公司实现零废料排放的计划。
(1)玻璃与塑料复合而成的样品砖
由塑料,玻璃复合而成的样品砖已经研制出来,在国外已经得到了较广泛的应用。其中塑料组分包括聚乙烯,聚丙烯,聚苯乙烯,聚氯乙烯以及ABS,相同的粒径形态,较窄的尺寸范围和尺寸分布与近似尺寸的棕色玻璃混合成玻璃塑料复合材料,其中玻璃的质量百分比根据不同的性能要求可为15%、,30%、45%。这种材料能在235℃模压成标准的粘土砖形状。当温度在20~50℃范围变化时,经过抗压实验,发现其断裂应力是普通粘土砖的两倍多。制备这种试样时所要求的塑料不需要区分热塑性和热固性,因此它的原料来源相当广泛。
(2)废旧塑料PVC做建筑线槽
在建筑施工中常使用玻璃条、有机玻璃条、橡胶、塑料条作为房屋施工用的分割线条和避水线条。这些材料的共同缺点是价格高,合肥华风改性塑料公司,使用塑料改性新配方,新技术开发出一系列用于建筑建材行业的改性废塑PVC线槽。不仅质量好,工人使用方便,产品有不同规格型号,更重要的是这种材料价格大幅度下降。
其工艺流程:
(3)利用废旧塑料和粉煤灰制建筑用瓦
哈尔滨工业大学的张志梅等研究了利用废旧塑料和粉煤灰制建筑用瓦的工艺方法和条件,用废旧塑料粉煤灰制成的建筑用瓦在性能上,完全可以满足普通建筑的要求。这种建筑用瓦的研制成功,不仅可以降低成本,还是消除“白色污染”的一种积极方法。
其工艺流程:
(4)利用废泡沫生产新型保温砖
青岛裕泰化工科技有限公司利用废泡沫具有优良的保温性能的特点,废物利用,再采用价格低来源广的化工原料,将废泡沫二次成形,研究成功了造价低廉、防火性好、保温性能优良的新型保温砖。
经测试,这种新型保温砖导热系数小于0.06W/m.K,优于0.09W/m.K的国家标准,含水率小于8%,密度小于225kg/m3,抗压强度大于0.21MPa,且耐候性强,适合国内不同气候的各地区使用,取代传统珍珠岩或煤渣等保温材料。
(5)废弃聚酯做改性水泥砂浆
聚合物改性水泥砂浆(以下简称PMC)在耐腐蚀性能、固化时间及某些力学性能方面大大优于传统硅酸盐水泥砂浆。在许多情况下,聚合物的独特性质使其在混凝土结构修补与保护中起到传统材料无法替代的作用,既可节省大量建筑物修补资金,又加快了施工速度。但是PMC的价格昂贵,尚未被广泛使用。
同济大学程为庄等用废弃的聚酯饮料瓶为原料,通过醇解、缩聚来获得再生型不饱和聚酯,继而开发出一种低成本、新型的“绿色”合物改性水泥砂浆,其价格适中,性能优良,既达到环境保护的目的,又可为扩大PMC的应用范围开辟新路。
【参考文献】
1.1双体复合材料双体复合材料可以通过工业处理将纳米粒子均匀的分散到二维薄膜材料中,粒子在弥散过程中会产生均匀或不均匀两种分布状态,这两种分布状态的复合结构都具有一定的稳定性。均匀和非均匀弥散状态的薄膜基体表现出的层状结构具有明显的差异性,纳米粒子分散混乱的材料的构成层级种类很多,分散有序、均匀的材料层级种类较少。1.2 多体复合材料多体复合材料可以通过工业处理将纳米粒子均匀的分散到三维固体中,纳米粒子会通过外力作用,深入固体组织结构,改变其分子集团的分布情况,进而影响三维固体的物理性能和化学性能。多体复合材料的应用前景非常好,是当今纳米材料科研工作者研究的重点问题。
2纳米复合材料发展趋势分析
2.1纳米复合涂层材料纳米复合涂层材料的化学性质稳定,并且柔韧性好、硬度高、耐腐蚀性强,在工程材料表面涂抹这种防护材料不仅可以防止工程材料的破损,还能增加工程材料的防护功能。随着现代工业技术的发展,复合涂层材料得到了显著发展,单一纳米结构逐渐转变为多层纳米结构。美国著名纳米工程材料研究专家普修斯于2012年成功研制出了复合涂层纳米材料,这类纳米材料的抗氧化性能非常好,可以在高温条件下保持不褪色、不热化。对其材料进行强度检测可发现,该材料的涂层硬度高达20.SGpa,是碳钢强度的35倍。具体工艺流程如下:首先,用激光蒸发法去除钢表面的纳米结构,将金刚石纳米粒子涂抹在钢表面;之后,重复上述工艺步骤,在钢表面上涂抹两层金刚石纳米粒子;最后,在高温条件下对钢表面材料进行挤压复合。经过多次挤压,纳米复合涂层材料就此形成,经过加工,钢材料的硬度提高了23.4倍。2.2 高力学性能材料高力学性能是突出材料的强度、硬度等物理性能,工程材料经过力学改性之后,其物理性质会发生翻天覆地的变化。对原始材料进行改性实验虽然在一定程度可以提高材料的某些力学性能,但这种性能的提升具有很强的局限性,并不能真实的体现出材料的力学极限。经过纳米复合材料改性,高力学性能材料得到了非常显著的研究成果。高力学性能材料发展趋势,主要表现在以下几个方面:(1)高强度合金。采用晶化法可以大大提升纳米复合合金材料的力学性能,对金属进行纳米复合实验,可以将材料转变成复合型纳米金属,如将铝进行纳米复合实验,铝会转化为过度族金属,这种金属结构的延展性和强度非常高。(2)陶瓷增韧。纳米粒径很小,所以纳米粒子很容易就可渗透到细小分子结构中,粘合关联性并不紧密的各分子基团。在陶瓷增韧领域纳米复合材料起到了很好的促进作用,在碳化硅粉末中加入粒径为10μm的碳化硅粗粉,在高温高压条件下进行合成,合成之后碳化硅的物理性质会发生很大的改变,煅烧后的陶瓷材料的柔韧性明显增强了,断裂韧性提高了34.23%。2.3 高分子基纳米复合材料高分子材料近几年在我国工业领域应用十分广泛,高分子材料的物理性能稳定且可塑性好,所以在装饰行业中的发展前景非常广阔。采用纳米复合方式结合高分子基是我国纳米工程材料正在研究探讨的重要课题,目前我国科研专家已初步完成了部分高分子基纳米复合材料的研制工作。具体表现在:将铁和铜粉末按照4:5的比例进行研磨,研磨均匀后用高粒子显微仪器提取铁铜合金粉体,通过显微镜观察可知这种粉体的晶体结构稳定,晶粒间的距离很短。这种粉体和环氧树脂基团进行复合实验可以研制出高强度的金刚石材料,并且其材料还具有很强的静电屏蔽性能。2.4 磁性材料磁性材料是我国工业材料中研究难度最大的课题之一,因为磁性材料的电磁环境不好判断,所以在应用时经常会遇到复合材料因磁性过大导致使用。随着纳米复合材料的研发和投入使用,磁性材料将进入全新的发展阶段。人们在颗粒膜中发现了巨磁阻效应,纳米粒子在空间流动会被周围磁场带入顺磁基体当中,空间中的铜、铁、镍等磁性粒子都会附着在纳米粒子上。经过金属粒子和纳米粒子的复合,颗粒膜材料不仅会拥有强大的电磁感应,还会具有较高的耐热性能。2.5光学材料传统光学材料的综合应用能力很差,其材料的物理性能大多只能满足导电性和导热性,其硬度和稳定性都很差。纳米复合材料诞生之后,人们逐渐找到了纳米粒子的发光原理。不发光的工程材料当减小到纳米粒子大小时,其粒子周围会因光色折射产生一定的光。在可见光范围内这些粒子会不断产生新的光,虽然这些材料的纳米粒子发出的光并不明显,且稳定度也很差,但是科研专家可以从这方面入手,研究纳米复合材料的发光性能。将具有代表性的工程材料作为可发光体,并对其分子结构转化为纳米粒子大小的发光体系,探讨如何提高其发光强度、完善其结构发光性能。由此可见,纳米复合很可能为开拓新型发光材料提供了一个途径。纳米材料的光吸收和微波吸收的特性也是未来光吸收材料和微波吸收材料设计的一个重要依据。
3结语
关键词: 聚合物材料 成型加工 教学改革 课程建设
聚合物的成型加工是获取高分子材料制品、体现材料特性和开发新材料、新产品的重要手段,是高分子学科的重要组成部分,已形成独特的理论体系和技术方法[1]。因此,聚合物成型加工课程与高分子化学和高分子物理课程一起,成为高分子材料专业学生最重要的专业基础课程。为使学生以大工程的整体观来了解和掌握聚合物的成型加工,这门课程将涉及诸多内容,包括影响聚合物性能的物理化学因素、添加剂的分类和作用、配方设计方法、聚合物流变学、成型加工设备、成型工艺条件及控制等。如何使学生通过本课程的学习,具备高分子材料科学的专业知识和专业素养;培养学生解决实际问题和创新科研的能力,为以后从事高分子材料制品的研发、设计和生产工作奠定坚实的理论与实践基础,一直是广大高分子专业教师在教学过程中关注的重点[2]。这需要我们在多方面进行改革。
1.课堂教学改革
1.1明确培养目标,强化理论基础。
江苏大学高分子材料与工程专业成立于2002年,最初聚合物成型加工课程主要围绕塑料和橡胶的主要品种及其制品的生产原料、成型工艺、加工方法、材料、性能和产品质量控制等内容开展教学。我们在总结前几届毕业生从事工作的实际情况和企业对本专业毕业生在知识结构、能力要求的基础上,于2012年再次修订了本科生培养计划。本科院校需要培养既有一定理论基础,又具备较强实践能力的高素质应用型人才,这与高职类院校主要培养服务于生产一线的操作型、技能型人才不同。具体到聚合物成型加工这门与实践联系紧密的课程,在教学过程中,仍然要重视对基础理论知识的讲解,让学生不仅“知其然”,更“知其所以然”。除了高分子物理、高分子化学及聚合物流变学等聚合物成型加工的基础理论外,成型加工技术本身也存在系统的原理知识,不容忽视。教师在课程教学中应注意结合本学科前沿研究领域和最新研究动态、介绍重点科技成果,丰富和活化教学内容,使教学跟上时代的步伐,让学生能够掌握更多、更新的专业知识。
1.2围绕课程主线,精心组织教学内容。
在成型加工课程学习中,学生需要系统学习和掌握聚合物的加工流变性能、聚合物加工过程中的物理化学变化、助剂的作用及配方设计原理、各种物料的混合和分散机理,以及成型加工的设备和工艺等。与其他课程相比,聚合物成型加工的课程内容较为庞杂而分散,理论知识的半经验性较强,这给课堂教学带来了一定的困难。因此,抓住课程内容的主线,突出理论重点就显得尤为重要。
根据聚合物成型加工涉及的主体内容,本课程主要围绕“高分子材料—成型加工—制品性能”这条主线来组织教学内容。教学过程中,要着重讲明高分子材料的成型加工不是简单的工艺操作,高分子材料、成型加工、制品性能这三方面是相互关联的,制品的性能取决于高分子材料和成型加工方法及工艺的选择,而制品的性能又反过来指导聚合物的改性、应用及加工,优化成型工艺。因此,如何抓住教学主线,让学生全面掌握高分子材料、成型加工及制品性能各自特性及相互关系,使学生融会贯通、举一反三,是这门课程教学的重点。
在教学过程中,始终围绕教学主线,从高分子材料的结构与性能和材料的加工原理出发,以成型加工的工程观点为着眼点,剖析各种高分子材料成型加工的共性和区别,这样可以使原本较为分散的理论知识相对集中并系统化,让学生更为清楚地了解和掌握抽象概念和半经验理论所反映的实质问题。比如在讲解聚合物材料的压制成型时,分别介绍了适用的热固性塑料、橡胶及复合材料的特性及成型工艺性能,不同加工方法和成型工艺条件生产制品的特点及控制条件,并通过具体的例子说明了成型加工工艺与制品性能的相互关系。这样的讲解生动地体现了“高分子材料—成型加工—制品性能”这条高分子材料成型加工的主线,使教学内容由庞杂繁多变得简单易懂,通过理论结合实际,强化了学生的专业知识,教学效果良好。
1.3结合课程特征,采取灵活教学方法。
聚合物材料制品的性能既与聚合物本身的性质有关,同时又在很大程度上受到成型加工过程的影响。这其中不但涉及很多高分子化学和物理的理论问题,而且与生产实际密切相关。因此,本课程是一门理论性和实际性都很强的课程,如何在教学过程中将基础理论和生产实际结合起来,用理论知识来解释具体生产中遇到的实际问题,或以实验和实际生产中的具体例子来说明基础理论,使学生在学习过程中掌握专业知识,是本课程教学的核心问题。
因此,我们根据聚合物成型加工课程具有很强的综合性和实践性的特点,借助于江苏大学目前多数教室都安装了多媒体教学设备的优势,将图像、声音、动画和视频等各种多媒体信息引入到教学过程中,利用工厂和车间的场景图像、成型设备的实物照片、加工工艺过程的动画仿真模拟等信息对授课内容进行补充和深化。这样不但可以丰富课堂内容,增加信息量,而且可以大大加深学生对基础知识的理解和印象,使学生对成型加工原理和工艺获得理性和感性的双重认识,从而提高教学效率。
为进一步将课堂教学与实际生产结合起来,在教学中紧密贴近工厂实际,江苏大学高分子材料与工程专业专门安排了两门为期各两周的课程设计,即高分子材料生产工艺设计和聚合物反应工程及设备设计。让学生在专业教师的指导下,针对具体的通用或特种高分子材料(如聚乙烯、聚丙烯、聚氯乙烯、聚氨酯等)及其制品,设计出相关聚合物材料及其产品项目内容,包括原料品种、型号选择、工艺流程及设备确定、产品质量检测,以及厂房布局和规模,等等。通过课程设计,可以有效地让学生系统地掌握所学知识,并获得一定的灵活应用的能力,为后期的毕业设计乃至毕业后走上工作岗位打下基础。
2.实验实践教学改革
前面已经谈到,聚合物材料成型加工是一门实践性很强的专业课程,仅凭课堂教学是难以真正实现教学目标的,并且容易使学生学习时感觉枯燥,实际工作时不能学以致用。因此,这门课程的实验是不可缺少的。只有让学生在实验室和工厂中实地了解和直观认识成型设备、工艺控制和生产线管理,对聚合物成型加工的整个工艺流程进行整体和全面的认知,他们才有可能创造性地利用学习的理论知识来真正解决生产中遇到的具体问题[3]。
目前江苏大学高分子材料与工程专业建有约200m2的专业实验室,购置有注塑机、挤出成型机、高速混合机、平板硫化仪等成型加工设备,以及拉伸实验机、冲击实验仪、硬度仪、紫外老化仪、高低温实验箱等各种材料及制品性能检测仪器。利用这些仪器设备,我们围绕课程主线,将聚合物材料的制备、成型加工、结构表征及性能测试等方面有机地联系起来,开设了一系列的综合性实验。比如,在聚合物的注射模塑成型实验中,要求学生从原料的选择开始,分析原料的结构和性能特点,有针对性地设定成型加工工艺参数,并在注塑成型得到制品后,对其熔点、熔融指数、热变形温度及力学性能等进行表征和测试。通过对这些聚合物原料—成型加工工艺—制品性能数据之间关系的分析与总结,使学生形成科学研究的思路,掌握解决实际问题的方法。
此外,聚合物材料成型加工具有很强的工程应用性,需要学生建立起大工程的整体观。要达到这样的教学水平和目标,仅靠课堂的学习和实验室实验是不够的,还应该让学生到工厂、车间参观实践,实地了解成型设备、工艺控制及生产线管理等,使学生对工业化生产有具体、直观的感受。
针对这样的问题和现状,本专业积极与周边高分子材料企业加强联系和交流,目前已建成近10个实习实践基地,涉及聚合物成型加工领域的各个方面,包括模压发泡成型、压延成型、注射成型、挤出成型等。通过与这些企业的合作,学生可以现场实地对各种成型加工涉及的原料准备和处理、设备、工艺流程、质量控制等实际生产过程进行近距离的感受。在此基础上,组织学生针对成型过程中的某一感兴趣的内容,或参观实践中发现的具体问题进行资料查阅和文献调研,对涉及该内容和问题的基本原理和基础知识进行更深入的学习,在此基础上提出解决问题的思路和方案并验证。这样就使学生真正将基础理论与实际应用结合起来,掌握科研的方法,培养科学的思维,成为真正有创造力的人才。
参考文献:
[1]周达飞,唐颂超.高分子材料成型加工(第二版),北京:中国轻工业出版社,2006.
[2]李宝铭,张星,郑玉婴.高分子材料成型与加工课程建设初探,化工高等教育,2010,3:39-42.
[3]程丝,王新波.高分子材料专业聚合物加工实验的改进与探索,高校实验室工作研究,2009,2:50-51.
【关键词】教学内容 改革 材料物理与性能
1.引言
教学质量是高校赖以生存和发展的重要保证, 而加强课程教学改革, 则是提高教学质量的重要途径。近年来,以电子、生物、航天和能源等为应用对象的材料科学已经从过去的单一性金属材料、无机非金属材料和高分子材料转向以功能材料、复合材料、纳米材料等高性能、多功能为主的发展趋势, 对材料科学人才也提出了新的、更高的要求。1997 年国务院学位办颁发了新专业目录, 材料类的专业设置不再按传统分为金属材料、无机非金属材料和高分子材料,而是横向融合金属材料、无机非金属材料和高分子材料的基础理论于一体, 纵向充分强调理科与工科的结合。为满足社会对材料专业的需求,并与国内外“材料科学与工程”学科发展接轨, 北方民族大学制定了材料类专业的长期规划并制定了2008 本科专业培养方案。材料物理与性能学课程作为2008 培养方案中材料科学与工程本科生的专业基础课, 其教改方案已列入2009年宁夏高等教育教学改革项目。
本文从教材建设的意义与目标、课程教学内容改革、课程教学方法改进及教改初步成果等几个方面对材料物理与性能学课程建设思路进行阐述。
2.教材建设的意义与目标
《材料物理》是材料科学与工程、高分子材料与工程和材料成型与控制工程专业的专业基础课,其主要内容是利用物理学的一些基本概念、基本原理、基本定律来说明物质的微观结构、组织形貌、原子电子运动状况以及它们与材料性能和成分之间的关系。
对于材料专业的学生来讲,化学方面的基础知识学习得较多,包括有机化学、无机化学、分析化学和物理化学等,但物理方面的基础知识却较少涉及,只有普通物理课程,而物理本身所包含的基础知识比化学更多,例如光、电、磁、热、力、辐射等。因此,给材料专业的学生补充更多的物理知识,尤其是材料物理方面的知识非常必要。而当前材料物理教材的诸多版本多数偏重理论指导,要求学生对物理分支的知识掌握太多,这不能完全适应现行本科生教育的需求,对研究生来说相对更适合一些。个别相对合适的材料物理教材因为有些内容太深无法讲透,而有些内容又太浅,对本科生来说,作为参考书使用较为适合,这是一个方面的原因。另一方面,大多材料专业都开设了材料物理性能课程,此课程包含的材料物理的基本概念又都比较缺乏。编写这本《材料物理与性能学》教材的目的就是一方面给材料专业本科生增加一些有关材料物理的基础知识,另一方面将材料物理性能方面的内容合并到一起,减少学生的课程数目。
在教材的编写过程中,注意突出了以下几方面的特色。
(1)以实际应用实例讲解材料物理学的一些基本概念和物理效应,例如:位错的运动形式分为滑移和攀移,滑移的运动形式是像蚯蚓一样以局部带动全部进行运动;为什么钢铁进行淬火后会变硬?是因为加热加速了原子的运动,突然冷却使原子来不及运动到正常格点位置就停止了,使得原子排列紊乱,阻止了位错的滑移,所以会变硬。以这样的方式来介绍材料物理学的一些基本概念和物理效应,使学生便于理解、掌握和记忆。
(2)以实验的手段讲解各种材料的性能。如:通过拉伸实验,讲解金属材料、无机非金属材料、高分子材料的力学性能的异同等;通过对不同材料进行电阻测量,讲解如何利用电阻绘制材料的溶解度曲线,将此曲线应用到实际研究中。采用这样的方式设计实验,达到真正锻炼学生动手能力和创新能力的目的。
(3)加入现代新材料的内容,介绍其应用与发展。例如:复合材料、纳米材料、能源材料、生物材料等。
3.教材知识体系改革
根据材料相关行业发展需求进行教学知识体系的改革。目前材料科学发展的趋势是新型功能材料(特别是电子、光电子材料)、新能源材料、环境友好材料、生物活性材料的研究与开发,本课程针对材料发展的总体趋势和行业需求,结合我校2008本科生培养方案的指导思想,在设置材料的热学性能、力学性能和电学性能的基础上,设置了材料的介电性能、缺陷物理与性能、铁电物理与性能、磁性物理与性能、非晶态物理、高分子物理、薄膜物理。在内容的编写上,略去了大量的公式推导,注重基本概念、基本原理的讲解,同时,结合生产、生活和材料前沿科学研究中的实例对材料物理与性能进行阐释。
在每章的开始,教材以实际案例开篇来提高学生对本章内容的学习兴趣,如从材料的导热性角度解释“9.11事件”对纽约世贸中心造成毁灭性破坏的原因;从材料的导电性能与硅材料的薄膜化对太阳能发电在解决能源危机方面的重要地位与应用现状等导入案例。在每章的结尾,设置了拓展性内容,主要将章节内容相关的前沿科学发展现状、需要解决的关键科学问题呈现给学生,为学生在学完章节基本内容后进行深层次的思考和进一步利用所学内容阅读学科领域前沿知识提供了引导,如教材引入纳米材料(如碳纳米管)的热学、力学性能来拓展学生对纳米材料独特性质的认识;以超导材料的发展历史、研究现状、和应用(如磁悬浮列车)来引导学生对材料的导电性进行探求。
另一方面,针对我校2008本科生培养方案加强实践教学的指导思想,在内容设置上,教材还考虑通过学习基本内容的基础上,可以为本科生开设一些基础实验和创新性实验。结合本课程的学习,我院对本课程开设了材料的力学性能检测、硬度测定、材料热容的测定、材料热导率的测定、材料导电性能的测定、陶瓷热稳定性测定等基础实验,同时通过新建设的新能源、电磁学专业实验室,为学生提供创新性实验平台。
4.教学方法改革
教学过程是通过教师与学生之间的互动配合完成的,教学方法在教学活动中的作用至关重要,在《材料物理与性能学》的教学过程中,注重学生能力的培养,摒弃传统“填鸭式”灌输的教学方法,而采用“启发―引导―互动”式的教学方法,以此来实现传授知识、培养学习能力和创新能力的目的。在教学方法的改革中,采取了以下具体的教学方式
(1)采用板书与多媒体结合的方式进行知识讲解。对较为抽象的概念、模型,采用动画演示帮助学生理解,如对于位错的两种基本类型―螺型位错和刃型位错以及它们的运动方式―攀移和滑移,很难用易于理解的语言表达清楚,而采用动画演示的方式,学生很容易理解并在脑海中留下深刻的印象;如三极管的放大作用,采用动画演示即可让学生在较短时间内对其放大机理和对发射极、基极、集电极材料的不同要求了然于胸。
(2)学生讲授,集中讨论的方式。针对有些能引起学生兴趣的内容,采取学生讲授、课堂讨论的方式实现对知识的接受与消化吸收。比如关于铁电物理的内容,通过讲解基本理论,让学生通过查阅文献资料来挖掘铁电物理的知识在我们生活中的应用,而学生通过文献资料,利用磁性物理知识讲解了以“卡的世界”为题的关于存储卡的相关原理和技术前沿、利用材料的压电效应讲解了打火机的原理,这不仅加深了对知识的理解,还极大地调动起学生对铁电物理知识的兴趣。
(3)开放式作业题目。对于有些基本观点,随着科学的不断发展,可能遇到一些无法解释的现象,对此,鼓励学生通过查阅文献发现此类问题。例如,将块体材料的一些基本理论应用于纳米材料去解释其性能显然是不正确的,不同点有哪些?为什么不同?针对这些问题,让学生自己去解决,然后在作业中写出自己的观点。这样做的好处是,既启发了学生的主动性和创新思维,又防止了抄袭作业的现象发生。
5.初步成果与展望
《材料物理与性能学》课程已作为“21世纪全国高等院校材料类创新性应用人才培养规划教材”由北京大学出版社于2010年1月出版。《材料物理与性能学》课程是材料科学与工程、高分子材料与工程和材料成型与控制工程专业的专业基础课,授课学时为理论48学时,实验16学时。该教材已被东北大学、郑州轻工业学院、北方民族大学,以及江苏、湖北、浙江和山东等省的高等院校选用,受益学生3000多人,反映良好。
通过教学内容和教学方法的改革后,学生对材料专业产生了极大的兴趣,出勤率和听课率大大提高,学生对本课程的课堂听课率创历年新高接近100%,根据校教务系统所提供的学生对教师的教学评价结果表明,课堂满意度在90%以上,同时通过对材料物理与性能学课程的学习,我院学生申报创新性实验和挑战杯的数量明显增加,与往年相比,增加的项目主要来自与本课程相关的内容。
虽然,通过教改,我们在教学中取到了良好的初步成果,但对本课程的双语教学、精品课程建设的工作以及课程考核体系、质量监控等方面的创新还是今后对本课程改革的主要方面。
今后,我们通过总结《材料物理与性能学》的教学实践,搞清存在的问题,进一步明确课程定位,形成以贯彻向“宽基础、宽口径、重实践”的培养模式上转变的新课程体系。通过充实和丰富教学内容,完善和增加案例教学,制作和搜集影像资料,研究和制作优质课件,完善相关实践环节,使该课程教学做到目标明确、基础扎实、内容丰富和方法多样。
[参考文献]
[1]万红,白书欣.材料物理课程建设的思考[J].高等教育研究学报,2009,32:21-23.
关键词:新课标;教育价值;基本策略
一、高中化学新教材的价值价值取向
(一)化学与新材料、新技术。材料是当今社会三大支柱产业之一,也是人类赖以生存和发展的物质基础,是人类进步的一个重要里程碑。新教材在高一教材中介绍了高温结构陶瓷、光导纤维、C60等新型无机非金属材料;在高二教材中介绍了金属陶瓷、超导材料等金属材料,功能高分子材料、复合高分子材料等新型有机高分子材料;高三教材中氯碱工业里新型的离子交换膜等。材料是科学技术的先导,没有新材料的发展,不可能使新的科学技术成为现实生产力。通过对新材料的学习,使学生明确学习化学的目的,提高学习兴趣。
新教材在“绪言”中首先介绍中科院北京真空物理实验室研究院人员以超真空扫描隧道显微镜(STM)为手段在Si晶体表面开展原子操纵研究,取得了世界水平的成果;李远哲教授与交叉分子束方法的研究等新科技的介绍。这既是很好的爱国主义教育,又把化学科学的进步与人类物质文明、精神文明的关系讲明,使学生理解学习化学的重要性,激发学生学好化学的社会责任感。
(二)化学与能源。能源也是现代社会三大支柱产业之一。随着人类经济活动的日益增大,人们对能源的需求急剧增加。化学反应所释放的能量是现代能量的主要来源之一,研究化学反应中能量变化具有非常现实的意义。高中化学新教材首次在化学教学中渗透了能量观点,如,在高一化学
第一章里提出如何提高燃料的利用率,开发新能源等与社会相关的问题。在卤素中新增了“海水资源及其综合利用”,在几种重要金属中增加了“金属的回收和资源保护”,在原电池一节介绍了化学电源和新型电池等。化学与能量、能源观点的建立,不仅仅是为了教育学生节约能源,树立环境保护意识,更侧重培养学生创新意识和创新能力,增强社会进步责任感。尤其是在第二轮新教材改革中增加了一些开放性问题的研究,有利于培养学生的创新能力、实践能力、团结协作能力等。
(三)化学与环境。保护环境已成为当前和未来的一项全球性的重大课题。新教材中介绍了臭氧层的破坏、酸雨、温室效应、光化学烟雾、白色垃圾、土壤以及水污染等环境污染问题及其防治。并将“居室中化学污染及防治”、“生活中常见污染物和防治污染”放在选学教材中。在治理这些环境污染问题中,化学已经并将继续发挥重大作用,大幅度地增强了学生的社会环保责任感,增强了学习化学的兴趣。与化学和能源一样,化学与环境从可持续发展的角度来看,在化学教育中增强了化学与社会的联系部分,因为环境科学是一门综合性的学科,而环境化学是解决环境问题的“钥匙”,环境教育与能源问题的提出对提高学生的创新意识和实践能力,培养公民综合素养有着重要的作用。这正是现代化学教育的蓝图规划,现代化学教育价值观的一种重要体现。
二、化学教育价值实现的基本策略
(一)主题型教学策略。“化学―人类进步的关键”是高中化学新课程的总主题,在整个高中化学教学过程中应该尽可能体现这一主题。如“糖类、蛋白质、油脂”可以“人类重要的营养物质”为主题;氮族元素结合生物圈中氮的循环以固氮为主题;硅和硅酸盐工业、金属和合成材料以材料为主题;化学反应与能量、原电池原理以开发新能源为主题;烃以石油化工为主题。主体型教学策略可以使学生认识到自己所学内容的社会价值及其实用性,有利于学生学习兴趣的激发和保持。
(二)用途联系型策略。在元素化合物教学中应该将现代最新的有价值的有关元素化合物用途纳入教学之中。如在学习NO的性质时,可联系医学新成就,介绍NO对人体某些疾病的治疗作用,然后提出问题:为什么大量NO吸入人体有害,而少量的NO吸入却能治疗某些疾病?在学习有机高分子材料时,可联系智能高分子材料、导点高分子材料、医用高分子材料、可降解高分子材料、高吸水性高分子材料等;在卤素学习时,可联系海水化学资源的开发、利用和饮水与消毒化学;在硅和硅酸盐学习时,可联系新型无机高分子材料等。
关键词:可降解塑料 光降解 生物降解 光-生物降解塑料
引言
塑料这种材料已经广泛应用到国民经济各部门以及人民日常生活等各个领域。但是塑料这种材料在自然环境中难以降解,随着其用途的扩大,带来产量的增加,因此导致了严重的环境污染问题。传统的处理技术(焚烧、掩埋等)存在一定的缺陷,回收利用也存在着局限性,而且这些处理方式都不能从根本上解决问题。因此开发可降解塑料来解决废弃物难以处理的问题是一个重要的课题。
一、可降解塑料的定义
可降解塑料虽然至今在世界上没有统一的标准化定义,但是美国材料试验协会(ASTM)在通过研究相关术语的标准对其定义:在特定的环境下,其化学机构发生明显变化,并用标准的测试方法能测定其物质性能变化的塑料。这个定义基本上与降解和裂化的定义相一致。
二、降解塑料的分类及降解机理
1.光降解塑料
光降解塑料包括合成型也叫共聚型、添加型两种,该种塑料在日照下会受到光氧作用并吸收光能,光能主要为紫外光能,因此而发生自由基氧化链反应以及光引发断链反应,从而降解成对环境安全无害的低分子量化合物。
其中通过共聚反应在高分子主链引入感光基因而得到光降解特性的为合成型降解塑料,这种塑料通过调节感光基因含量来控制其光降解活性。目前某些可用于包装袋、容器、农膜等范围的乙烯―CO共聚物和乙烯―乙烯酮共聚物已实现工业化。通过将光敏助剂添加到高分子材料中而制造成的为添加型高分子光降解材料,这种类型的塑料其降解原理为光敏剂会受到紫外光的诱导,将它添加到塑料中可以引发并加速塑料的光氧化。光敏剂在光的作用下可离解成为具有活性的自由基,因此该类型塑料的光降解特性是由光敏剂的种类、用量和组成决定的。
降解塑料向深层发展的一个标准是可控光降解塑料,它在具备光降解的特性的同时,还应该具备特定的光降解行为。它被要求能控制诱导期内力学性能,并保持该性能在80%以上。因此要达到这个标准就必须对光敏剂的使用有更高的要求,在光敏剂可控制光氧化曲线的同时,也要注重控制光氧化的时间。
2.生物降解塑料
在自然界中受细菌、霉菌等微生物作用而降解的塑料为微生物降解塑料,该类型塑料的种类有部分生物降解型、完全生物降解型、化学合成型、天然高分子型、掺混型、微生物合成型和转基因生物生产型。
在微生物作用下能完全分解成CO2和H2O的为最理想的生物降解塑料,通过研究可发现,酶在塑料水解、氧化的过程中发挥着极其重要的作用,是生物降解的实质。酶会导致主链断裂,从而相应的降低相对分子质量,使其失去机械性能,以便于微生物对其更容易的摄取。
生物降解必须满足三个条件,经历三个阶段。
条件为:微生物(真菌、细菌、放射菌)的存在。
拥有氧气,并要求一定的湿度,还要有无机物培养基的存在。
适宜的温度范围为20~60摄氏度,PH范围在5~8之间。
三个阶段为:
初级生物降解――在微生物作用下,塑料等化合物的分子化结构发生变化,使原材料分子的完整性被破坏。
环境容许的生物降解――原材料中的毒性可以被去除,以及人们所不希望的特性的降解作用同样可以除去。
最终生物降解――塑料通过生物降解,被同化成微生物的一部分。生物降解过程中主要的三种物理化学反应:
物理作用――微生物细胞生长在对塑料的机械破坏中起着重要作用。
化学作用――微生物在破坏中会产生某些化学物质,起到化学作用。
酶直接作用――本质为蛋白质的酶,含有20多种氨基酸,它们能降低被吸附塑料分子和氧分子的反应活化能,以此来加速塑料的生物分解。
3.光-生物降解塑料
顾名思义,这种塑料兼具生物和光双重降解功能,使得其达到完全降解的目的。光降解高分子材料有两种:淀粉型和非淀粉型,其中较为普遍的是采用高分子的天然淀粉作为生物降解助剂。这种在高分子材料中同时添加自动氧化剂、光敏剂以及生物降解助剂等作为配置方法,来达到光-生物降解的复合效果。含有多种化学物质而形成的非淀粉型光和生物降解体系已广泛应用于吹塑制成可控降解地膜,在应用过程中发现,该薄膜不仅具备保温、保湿和力学性能,还具备可控性好、诱导期稳定等优点。
目前,光-生物降解塑料处理工艺的关键是淀粉的细化很热结构水的脱除,处理设备复杂,因此产品的质量难以控制。由于其设备的投资需要的资金大,复杂的工艺以及缺少该方面的人才技术人员,导致其市场化、产业化的发展步履维艰。
总结:
近年来在国内外,可降解塑料的开发与研究已取得了一定进展,但是其技术有待进一步优化,工艺需要不断完善,市场化的推广也要加大力度,采取有效措施降低成本、拓宽用途、提高性能等。更要注意的是降解塑料在世界上没有统一的定义,也缺乏确切的评价,识别标志、产品检测没有完整的体系导致市场混乱。
从长远发展的角度看,当代人们的环保意识不断加强,降解塑料的市场化是一种必然的趋势。当前相对较成熟的是光降解塑料技术,生物降解技术由于其处在发展阶段,因此是开发的热点,光-生物降解技术则是主要开发方向之一。
参考文献:
[1]裴晓林;应用基因组改组技术选育L-乳酸高产菌株及其发酵工艺研究[D];吉林大学;2007年.