前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的对流体力学的认识主题范文,仅供参考,欢迎阅读并收藏。
论文关键词:流体力学;制冷与低温工程;教学改革
目前,郑州轻工业学院(以下简称“我院”)的制冷与低温工程专业已被评为国家级特色专业。为了加强制冷与低温工程专业学生能力的培养,造就人才,有必要对制冷与低温工程专业的教学进行全面的改革。
“流体力学”是制冷与低温工程专业的一门重要的专业基础课,主要分为流体静力学和流体动力学,研究流体平衡、运动规律、流体和周围物体之间的相互作用力及其实际应用的科学。由于流动现象和流动规律及其影响因素十分复杂,故其具有理论性强、概念抽象和公式较多、实际工程应用广、对学生的综合分析处理问题的能力要求较高等特点。加上学生对流体流动机理普遍缺乏感性认识,导致“流体力学”课程历来被公认为是教师难教、学生难学难懂的课程之一。因此,迫切需要进行“流体力学”课程教学改革,使学生学好本门课程,提高课程教学质量,使学生能更深刻地理解和掌握专业理论知识,培养学生的综合分析应用能力和创新能力,全面提高专业素质。
分析目前我院制冷与低温工程专业“流体力学”课程教学的现状,发现存在以下主要问题:首先,“流体力学”理论性强,概念多而抽象,难以理解,学生普遍缺乏对流体力学问题的感性认识,学习兴趣不高;其次,课程中公式繁多,推导过程复杂,且大多涉及到“高等数学”的偏微分方程,另还涉及到“大学物理”、“理论力学”、“材料力学”等方面的知识,学生理解困难;另外,学生对所学的知识不能灵活应用。因此怎样激发学生的学习兴趣,选择合适的教学模式组织教学,全面实现该课程教学目标,提高教学质量,是该课程教学亟待解决的问题。
一、改革教学方法
学好“流体力学”这门课对于制冷与低温工程专业的学生来说至关重要。让学生理解流体静止和运动的规律及其影响因素,不仅能为学生学习后续的专业课程提供必要的理论基础,也能为学生以后分析解决实际工程中的实际问题提供理论指导。怎样才能让学生学好这门课,笔者结合自己的教学经验,认为可以从以下几方面着手。
1.激发学生学习兴趣
学生是学习的主体,而“流体力学”又是大家公认难学的课程,因此学生的学习积极性高低决定着“流体力学”这门课教学的成败。
要提高学生学习“流体力学”的积极性,首先要上好“绪论”课。“绪论”课是学生接触和了解“流体力学”这门课的窗口,也是教师的教学水平和教学方式的第一次展示,“绪论”课上得好不好直接影响到“流体力学”课程教学的成功与否。通过“绪论”课让学生对“流体力学”的发展及其广泛的工程实际应用有一个大致的了解,使他们充分意识到“流体力学”知识和我们的生活及国家的建设密切相关,深刻理解“流体力学”知识在今后的学习和解决实际工程问题中的重要作用。
教师在讲授一些理论知识之前,可先举出很多贴近生活的有趣实例或者先提一些问题来激发学生的学习兴趣,启发引导学生积极地思考。例如在讲液体的粘性之前,可以先问学生:在水中游得快还是在油中游得快?为什么?又如在描述流体运动有两种方式——拉格朗日法和欧拉法时,可以将在座的学生和教室里的每个座位作为研究对象来进行类比,从而让学生很容易的理解两种方式。通过举例和提问的方式,让学生带着问题去学习,让学生亲身感受到参与教学活动是一件乐事、趣事,由愿学到爱学再到乐学。实践表明:列举事例或提问的方式可以避免学生学习的枯燥感,活跃课堂气氛,不仅可以吸引学生的注意力,激发学生学习的主观能动性,还可以使学生充分意识到本课程对今后学习和工作的重要意义,并且能加深学生对所学知识的理解和记忆,使学生分析问题和解决问题的能力得以提高。
另外,还应充分利用多媒体,通过图片、动画让学生直观了解各种流动现象,而不是停留在抽象层面,从而提高学生学习“流体力学”的兴趣。
2.巧妙讲解公式
为了定量地描述流动现象和分析流动机理,需要应用数学工具。学生要真正理解基本概念、重要公式,首先就要读懂数学,然而读懂了数学不一定意味着明白了数学符号背后所代表的物理意义。“流体力学”教学实践表明,学生从读懂数学到理解流动问题的物理本质有一个过程。教师的一个重要任务就是做好各方面的工作,帮助学生完成从读懂数学到理解流动的物理本质这一过程的转变,进一步建立起科学的思维方式。
“流体力学”在分析介绍欧拉平衡微分方程、欧拉运动方程、连续方程、动量方程、伯努利方程等理论知识时都有大量的公式,这些公式涉及一些高数、物理、力学方面的知识,特别是大量的偏微分方程,加上“流体力学”的公式推导采用欧拉法,与物理及其他力学不同,学生的观念不易改变,而且推导过程复杂,学生理解掌握很困难。如果过分强调“流体力学”知识的严密性和完整性,对每个公式的每个推导细节都逐一介绍,推导过程将会枯燥无味,学生只会被弄得糊里糊涂,兴趣全无。而如果直接给出公式,让学生死记硬背,只能让学生不知其所以然,当然也就不能真正用所学知识来解决实际问题了。
根据多年的教学经验,笔者认为:“流体力学”中公式的讲解应将重点放在概念引入、理论模型建立的思想、基本原理和主要步骤以及公式的物理意义与应用限制上。首先对基本概念力争讲透,概念清楚了,公式的讲解推演才有意义。然后重点使学生明确公式的物理意义及公式中各项参数的物理意义和几何意义,只有真正理解了公式的物理意义,才能灵活使用公式解决实际工程问题。最后应强调公式的应用范围及应用注意事项。由于流动的多样性,“流体力学”中的很多方程都是在一定的条件下得到的,如伯努利方程就有多种形式(理想流体、实际流体、流体是否可压等),在具体运用时,要根据具体情况选用正确的形式。
3.充分利用作业
学习的最终目的是让学生能够独立自主地解决实际工程问题。如果基本原理掌握了,接下来就是如何用这个原理去解决实际问题。课后作业是检查学生对所学知识理解、掌握程度的一种手段,同时也是培养学生分析、解决问题能力的一种方法。
首先应由学生独立地完成一定量的课后练习题,这是“流体力学”学习过程的重要组成部分,解题过程实质就是利用“流体力学”的基本原理和基本方程分析和解决实际问题的一个训练过程,课后习题可以帮助学生加深对基本概念和基本理论知识的理解。
然后再由教师通过习题课的方式,利用具有代表性的习题和一些学生普遍认为困难、出错多的习题,讲述流体力学原理在工程实例中的应用。在讲解习题时,重在提供条理清晰的解题思路、详细具体的解题步骤,使学生在此过程中掌握解决问题的正确方法和技巧,以便在以后的学习工作中举一反三、触类旁通、学以致用。这一过程增强了学生对流动过程物理本质的理解,将物理问题与数学工具有机地结合起来,有助于学生对与专业相关联的实际工程问题进行认真思考,有效的增强了学生分析并解决实际问题的能力。
二、改革教学手段
多媒体教学以其形象、直观、生动、具体、易于理解的教学特点,丰富的教学内容,被高等院校广泛采用,并深受广大师生的欢迎。
多媒体教学在“流体力学”教学过程中发挥着重要的作用。利用多媒体,可将“流体力学”中那些难以用语言描述的流动图像、抽象难懂的知识点,如拉格朗日和欧拉法的描述,流线与迹线、层流、湍流等,通过图片、动画和视频资料直观形象地展现给学生,使其从感性认识开始建立清晰的物理概念,较容易地掌握相关内容,并使学生的逻辑思维、综合分析能力得以提升。另外一些需占用大量时间写板书表述的和不易通过板书表述的内容也可利用多媒体制作Power Point课件。如莫迪图、水头线、各种流场和一些典型的例题习题等。采用多媒体教学,授课的信息量增多了,教学内容更丰富了,学生在有限的时间内接收的知识更多了,学生的学习兴趣提高了,学生的思路拓宽了,教学质量也提高了。
多媒体教学的发展并不意味着要摒弃传统的板书教学。有很多学生认为板书能让他们有更多的时间去思考消化一些抽象的东西,更有利于对基础知识的理解和掌握。根据“流体力学”既有抽象复杂的流动机理又有大量的基本概念、基本方程的特点,在教学过程中应将多媒体教学与板书教学相结合,扬长避短,发挥各自的优势,为教学工作更好地服务。如对某些特定的流动现象,可以通过多媒体教学,加深学生对流动现象和机理的理解。而对于较重要的公式及一些重点难点内容还是采用板书教学,例如流体力学基本方程的推导过程依然使用传统教学中的板书,有利于学生集中注意力,让学生更清楚地看清步骤、方法和解题思路。这样既可留给学生足够的思考时间,又可加深学生对重要知识的理解,从而获得良好的教学效果。
【关键词】研究型教学模式 流体力学 数值模拟
【中图分类号】G423 【文献标识码】A 【文章编号】1674-4810(2015)17-0042-04
所谓研究型教学,就是以先进的教学理念为先导,运用与教学内容相关的实际问题作为载体,让学生在教师的组织和指导下有目的地、相对独立地进行探索研究,在整个学习过程中,注重在探索和研究的教学过程中激发学生的求知欲和学习兴趣,从而促进学生思维水平的发展,提高学生运用知识解决实际问题的能力。相较传统的教学模式,研究型教学模式更重视学生思维模式和能力的培养,强调教学与现代科技和社会的发展以及学科发展相关联,以此保持教学内容的新颖性和增强学生的创新性;更突出教学与训练方法的科学研究特色,强调师生之间的互动,培养学生的批判性思维与探索精神。
现代大学的职能,特别是高水平的研究型大学,强调教学和研究的相互渗透,在教学活动中,教师的作用是启发、引导、指导学生,强调引导学生探索研究自己感兴趣的未知领域,培养学生的观察、阅读、分析、讨论和推理判断能力,实践证明,研究型教学模式有助于学生积极参与教学过程,激发学习兴趣。
流体力学是知识体系庞杂、以大量实验为基础且对实验技能和实验条件要求较高的新兴综合性学科,也是一门重要的基础课程,它已经发展成为一门深入各个科学研究领域的重要学科,特别是随着航空、航天、航海以及能源利用等行业的发展,迫切需要解决许多有关流体力学的问题,这也极大地促进了流体力学学科的发展。流体力学在动力工程类各专业的课程设置中,起着从《高等数学》、《理论力学》、《机械设计》等基础课程到相关专业课程,譬如《发动机原理》、《流体机械原理》的桥梁作用,也是深入研究热能与动力机械的专业基础课。笔者在流体力学的教学过程中,就研究型教学模式进行了探索和实践,在课程设置中,针对某一授课主题,准备流体与流体运动科学中一系列生动的案例,让学生对生活中这些看似熟悉却又非常模糊陌生的现象有清晰的了解,在教学进行中,以具体实例为研究对象,引导学生利用所学的基础知识,并结合现代的研究手段,进行逐步深入的探讨与研究,并对研究结果进行合理的分析。在整个教学活动中,将现代科学研究方法与内容引入课堂,努力激发学生的学习兴趣,加深对基础知识的理解,培养学生从事科学研究的思维模式和严谨的科学态度,引导学生在主动探索、主动思考、主动实践中发展探索能力、实践能力和创新能力。
一 工程流体力学课程研究型教学模式实施方法
1.研究题目的选择与引入
开展研究型教学,对于研究选题有比较高的要求,既要有一定的工程背景,又要符合课程大纲的要求。由于是课堂教学,受时间所限,研究题目要求清晰易懂,又有一定的科学内涵和深入研究的背景。流体运动的连续性方程是工程流体力学课程中最为重要的内容之一,该部分逻辑性较强,对学生的数理推导能力有一定的要求。在教学活动中,拟结合计算流体力学(Computational Fluid Dynamics,CFD)数值模拟,采用循序渐近、逐步推导、深入分析的教学方法。
为激发学生的学习兴趣,培养学生分析问题、解决问题的能力,将通过以下两个现象来认识流体连续性方
北京理工大学第十批教育教学改革研究课题
程的物理本质:
第一,黄河壶口瀑布。壶口瀑布,是黄河上唯一的黄色大瀑布,也是中国的第二大瀑布,号称“黄河奇观”,其奔腾汹涌的气势是中华民族精神的象征。那么黄河壶口瀑布是如何形成的呢?
图1 黄河壶口瀑布
第二,乌鲁木齐开往阿克苏5807次列车失事。列车被风吹翻,看似是个笑话,但却实实在在地发生了。2007年2月28日凌晨2时05分,乌鲁木齐开往阿克苏的5807次旅客列车在行至南疆线珍珠泉至红山渠间42千米处时,遭遇13级飓风,风速达到37~41.4米/秒,造成机车后9至19位的后部车厢全部脱轨,导致南疆线被迫中断行车,那么其中的原因该作何科学解释呢?
图2 5807次列车失事图片
黄河壶口瀑布及列车被风吹翻现象中均蕴含着流体动力学连续性方程的物理本质。问题提出后,首先引导学生根据自己对于问题的理解,通过教学过程中的情境创设,利用流体力学基本原理进行理论分析和解释。根据对上述现象进行物理问题简化,提出一元流动连续性方程的推导过程。
设想有一根管道,流体在由入口断面A1、出口断面A2和管壁(三者构成控制面)围成的流域(控制体)内流动,如图3所示。
图3 一元流动连续性方程推导示意图
假设流体是不可压缩的均质流体,意味着流域内的
质量不变,且密度ρ为常数,则 。又
因沿管壁没有流体的流入与流出,有:
得到不可压缩流体流动总流所必须满足的连续性方程:u1A1=u2A2。
由于假设入流断面和出流断面的速度都为匀速(断面平均速度),故这也是一元流动的连续性方程,表明总流沿任意过流断面的流量是相等的。
在这一部分的教学中,强调教师选择教材内容、案例或课题,学生利用案例资料,独立思考,自主发现新知识,掌握内在规律,从现象中发现物理本质问题,从而获得新的感悟。在整个教学过程中,要特别注意引导学生去理解和分析问题,并采用不断提出问题的方式,吸引学生注意力,并激发学生进行深入探索的兴趣。
2.数值计算模拟仿真在教学中的应用
把现代研究工具与理念融入到日常教学中,是研究型教学模式的重要内容和任务。传统的流体力学教学内容与方法,基本上是基于理论的教学,并辅之以部分简单的实验,教学内容比较抽象和单一,不能反映当前流体力学学科发展的趋势。计算流体力学CFD技术,是解决工程中复杂流动的一种有效手段,也是一门新型的独立学科,它以经典理论和数值计算为基础,通过计算机的数值计算和图像显示,从空间和时间上定量描述各种场变量,从而达到对物理问题研究的目的。将CFD数值计算模拟方法和部分简单应用的实际上机练习引入到教学中,既可以开阔学生视野、生动课堂,增强学生对流体力学知识的理解,培养其解决实际问题的能力,又可以激发学生学习流体力学的兴趣,有助于学生养成善于尝试和探索规律的习惯。
为了使学生加深对流体运动连续性方程的理解和应用,在课程设计上,将设计以下CFD算例“喷管内二维流动”,问题的描述如下:空气在一个大气压的作用下通过平均背压Pexit=0.9atm的缩放型喷管。通过对流域的建模、计算和后处理,对本问题进行了流动过程的数值模拟仿真研究。对这一部分教学内容,应该对流场的边界条件、边界类型、湍流模型和计算方法等进行较详细的介绍和讲解。鉴于大学本科教学内容和流体专业知识的限制,可对流场的边界条件和边界类型多做一些讲解,例如速度边界、压力出流边界等;对湍流模型的来源及其应用做简单介绍,而对诸如SIMPLE、PISO算法等仅仅介绍一下怎样选取和使用即可。通过计算可以得到可视化的流动结果(速度矢量图和压力分布图等)。
(a)速度矢量分布图 (b)压力分布云图
图4 喷管内流动的CFD计算结果
将这些计算结果直观地呈现在学生面前,引导学生基于连续性方程的基本物理内涵去对计算结果进行分析,
由速度矢量图可以清晰地看出:在喷管喉口处,速度较大,这是由于此处流通截面积较小。对于喷管内的一元流动,通过喷管内通流界面的流量是相等的,流体的流速与管内通流截面积成反比,因此,在喉口处的速度最大。另外,在计算中,我们还可以通过检查质量流量的连续性来检查通过区域的质量流量是否满足质量守恒定律。通过在软件中进行相关的设置,我们可以看到进、出口质量流量的差异,在理想状态下,进口处的质量流量应该恒等于出口处的质量流量,考虑到计算误差,这一误差保证在总流量的1%即可。
图5 进、出口质量流量的差异
这一部分的教学,要求学生不仅掌握流体力学的基础知识,还要学会利用所学知识去分析工程实际问题。教学中要特别注重引导学生去不断地提出问题,并利用所学的知识去进行解释。这是进行研究型教学过程的关键。另外,如果有条件,最好采用师生互动,共同进行仿真计算和研究的方法。教学和训练方法要表现较强的科学研究特色,注意培养学生的批判和探索精神。
通过前面的教学,使学生对数值模拟这一现代研究手段及研究过程有了初步的了解,达到了将现代研究方法引入课堂的目的。为了更加有效地掌握教学内容,在介绍完数值模拟平台的使用,并对问题进行了初步研究之后,还必须引导学生进一步思考和研究。具体到本次教学,可进一步引导学生去思考课前所提出的两个问题,解释“黄河壶口瀑布形成原因”,以及“列车被风吹翻的原因”。
二 工程流体力学课程研究型教学中需注意的问题
在工程流体力学课程研究型教学中,既要照顾到流体力学课程的基本原理,又要反映现代计算技术在流体力学中解决实际问题的新发展。在教学实施过程中,根据笔者的实践和体会,需要注意以下几个问题:
1.坚持教学与科研相结合
要培养具有创造能力的人才,必须将教学与科研有机结合起来。教师只有通过本专业及有关学科的科研活动,才能加深对本专业本学科的理解和认识,更新教学
手段,丰富知识结构,激发学生的学习和研究热情。实施研究型教学作为一种趋势,已经得到了全球教育界的认可,这种人才培养模式的收效显著、发展前景可观,是一种值得我们研究与使用的教学模式。
2.教学题目的选取和教学过程的实施必须有针对性
采用研究型教学模式进行教学,应以讲解研究方法和研究过程为宗旨。其中题目的选取至关重要,一般来说,题目应来自于工程实际,有工程背景和深入研究的空间。同时也要注意题目不宜选得过于复杂,且与课程的教学内容结合得比较好。在实施过程中,可针对不同专业、不同需要的学生,建立不同的教学体系。例如与流体接触密切的专业,如流体机械及工程方向的学生,设置的CFD 部分理论和上机实验内容可略多。而对于车辆工程、机械设计及工程等普通工程类专业的学生来讲,可少讲理论,主要参与简单的工程实际流动问题的模拟解决实验。上机实验的内容也可以根据专业特点来选定,结合不同专业进行不同的案例计算和分析。
3.进一步确定学生在教学过程中的主体地位
注重在以探索和研究为基础的教学过程中培养学生的研究能力和创新能力。譬如在数值计算中需要正确地设置边界条件和初始条件,合理地选择数学模型,恰当地划分网格和进行迭代计算,最后还需要判断计算结果是否可用,并进行必要的调整和修改。因此,要求学生对问题的发生、发展直至达到平衡的全过程进行认真思考和分析,形成独立思考的习惯和能力。此外,通过改变边界条件或初始条件等因素,低成本、高效率地求得在不同条件下的计算解。因此,数值模拟为多角度、多方位地分析问题提供了进行各种尝试的机会,有助于学生养成善于尝试和探求规律的习惯,树立创新意识。
论文关键词:工程流体力学;教学研究;改革探索
“工程流体力学”课程在能源动力类工科专业中占有非常重要的地位,主要研究流体(液体和气体)的平衡、运动规律及其实际工程应用的技术科学,是力学的一个重要的分支学科。通过本课程流体力学的基本概念和基本原理的学习,学生掌握分析和解决本专业中涉及流体力学问题的能力,为后续专业课程学习奠定基础,然而当前的教学效果并不理想。自然界和人类生活中,以及工农业生产的各行各业中均广泛存在流体流动现象,但是由于缺乏对生活的观察,学生很难做到对课本讲授内容形成直观映像。此外,自然界中的流动现象往往包含多种流动方式,在理论分析与公式推导中涉及许多复杂的数学理论与方法,经验公式多,且不易理解记忆,给学生的学习带来很大困难,导致教师难教、学生难学,实践与应用起来更是难上加难,教学效果不理想,教学目的难以实现。还对后续专业课的学习造成很大影响,进而影响本科教学的整体质量。因此,“工程流体力学”教学改革势在必行。
一、“工程流体力学”教学调查研究
“工程流体力学”课程通常是开设于热能动力工程专业二年级阶段。对扬州大学的学生的问卷调查显示,多数学生对“工程流体力学”课程的评价是“难学”。为何会有这样的评价,通过分析发现,存在几个方面的原因。
1.研究对象比较抽象
“工程流体力学”课程本身研究对象是流体,没有一定的形状和具有流动性,这是流体区别于固体的本质特征。这一特征决定了流体力学研究理论比较抽象、经验公式繁多且推导过程复杂不易理解、易混淆,进而导致了本课程教师难教、学生难学,教学效果不够理想。因此,能否将前面学习过的对“固体”平衡和运动物理规律的分析方法通过比拟的方式移植到“流体”上,并使其形成正向的学习迁移是学生能否很快的掌握本门课程学习方法、学好本课程的一个很重要的方面。
2.教师与学生
“教学”包括“教”与“学”两个方面的内容,忽视任何一个方面都有可能造成教学效果的不理想。理论课教学是工程流体力学课程教学的主要方面,是进行实验指导和应用于工程实践的基础。某些任课教师为了自己的方便省事,教材和教学内容仍然是多年前的老教材,对现阶段流体力学的发展方向和研究成果,以及本学科的最新科技前沿理论及工程应用进展不能做到及时更新,教学内容与实际应用严重脱节。
教学方法单一呆板,无法吸引学生的兴趣。经常看到这样一种现象:教师在讲台上只顾着自己滔滔不绝地讲,忽视了课堂教学的互动性和学生的主观能动性,学生了无兴趣的在座位上睡觉、开小差、玩手机,基本上是教师在向学生单方面地传授知识,这样的教学效果是很低的。
本专业本科生新的培养方案中课程设置有这样一个特点:课程增加,课时压缩,总学分保持不变。“工程流体力学”课程理论课学时从64压缩到48学时,在教学内容总量不变的情况下,每堂课教授的内容,即学生需要接受的信息量就大大增加了,严重增加了学生的负担。“浮躁”是当代很多大学生所普遍具有的心理特征,导致的直接结果是学生自制力差、怕吃苦,上课前不预习、课后不认真复习、作业普遍抄袭。
二、教学改革的目标
围绕当前“工程流体力学”课程教学中存在的问题,以提高课程教学质量、实现教学目标为目的,进行了如下方面的改革:改变教育理念,以课程改革与教学适应新时代的要求为目的;加强教学方法与教学手段的改革,提高“教”的质量;加强课程的应用性,解决基础理论课程的知识教育、应用能力与创新能力的培养,全面提升学生的综合素质;加强课程教学评价与考核体系改革,引入全程教学评价与考核机制。
三、“工程流体力学”教学改革探索
从上面的分析可知,“工程流体力学”课程教学效果不理想存在很多方面的原因,因此,教学改革也要同时从多方面入手才可以起到事半功倍的效果。以下是笔者在扬州大学热能与动力工程专业本科生课程教学中进行的探索与尝试,取得了较好的效果。
1.教学方法的探索与实践
(1)俗话说“良好的开端是成功的一半”,第一堂课的重要性也就不言而喻了。兴趣是学生学习的直接原动力,能否在开始就激发学生对“工程流体力学”课程的学习兴趣是学好本课程的关键。运用多媒体技术,通过生动的视频和动画向学生展示生活中随处可见的流体力学现象。如,男孩子喜欢足球、乒乓球的比较多,可以用“香蕉球”和“弧圈球”现象的流体力学解释来吸引他们的注意力,还有其他的现象如高尔夫球表面的凹坑设计依据,飞机机翼能够产生巨大升力,跑车外形设计成流线型又是什么道理等等。此外我国正在实施的“南水北调”工程同样涉及很多流体力学相关知识,以上这些事例都是学生所非常熟悉而又在学习之前无法用理论来解释的现象,很容易引起学生的注意力和想要探索的兴趣。
(2)合理使用多媒体。在流体力学的教学过程中,采用多媒体有利于学生对流动现象的感性认识,加深对概念的理解,提高学习兴趣。但是,采用过多或华丽的多媒体也会产生一些负面作用,如多媒体教学替代板书节约了时间,增加了授课容量,但相应的讲课速度也就比较快,学生不易吸收和消化,容易造成学生“跟不上”进度,产生厌学情绪。因此,传统板书与多媒体有机结合的教学方式可以充分利用各自的优点,达到最佳教学效果。当然,不同教学方式之间的比例分配的“度”是需要关注的问题。
2.教学内容的选择
“工程流体力学”课程是机械、能源、化工、动力、建筑、生物、航天等专业的重要的专业基础课,这些专业具有不同的特点,对流体力学知识需求的侧重点也不同。因此,教材的选取要有针对性,即根据本专业特点和要求、学生层次来选择教材。此外,教师要能够跟踪掌握现阶段流体力学最新的发展方向与研究成果,不断更新和补充教学内容,做到课程内容的与时俱进。
3.重视实验教学
实验教学是“工程流体力学”课程教学必不可少的组成部分,属于实践教学环节。通过实验对理论进行验证,从而加深对课程基本概念和理论的理解和掌握。在基础实验外增加设计性实验、建立开放性实验室,锻炼学生的动手能力,培养学生发现问题、分析问题和综合运用所学知识解决实际问题的能力。
4.课程评价与考核体系
对于“工程流体力学”课程来说,学习要达到的目的是学生运用所学知识对实际工程问题的进行分析和解决的能力,而不是对课本理论知识和大量复杂公式的记忆能力。因此建立合理、公正、客观的课程评价与考核体系非常重要。针对学生普遍存在的平时不努力、考前几天突击考试的现象,摒弃“一考定成绩”的考核方式,采用灵活的、全程考核方式取得了很好的教学效果。具体做法是:提高平时成绩所占最终成绩权重,包括出勤率、课堂互动和讨论、小测试、作业质量等平时学习各方面的表现;期末考试成绩权重减少,采用闭卷方式,但考题中所涉及的公式、图表等会在试卷中集中给出,并增加一些干扰公式进去,既避免了学生花大量时间去记忆毫无规律可言、而又易忘的经验公式,同时也达到了考核学生选取基本理论和公式去分析、解决实际问题的能力,实现了教学目的。
关键词:流体力学;教学模式;改革
作者简介:杨卫波(1975-),男,湖北安陆人,扬州大学能源与动力工程学院,副教授;毛红亚(1976-),女,湖北天门人,扬州大学财务处,会计师。(江苏 扬州 225127)
中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)23-0083-02
“流体力学”作为土木、机械、能源、动力、环境、化工等学科的一门主干技术基础课程,由于其理论性强、概念抽象、方程繁琐、难以理解与记忆,导致学生学习的难度较大,从而影响教学进程和专业人才培养的质量。因此,如何针对“流体力学”课程自身特点,结合专业建设目标,探索出一套新的适合各专业培养目标的流体力学教学模式具有非常重要的意义。本文结合工科院校学生的实际情况及笔者教学实践与体会,从教学内容、教学方法及考核方式三方面对流体力学教学模式改革进行了深入的探析。
一、教学内容
1.教学内容的选择
教学内容的选择对于提高教学质量、改善教学效果具有重要的意义。根据教育心理学理论,[1]在教学中应把课程中具有广泛迁移价值的科学成果作为教材的主要内容,从而可实现利用已有知识来同化现有知识的作用,提高学生的接受能力。“流体力学”作为大学工科专业的一门课程,虽然其内容相对比较陌生,但其所包含的基本知识却贯穿于中学相关课程之中。如流体力学中的速度、压力、压强、质量守恒方程、能量守恒方程及动量守恒方程等,学生均在中学物理中均学过,因此在讲述相关内容时可以将其与中学内容相联系,从而提高学生的理解能力。又如在讲述管路的串联与并联特性时,其流量、阻力及阻抗特性正好与中学物理中电学的串联与并联电路的电流、电阻特性一致,如果在讲述之前引出中学的电路串并联原理,则可大大加强学生对管路串并联水力特性的理解能力。因此,根据学习迁移理论,将相关内容与学生已有知识进行对接,并阐述其相互之间的关系,不仅可以有效发挥学生利用所学知识来同化现有知识的作用,而且对于改善教学效果具有积极作用。
2.教学内容的编排
要合理编排教学内容就必须使教材结构化、一体化,以使构成教材内容的各要素具有科学、合理的逻辑关系。目前,国内“流体力学”课程的教学体系一般包括流体静力学、流体动力学(理想流体流动与实际流体流动)、流动阻力损失、孔口管嘴管路流动及特殊流动现象等。每部分内容既独立,同时各部分之间又有相互的联系。为了使学生容易学习,可以按照流体力学实际应用路线由简单到复杂的方式来编排教学内容。如可以从最简单的流体静力学部分开始,因为静力学部分中学物理中已讲授,生活中很常见,学生容易接受。由于静止是相对的,运动才是绝对的,自然界流体应用中更多的是运动着的流体,让学生明白这个道理后很自然将教学内容过渡到流体动力学部分,从而可提高学生继续往下学习的兴趣。在讲述流体动力学部分时,先从简单的一元理想流体运动部分着手,然后逐步过渡到多元理想流体流动及实际流体运动。在讲到实际流体运动时,由于能量方程中出现了阻力损失项,这样就很自然将内容过渡到流动阻力损失计算这一部分内容。由于生活中的复杂管路往往是由简单管路串联与并联而构成,因此,复杂管路的水力特性(流量、阻力等)需要确定,这样就可以根据流体力学实际应用需要将内容由阻力损失部分转移到孔口管嘴管路流动部分。最后,根据各专业培养需要,选择适合的特殊流动现象内容进行讲解,以加强流体力学的实际工程应用。这种以流体力学实际应用路线由简单到复杂作为主线的教学内容选择模式,内容组织层次感较强,讲起来更加引人入胜和重点突出,教学过程相对简化。
3.教学内容的弹性化
教学内容弹性化有两个方面的含义:一方面要根据每届学生不同的知识背景和不同的定位要求,采用不同的表达方式,以满足学生多样化的学习需要。另一方面是要根据时代的发展,不断更新教学内容,以适应最新科技发展的需要。[2]例如在“流体力学”教学过程中,为了让学生更容易接受,可以删去大量的数学公式推导,如流体连续性方程、动量方程、能量方程的推导等,这些内容对于学生是否掌握流体力学基本知识并无影响。又如,对于不同的学生群体,应根据学生今后的定位不同选择适当的教学内容,对于高职高专的学生,由于其毕业后大多数要走出校门从事实际工作,因此,在讲述时应侧重于流体力学实际应用方面的知识。而对于普通本科院校的学生而言,毕业后有相当一部分的学生要继续从事相关的研究工作(如考研等)。因此,应加强学生流体力学理论方面的教学与培养,以提高学生将来的研究能力。随着时代的发展和计算机的普及,将计算机用于求解流体力学问题的计算流体力学已越来越显示出其重要的作用。所以,流体力学教学中,适当介绍当今常用的计算流体力学商业软件,如Fluent、Star-CD、CFX及Ansys等,以扩充学生的知识视野,为今后有意继续深造的学生提供铺垫。
4.教学内容与工程实际相结合
兴趣是最好的教师。教育心理学[1]的研究表明:当学习内容与学生已有的知识和生活实际相联系时,才能激发学生学习和解决问题的兴趣。因此,在流体力学教学过程中,应结合专业目标尽可能多地介绍流体力学广泛的工程应用背景,引导学生提高自主学习流体力学的兴趣和积极性。如在讲述流体静力学中液体作用在曲面的总压力计算时,可以介绍1998年特大洪水灾害长江决堤事件等;在讲到流体静力学中平面总压力计算时,可以适当引入长江三峡水坝闸门的设计与计算;在讲到沿程与局部阻力损失[3]时,可以讲述如何选择水泵,并以每天生活用水管道供水为例来分析等;在讲到动量方程应用时,引入如何确定弯管及分叉管路中水流对管道的冲击力,从而可计算出管道支墩所受的推力;在讲述毕托管时,可讲述如何测量风管的风量与风压,在讲述倾斜式微压计时,可与毕托管一起讲述如何利用两者来测量正压与负压风管段的动压、静压及全压等。任课教师在平时授课过程中,结合专业培养目标适当穿插讲述一些发生在我们身边的与流体力学有关的实例,使学生认识到流体力学在生活及工程中的重要性,激发其学习兴趣,以提高教学效果。
二、教学方法
目前课堂授课中常用的教学方法主要有传统教学模式与以多媒体技术为代表的现代教学模式。传统教学模式是指教师通过口授、板书完成特定教学内容的一种课堂教学形式,该模式学生容易接受,可以达到预期教学目标。但缺乏创新与探索知识的功能,尤其是在当今知识快速更新的年代,更是面临严峻的挑战。现代教学模式是指在课堂教学中引入多媒体技术,通过形象逼真的动画的运用,生动形象地展示教学内容,从而可以充分发挥学生学习的积极性,使教学方式形象生动,有利于培养学生的思维能力、想象能力和创造能力。
考虑到传统与现代教学模式各自的优缺点,在流体力学教学过程中应将两种教学方法有机结合起来。如在讲述相关理论公式时,就以传统的板书教学为主,对公式的推导和例题的讲解,用板书的方式条理化,通过板书一边写、一边对学生提问,一边推导相关公式,让学生参与到教学中,从而可以加强学生与教师间的互动,激发与调动学生的学习积极性。而在流体力学理论的工程应用部分则较多地采用多媒体课件,例如在讲授层流与紊流[3]这部分内容时,单纯地板书讲解其概念很抽象,用多媒体课件展示雷洛实验讲解则直观生动,容易理解。在讲解孔口管嘴管路流动及虹吸现象时,用生动动画显示其流动全过程,可说明其流动过程中截面收缩及可能出现的真空现象,从而给学生留下深刻的印象。
三、考核方式
考核的作用主要是了解教师教与学生学的情况,及时发现问题以便改进。考核方式的合理性不仅能激发学生学习的兴趣,同时还可以提高教学效果。“流体力学”作为一门理论性极强的基础课程,传统的考核通常采用平时考核与期末闭卷考试相结合的方式,两者所占比例通常为30%与70%。平时考核主要是学生的出勤率与作业完成情况,而期末考试主要是卷面所取得的成绩。这种考核方式存在一定的问题,不仅不能激发学生的学习热情,在某种程度上还会使学生产生抵触心理。由于流体力学中有大量的经验公式和图表,如阻力系数计算公式与莫迪图、纳维-斯托克斯方程等,若采取闭卷考试,则势必要求学生背熟这么多的公式,容易陷入死记硬背的怪圈。
事实上,这部分内容的教学要求是让学生能熟练应用这些公式和图表解决工程实际问题,而不需要死记硬背。因此,在考核方式中可以尝试平时开卷考核与期末闭卷考核相结合的考核方式。即将不适合闭卷考试的一些无法记忆而又要求学生掌握与应用的内容,放在平时教学中进行开卷考核,而将一些基本原理、基本概念、基本计算方法的考核放在期末闭卷考试中。这样,一方面,通过平时不定期的考核能提高平时学生的出勤率,另一方面,通过平时考核也可以激发学生平时的学习兴趣,提高学习效率;此外还可以通过考核及时发现问题,改善教学方法。通过这样的考核方式,既能激发学生平时的学习兴趣,同时还可以提高教学效果,考试结果能较真实地反映学生对本课程知识的掌握和应用能力。
四、结语
教学不仅是一门科学,也是一门艺术。每一种教学模式都有其特定的适用范围和条件。流体力学作为工科院校相关专业的一门主干技术基础课,由于其理论性强、概念抽象、经验公式多,给其教与学带来难度。如何根据专业特点将其与各专业培养目标进行有机结合,通过教学模式的探索使其教学融入到各专业人才培养中,将是“流体力学”教学模式改革的进一步目标。
参考文献:
[1]谭顶良.高等教育心理学[M].南京:河海大学出版社,2006.
[2]刘立平,师少鹏.传热学课程教学的改革探索[J].高等农业教育,
[论文摘要]论文结合教学实践,提出了以传统教学模式为主、以现代化教学手段为辅的教学方法。结合实例讲清楚基本概念,够用为度重点突出理论公式的应用是常规教学应遵循的模式,并与多媒体辅助教学手段有机地结合起来,力求课堂教学的形式和方法多样化,既能保证课堂信息量大,又能避免单纯多媒体授课的不足,达到提高教学效果、提升教学质量的目的。
一、前言
《流体力学》是研究流体所遵循的宏观运动规律以及流体和周围物体之间的相互作用规律的科学,它建立在现场观测、实验室模拟、经典理论分析、数值计算基础上,具有严谨的理论性、原理的抽象性、概念多、方程推导繁杂等特点,对学生具备高等数学知识及综合分析与处理问题能力的要求较高,因而大部分学生觉得该课程抽象、枯燥、难懂,普遍缺乏对流体力学理论的感性认识,都有某种程度的畏惧感,导致教师难教、学生难懂成为较普遍的现象。
我校机械设计制造及自动化、过程装备与控制工程、土木工程、安全工程、采矿工程、环境工程、矿物加工工程、建筑环境与设备工程、工程力学等专业的学生都须具备不同程度的流体力学知识和技能,它是各专业后续课程如:液压传动、水力学、流体机械、空气调节、传热学等课程的基础。
为此,作者通过教学实践,就多样化的教学方法、更新的教学内容、引入高科技的教学手段等方面进行探讨,以期提高《流体力学》的教学质量。
二、以传统课堂教学为主
《流体力学》的课程体系分为基本理论、基本应用和专门课题三大知识模块,它要求学生具备扎实的微积分知识、力学知识等。学生在接触流体力学课程伊始,对抽象的理论理解速度慢,对枯燥的公式及其推导过程容易厌烦,因而《流体力学》的教学应该以传统教学方法为主。因为在传统的课堂教学中,学生获取知识主要是听教师讲课,通过板书教师细致耐心地阐述概念、推导公式、突出重点、强调难点,以学生容易接受的讲课速度,留给学生更多的思考和消化的时间,再配合上教师的表情、手势、师生之间的互动,会达到很好的教学效果。
(一)结合实例,讲清楚基本概念
流体力学的概念多、现象多,且很多概念和现象比较抽象,难以理解,诸如:拉格朗日法、欧拉法、流线、迹线、边界层等。因而利用身边的实例对这些抽象的概念进行讲解,例如在讲授描述流体运动的两种方法——拉格朗日法和欧拉法时,学生们很难理解。为了将概念通俗化,上课时笔者以城市公共交通部门统计客运量所采用两种方法为例:①在每一辆公交车上安排记录员,记录每辆车在不同时刻(站点)上下车人数,此法类似于拉格朗日法的质点跟踪,它与迹线的定义对应;②在每一公交站点安排记录员,记录不同时刻经过该站点车辆的上下车人数,此法等同于欧拉法,与流线的定义对应。
在讲解伯努利方程原理的时候,例举1912年“豪克”号铁甲巡洋舰与同行疾驶“奥林匹克”号远洋轮相撞的船吸现象,让学生清楚掌握流体的压强与它的流速有关,流速越大,压强越小;反之亦然。
概念是公式推演的基石,没有准确的概念,后续的公式推演几乎难以为继,清晰的概念会使公式的讲解和推演变得更加简易。利用浅显易懂的生活实例来阐述抽象的概念及其之间的内部联系和区别,教师易教、学生易懂,将会达到事半功倍的效果。
(二)以用为度,重点突出理论公式的应用
伯努利方程是能量守恒定律在流体力学中的具体应用,是流体静力学和流体动力学的基础,始终贯穿着整篇教材。在讲解该理论公式的时候,先从容易理解的静力学平衡微分方程推导开始,强调公式所依据的原理是牛顿第二定律,假设条件是平衡、理想、静止的流体,重点引导学生如何理解公式各项的几何意义和物理含义,掌握公式的实际应用。这样学习到后面的动力学伯努利方程时,先易后难、循序渐进,学生就觉得不会那么深奥。在讲解相对平衡的流体压强分布规律时,就要求学生必须掌握推导过程,因为它在解决一般平衡流体内部的压强分布规律及其对固体壁面的作用力问题时非常重要。而对于连续性方程和动量方程的学习,只强调记住结论和理解公式中各个物理量的含义。这样做,有效地避免了大量公式繁琐的推导给学生带来的畏难情绪,也能够做到以用为度、重点突出。
不可否认,依靠粉笔与黑板的教学条件、以教师为主体的传统教学模式,教学形式单一,教学手段不先进,教学效率不高,适应不了课程教学学时少、受教育学生数增加的情况。
三、以现代化的教学手段为辅
当前以计算机多媒体技术为主的现代化教学手段已经普遍地应用于高校的教学中。制作教学用的视频、多媒体软件、电子课件等素材,作为课堂教学有力的辅助教学手段,可以在有限的时间内,利用图文并茂的信息传播方式,将课程内容及有关背景资料以影像、图片等形式,直观地传播给学习者,将流体力学中抽象的概念和理论具体化、形象化,激发学生学习兴趣,使得学生能够从感性认识开始,逐步上升到理性认识,进而能够达到运用知识解决问题的能力。
结合流体力学精品课程的建设,教学团队制作了流体力学多媒体电子教案,并在教学过程中不断完善,逐步取得了良好的教学效果。在设计与制作多媒体课件时,遵循课堂教学的基本规律,既发挥传统板书教学中容易带动学生思路、逐条在黑板上书写的特点,在课件制作中根据讲解的进度逐条展现公式条目等内容,同时又将难以理解、难以用语言描述的拉格朗日法和欧拉法、流线、边界层和紊流等抽象概念和流动现象,以多媒体的方式在课堂上直观地呈现出来,帮助学生建立清晰的印象。教学团队收集、制作了大量的多媒体素材,例如在讲解雷诺判据的时候,制作了雷诺实验的FLIASH素材,以动画的形式向学生展示了流体流动的两种不同状态,以及流态判据—雷诺数与流动速度、管径、流体种类有关系。运用多媒体辅助手段表达后,能够帮助学生很好地理解课程的重、难点,提高教学效率。利用多媒体技术,还可以制作需占用大量时间板书和不易通过板书表述的内容,提高了教学效率。
多媒体教学的内容一定要做到提纲挈领、重点突出,有所为有所不为。多媒体技术没有好坏之分,只有合理使用与不当使用之别。但是实践应用中,发现有的教师完全抛弃以往的黑板式教学模式,离开多媒体手段就上不了课;有的教师将教材内容全部照搬到了课件中,自己就成了的幻灯片放映员,“照机宣科”;有的教师制作的多媒体课件过分追求课件的美观性,界面过于华丽,淡化了教学重点;也有的教师忽略学生对课件内容理解消化的时间,致使学生的思维跟不上教师讲解的速度,降低了教学效果。上述现象将会造成一种新形式的“满堂灌”,只不过是由“人灌”变成“机灌”而已。
四、总结
流体力学作为一门专业基础课程,其重要性不言而喻。传统教学模式能够将前后知识贯通,突出重点,化烦就简、引入实例形象阐述概念原理,促进知识的系统化进程;多媒体教学能将难于理解的知识通过图文、音像生动地显现出来,帮助学生理解性记忆。借助于先进的教学手段,将多媒体辅助教学手段与传统教学方法有机地结合起来,力求课堂教学的形式和方法多样化,既能保证课堂信息量大,又能避免单纯多媒体授课的不足,才能提高教学效果、提升教学质量。以上是笔者在流体力学教学实践中的体会,愿与同行共同切磋。
基金项目:2009年安徽省教育厅《流体力学》精品课程
[参考文献]
[1]许贤良,王传礼,张军等.流体力学[M].北京:国防工业出版社,2006.
关键词:CFD技术;相似性原理;流体流动
Application of CFD technology in the teaching of the flow similarity principle
Yang Xianglong
Shenzhen university, Shenzhen, 518060, China
Abstract: The flow similarity principle is an important part in fluid mechanics. The dynamic similarity condition is derived from the non-dimensional governing equations of the fluid flow. Thereafter, in order to show the necessity of the dynamic similarity condition, a simple fluid flow is simulated using CFD technology. This method can help theoretically and practically students to study the dynamic similarity condition which is more nonfigurative. Good teaching effect in classroom can be expected. In addition, the ability of students for solving engineering problem can be improved.
Key words: CFD technology; similarity principle; fluid flow
由于测量方法和工具的局限性,在流体力学或水力学中,模型实验是探索复杂流动规律、指导实际工程建设的重要手段。模型实验原则上是研究尺度缩小或放大了的真实流动。例如,在风洞中进行飞机、高层建筑、大跨度桥梁等模型的吹风实验,在水槽中进行船舰模型的航行实验,在水洞中进行小体积昆虫模型的飞行实验等。模型实验和真实流动之间满足流动相似性,即几何相似、运动相似、动力相似及初始和边界条件相似,是保证可由模型实验结果推知真实流动规律的充要条件。因此,相似性原理是流体力学或水力学教学内容的重要组成部分。
阅览众多水力学教材,在讲解相似性原理时几乎都遵从同一模式,即介绍流动相似的概念,给出几个重要的相似准则,举例说明相似准则在模型实验设计中的应用[1,2]。这种模式存在一个明显的不足,即未从理论上说明为何几何相似、运动相似、动力相似及初始和边界条件相似是保证流动相似的充要条件。从某种意义上说,这是一种“填鸭式”的教学方法,导致学生只能知其然,而不知其所以然。一般而言,几何相似和边界条件相似因其相对直观,学生容易理解。但对动力相似的要求,相对比较抽象,很多学生难以理解。在一些流体力学教材中,采用另外一种教学模式,即直接对流动控制方程进行无量纲化处理,进而推导出动力相似参数[3,4]。这种方法从理论上说明了动力相似的必要性,有助于消除学生对动力相似条件的疑惑。
然而,仅使用单纯的理论讲解,仍难以使学生留下深刻印象,而容易遗忘。如果能结合实际问题,应用相似性原理加以解决,不但能帮助学生理解其奥妙,对所学内容留下深刻印象,并且能锻炼学生解决实际问题的能力。
CFD技术在解决简单流动问题时,可得到相当满意的结果。一些教学工作者已尝试将其应用到水力学教学中,取得了良好的教学效果。如,赵琴等人利用CFD技术帮助学生理解流线的概念,巩固对总流能量方程和连续性方程的认识,区别层流和湍流的流动状态,及圆柱绕流的漩涡脱落特性等[5]。杨忠国等人利用CFD技术对雷诺实验进行了模拟,可以让学生在计算机房进行数字化实验[6]。李国威和董金玲将CFD技术应用到无环量圆柱绕流中,帮助学生对抽象内容进行学习[7]。将CFD技术应用到教学中,因其基于坚实的理论基础,相对于一般的动画,可得到真实的流动图像,并能获得更深层次的流动信息,能更好地帮助学生理解抽象内容。可用数值实验代替真实实验,大大节约教学资源,缓解高校实验资源不足的问题。同时,如果让学生自己动手对一些简单问题进行数值模拟,还可以锻炼学生自己动手,解决实际问题的能力。
笔者以二维定常不可压缩管道流动为例,先对其控制方程和边界条件进行无量纲化处理,从理论上阐明流动相似的充要条件。利用CFD技术对分析结果进行验证,将理论予以形象化,这样可以开拓学生的视野,激发学生的学习兴趣,加深学生对基础知识的理解。
1 控制方程和边界条件的无量纲化处理
二维定常不可压缩管道流动因其流动简单,存在理论解,包含了流体流动的一般特征,计算量小等特点,可很好地用于课堂教学中。其控制方程包括连续性方程和动量方程,为:
(1)
(3)
边界条件为:
①在固壁上:u=0;v=0 (4)
②在进口处,若速度呈均匀分布:u=U;v=0 (5)
③在出口处:αu/ αx=0;v=0;p=0 (6)
式中,x和y分别表示轴向和横向的坐标;u和v分别表示轴向和横向的流体速度;p表示流体的压力;ρ表示流体的密度;μ表示流体的动力黏性系数。因流动不可压缩,且不考虑温度的变化,故ρ和μ均为常数。
引入特征长度L(取为管道宽度),特征速度U(取为进口平均速度),特征压力ρU2,可将x,y,u,v和p进行无量纲化,结果如下(带*号的量为相应的无量纲变量):
;;;; (7)
代入控制方程(1)~(3)和边界条件(4)~(6)中,得无量纲控制方程和边界条件,为:
(8)
(10)
边界条件为:
①在固壁上:u*=0;v*=0 (11)
②进口处,若速度呈均匀分布:u*=1;v*=0 (12)
③在出口处:αu*/ αx*=0;v*=0;p*=0 (13)
其中,,是一无量纲参数,称为雷诺数,表征流体惯性力和黏性力之比。
可见,对于二维定常不可压缩管道流动,只要保证雷诺数相同,即动力学相似,则其无量纲控制方程是完全一样的。如果同时保证几何相似的,无量纲边界条件相同,则其无量纲流动变量(u*,v*,p*)的解也必然是相同的。这样,流动就是相似的。而如果雷诺数不同,则无量纲流动变量的解就可能不同,则流动不是相似的。因此,对满足几何相似和边界条件相似的同类流动,雷诺数相同是流动相似的必然要求。而雷诺数是密度ρ,特征尺寸L,特征速度U和动力黏性系数μ的组合,也就是说,可以任意改变这4个参数的值,只需保证其组合(雷诺数)相等,就可保证流动的相似性。这样,为模型实验提供了广阔的设计空间。如根据实验条件和测量手段的不同,可以灵活地用空气流动模拟水的流动,用较慢速度的流动模拟较快速度的流动,用小管流动模拟大管流动等,反之亦然。
2 数值验证
由前面的分析可知,对满足流动相似的流动,相同无量纲位置处的无量纲流动变量必然相等,反之亦然。在满足几何相似、边界条件相似的前提下,动力相似(在此表现为雷诺数相同)是保证流动相似的必然要求。为验证前面所述理论,以二维定常不可压缩管道流动为例,设计6种工况。二维管道的宽为L,长为10 L,网格尺寸取为0.05 L,这样,可将整个计算区域划分为4 000个矩形网格。计算域几何、计算网格、边界条件如图1所示。6种工况中各参数取值见表1,工况1至工况4的雷诺数为100,工况5和工况6中雷诺数为500,但特征尺寸、特征速度、流体密度和动力黏性系数取不同的数值。
使用商业软件Fluent对流动进行模拟。控制方程的空间离散格式取二阶迎风格式。计算中,每种工况迭代300步后,流动即可收敛,在CPU主频为1.86 G的个人PC机上耗时约20秒。
将计算结果进行无量纲化,以考察雷诺数对流动相似性的影响,不失一般性,取进口处的无量纲压力(见表2)和出口处的无量纲速度分布(如图2所示)进行分析。可以看到,若雷诺数相同,进口处的无量纲压力和出口处的无量纲速度分布都是相同的。若雷诺数不同,则无量纲压力和无量纲速度分布都不同。理论上,二维无限长管道流动的速度剖面应为抛物型分布。现管道为有限长,在惯性力和黏性力的共同作用下,从进口到出口的流动过程中,速度分布由均匀分布向抛物型分布逐渐发展。其中惯性力的作用是保持原有的流动状态(即维持速度均匀分布的状态),而黏性力则驱使流动向最终稳定状态(即速度为抛物型分布)演化。因此,惯性力相对越大(即雷诺数越大),速度的演化过程越慢。从图2看到,当雷诺数较小时(工况1至工况4),速度演化较快,10 L的管道长度足以保证流动速度演化到稳定状态,因此出口处的速度已经达到抛物型分布。而当雷诺数较大时(工况5和工况6),速度演化较慢,10 L的管道长度还不足以使流动速度演化到稳定状态,出口速度分布还未发展到抛物型分布。
3 结束语
流动相似性原理是流体力学或水力学教学内容的重要组成部分,是建立模型实验和实际工程流动问题间相互联系的纽带。采用对流动控制方程进行无量纲化,从理论上推出流动动力相似的条件,可以帮助学生更好地理解流动动力相似条件的必要性。
采用CFD技术对二维定常不可压缩管道流动进行数值模拟,操作简单,计算速度快,可方便地用于课堂教学,以加深学生对相似性原理中较为抽象的动力相似的理解和记忆。如果让学生亲自动手完成,更能留下深刻印象,取得良好的教学效果,并能锻炼学生的动手能力和提高学生解决实际问题的能力。
参考文献
[1] 肖明葵.水力学[M].重庆:重庆大学出版社,2007.
[2] 刘士和,孙东坡,丁新求.水力学[M].郑州:黄河水利出版社,2009.
[3] 吕华庆,魏守林,周华民.流体力学基础[M].杭州:浙江科学技术出版社,2006.
[4] 庄礼贤,尹协远,马晖扬.流体力学[M].合肥:中国科学技术大学出版社,1991.
[5] 赵琴,杨小林,严敬.CFD技术在工程流体力学教学中的应用[J].高等教育研究,2008,25(1):28-29.
引言
CFD即计算流体动力学(Computational Fluid Dynamics,简称CFD)是一门通过数值计算方法求解流体控制方程组进而预测流体的流动、传热和化学反应等相关物理现象的学科。常用的方法有有限差分法、有限元法和有限体积法。进行CFD分析的基本思路如下:将原本在时间与空间上连续的物理场如速度场或压力场等,离散成有限的变量集合,并根据流体力学的基本假定,建立起控制方程,通过求解这些流体力学的控制方程,获得这些变量的近似值。
我国作为一个人口众多的发展中国家,巨大的能源消耗已成为亟待解决的问题。其中建筑耗能占到总耗能的19.8%,而室内空调的耗能占到了整个建筑耗能的85%以上[2]。因此,在供暖、空气调节和建筑物内外空气流通等研究领域,采用CFD分析来替代传统的试验方法,可大大缩短研究时间并提高经济效率。而本文将着重就CFD在暖通工程节能中的应用来展开讨论。
CFD基本原理
CFD是通过计算机模拟和数值计算方法对流场进行仿真模拟,解决物理问题的精确数值算法。它是流体力学、数值计算方法以及计算机图形学三者相互结合的产物。CFD是继实验流体力学和理论流体力学之后出现的第三种流体力学的研究方法,是十分重要的研究方法。在航空航天、土木工程、水利工程等研究领域都扮演着重要角色。尤其是在暖通空调和室内外通风等研究方法,CFD成为了最为行之有效的分析方法。
CFD在暖通工程的应用
CFD在暖通空调中的主要应用领域CFD主要可用于解决以下几类暖通空调工程的问题:
1.提高室内空调效率
采用CFD分析方法可以预测气流在房间中的流动情况,在充分考虑室内环境、各类边界条件与扰动的影响后,可全面地反映室内的气流分布情况,通过进一步的优化设计可以得道一个合理的气流分布方法,使空调的使用效率最优。
2.建筑周边环境分析
建筑周边环境对居民日常生活起着举足轻重的作用。对居民小区的风环境和热环境进行预测,是CFD分析的又一重要应用领域。采用CFD方法,在建筑设计阶段即可对建筑周边环境进行分析和优化,对规划设计的效果进行验证,使建筑通风和自然采光达到最佳效果,是小区居民生活品质的重要保障。
3.室内环境状况分析
采用试验方法分析室内环境状况,需要耗费大量的时间与经费,而采用CFD方法进行分析不仅可以节省时间,同时也能精确预测利房间内的风速、温湿度、污染物分布等指标,计算出通风效率、毒害物扩散效率和热舒适等,进而对室内环境状态做出一个合理的评估。
4.暖通设备性能评估
暖通空调工程使用的大部分设备,如风机、水槽、空调等,其运行状态都受流质运动的影响,空气或水的流动情况是评价设备性能的重要指标。通过CFD分析设备工作时的流场分布情况和流质流动情况,可有效地预测设备的工作状态。进而选择设备最佳工作状态,降低设备能耗,节省运行费用。
暖通空调领域中CFD的求解过程
暖通空调领域用CFD进行模拟仿真,其主要环节无外乎包括以下几个方面:建立数学物理模型、进行气流数值求解、将数值解结果可视化等。
1.建立数学物理模型
建立数学模型是对所研究的流动问题进行数学描述,为数值求解做准备工作。基本数学模型有:
质量守恒方程:
动量守恒方程:
能量守恒方程:
式中;ρ为流体密度(kg/m3),t为时间(s),u为速度矢量(m/s),ui为速度在i方向上的分量(m/s),p为压强(Pa)Fi―――体积力(N),T为温度(K),cp为定压比热,ST为粘性耗散项。
2.求解过程
(1)确定边界条件与初始条件
初始条件和边界条件是控制方程有确定解的前提。初始条件是所研究对象在过程开始时刻各个求解变量的空间分布情况。对于瞬态问题必须给定初始条件,对于稳态问题不需要初始条件。
(2)划分计算网格。
网格分结构网格和非结构网格。简单说,结构网格在空间上比较规范,如对一个四边形区域,结构网格多是成行成列分布的,而非结构网格在空间分布上没有明显的行线和列线。
(3)建立离散方程并求解。离散方程常用的方法有:有限容积法、有限差分法和有限元法等。选择合适的方法,对求解区域进行离散。
CFD在暖通空调节能应用情况
随着我国经济迅速发展和人民生活水平大幅提升,城市生活对化石能源的需求量越来越大。但今年来一系列能源危机提醒我们应当注重能源安全问题。在建筑工程领域,采用 CFD分析模拟,可有效减少建筑能耗,并能提高暖通设备的运行工作效率,我国暖通工作者已认识到CFD计算在研究和设计中的重要地位。
1.我国CFD在暖通空调节能应用现状
目前,我们已开始采用CFD对暖通空调节能的相关因素进行整体的系统模拟分析。通过在CFD模拟中改变设备参数,就有可能优化设备组合,改进系统性能。国外已把CFD用于室内空气流动与建筑能耗祸合模拟,我国清华大学也用CFD对空间气流组织设计与空调负荷的关系进行研究,这对建筑节能有重大意义。目前,我国在采用CFD解决建筑节能方面的研究还不是很深人,因而应进一步加强研究和推广的力度。
2.我国CFD应用存在的问题
我国研究机构很早就开始CFD模拟技术的应用研究,研究的范围从以室内空气分布以及建筑物内烟气流动规律的模拟为主,逐渐扩展到室外及建筑小区绕流乃至大气扩散问题,并已形成一些可以解决实际问题的软件。所以,从总体上看,我国暖通行业中开展CFD方面研究尚有大量工作要做,主要表现在以下几个方面:
(1)还要建立在考虑辐射条件下计算室内空气的温度分布、壁面和空气的换热、壁面的温度分布的多种模型。
(2)将已有的CFD模拟技术方法进行简化,能够在微机上较准确地计算包括高大空间气流组织在内的各种通风空调热环境问题。
(3)考虑实际空调管道连接带来的风口出流特性变化,从而使室内空气流动模拟更加准确等。
(4)CFD技术在CAE工程中已表现出巨大的优势,如果将与CAD及CAM乃至AI技术有效地结合在一起,将显示其强大的生命力。
结语
[关键词] 冶金传输原理 理论和实践 过程教学
冶金传输原理是以高等数学、大学物理和物理化学等课程为基础并与冶金过程紧密联系的冶金类专业基础课。广大师生普遍认为该课程“难学难教”[1],其中冶金传输原理的“难学”,主要体现在课程的相关概念、定理、定律,特别是相似原理、因次分析以及相似准数等的抽象性,对于第一次接触这些内容的初学者,难以与实际的物理过程相结合,而表现为“难学”。对于冶金传输原理的“难教”,是该门课程数学与物理高度结合的特点,而学生专业知识的不足以及数学、物理知识不扎实等实际问题,在实际的教学过程中如何克服这些问题,能够使学生理解和掌握教学大纲所规定的内容,是“难教”的主要表现。因此,针对这些问题,如何提高教学质量,培养具有实用型及创新型素质人才的要求,是该门课程教学改革始终探索的方向。
冶金传输原理的课程特点
冶金传输原理课程的特点是数理解析较重,其理论和研究方法来源于流体力学、传热学以及成熟的质量传递理论而形成一门独立的学科,解析方法着眼于物理概念和数学表达的统一,并且突出了物理过程的特点[2]。它是一门既有较强的理论性,又有很强的实践性的课程[3]。传输理论应用于冶金的实际过程,首先要对实际过程进行观察分析,建立简化的物理模型,然后建立相应的数学模型,再用数学分析解法、相似原理—模型实验法和类比法等适合的方法求解给实际过程提供理论支持。自上世纪80年代以来,由于计算机软、硬件的快速发展为传输过程的数值计算提供了强大支撑,使计算流体力学、计算传热学等也随之有了长足的发展,目前,数值计算已成为传输原理的重要组成部分,同时也丰富了课程的内容。
冶金传输原理过程教学的方法
把冶金传输原理基本概念以及理论模型和冶金工程应用相结合,关键是介绍这些理论、模型与实际的冶金问题相结合的过程,实现理论联系实际,学以致用。这样一方面培养学生的实际应用能力,另一方面提高学生兴趣,加深理论知识的理解以及对专业的认识,提高教学质量。结合教学经验采取相应的方法和针对性的措施。
1.课内与课外相结合
课程数理解析较重的特点主要体现在涉及的数学、物理知识较多,为了更好地完成教学内容,就需要学生掌握扎实的数理知识,这样,课前有针对性的预习就显得很重要。因此课内与课外相结合就表现为课前的预习、课堂的听讲和笔记以及课后的复习和及时完成作业的模式。在课堂上,通过回想式的提问,巩固上节课的知识点,起到承上启下的作用,使本节的知识点能够顺畅衔接和充实,并且及时明确下节的内容,学生在预习时能够有针对性地查漏补缺,从而有效地利用课堂时间进行传输原理的教学。通过这些环节的积极实施,提高课堂的教学效果。
2.启发式与能动性相结合
冶金传输过程的相关概念、定理、数学物理模型以及解析方法,对于初学者来说比较抽象,特别传输过程简化物理模型、数学模型的建立,以及数学模型的解析等,是知识的综合应用,特别是数理解析过程复杂、繁琐,对于基础知识薄弱的学生显得犹为枯燥乏味,影响了教学的效果。针对这种情况,在课堂上采用适当的提问进行启发式互动,了解学生对基本概念的理解程度,及时引导概念的转换。对于一些简单的推导,在介绍基本的推导方法后,让学生参与其中,共同完成过程的推导,使学生在这样的方式中,掌握解析方法。另外,结合课堂教学内容,布置适当的课外作业,加深对所学内容的理解,提高了学生学习的能动性。
3.专业知识与自然知识相结合
根据专业培养计划,冶金传输原理课程属于专业基础课,安排在认识实习实践环节之后,学生虽然完成了认识实习,但对于专业的认识、工艺知识的理解还是有很大的局限性,加之冶金过程的高温和不可见性,实际的冶金物理过程更具有抽象性,这些都加大了教学过程中与实际结合的难度,降低了学生学习的兴趣,影响教学效果。因此,把冶金传输原理与实际生活中的应用结合起来,以提高学生学习兴趣。例如自然对流传热在换热方面的应用,即密度是温度的函数,由于温度的变化使密度变化而产生了自然流动,完成热量的交换,这就是土暖气的原理,以及烟囱是伯努利方程的实际应用、流体的黏性与涡流的产生等。这样的实际应用提高学生学习兴趣的同时也加深了对专业知识的理解。
4.教学与科研相结合
本科的教学与科研有着密切的关系,把教学科研团队的研究成果与实际的教学进行有机的结合,扩充了学生的视野,丰富了课堂教学的内容,提高了学习的兴趣和教学质量。如动量传输中流体流量的测量,就是伯努利方程的具体应用,其中对节流装置的标定是采用实流标定或者风洞试验,利用相似原理确定相关相似准数,根据相似充要条件,建立试验模型系统和实际测量系统的相似准数方程,通过确定的相似准数将试验模型系统与实际流体流量的测量连接起来,由于实际流体流量的测量;为了确定氧气转炉吹炼工艺参数而设计的转炉冷态模拟实验;以连续铸钢过程温度场的模拟计算,根据结晶器、二冷却区和空冷区的不同边界条件,进行连铸温度场数值计算,并介绍典型的有限差分法、有限单元法和有限容积法等数值计算方法,介绍计算机在传输中的应用,同时介绍在计算流体力学、计算传热学的方面有成熟应用的如FLUENT、PHOENICS等商业软件,使学生了解传输原理在数值计算方面的进展情况以及在冶金生产中的应用,如中间包流场的计算、钢包桶式精炼炉底吹氩时流场的分布等。
5.理论与实践以及实验相结合
冶金传输原理工程技术基础课程的特点决定了其实践环节非常重要。在课堂教学的课时外,安排有6个-8个课时的实验内容,主要有验证位能、静能和动能之和为常数的伯努利方程实验;通过流速和差压来进行流体流量测量的实验;转炉冷态模拟实验等。采用教学与实验相结合的方法,均可使学生对相应的物理过程有一个深刻的认识,强化理论与实践相结合的过程。
在传输原理的教学过程中,要结合冶金工程专业的工艺特点与相关的传输原理进行有机的关联,如埃根公式在高炉炼铁中的应用、动量传输在连铸中间包流场分布方面的应用以及渣-钢间反应的传质模型等,在这方面给学生一个有益的导向。
6.知识的持续更新
为了更好地实施冶金传输原理的过程教学,在平时要不断进行教学方法、专业知识学习以及工程实践的积累。对于教学方法的学习,一方面要查找教学过程的不足,另一方面要请教教学经验丰富的教师、专家,通过听课的方式,取长补短,积累教学经验。专业知识方面的积累,主要是通过平时的备课以及在教学过程中发现的问题,及时查阅相关资料进行求证,如对流体力学、传热学以及数值计算、计算方法等方面知识的学习、积累,通过自学或请教于专家,来加强自己对专业知识的理解,同时,利用带队实习、与企业横向课题合作以及去企业实践锻炼的机会,不断充实自己的工程实践知识,可以为过程教学提供更多、更丰富的工程实例,并且借助自己所在的教学科研团队的平台,把冶金实际以及科研的内容提炼为简洁明了的课堂语言传输给学生,提高过程教学的效果。
结 论
冶金传输原理教学过程贯穿于每一个知识点、每一节课教与学的小环节,以及理论与实践相结合的小环节之中,这样的环环相扣,提高学生掌握知识的能力和教学质量。教学的关键是培养学生解决实践问题的能力,授之以“渔”使学生在以后的工作中,在所掌握知识的基础上,能够继续得到丰富和提高,培养实用型人才。
参考文献:
[1]林万明,王皓,陈津.《冶金传输原理》教学改革与实践[J].科学之友,2006,7:75-76.
[2]王超,杨双平,袁守谦,鲁路.加强冶金传输原理课程理论联系实际的过程教学[J].中国冶金教育,2010,9.
1工程的概念
目前有关工程的概念很多,但意思相近。普遍认为工程具有造福人类社会的目的,分歧是它究竟属于科学还是艺术范畴。目前有学者认为,工程既不是单纯的艺术,也不是单纯的科学,而是沟通艺术与科学的桥梁,存在于科学、艺术与社会的交界点之上,不是三者简单的叠加[3]。作为一个独立自主的范畴,工程具有鲜明的社会目的性,即造福人类。
2工程教育的本质
工程教育是根据一定社会要求和受教育者身心发展规律,由工程教育者有目的、有计划、有组织地对受教育者身心施加全面系统的影响以达到预期培养目的的社会活动过程[3-5]。它除了具有普通教育的特征外,还具有如下属性。
1)实践性:工程的社会性决定了工程教育的实践性。
2)复合性:工程教育应当培养具备复合型知识背景的工程人才。
3)伦理性:工程活动必须符合法律以及伦理道德规范。
4)全球性:工程应具有全球视野,即培养出的人才能满足全球大环境的需要。
3我国工程教育认证的要求
为了与全球工程教育接轨,我国对工程教育人才培养提出一些要求[6]:1)具备较好的人文科学素养、较强的社会责任感和职业道德;2)具备从事工程工作所需的数学、自然科学以及一定的经济管理知识;3)具备综合运用科学理论和技术手段分析和解决工程问题的能力;4)具备运用现代信息技术获取所需信息的技能;5)了解国家对本专业职业和行业导向,熟悉环境保护和可持续发展等方面的政策和法规,正确认识工程对社会的影响;6)具备一定的组织管理能力、较强的表达能力和人际交往能力以及在团队中发挥作用的能力;7)具备终身学习的能力;8)具备国际视野和跨文化交流、竞争和合作的能力。从我国对工程教育的要求来看,就一门单独的课程而言,成功的工程教育必须让学生具备积极主动学习和思考的能力、良好的沟通能力、优秀的团队合作精神、对工程过程良好的认知能力和终身学习的能力。这是本文教学方法改革的依据。
2过程流体机械课程的特点
1理论性强,需要良好的基础知识
要想较好地学习过程流体机械专业课程,学生不仅需具备扎实的力学基础知识(如流体力学、工程热力学、传热学、理论力学以及材料力学知识),还需具备良好的专业基础知识(如机械原理、机械设计等)。对于以“讲授”为主的传统的教学方法而言,学生要想在课堂上完全理解教师讲授的教学知识点,紧跟教师的备课思路,就必须对这些现行课程有良好的认识和理解。
2专业性强,内容复杂、繁多
过程流体机械专业课程涉及的内容非常广泛,包括机构原理、热力学计算、流体力学原理、动力学计算、结构设计、运行维护、故障诊断、总体方案设计与选型等。每一个知识点似乎都涉及一门独立的基础课或者专业课程。如果学生没有充分的准备,听课时似乎很难对教师讲授的知识做出敏捷的反应,极大地影响课堂的互动气氛。3知识点与工程实践紧密联系过程流体机械专业课程涉及的知识点与工程生产实践紧密联系,其理论水平远高于实际,可用于指导流体机械在企业生产应用中的稳定操作和运行,以及机器的技术改造与新机型的开发。课程讲授过程中需要注重培养学生的工程意识与理论联系实际的意识和能力。结合课程的学习,势必要学生开展一定的工程训练,以加强学生的工程观念,让学生做到实践与理论相结合,以及理论与实践相结合。
3过程流体机械课程教学存在的问题
1基础知识欠缺
不可否认的是,随着教学改革的推进,一些非常重要的基础课程(如工程热力学和传热学)由于学时短缺而被逐渐砍掉。有的课程(如流体力学)虽在开设,但由于学时短或为选修课程,得不到足够的重视,学习效果不理想,导致学习过程流体机械课程时,学生连最基本的概念(如内能、焓、熵等)都不知道,当涉及一些运用基础课程知识点来理解工程问题时感到非常吃力。这就导致以讲授为主的传统教学方法很难适应目前的教学形势,而且教学效果不佳,出现死记硬背、不善于理解应用的学习局面。
2实践教学环节薄弱
实践教学环节薄弱似乎是工程教学的通病[7]。实践教学主要包括实验、实习、实训、课程设计、毕业论文(设计)等环节,是培养工科专业学生的必备环节,对学生工程意识与能力的培养至关重要。对于工程性极强的过程流体机械课程而言,实践环节尤为重要。然而目前普遍存在一些问题。1)实习与实验教学环节需要加强。就本专业的实习而言,目前主要集中于化工设备制造厂和化工产品生产车间的参观和学习,基本上忽略了有关流体机械制造厂的参观和学习,导致学生对流体机械没有感官认识。而且实验学时在不断缩减,目前仅开设往复压缩机示功图测试和高速转子静平衡两个实验。离心泵汽蚀实验被砍掉,导致学生对离心泵主要性能得不到很好的理解。2)毕业设计环节需要加强。鉴于一系列原因(比如工程热力学知识的欠缺、有关流体机械书籍和标准的缺乏),目前绝大多数毕业课题仅局限于化工设备设计,基本上很少布置有关流体机械课程方面的毕业课题。这严重限制了学生对流体机械课程的进一步理解和工程应用能力的锻炼。
3课程评价存在问题
由于课程学时的缩减,目前过程流体机械课程评价基本上是“一锤定音”——期末考试,忽略了大作业的训练和热点研究方向文献的阅读和总结。这种考核方式不能实事求是地反映学生对知识点的掌握和理解,更谈不上运用所学知识分析和解决工程实际问题的能力。因此,教师也很难及时对教学存在的问题给予修正和弥补。
4过程流体机械课程教法改革思路
众所周知,教学方法并不是一成不变的,它随着社会的进步和科技的发展不断地发展和演变。工程教育也是如此。大约二战时期,工程教育从工程实际技术教育过渡到工程科学教育,这就要求涉及工程教育的教学方法也必须进行相应的调整和改革。传统的教学方法是单向性的,类似“学徒式”的教育,即以教师的“教”为主,学生只是被动地接受教学内容。这种教育方式仅适用于以技术教育为主的工程教育,很难适应以科学教育为主的工程教育方式。为此,发展了以学生为中心,积极主动的、学习式的教学方法,即将学生视为教师的角色[8]。学生能够从教学活动过程中隐性地获取知识,而教师主要的任务是开展有效的指导。教师和学生的角色界限模糊,二者有效地完成自身的任务,即教师良好的教学任务、学生有效的学习任务。过程流体机械课程教学方法的改革正是沿着该思路进行的。针对过程流体机械课程教学存在的问题,同时为了适应现阶段工程教育的目的,下面从课程的准备、课程的讲授和课程效果评价三个阶段提出相应的改革措施。
1课程准备
首先,为了有效地完成教学任务,教师必须全面深入地理解教学内容。这必然要求教师大量查阅和学习与教学内容相关的资料(如与过程流体机械有关的国内外专著和书籍),弥补所选教材的缺点。查阅资料时,教师必须注意角色的转换,查阅资料是为了更有效、更准确、更生动地给学生讲解,而不是为了个人学习。教师通过大量地阅读文献,将教学内容给予重新组织和编排,以最合理的顺序将教学内容呈现给学生,便于学生理解接受,而不是照本宣科。其次,教师备课时要充分了解学生前期课程的学习情况,从而合理安排教学内容,弥补存在的问题,避免影响学生对本课程知识点的理解;同时教师要了解学生个体在前期课程学习上存在的差异,这样分组讨论学习时便于优良搭配,学生之间互相学习,克服个人因前期课程学习不足而对本课程知识点理解带来的障碍。再次,鉴于当前的教学方法,以引导和启发学生自主学习和讨论为主,教师的讲解和订正为辅。这就要求教师在备课时要制订引导学生开展自主学习的教学方案。对教师备课提出更高的要求,教师课前要告知学生:1)每节课要学的教学知识点;2)理解知识点需具备的基础知识;3)学生需要查阅的书籍和准备的内容;4)本节课内容在课程中和工程实际中的重要程度。可以说,备课是否充分直接决定了教学是否成功,因此,备课必须要做到备内容、备学生和备方法。
2课堂学习
课堂学习是教学的关键环节,直接决定了教学效果的好坏。课堂教学,不是以教师单向传输为主的教学,而是教师根据备课时制订的教学方案,引导学生积极主动地讨论教学内容,避免学生消极被动地思考教师到底在讲或者要讲什么内容。教师通过学生对教学内容积极主动地讨论,发现和记录教学存在的不足,便于课后进一步的思考、改进和反馈。教师上课时应做到:1)上课时,教师首先要给出本节课主要的学习内容、重点和难点;2)教师要给出每节课的“引子”,提出问题,并组织学生讨论,评价每组学生给出的讨论结果;3)最后教师要给出总结,要评价本节课程内容在工程实际应用中的重要性;4)对于难以理解的、抽象的概念,教师要引导学生与日常生活联系起来,使之形象化,便于学生理解。比如“余隙容积”这个概念,如果仅是书上给出的解释“活塞行至终端止点时气缸剩余的容积”,学生很难理解,很难想象这部分空间是怎么回事;但如果将其与盖房子用到的“公摊面积”类比的话,就很容易理解:二者对于用户来讲都是有害的,但是必须具备的,只能尽力减小,却不能避免。
3课程评价
教学活动的最终环节是评价学生的学习效果。通过教学评价,教师一方面可以了解每个学生对知识点的理解程度,发现和思考教学存在的问题,便于及时反馈;另一方面能够了解学生运用所学知识解决实际问题的情况。为了保证教学质量,及时了解学生对知识点的掌握情况和对所学知识的应用情况,课程的评价应从多个角度出发,绝不能是仅以考试为基准“一锤定音”。为此,教师应从两个方面对学生的学习效果进行评价。1)对知识点理解的评价。通过课堂上观察学生的一系列反应,如面部表情、提出的问题,及时了解学生存在的问题,并给予及时的解释和补充;另一方面通过作业、课程考试来综合评价学生对知识的掌握程度和理解情况,便于教师在以后的教学中调整和弥补不足的地方和存在的问题。特别是学生提出的问题非常重要,一方面,可以测试教师对内容的理解程度;另一方面,教师可以了解学生存在的困惑,明白师生间对知识点理解存在的偏差和分歧。教师应对学生的问题积极反思,对教学内容给予重新编排和阐释,以便改进教师本身对基础知识的理解。2)对学生运用所学知识解决实际问题能力的评价,可以通过实训、大作业、课程设计乃至毕业设计的形式进行,并将存在的问题汇总和分析,弥补教学存在的问题。总之,教学评价是个连续的过程,合理的教学评价是为了保证教学质量和促进教学改革,而不仅仅是为了给学生一个“成绩”。
5教学改革对工程教育的促进
简单的讲,通过上述教学方法的运用和实施,学生获得的技能基本能满足工程教育的要求。具体体现在:1)通过对所学内容的思考、提问和讨论,学生获得了良好的交流技术;2)通过对教学内容的准备和讲解,学生具备了一定的职业责任感;3)通过对教学内容和大作业的分组准备和讨论,教学在团队内相互进行,学生改进和具备了一定的团队合作精神;4)通过“教”这一环节,学生对所学内容进行精选和重组,增加了学生对知识的理解程度,拓宽了学生的视野;5)通过一定的工程训练,学生对待工程的态度和信心发生积极的变化,增加了对工程设计过程的理解;6)通过学生自己对知识的准备和理解,学生掌握了学习方法,具备了终身学习的素养。
6结束语