前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的计算机视觉的主要技术主题范文,仅供参考,欢迎阅读并收藏。
在我国市场经济不断发展的盛况下,我国科技发展水平也紧随其后,成为世界上的科技强国之一。在计算机水平的不断提高下,计算机视觉技术应运而生。其中,计算机视觉技术被应用与各个领域,并在各个领域都得到广泛有效的应用,比如军事领域、医疗领域、工业领域等。本文针对计算机视觉技术在交通领域中的应用进行分析。
【关键词】计算机视觉 交通领域 探究
近年来,随着科技水平的提高,计算机视觉技术逐渐被人们熟知并广泛应用。相较于其他传感器来说,视觉能获得更多的信息。因此,在我国交通领域中,也对计算机视觉技术进行研究完善,将计算机视觉技术应用在交通领域各个方面中,并取得了显著的成效。
1 计算机视觉的概述及基本体系结构
1.1 计算机视觉概述
通过使用计算机和相关设备,对生物视觉进行模拟的方式,就是计算机视觉。对采集到的图片或视频进行相应的技术处理,从而获得相应的三维信息场景,是计算机视觉的主要任务。
计算机视觉是一门学问,它就如何通过计算机和照相机的运用,使人们获得被拍摄对象的数据与信息所需等问题进行研究。简单的说,就是让计算机通过人们给其安装上的“大脑”和“眼睛”,对周围环境进行感知。
计算机视觉是一门综合性学科,在各个领域都有所作为,已经吸引了各个领域的研究者对其研究。同时,计算机视觉也是科学领域中一个具有重要挑战性的研究。
1.2 计算机视觉领域基本体系结构
提出第一个较为完善的视觉系统框架的是Marr,他从信息处理系统角度出发,结合图像处理、心理物理学等多领域的研究成果,提出被计算机视觉工作者基本接受的计算机视觉系统框架。在此基础上,研究者们针对视觉系统框架的各个角度、各个阶段、各个功能进行分析研究,得出了计算机视觉系统的基本体系结构,如图1。
2 计算机视觉在交通领域的应用
2.1 牌照识别
车辆的唯一身份是车辆牌照。在检测违规车辆、稽查被盗车辆和管理停车场工作中,车辆牌照的有效识别与检测具有重要的作用和应用价值。然而在实际应用工作中,虽然车牌识别技术相对成熟,但是由于受到拍摄角度、光照、天气等因素的影响,车牌识别技术仍需改善。车牌定位技术、车牌字符识别技术和车牌字符分割技术是组成车牌识别技术的重要部分。
2.2 车辆检测
目前,城市交通路口处红绿灯的间隔时间是固定不变的,但是受交通路口的位置不同、时间不同的影响,每个交通路口的交通流量也是持续变化的。此外,对于某些交通区域来说,公共资源的配备,比如交通警察、交通车辆的数量是有限的。如果能根据计算机视觉技术,对交通路口的不同时间、不同位置的交通情况进行分析计算,并对交通流量进行预测,有利于为交通警察缩短出警时间、为交通路口的红绿灯根据实际情况设置动态变化等技术提供支持。
2.3 统计公交乘客人数
城市公共交通的核心内容是城市公交调度问题,一个城市如何合理的解决公交调度问题,是缓解城市运力和运量矛盾,缓解城市交通紧张的有效措施。城市公交调度问题,为公交公司与乘客的平衡利益,为公交公司的经济利益和社会效益的提高做出了巨大的贡献。由于在不同的地域、不同的时间,公交客流会存在不均衡性,高峰时段的公交乘客过多,平峰时段的公交乘客过少,造成了公交调度不均衡问题,使有限资源浪费严重。在计算机视觉智能公交系统中,自动乘客计数技术是其关键技术。自动乘客计数技术,是对乘客上下车的时间和地点自动收集的最有效的技术之一。根据其收集到的数据,从时间和地点两方面对客流分析,为城市公交调度进行合理的安排。
2.4 对车道偏离程度和驾驶员工作状态判断
交通事故的发生率随着车辆数量的增加而增加。引发交通事故的重要因素之一就是驾驶员疲劳驾驶。据相关数据显示,因车道偏离导致的交通事故在40%以上。其中,驾驶员的疲劳驾驶就是导致车道偏离的主要原因。针对此种现象,为减少交通事故的发生,计算机视觉中车道偏离预警系统被研究开发并被广泛应用。针对驾驶员眨眼频率,利用计算机视觉对驾驶员面部进行图像处理和分析,再根据疲劳驾驶关注度与眨眼频率的关系,对驾驶员的工作状态进行判断。此外,根据道路识别技术,对车辆行驶状态进行检测,也是判断驾驶员工作状态的方法之一。这两种方法,是目前基于计算机视觉的基础上,检测驾驶员疲劳状态的有效方法。
2.5 路面破损检测
最常见的路面损坏方式就是裂缝。利用计算机视觉,及时发现路面破损情况,并在其裂缝程度严重之前进行修补,有利于节省维护成本,也避免出现路面坍塌,车辆凹陷的情况发生。利用计算机视觉进行路面检测,相较于之前人工视觉检测相比,有效提高了视觉检测的效率,增强了自动化程度,提高了安全性,为市民的出行安全带来了更高保障。
3 结论
本文从计算机视觉的概述,及计算机视觉基本体系结构,和计算机视觉在交通领域中的应用三面进行分析,可见计算机视觉在交通领域中的广泛应用,在交通领域中应用的有效性、显著性,以此可得计算机视觉在现展过程中的重要性。随着计算机视觉技术的越来越成熟,交通领域的检测管理一定会加严格,更加安全。
参考文献
[1]段里仁.智能交通系境在我国道路空通管理中的应用[J].北方工业时报,2015(06).
[2]王丰元.计算机视觉在建筑区间的应用实例分析[J].河北电力学报,2015(04).
[3]李钊称.主动测距技术在计算机数据分析中的作用探析[J].计算机应用,2015(08).
[4]马良红.三维物体影像的摄取与分析[J].中国公路学报,2014(05).
[5]朱学君,沈睿.关于计算机视觉在交通领域中的探讨[J].信息通信,2013(01):123.
[6]王大勇.关于计算机视觉在交通领域中的应用分析[J].科技与企业,2013(01):115.
作者简介
夏栋(1988-),男,湖北省孝感市人。现为同济大学软件学院在读硕士。研究方向为计算机视觉。
【关键词】计算机 视觉 图像处理 技术
一、引言
随着计算机技术的不断发展,在20世纪60年底产生了计算机视觉学这一学科。计算机视觉是借助计算机以及各种设备,进行生物视觉模拟的一种技术。计算机视觉学的主要任务,是借助已掌握的图片、视频等资料,进行计算与处理,和人类及其他生物的视觉过程一样,
得到相应形式的三维数据信息。计算机视觉学的发展,在工业、农业的生产中,地质勘探、天文、医学观察等领域也有着重要的应用价值。因此,视觉学的研究和应用转化受到了越来越多的重视。
二、计算机视觉学的图像分割研究
(一)数据驱动的分割研究
在计算机视觉学应用过程中,经常进行的数据驱动分割有下面几项内容:第一种是边缘检测的分割、第二种是区域分割、第三种是边缘和区域相互结合的分割。第一种基于边缘检测的分割,这种分割的基本方法:首先对检测图像的边缘点进行检测,然后根据一定的法则进行轮廓的连接,获得分割的区域。基于边缘检测的分割其难点是边缘检测时如何处理好抗噪声性能、检测的精度之间的矛盾。所以,在研究的过程中,提出了多种多尺度边缘检测的方法,按照实际问题进行多尺度边缘信息设计等方案,以获得更为合适的抗噪性能和检测的精度。第二种基于区域的分割,它的基本思想是按照图像数据的特点,将整个图像的空间划分成为几个不同的区域进行图像处理。
(二)计算机视觉学模型驱动的分割
经常使用的模型驱动分割有下面三种,第一种模型是基于动态轮廓的模型、第二种模型是组合优化模型、第三种模型是目标几何与统计模型。第一种是基于动态轮廓的模型用在进行分割目标的动态轮廓,因为其能量函数使用的是积分运算,有着很好的抗噪性能,对于目标的局部模糊也不敏感,所以其适用性很广。但这种分割方法容易收敛到局部最优,因此要求初始轮廓应尽可能靠近真实轮廓。通过组合优化的方法进行分割问题的处理,是使用一目标函数综合表示分割的相关要求以及约束,把分割变为目标函数的优化求解。因为目标函数多数情况下作为多变量函数存在的,因此可以通过使用随机优化的方法来实现。
(三)计算机视觉学图像分割的半自动方法
通过对人工参与程度的分,我们可以得出图像分割,主要有三种类型即:人工图像分割、半自动图像分割、自动图像分割等。人工图像分割指的是操作者使用鼠标,将分割区域的轮廓进行勾画的方法,人工图像分割的缺点是费时费力,而且很容易就会受到一些主观因素的影响,并且人工图像分割的可重复性较差。自动图像分割不需要借助人机交互就能完成,但是也很难实现同一批图像处理的满意分割效果。半自动分割这种形式指的是将人机交互同自动分割结合在一起,半自动分割可以实现对不同图像与处理需求的适应,并且可以大大降低计算过程的复杂性。在计算机技术不断发展的背景下,计算速度和容量有了大幅度的提升,计算机图像处理及视觉应用取得了丰硕的成果。
三、计算机视觉技术的分析
(一)以模型为研究对象的处理方法
在以模型世界作为研究对象的视觉学研究过程中,以Roberts的开创性工作作为一种标志,在他的工作过程中,引进了三维物体与二维物体成像的关系,使用较为简单的边缘特征提取、组合线段等手段和方法。他对三维关系的分析只是按照简单的边缘线段的约束关系,缺乏对人类或其他动物视觉系统感知三维空间关系的充分考虑。但是早期的这些研究工作,对计算机视觉学的研究和发展发挥了良好的促进意义,但是对于较为复杂的景物就不能够奏效。
(二)以计算理论为主体的视觉模型
随着计算机视觉研究的不断深入,在二十世纪七十年代,计算机视觉技术的研究,开始向着更为理性的阶段发展,主要表现在:不同本征特性的恢复,恢复的内容有三维形状恢复、运动恢复、光源恢复等等。研究的出发点是光学、生理学以及射影几何的视角出发,对成像及其逆等问题进行研究。在这个过程中,一些学者提出了以表示作为核心、通过算法作为中间转换过程的视觉处理模型,例如:著名的计算机视觉学研究者Marr就提出了这些观点,在他的理论里面,对表示的重要意义进行强调,并且从不同层面上对信息处理问题进行了研究。
(三)计算机视觉的应用研究
在现实生活和生产的过程中,计算机视觉主要应用在照片资料、视频资料处理上,例如:航空照片的处理、卫星照片的编译、医学领域的辅诊断、移动机器人视觉导航等等。其中,工业机器人手眼系统的研发,成为计算机视觉应用最具代表性的成果之一。因为工业生产、施工等现场等因素具有一定的复杂性,这种环境下的光照、成像特点等等可以控制,这就使得计算机视觉的应用更为简单,对于系统的实际构成有着很好的作用。移动机器人与工业机器人不同之处就是移动机器人具有一定的行为能力,这就需要研究者解决机器人的行为规划问题。在移动机器人种类、智能化水平不断提升的背景下,对视觉能力的要求也越来越高,这也使得计算机视觉有了更为广阔的应用前景。
四、结语
综上所述,计算机视觉学作为人类科技发展和社会进步的一种学科体现,在前进和发展的过程中,通过研究者和应用者的不断总结和探究,取得了丰硕的成果。在未来视觉技术发展的道路上,仍然有大量的工作需要进行研究。
参考文献:
[1]韩祥波, 刘战丽. 计算机图像处理技术在农产品检测分级中的应用[J]. 安徽农业科学 , 2013,(34)
[2]赵萍, 李永奎, 林静, 白雪卫. 数字图像处理技术在农产品方面的应用[J]. 农机化研究 , 2012,(11)
关键词:计算机视觉;案例推理;图像处理;图像描述
中图分类号:TP391.41 文献标识码:A文章编号:1009-3044(2007)04-11102-03
1 引言
基于案例推理(case-base reasoning)是人工智能中正不断发展的一项重要推理技术。基于案例推理与类比推理方法相似,案例推理将旧经验或教训转换为知识,出现新问题时,首先查找以前是否有相似的案例,并用相似案例解决新问题。如果没遇到相似案例的,经过推理后解决新问题的方法,又会成为新的案例或新经验,下一次再遇到相同问题时,就可以复用这些案例或经验。
这与人遇到问题时,首先会用经验思考解决问题的方式相似,这也是解决问题较好的方法。基于案例推理应用于工业产品检测或故障诊断时具有以下特点:
CBR智能化程度较高。利用案例中隐含的难以规则化的知识,以辅助规则推理的不足,提高故障诊断系统的智能化程度。
CBR较好解决“知识获取”的瓶颈。CBR知识表示以案例为基础,案例的获取比规则获取要容易,大大简化知识获取的过。
CBR求解效率较高。是对过去的求解结果进行复用,而不是再次从头开始推导,可以提高对新问题的求解效率。
CBR求解的质量较高。CBR以过去求解成功或失败的经历,可以指导当前求解时该怎样走向成功或避开失败。
CBR持续不断的学习能力,使得它可以适应于将来问题的解决。
所以基于案例推理方法正不断应用在产品质量检测和设备故障诊断方面,并取得较好的经济效益。为了产品检测和设备故障诊断中,更为智能化,更容易实现现场检测和诊断,计算机视觉技术起到很大的作用。
计算机视觉是研究用计算机来模拟人和生物的视觉系统功能的技术学科,使计算机具有感知周围视觉世界的能力。通过计算机视觉,进行图像的获取预处理、图像分割与特征抽取、识别与分类、三维信息理解、景物描述、图像解释,让计算机具有对周围世界的空间物体进行传感、抽象、判断的能力,从而达到识别、理解的目的。
计算机视觉随着科学技术发展,特别计算机技术、通信技术、图像采集技术、传感器技术等,以及神经网络理论、模糊数学理论、小波的分析理论等计算机视觉理论的不断发展和日趋成熟,使计算机视觉从上世纪60年代开始兴起发展到现在,取得快速发展,已经从简单图像质量处理发展到围绕着纹理分析、图像编码、图像分割和滤波等研究。图像的分析与处理,也由静止转向运动,由二维转向三维,并主要着眼于对图像的识别和理解上,也使计算机视觉的应用领域更为广泛,为案例推理中运用计算机视觉打下基础。
2 案例推理系统的主要关键技术
(1)案例的表示与组织
案例的表示与组织即是如何抽取案例的特征变量,并以一定的结构在计算机中组织存储。如何将信息抽取出特征变量,选择什么语言描述案例和选择什么内容存放在案例中,案例按什么组织结构存放在存储器中,这关系到基于案例推理方法的效率,而且对于案例数量越来越多,结构十分复杂的案例库,尤其重要。
(2)案例的索引与检索
案例的索引与检索即是为了查找最佳相似案例,如何建立案例索引和相似度算法,利用检索信息从案例库中检索并选择潜在可用相似案例。后面的工作能否发挥出应有的作用,很大程度上依赖于这一阶段得到的案例质量的高低,因此这一步非常关键。
(3)案例的复用和调整
案例的复用即是如何根据旧案例得出新解,涉及到找出案例与新问题之间的不同之处,案例中的哪些部分可以用于新问题,哪些部分不适合应用于新问题的解决。而复用还分案例的结果复用,案例的求解方法复用。
(4)案例的学习
案例的学习即是将新解添加到案例库中,扩充案例库的案例种类与数量,这过程也是知识获取。此过程涉及选取哪些信息保留,以及如何把新案例有机集成到案例库中,包括如何存储,如何建立索引等等。
针对案例推理的关键技术,根据检测和故障诊断系统的特点,计算机视觉主要解决如何将产品图像输入系统,如何将产品图像特征进行抽取和描述,如何区别产品不同之处。以便案例推理系统进行案例建模,确立案例的表示形成和案例相似度的计算。本文主要从计算机视觉如何运用在案例推理系统进行探讨。
3 产品输入系统
产品输入系统在不同产品类型和生产环境可能有不同之处,主要应有传感器单元和图像采集单元。如图1。
图1 产品输入系统结构
传感器单元主要判断是否有产品存在,是否需要进行图像采集,是否继续下一个产品图像的采集。这简单传感器可使用光电开关,配合光源,当产品经过时,产品遮挡住光源,使光电开关产生一个0值,而没有产品经过时,光电开关产生相反的1值,系统通过判断光电开关的值,从而判断是否有产品。
图像采集单元简单地说是将产品拍摄并形成数字化图像,主要包括光源、反射镜、CCD相机和图像采集卡等组成。光源和反射镜作用主要使图像中的物体和背景之间有较大灰度。CCD相机主要是拍摄设备。图像采集卡主要是将图像数字化。通过传感器判断有产品后,光源发出的光均匀地照在被测件上,CCD相机拍摄,拍摄图像经过图像采集卡数字化后输入存储设备。存储设备即为计算机硬盘。存放原始图像、数据、处理结果等。
这是案例推理系统的原始数据,是图像处理、图像特征抽取描述的基础。
4 图像处理
在案例推理系统中,需要对案例的组织和案例建模,案例的组织即案例的表示,相对计算机而言,即图像特征的抽取,即某图像具有与其它图像不同之处,用于区别其它图像,具有唯一性。同时,又能完整地表示该图像。所以案例的表示要体现案例的完整性、唯一性、操作容易性。
图像中有颜色区别、又有物体大小之分以及图像由不同的物体组成。如何表示图像,或说图像内部包含表示的本质,即图像的描述。根据图像特点,确立图像案例的表示,以图像的像素、图像的数字化外观、图像物体的数字组成等属性。这需要对产品输入的原始图像进行处理。
在计算机视觉技术中,对原始图像主要进行图像增强、平滑、边缘锐化、分割、特征抽取、图像识别与理解等内容。经过这些处理后,输出图像的质量得到相当程度的改善,既改善了图像的视觉效果,又便于计算机对图像进行分析、处理和识别。具体工作流程如图2所示:
图2 计算机视觉的任务与工作流程
图像预处理是将产品的数字图像输入计算机后,首先要进行图像的预处理,主要完成对图像噪声的消除以及零件的边缘提取。预处理的步骤为:图像二值化处理;图像的平滑处理;图像的边缘提取。
图像二值化处理主将灰度图形二值化的关键是阈值的选取,由于物体与背景有明显的灰度差,可以选取根据灰度直方图中两峰之间的谷值作为阈值来分割目标和背景。
图像的平滑处理技术即图像的去噪声处理,主要是为了去除实际成像过程中因成像设备和环境所造成的图像失真,提取有用信息。
图像边缘提取是为了将图像中有意义的对象与其背景分开,并使之具有某种指定的数学或符号表达形式,使计算机能够理解对象的具体含义,检测出边缘的图像就可以进行特征提取和形状分析了。可采用多种算法,如采用Sobel算子提取边缘。
图像预处理是为下一步的特征描述打基础,预处理的好坏直接影响案例推理的结果和检测诊断的效率。
特征提取是对图像进行描述,是案例建模关键,案例建模是根据案例组织要求抽取图像特征,是建立案例索引和检索的关键。如果图像没有特征,就谈不上进行检索。图像特征可通过图像边界、图像分割、图像的纹理等方法,确定图像特征,包括是什么产品、产品形状大小、产品颜色,产品有什么缺陷、产品缺陷在什么位置等特征,根据这些图像特征进行描述,形成计算机中属性值,并从数据库查找相应信息资料,从而确定产品之间的关系,相似度,也就是案例推理的方向。
5 系统的检索
根据案例推理原理和相应算法,建立案例推理系统模型,如图3所示。
图3 案例推理系统
对话系统:完成人机交互、问题描述、结果显示和系统总控制。
案例库系统:由案例库及案例库管理系统组成。
数据析取系统:对各种已有的源数据库的数据通过转换而形成所需的数据。
多库协同器:根据问题求解的需要,按照一定的数据抽取策略,完成问题求解过程中对模型库系统、方法库系统、知识库系统和数据库系统等资源的调度与协调。
知识库系统:由产生式规则组成,这些知识包括专家经验和以规则形式表示的有关知识,也可以是数据挖掘结论,支持案例检索、案例分析、案例调整等。 模型库系统:由模型库、算法库、模型库管理系统组成。完成模型识别和调用,并把结果综合,送入对话系统显示,作为补充信息供案例检索、调整使用。
数据库系统:存放待决策支持的所有问题,并完成其维护与查询等功能。
由于系统主要应用产品的现场实时检测监控或故障诊断,所以系统的检索时,也必须输入检索值,即输入现场产品的图像,在通过产品预处理、图像的二值化、分割和边界处理后,进行图像特征描述,根据图像描述进行分类识别。根据案例推理的算法检索案例库中,是否有相似的案例。即确定相似度。相似度确定主要由案例推理的算法确定,如贴近分析法。确定相似度最大作为结果,并将案例的解输出,给相关控制系统进行决策。如产品质量检测,确定产品质量是否合格,是否有不合格产品,不合格产品是什么原因造成,故障源是什么,如何解决和排除故障,等等。
6 结论
案例推理方法有效地解决计算机视觉技术中图像检索问题。对提高图像检索的效率和准确度提供了平台。
计算机视觉技术也为案例推理系统实现产品现场实时检测、监控、诊断提供技术支持。计算机视觉技术现场的数据采集、处理为案例推理打好基础。
两者的结合设计的系统适用范围很广,只要产品需要进行质量检测、监控,或设备需要进行故障诊断和维护,都可以适用。
系统提供的实时检测、监控和诊断功能,提高企业的生产效益,降低了生产成本。
参考文献:
[1](美)桑肯(Sonka,M).图像处理分析与机器视觉[M].人民邮电出版社.
[2]王宏等译.计算机视觉[M].电子工业出版社.
[3]蔡建荣.自然场景下成熟水果的计算机视觉识别[J].农业机械,36(2):61-64.
[4]王宇辉.基于计算机视觉的锥体零件尺寸在线检测算法[J].重型机械,2005,2:4-6
[5]骆志坚.基于计算机视觉检测技术自动计数系统的研究与应用[J].仪表技术与传感器,2005,3:41-43.
[6]左小德.贴近度分析法在案例库推理中的应用[J],南大学学报(自然科学版),1997,18(1):21-26.
[7]姜丽红.案例推理在智能化预测支持系统中的应用研究[J].决策与决策支持系统,1996,6(4):63-69.
【关键词】计算机视觉;构件;表面特征;检测
表面缺陷检测以及特征提取,所涉及的范围是非常广泛的,包括了铁轨表面缺陷、带钢表面缺陷以及织物表面缺陷等。因此加强对产品的表面缺陷提取以及质量检测显得尤为重要,目前基于计算机视觉的构件缺陷检测系统已经受到国内外研究人员的重视,如何更好地将计算机视觉技术引入到产品表面质量缺陷检测中去是未来发展的重点。笔者将在下文中就此展开详细的阐述。
1.计算机视觉的基本工作原理
1.1系统结构
计算机视觉是一项涉及范围广泛的技术,他通过图像采集装置将检测目标转化为图像信号,再经过专门性的额图像处理系统最终生成具体的表面特征。具体来讲在图像处理环节米旭涛根据图像的具体像素以及图像分布和颜色、亮度、饱和度等进行目标提取,再比照系统预设的参照值得出最终的检测结果,例如尺寸大小、颜色等师傅偶合格。计算机视觉处理系统包括了光源、镜头、计算机以及图像采集装置和处理系统等,这些系统综合组成共同推动了计算机视觉系统的正常稳定运行。
1.2计算机视觉硬件设计
计算机视觉系统的硬件平台包括了照明系统、镜头相机以及图像采集装置和工控机四个部分,这四个部分缺一不可,共同组成了整个计算机视觉系统。
1.2.1照明系统
照明系统是整个计算机视觉系统的关键,尤其是在光源和照明方案的配合上更是直接影响了整个系统运行的成败。因此在照明方案的制定以及光源的选择上应该尽可能的突出物体特征参量,综合考虑对比度以及亮度等因素,将计算机视觉系统的光源与照明方案相匹配,选择需要的几何形状以及均匀度等,同时还需要结合被检测物体的表面特征几何形状。针对构件表面缺陷的照明方案,笔者认为应该选择功率相对较大的LED光源,用低角度的方式进行照明。
1.2.2相机镜头
相机系统是成像的关键,因此在相机镜头的选择上应该适用于具体的构件。一般来说相机镜头包括了两方面内容,一是线扫,二是面扫。通过二者的综合运用实现更好地成像效果。
1.2.3图像采集卡
图像采集卡主要是指在计算机视觉系统中位于图像裁剪机设备和图像处理设备之间的重要接口。是成像的中间环节,发挥着不可或缺的作用。
2.基于计算机视觉的构件表面缺陷特征提取
基于计算机视觉的构件表面缺陷特征提取可以分为为三个重要部分,分别是图像预处理部分:主要是指针对构件进行区域的定位,将非构件的部分移出计算机视觉的缺陷提取技术中去,从而降低了后续工作的工作难度;其次是进行缺陷定位,主要是指通过特定的技术和算法将缺陷从结果当中直接分离出来。第三部分是缺陷特征的提取,也是系统处理的结果部分,是通过计算缺陷的程度以及缺陷大小,从而为后期的构件维护提供参考依据。具体来说,这三个部分的操作主要体现在以下几个方面:
2.1区域定位
区域定位是减少构件处理和选择时间的关键,能够大大提高构件缺陷提取的效率。构件的表面的基本特征和大致集合框架提取是区域定位和的第一步,要将计算机区域定位和缺陷提取结合起来,更好地实现缺陷分析。要做好构件的区域定位首先需要明确构件的基本种类和特征:一是根据构件的重用方式来说,可以分为白匣子、灰匣子、黑匣子从构件的使用范围来看又可以分为通用构件和专用构件;根据构件的粒度的大小可以分为小。中大三种不同粒度的构件;再次是从构件的功能上来看可以分为系统构件、支撑构件以及领域构件三个部分。四是从构件的基本结构特征来看可以分为原子构件以及组合构件。最后从构件的状态来说,又可以分为动态和静态构件。因此从不同种类的构件进行区域定位为视觉系统正常运行创造了优良的条件。
2.2缺陷提取
在进行缺陷提取的过程中,难免会受到客观的环境影响,比如噪声、温度以及湿度等对图像处理的结果产生影响,因此需要对区域定位中产生的区域进行滤波处理,然后再采用阈值分割的办法进行缺陷提取。具体操作步骤如下所示:
(1)计算出成像中的最小最大灰度值,并且设置初始阈值。
(2)根据阈值,结合图像的分割目标,将图像分割成为目标和背景两个部分,求导出平均灰度值。
(3)再根据新的平均灰度值计算出新的阈值。
(4)观察阈值的初始值与新阈值之间的关系,如歌二者相等则整个计算过程就结束,如果不相等,则就需要进一步计算。
通过阈值计算得出啊的最佳阈值分割效果图,能够进行初步的缺陷预判,但是初步预判当中还存在较多的不确定因素,主要包括两类,一是在边缘部分出现的细小毛刺,由于与缺陷的距离较近,因此在初步缺陷提取中容易形成误判、再次是在构件表面有一些非常细小的缺陷,这些缺陷的影响较小,不会对构件的性能造成影响,因此在进行缺陷提取的过程中需要将这两个因素排除在外,具体主要是指采用图像形态学中开运算和闭运算,从而达到对构件中的明了细节和暗色细节的过滤。具体来说缺陷的分割提取采用的是Sobel算子。主要是利用了图像像素点的上下左右灰度加权算法,对构件表面的缺陷进行检测。再采用二值图像边界跟踪法,将缺陷从构件图像中分离出来。
2.3缺陷特征提取
缺陷特征提取,又可以称之为缺陷的定量计算和定性过程,是将前期所得的数据结果以更加直观的形式展现出来,通过对比指标参数判断构件的表面质量是否合格,符合基本的生产标准。一般来说常用的表示缺陷特征的标准有以下几种:
(1)周长:周长是对缺陷的边界长度的描述,在图像特征上显示则是指构件成像上的缺陷区域的边界像素数量。
(2)面积:面积相对于周长能够更加直观地反映整体缺陷的大小,它是缺陷区域中的像素的总数,因此更高体现缺陷的影响规模。
(3)致密性:这是一个相对专业的缺陷指标概念主要是指每平方面积上的平方周仓,是一个双单位描述指标。
(4)区域的质心:区域质心是描述缺陷的影响关键也就是缺陷区域内的核心区域,是对整个区域的核心描述。
(5)最小外接矩形。
3.结语
综上所述,构件表面缺陷直接影响构件的最终使用效果,构件表面缺陷的检测应用领域也逐渐广泛,而计算机视觉技术在检测缺陷中的优越性更体现了基于计算机视觉的构件表面缺陷特征提取的研究价值。本文主要针对构件表面缺陷的检测,综合计算机视觉技术提出了具体的检测方法和检测工作原理,通过对表面缺陷的检测,力图提高构件的整体质量。
【参考文献】
[1]陈黎,黄心汉,王敏,何永辉,龚世强.带钢缺陷图像的自动阈值分割研究[J].计算机工程与应用,2002,(07).
[2]许豪,孔建益,汤勃,王兴东,刘源泂.基于数学形态学的带钢表面缺陷边缘提取[J].机械设计与制造,2012,(06).
关键词:计算机视觉系统 工业机器人 探究
中图分类号:TP242 文献标识码:A 文章编号:1007-9416(2015)05-0000-00
计算机视觉系统主要是为了工业机器人更好的工作而研发出来的,是一套装有摄像机视场的自动跟踪与定位的计算机视觉系统。近年来,机器人已经广泛使用于工业生产,但是多数机器人都是通过“示教-再现”的模式工作,在工业机器人工作是都是由操作员进行操作示范再由机器人跟着示范进行工作。由于机器人缺乏对外界事物的识别能力,工作中经常发生偏差或者位移等情况。由于工作环境的恶劣以及各种阻碍,为了提高工业机器人的工作效率、灵活性、适应性等,让机器人更好的识别外部环境并及时调整运作方向,能更好的发挥其作用,在原有的机器人系统中添加了一套计算机视觉系统,利用计算机视觉图像装置的信息,通过图像使机器人进行外部环境的识别处理,采用三维的重建,通过作业中利用三维图像的信息进行计算,采用Motocom32软件和机器人控制柜通讯等设备,对工业机器人进行控制,更好的实现机器人对空间特点的跟踪与定位。
1系统的结构与原理
本文主要针对Motoman UP6工业机器人系统的二次研究,在原有的工业机器人的系统中,增加了一套计算机视觉系统, 使工业机器人更好的识别外界环境的系统。计算机视觉系统主要包括:Panasonic CCD摄像机、Motoman UP6工业机器人系统、工控机、OK C-50图像采集卡等外部设备。工业机器人的整个系统由原有系统与计算机视觉系统组成,在原有的系统中包含了YASNAC-XRC- UP6机器人控制柜、Motoman UP6工业机器人本体、示教编程器、Motocom32系统以及相关的外部设备等[1]。计算机视觉系统的设备主要有Panasonic CCTV摄像机、AVENIR TV镜头、OK系列C-50图像采集卡、工控机、AVENIR TV镜头、Panasonic CCD摄像机、OK系列C-50图像采集卡形成的视频采集系统主要是捕获物体的图像,该功能主要是分三个层次进行图像处理、计算、变换以及通信等功能来实施工控机。利用远程控制来对工业机器人进行Motocom32系统进行通信。
2计算机视觉系统的构建
2.1硬件的组成
CCD摄像头:选用的CCD摄像机采用PAP-VIVC810AOZ型彩色摄像头,如图1。摄像机的像素为P:500(H)x582(V),N:510(H)x 492(V),摄像机的分辨率为420。摄像机的成像器使用1/33"CCD,信噪>48 dB,同时摄像机具有自动背景光补偿、自动增益控制等功能。
图像采集卡:图像采集卡主要采用CCD摄像头配套的MV-200工业图像处理。如图2所示。MV-200图像采集卡的分辨率、图像清晰度具有较高的稳定性,其真彩色实施工业图像采集卡,该图像采集卡的硬件构造、地层函数都具有稳定性,同时在恶例的环境中都可以稳定运行[2]。图像采集卡的图像采集效果非常好,画面效果非常流畅。
MV-200图像采集卡性能特点:其分辨率为768 x 576,具有独特的视频过滤技术,使图像质量的采集、显示更加清晰流畅。主要支持的系统为Win98 /2K/XP,主要用于人工智能、事物识别、监控等多种领域。
工控机:工控机以奔4系列为主。
2.2软件组成
图像匹配软件。
图像处理与获取软件。
定标和定位算法软件,功能分布如图3所示。
3视觉系统的原理及流程图
工业机器人的主要系统包括是由工业机器人本体、相关的外部设备、控制器(供电系统、执行器等)计算机视觉系统主要由三部分组成:图像处理和获取、图像匹配、摄像机的定位等组成。通过借助OpenCV的视觉库进行VC++.NET实行,流程如下图表4所示。
在本视觉系统运行中,需要对摄像机实行定标,建立实际空间点和摄像机的对应点。在定标的过程中,就需要标记基准点,使摄像机在采集图像时可以准确的把这些基准点投放到摄像机的坐标上[3]。同时在采集卡的图像中,对图像进行处理并计算出该基准点图像的坐标,通过定标计算法,从而得出摄像机的参数。
在机器人系统中的反馈,计算机通过C语言的调节图像采集卡进行动态链接来控制函数[4]。同时,对摄像机中的数据、视频信号进行采集,构成数字化的图像资料,采用BMP格式存储进行计算,在计算机上显示活动视频,然后系统对获取的图像进行分析处理,以及对噪声的去除、图像的平滑等进行处理,利用二值化处理对那些灰度阀值的图像进行处理,同时检测计算机获取图像的特征量并计算[5]。在完成图像的处理后,就需要确立图像的匹配特征,对图像进行匹配[6]。如果两个图像不重叠,就需要建立3D数据库进行模型重新选择,再把模型进行计算、投影计算、坐标更换等指令,直到找到与图像相匹配的数据模型,才能真正得到真实有效的图像。重叠时,要获得有效的图像,以工业机器人识别物体为目的,才能建立机器人系统之间的通信。同时,通过三维图像重建,进行机器人空间定位[7]。如下图表5所示。
4结语
综上所述,计算机视觉系统主要是为了工业机器人更好的工作而研发出来的,是一套装有摄像机视场的自动跟踪与定位的计算机视觉系统。通过3D数据模型指定目标,机器人系统利用计算机视觉图像的采集装置来识别外界环境的数据,经过图像的姿态预算、影像的投影计算产生图像,通过图片的合成比较,以此来实现机器人在工作中对物体的识别。利用计算机系统对机器人进行有效的控制,在工业机器人工作中对事物目标的搬运、跟踪、夹持等指令。计算机视觉系统具备清晰的视觉功能,有利于提高工业机器人的灵活性以及适应性。
参考文献
[1]夏群峰,彭勇刚.基于视觉的机器人抓取系统应用研究综述[J].机电工程,2014(06):221-223.
[2]华永明,杨春玉.机器人视觉系统在立体编织自动铺纱过程中的应用研究[J].玻璃纤维,2011(01):189-191.
[3]王培屹.基于多传感器多目标实时跟踪视觉系统在全自主机器人上的应用[J].软件导刊,2011(01):263-264.
[4]谭民,王硕.机器人技术研究进展[J].自动化学报,2013(07):123-125.
[5]鲍官军,荀一,戚利勇,杨庆华,高峰.机器视觉在黄瓜采摘机器人中的应用研究[J].浙江工业大学学报,201(01):93-95.
关键词: 计算机 视觉注意机制 计算机视觉注意模型
1.引言
随着信息技术的不断发展,数据处理量剧增,以及用户不断扩大的个性化需求,对计算机信息处理能力提出了越来越高的要求。如何在场景中快速准确地找到与任务相关的局部信息,即物体选择与识别,已经成为计算机信息处理领域的一个研究热点。随着在心理学领域注意机制研究的不断发展,将注意机制引入信息处理领域来解决物体识别问题,已经不再是纸上谈兵。
人类视觉系统进行视觉信息处理时,总是迅速选择少数几个显著对象进行优先处理,忽略或舍弃其他的非显著对象。进入人类视野的海量信息,通过注意选择机制进行筛选,就能使我们有选择地分配有限的视觉处理资源,保证视觉信息处理的效率,这就是视觉选择注意机制的原理。依据人类视觉选择注意的基本原理,开发能够进行智能图像信息处理的计算机系统,就成为一大任务。我们研究的主要方向是使计算机处理对象时,能够具备与人类相似的视觉选择注意能力。
2.视觉注意机制
研究视觉注意机制是个多学科交叉的问题,目前多个领域的研究人员都取得了研究成果,并且对视觉注意的理论都形成了一些共识。目前普遍认为注意既可以是按自底向上(自下而上)的图像数据驱动的,也可以是安自顶向下(自上而下)的任务驱动的。其中,自下而上的研究主要来自图像中物体数据本身的显著性。例如,在视觉搜索实验中,显著的物体会自动跳出,如图1中的圆点通过特征对比,以形状跳出的形式获得注意。自上而下的引导主要来自当前的视觉任务,以及场景的快速认证结果,即我们可以“故意”去注意任何一个“不起眼”的物体,如我们可以在图书馆浩如烟海的藏书中,找到自己感兴趣的那本书。
研究视觉注意机制的重要方法是研究眼睛在搜索目标时的表现。显著图中的各目标在竞争中吸引注意点,注意点在各个注意目标间转移。根据注意点转移时是否伴随眼动,视觉注意也分为隐式注意和显式注意。隐式注意的中央凹不会随着注意点的转移而移动,而显式注意的中央凹随每次注意点的转移而运动。
对视觉注意机制的研究为计算机视觉的发展提供了可能。计算机视觉借鉴人类视觉的注意机制,建立视觉注意的计算模型。通过“注意点”的选择与转移,实现对复杂场景中任务的搜索与定位,最终来实现实时信息的响应处理。在计算机视觉的研究中,显式注意应用较多。
3.计算机视觉注意模型
从人的角度来看,人类视觉系统通过视觉,选择注意在复杂的场景中迅速将注意力集中在少数几个显著的视觉对象上。从场景的角度来看,场景中的某些内容比其他内容更能引起观察者的注意,我们称之为视觉显著性,两者其实是从不同的角度对视觉选择注意过程的描述。
我们把引起注意的场景内容定义为注意焦点FOA(Focus of Attention)。Treisman的特征整合理论中将视觉信息处理过程划分为前注意和注意两个阶段,各种视觉特征在前注意阶段被以并行的方式提取出来,并在注意阶段以串行方式整合为视觉客体,即注意的特征和客体是通过不同方式进行的。在注意焦点的选择和转移上,Koch[2]进行了深入的研究,他提出注意焦点FOA的变化具有四个特征,即单焦点性:同一时刻只能存在一个FOA;缩放性:FOA的空间范围可以扩大或者缩小;焦点转移性:FOA能够由一个位置向另一个位置转移;邻近优先性:FOA转移时倾向于选择与当前注视内容接近的位置。同时注意焦点具有抑制返回的特点,即FOA转移时抑制返回最近被选择过的注视区域。在此基础上,视觉注意的研究人员提出了多种视觉注意模型。
4.视觉注意模型的研究现状
人类的视觉注意过程包括两个方面:一方面是对自下而上的初级视觉特征的加工,另一方面是由自上而下的任务的指导,两方面结合,共同完成了视觉的选择性注意。与此对应,当前的计算机视觉注意研究也分为这两个方面。
4.1自下向上的数据驱动注意模型研究及分析
在没有先验任务指导的情况下,视觉注意的目标选择主要是由场景中自下而上的数据驱动的,目标是否被关注,由它的显著性决定。现在,自下而上的注意研究主要基于Treisman的特征整合理论和Koch&Ullman的显著性模型,Itti、satoh等人均在此基础上提出了自己的研究模型,并做了一些模型的改进研究。自下而上的研究方法通过对输入图像提取颜色、朝向、亮度等方面的基本视觉特征的研究,形成各个特征对应的显著图。另外,一些研究者采用基于局部或全局对比度的方法,来得到图中每个像素的显著性,进而得到显著图。
现有的自下而上的视觉注意计算模型中,Itti的显著图模型(简称Itti模型)最具代表性。该模型主要包含3个模块:特征提取、显著图生成和注意焦点转移。模型通过初级特征的提取,将多种特征、多种尺度的视觉空间通过中央―周边算子得到的各个特征的显著性图合成一幅显著图。显著图中的各个目标通过胜者为王的竞争机制,选出唯一的注意目标,其中注意焦点的转移用的是禁止返回机制。但该模型也有一些缺点,如显著区与目标区域有偏差、计算量较大、运行时间较长、动态场景中实时处理不平等。
在动态场景之中,由于Itti模型很难满足实时性的要求,科研工作者们正在努力研究动态场景的特性,并建立相应的动态模型。如Wolfe[1]指出,影响前注意的特征包括颜色、方向、曲率、尺寸、运动、深度特征、微调支距、光泽、形状,等等,其中又以运动特征最为敏感。而You等采用了一种空间域特征和时间域特征相结合的视觉注意模型,该模型假设当场景中存在全局运动时,视觉注意对象将极少做运动。然而,许多真实的场景并不能满足这个假设,限制了模型的适用范围。Hang等人提出了一种运动图的计算方法,并把运动图作为特征之一,与颜色、亮度、方向等特征结合。这些研究关注了运动特征对视觉的影响,但是均存在一定的局限性,对于复杂的运动场景的注意焦点计算很难取得良好的效果。
我国研究者也在Itti注意模型的基础上研究了适合动态场景中的注意模型,形成了一些理论成果。如曾志宏[2]等人提出注意焦点计算模型,郑雅羽[3]等提出基于时空特征融合的视觉注意计算模型。这些模型都能较好地提取动态场景下的视觉目标。
4.2自上而下的任务驱动的注意模型研究及分析
自上而下的注意即任务驱动的注意,通过目标和任务的抽象知识,在一定程度上指导注意焦点的选择。在自上而下注意模型的研究方面,Laar(1997)提出了一个用于隐式视觉注意的模型,该模型通过任务学习,将注意集中于重要的特征。Rabak[4]提出了基于注意机制的视觉感知识别模型,该模型在定义目标显著性时,通过语义分析对其他三个自下向上的视觉控制参数项进行线性组合。Salah将可观测马尔科夫模型引入到模拟任务驱动的注意模型研究中,并在数字识别和人脸识别的实验中取得了很好的效果。Itti提出以调节心理阈值函数的形式来控制视觉感知。
目前对自下而上的数据驱动方面的研究较多,而对自下而上的任务驱动方面研究较少。因为任务驱动的注意与人的主观意识有关,同时受到场景的全局特征影响。自上而下的注意涉及记忆、控制等多个模块的分工协作,其过程非常复杂。
5.计算机视觉注意模型研究的趋势
自底向上和自顶向下的加工是两种方向不同的信息处理机制,两者的结合形成了统一的视知觉系统。人类的视觉信息处理系统只有遵循这样的方法,才能有效地实现视觉选择注意的目的。
实践证明,把自底向上和自顶向下的研究相分离的研究方法并不能很好地解决计算机的视觉注意过程。要想使计算机能够准确模拟人类的视觉注意过程,实现主动的视觉选择注意的目的,采用两种研究方法相结合的形式势在必行。自底向上的视觉注意计算往往离不开与自顶向下的有机结合,实现二者的优势互补是以后计算机视觉注意研究的一个趋势。
参考文献:
[1]Wolf J M,Cave K R.Deploying visual attention:the guided search model.In:Troscianko T,Blake A,eds.AI and the Eye.Chichester,UK:Wiley press,1990.
[2]曾志宏,周昌乐,林坤辉,曲延云,陈嘉威.目标跟踪的视觉注意计算模型[J].计算机工程,2008,(23).
[3]郑雅羽,田翔,陈耀武.基于时空特征融合的视觉注意模型[J].吉林大学学报,2009,(11).
[4]Rabak I A,Gusakova V I,Golovan A V,et al.A model of attention-guided vision perception and recognition.Vision Research,1998,38.
关键词:计算机智能视频监控;运动目标检测方法;目标跟踪方法
中图分类号:TP311 文献标识码:A 文章编号:1674-7712 (2012) 10-0104-01
随着人工智能技术日新月异的发展,基于人工智能的计算机视觉技术也得到了广泛的推广和应用,成为计算机智能领域一个重要的发展方向。到目前为止,计算机视觉技术已经过20余年的发展,其在社会人文,军事技术及工业生产领域得到了广泛的应用,并以其独具特色的技术优势逐渐形成了一门具有一定先进理论支撑的独立学科。其中,著名学者Marr提出的视觉计算理论已成为计算机智能视频监控领域的主导思想,为大多数该领域内的研究人员所接受。从广义上讲,计算机视觉技术的实质就是实现对在复杂环境中运动物体的几何尺寸、形状及相关运动状态的识别和认知,即把实际空间中的三维对象转换为计算机视觉系统识别的二维图像。近年来,计算机视觉技术以其迅猛的发展态势及成熟的应用技术成为了业界的新宠,并得到了广泛的应用,取得了瞩目的成绩。
一、运动目标检测方法分析
(一)运动目标在静止背景条件下的检测分析
1.差分检测法
将同一背景不同时刻两幅图像进行比较,可以反映出一个运动物体在此背景下运动的结果,比较简单的一种方法是将两图像做“差分”或“相减”运算,从相减后的图像中,很容易发现运动物体的信息。在相减后的图像中,灰度不发生变化的部分被减掉,则前区为正,后区为负,其他部分为零。由于减出的部分可以大致确定运动目标在图像上的位置,使用相关法时就可以缩小搜索范围。
2.自适应运动检测方法
当两帧图像的背景图像起伏较大时,简单的差分法难以得到满意的解。此时可以考虑用自适应背景对消的方法,该方法可以在低信杂比的情况下压制背景杂波和噪声,检测出非稳态图像信息。在背景杂波较大时,常用的门限分割不能分出这种运动目标。在图像序列中,每一个像素点的灰度值都是这一点所对应传感器的输出信号值与噪声值的叠加,因此,如何克服噪声的影响确定一个最佳门限将目标与背景分离,就成为弱小目标检测的一个重要环节。
(二)目标在运动背景条件下的检测方法分析
块匹配法是目标在运动背景条件下的主要检测方法。基于块的运动分析在图像运动估计和其他图像处理和分析中得到了广泛的应用,比如说在数字视频压缩技术中,国际标准MPEG1-2采用了基于块的运动分析和补偿算法。块运动估计与光流计算不同,它无需计算每一个像素的运动,而只是计算由若干像素组成的像素块的运动,对于许多图像分析和估计应用来说,块运动分析是一种很好的近似。这里主要介绍块匹配方法。块匹配方法实质上是在图像序列中做一种相邻帧间的位置对应人物。它首先选取一个图像块,然后假设块内的所有像素做相同的运动,以此来跟踪相邻帧间的对应位置。各种块匹配算法的差异主要体现在:匹配准则、搜索策略及块尺寸选择方法上。
1.匹配准则
典型的匹配准则有:最大互相关准则、最小均方差准则、最小平均绝对值差准则、最大匹配像素数量准则等。
2.搜索策略
为了求得最佳位移估计,可以计算所有可能的位移矢量对应的匹配误差,然后选择最小匹配误差对应的矢量就是最佳位移估计值。因此,人们提出了各种快速搜索策略。这种策略的最大优点是可以找到全局最优值,但十分浪费时间。因此,人们提出了各种快速搜索策略。尽管快速搜索策略得到的可能是局部最优值,但由于其快速计算的实用性,在实际中得到了广泛的应用。下面讨论两种快速搜索方法:二维对数及三步搜索法。
二维对数搜索法开创了快速搜索算法的先例,分多个阶段搜索,逐渐缩小搜索范围,直到不能再小而结束。其基本思想是从当前像素点开始,以十字形分布的5个点构成每次搜索的点群,通过快速搜索跟踪最小误差MBD点。
三步搜索法与二位对数法类似,由于简单、健壮、性能良好等特点,为人们所重视。例如其最大搜索长度为7,搜索精度取一个像素,则步长为4、2、1,只需三步即可满足要求,因此而得名三步法。其基本思想是采用一种由粗到细的搜索模式,从原点开始,按一定步长取周围8个点构成每次搜索的点群,然后进行匹配计算,跟踪最小块误差MBD点。
三、运动目标跟踪方法
成像跟踪系统经过图像的预处理、图像的分割识别等一系列信息处理,最终实现对目标位置的实时精确测量。跟踪策略基本上可分为两大类:波门跟踪和相关跟踪。
(一)波门跟踪法分析
参考被跟踪目标外观的实际尺寸形态,事先确定好跟踪窗口就是我们通常所定义的“波门”的概念。与传统的图像处理方法不同,采用波门跟踪法进行图像的分析和处理,其原始状态的图像数据仅仅限于波门内的数据,这样系统一旦捕捉到目标,不仅可以避免传统技术对整幅图像处理过程的耗时缺点,而且这种跟踪技术应用和操作更为简单,跟踪及成像效果也能够得到切实的保障。
(二)相关跟踪法分析
当被跟踪的目标物体出现运动、姿态的调整或由于自然条件等因素造成了背景的杂波干扰时,目标图像的分割及提取工作由于目标矩心及形心的不确定将难于进行。这种情况下,就可以采用相关跟踪的方式进行处理。这种基于图像匹配为基础的相关跟踪技术是以图像相识性度量为基础,获取现场图像中实时的最接近目标图像值的一种跟踪方式。由于分析及处理过程中,不需对用于分割及提取的特征值进行处理,因而可以应用于对图像数据的原始资料的处理方面,这种方法不仅可以使图像的信息得以全部的保留,而且适合众多复杂的环境及场景,是一种操作简单,结果精确的测量方法。
四、结语
近年来,各行各业对视频监控的需求不断升温,但已有的视频监控产品不能满足日益增长的需要。因此,计算机视觉和应用研究学者适时提出新一代监控—视频智能监控。它是目前国内外计算机视觉研究领域热点问题之一。因而,在生产实践中,不断加强对其的分析和研究具有非常重要的现实意义。
参考文献:
关键词:自动控制技术农业自动化
中图分类号: DF413.1文献标识码: A
由于历史、观念和技术等方面的原因, 我国传统农业机械与发达国家相比有很大差距, 已远远不能适应农业的科技进步。近些年来, 自动化的研究逐渐被人们所认识, 自动控制在农业上的应用越来越受到重视。例如,把计算机技术、微处理技术、传感与检测技术、信息处理技术结合起来, 应用于传统农业机械, 极大地促进了产品性能的提高。我国农业部门总结了一些地区的农业自动化先进经验(如台湾地区的农业生产自动化、渔业生产自动化、畜牧业生产自动化及农产品贸易自动化)的开发与应用情况, 同时也汲取了国外一些国家的先进经验、技术, 如日本的四行半喂人联合收割机是计算机控制的自动化装置在半喂人联合收割机中的应用,英国通过对施肥机散播肥料的动力测量来控制肥料的精确使用量。这些技术和方法是我国农业机械的自动化装置得到了补充和新的发展, 从而形成了一系列适合我国农业特点的自动化控制技术。
一、已有的农业机械及装置的部分自动化控制
自动化技术提高了已有农业机械及装置的作业性能和操作性能。浙江省把自动化技术应用于茶叶机械上, 成功研制出6CRK-55型可编程控制加压茶叶揉捻机, 它利用计算机控制电功加压机构, 能根据茶叶的具体情况编制最佳揉捻程序实现揉捻过程的自动控制, 是机电一体化技术在茶叶机械上的首次成功应用。
1.应用于拖拉机
在农用拖拉机上已广泛使用了机械油压式三点联结的位调节和力调节系统装置, 现又在开发和采用性能更完善的电子油压式三点联结装置。
2.应用于施肥播种机
根据行驶速度和检测种子粒数来确定播种量是否符合要求的装置, 以及将马铃薯种子割成瓣后播种的装置等。
3.应用于谷物干燥机
不受外界条件干扰, 能自动维持热风温度的装置停电或干燥机过热引起火灾时, 自动掐断燃料供给的装置。
二、微灌自动控制技术
我国从20世纪年50代就开始进行节水灌溉的研究与推广据统计。到1992年, 全国共有节水灌溉工程面积0.133亿m2, 其中喷灌面积80万m2, 农业节水工程取得了巨大的进展。灌溉管理自动化是发展高效农业的重要手段, 高效农业和精细农业要求必须实现水资源的高效利用。采用遥感遥测等新技术监测土壤墒性和作物生长情况, 对灌溉用水进行动态监测预报, 实现灌溉用水管理的自动化和动态管理。在微灌技术领域, 我国先后研制和改进了等流量滴灌设备、微喷灌设备、微灌带、孔口滴头、压力补偿式滴头、折射式和旋转式微喷头、过滤器和进排气阀等设备, 总结出了一套基本适合我国国情的微灌设计参数和计算方法, 建立了一批新的试验示范基地。在一些地区实现了自动化灌溉系统, 可以长时间地自动启闭水泵和自动按一定的轮灌顺序进行灌溉。这种系统中应用了灌水器、土壤水分传感器、温度传感器、压力传感器、水位传感器和雨量传感器、电线等。
三、自动控制技术在精准农业中的应用
精准农业是在传统农业与农业机装备技术上, 运用高新技术进行农业生产管理。精准农业较传统农业其先进之处主要是应用全球定位系统(GPS)、地理信息技术、计算机控制技术、专家与决策知识系统, 实现农业生产的定位、定量、定时, 做到精耕细作和由于农业水土管理区管理点较为分散, 用传统方法进行数据采集和信息传输精度差、速度慢。把电子技术、微电子技术和通信技术紧密结合起来, 采用现代方法进行自动化监控和管理非常必要, 如在渠系、灌水、泵站等方面实现自动化监控与管理。农业自动化向智能化方向发展, 进一步发展精准农业重点发展节水、节肥精准农业技术体系的自动化控制, 实施精准灌溉、精准施肥, 提高水资源和化肥资源的利用率。精细设施农业主要发展以温室为主的自动控制系统智能化研究, 从而现降低成本、提高作物产量、提高农产品品质。这有助于我国农业资源的高效利用和农业环境保护, 是发展持续农业的重要途径。将计算机视觉技术应用于农业自动化领域计算机视觉技术是一个相当新且发展十分迅速的研究领域, 日本、美国等发达国家已在农业计算机视觉方面进行了广泛而深入的研究, 如农业种质资源管理、获取作物生长状态信息、农产品自动收获、农产品品质鉴定等。英国开发研制的采摘蘑菇机器人, 在定位蘑菇采摘点和测量时, 已经利用了计算机视觉和图像处理技术。计算机视觉技术在我国农业生产和农业现代化方面已开始应用, 但在设施农业、虚拟农业中的应用尚处于起步阶段, 应进一步加强、加快该领域的研究与应用。
我国农业自动化已在设施农业中的温室自动化控制、排灌机械自动化、部分农业机械装置自动化等方面得到一定的发展, 尤其精准农业的发展越来越得到重视。电子技术和计算机技术的迅速发展推动了农业机器向自动化方向发展。随着智能化技术的发展, 人工智能将是世纪农业工程发展的重点。各种农业机器人或智能化系统将在农业自动化控制中不断涌现, 继续推动和实现农业自动化是农业机械化工程技术工作者所面临的长远课题和挑战, 并进一步促进农业自动化控制技术向智能化技术发展。
四、自动控制技术在精准农业中的应用
精准农业是在传统农业与农业机装备技术上, 运用高新技术进行农业生产管理。精准农业较传统农业其先进之处主要是应用全球定位系统(GPS)、地理信息技术、计算机控制技术、专家与决策知识系统, 实现农业生产的定位、定量、定时, 做到精耕细作和由于农业水土管理区管理点较为分散, 用传统方法进行数据采集和信息传输精度差、速度慢。把电子技术、微电子技术和通信技术紧密结合起来, 采用现代方法进行自动化监控和管理非常必要, 如在渠系、灌水、泵站等方面实现自动化监控与管理。农业自动化向智能化方向发展, 进一步发展精准农业重点发展节水、节肥精准农业技术体系的自动化控制, 实施精准灌溉、精准施肥, 提高水资源和化肥资源的利用率。精细设施农业主要发展以温室为主的自动控制系统智能化研究, 从而现降低成本、提高作物产量、提高农产品品质。这有助于我国农业资源的高效利用和农业环境保护, 是发展持续农业的重要途径。将计算机视觉技术应用于农业自动化领域计算机视觉技术是一个相当新且发展十分迅速的研究领域, 日本、美国等发达国家已在农业计算机视觉方面进行了广泛而深入的研究, 如农业种质资源管理、获取作物生长状态信息、农产品自动收获、农产品品质鉴定等。英国开发研制的采摘蘑菇机器人, 在定位蘑菇采摘点和测量时, 已经利用了计算机视觉和图像处理技术。计算机视觉技术在我国农业生产和农业现代化方面已开始应用, 但在设施农业、虚拟农业中的应用尚处于起步阶段, 应进一步加强、加快该领域的研究与应用。
我国农业自动化已在设施农业中的温室自动化控制、排灌机械自动化、部分农业机械装置自动化等方面得到一定的发展, 尤其精准农业的发展越来越得到重视。电子技术和计算机技术的迅速发展推动了农业机器向自动化方向发展。随着智能化技术的发展, 人工智能将是世纪农业工程发展的重点。各种农业机器人或智能化系统将在农业自动化控制中不断涌现, 继续推动和实现农业自动化是农业机械化工程技术工作者所面临的长远课题和挑战, 并进一步促进农业自动化控制技术向智能化技术发展。
【参考文献】
[1]马玉敏等.工业以太网的最新发展.自动化系统工程,2006(2):2.
关键词:序贯相似性检测算法 图像匹配 计算机视觉
中图分类号:TN911 文献标识码:A 文章编号:1672-3791(2013)06(c)-0205-01
图像匹配最早是70年代美国从事飞行器辅助导航系统,武器投射系统的制导等应用研究中提出的。国内外学者对匹配辅助导航技术进行深入研究,使其在民用领域的应用越来越广泛[1,2]。计算机视觉计算主要分为低层处理、中层处理和高层处理,而在低层进行数字化差异检测、中层进行参数化相似分析,高层处理完成图像的识别、解释和描述等任务,都需要图像匹配技术[3]。序贯相似性检测算法(SSDA)能够快速地丢弃非匹配点,减少非匹配点的计算量,从而提高匹配的速度,算法简单,易于实现。
1 序贯相似性检测算法
序贯相似性检测算法的基本思想是基于对误差的积累进行分析。在进行图像匹配时,通常非匹配点处的误差ε会随着运算点数的增加而迅速增长,很快超过某一门限,而对于匹配点处,误差的增长要缓慢得多。这样对于大多数非匹配点,只需要分析前几项,而只有匹配点附近的点才需要计算整个循环,这样就大大地减少了匹配的运算量。
设源图像S的大小为J×K,模板图T的大小为M×N(其中M≤J,N≤K),模板覆盖的区域子图为,(p,q)为模板左上角像素点在图像S中的坐标,S中的待匹配区域是以点(p,q),(p,q+M-1),(p+N-1,q),(p+N-1,q+M-1)组成的区域。相对于参考点位置为(m,n)点的匹配误差定义为:
其中k=1,2,…r。将累计误差值与预定阈值进行比较,当累加值超过设定阈值Tk时,就停止累加计算,并记下累加次数k。计算下一个待匹配点处的误差,若累计误差小于预定阈值,则继续计算此处的误差,直到>Tk或k=r,记下k值。对不同的待匹配点进行上述匹配计算,最后取最大k值对应的待匹配点位置,即为要找的匹配点。
2 实验结果与分析
图1显示了基准图与实时图像,图1(a)为基准图像,大小为256×256,图1(b)为实时图,大小为65×65。图1(c)找到了实时图像在基准图中的位置。
由图1可以看出,SSDA算法能够良好地进行匹配。而通过对匹配时间的计算可以看出,SSDA算法的运行时间相对较短,效率较高。
参考文献
[1] GONG H C.Development of terrain contour matching algorithm for the aided inertial navigation using radial basis functions [J].Journal of Astron Space Science,1998,15(1):229-234.