公务员期刊网 精选范文 继电保护的工作原理范文

继电保护的工作原理精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的继电保护的工作原理主题范文,仅供参考,欢迎阅读并收藏。

继电保护的工作原理

第1篇:继电保护的工作原理范文

关键词:电力系统;继电保护;发展;趋势;研究

中图分类号:TM71 文献标识码:A

继电保护技术是随着电力系统的发展而发展的,它与电力系统对运行可靠性要求的不断提高密切相关。继电保护是在电网出现事故或异常运行情况下动作,保证电力系统和电气设备安全运行的自动装置,研究继电保护技术发展趋势,可以更好地提高继电保护的技术水平,对电力系统发展意义重大。

1 电力系统继电保护概述

1.1 继电保护基本概念

在电力系统运行中,由于外界因素和内部因素都可能引起各种故障及不正常运行的状态出现,常见的故障有:单相接地;三相接地;两相接地;相间短路;短路等。电力系统非正常运行状态有:过负荷,过电压,非全相运行,振荡,次同步谐振,同步发电机短时异步运行等。电力系统继电保护和安全自动装置是在电力系统发生故障和不正常运行情况时,用于快速切除故障,消除不正常状况的重要自动化技术和设备。

1.2 继电保护的工作原理

继电保护的工作原理,是根据电力系统发生故障前后电气物理量变化的特征为基础来构成,电力系统发生故障后,工频电气量变化的主要特征是:(1)电流增大。短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。(2)电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。(3)电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°。(4)测量阻抗发生变化。测量阻抗即测量点(保护安装处)电压与电流之比值,正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。利用短路故障时电气量的变化,便可构成各种原理的继电保护。

1.3 继电保护在电力系统中的任务

电力系统元件发生故障时,应该由该元件的继电保护装置迅速准确地给脱离故障元件最近的断路器发出跳闸命令,使故障元件及时从电力系统中断开,以最大限度地减少对电力系统元件本身的损坏,降低对电力系统安全供电的影响;并满足电力系统的某些特定要求,能够反应电气设备的不正常工作情况,并根据不正常工作情况和设备运行维护条件的不同发出信号,以便值班人员进行处理,将那些继续运行会引起事故的电气设备予以切除。

1.4 继电保护装置必须具备的基本性能

继电保护装置必须具备的基本性能有:(1)安全性:在不该动作时,不误动;(2)可靠性:在该动作时,不拒动;(3)速动性:能以最短时限将故障或异常从系统中切除或隔离;(4)选择性:在自身整定的范围内切除故障,保证最大限度地向无故障部分继续供电,不越级跳闸;(5)灵敏性:反映故障的能力,通常以灵敏系数表示;不拒动不误动是关键。

2 继电保护发展历程

继电保护是随着电力系统的发展而发展起来的,最早的继电保护装置是熔断器。从20世纪50年代到90年代末,在40余年的时间里,继电保护完成了发展的4个阶段,即从电磁式保护装置到晶体管式继电保护装置、到集成电路继电保护装置、再到微机继电保护装置。随着电子技术、计算机技术、通信技术的飞速发展,智能化等先进技术相继在继电保护领域的研究应用,继电保护技术向计算机化、网络化、一体化、智能化方向发展。电力系统发展迅速,电网结构越来越复杂,短路容量不断增大,到20世纪产生了作用于断路器的电磁型继电保护装置。1928年电子器件已开始被应用于保护装置,在50年代迅速发展。静态继电器有较高的灵敏度和动作速度、维护简单、寿命长、体积小、消耗功率小等优点,但环境温度和外界干扰对继电保护的影响较大。1965年出现了应用计算机的数字式继电保护,出现了单板机继电保护装置。到了21世纪由于计算机技术发展非常快,微处理机和微型计算机的普遍应用,极大地推动了数字式继电保护技术的开发,大规模集成化数字式继电保护装置应用非常广泛。

3 电力系统继电保护的发展趋势

3.1 计算机化

随着计算机硬件的迅猛发展,微机保护硬件也在不断发展。电力系统对微机保护的要求不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其它保护、控制装置和调度联网以共享全系统数据、信息和网络资源的能力,高级语言编程等。这就要求微机保护装置具有一台PC机的功能。继电保护装置的微机化、计算机化是不可逆转的发展趋势。但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚需进行具体深入的研究。

3.2 网络化

计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,它深刻影响着各个工业领域,也为各个工业领域提供了强有力的通信手段。除了差动保护和纵联保护外,所有继电保护装置都只能反应保护安装处的电气量,继电保护的作用主要是切除故障元件,缩小事故影响范围。因为继电保护的作用不只限于切除故障元件和限制事故影响范围,还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统的运行和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。

3.3 智能化

随着通信和信息技术的快速发展,数字化技术及应用在各行各业的日益普及也为探索新的继电保护原理提供了条件,智能电网中可利用传感器对发电、输电、配电、供电等关键设备的运行状况进行实时监控,把获得的数据通过网络系统进行收集、整合和分析。利用这些信息可对运行状况进行监测,实现对保护功能和保护定值的远程动态监控和修正。

结语

综上所述,随着电力系统的发展和计算机技术、通信技术的进步,继电保护技术由数字时代跨入信息化时代,发展到一个新的水平。这对继电保护工作者提出了艰巨的任务,也开辟了技术创新的广阔天地。只有了解和掌握继电保护技术,才能解决电力系统继电保护遇到的各类问题,更好地保障电力系统的安全运行。

参考文献

[1]高亮.电力系统微机继电保护[M].北京:中国电力出版社,2007.

第2篇:继电保护的工作原理范文

关键词:电力系统 继电保护 评价统计指标 配电运行 配置原则

中图分类号: TM774 文献标识码: A 文章编号:

一、前言

随着电力系统的快速发展和计算机通信技术的进步,继电保护技术的发展向计算机化、网络化、一体化、智能化方向发展,这对继电保护工作者提出了新的挑战。

二、继电保护的概念

继电保护装置是电力系统中的发电机、变压器、输电线路、配电装置等电气设备发生故障,危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令,终止这些故障发展的一种自动保护装置。

三、继电保护的工作原理

供电系统发生故障时,会引起电流增加、电压降低、以及电流电压间相位角的变化,因此出现故障时的参数与正常运行时的参数差别就可以构成不同原理和类型的继电保护。一般情况下继电保护是由测量部分、逻辑部分、执行部分组成。

测量部分从被保护对象读取有关信号,与给定的整定值相比较,比较结果输出至逻辑部分;逻辑部分根据测量部分各输出量的大小性质、出现的顺序或它们的组合,决定是否动作;如需动作,则发出信号给执行部分;执行部分立即或延时发出警报信号或跳闸信号。

四、对继电器的要求

(一)动作值的误差小。由于保护装置的灵敏度与动作值的误差有关,因此,继电器动作值的误差应尽可能小,以免引起误动作或降低保护的灵敏性。

(二)接点可靠。继电器接点接触要良好,并具有一定的负荷能力。对于常闭接点要有一定的压力;对于常开接点,闭合时要有一定的行程。

(三)返回时间短。继电器动作将故障切除后,继电器应在最短时间内返回到起始位置。

(四)消耗功率小。继电器消耗的功率通常指继电器线圈在额定状态下(额定电流或电压)所消耗的功率。继电器消耗的功率小,可以减轻互感器的负担。

五、目前常用的评价统计指标

(一)正确动作率。正确动作率即为一定期限内(例如一年)被统计的继电保护装置的正确动作次数与总动作次数之比。用公式表示为:

正确动作率=(正确动作次数/总动作次数)×100%

用正确动作率可以观测该继电保护系统每年的变化趋势,也可以反映不同的继电保护系统(如220kV与500kV)之间的对比情况,从中找出薄弱环节。

(二)可靠度 。可靠度r(t)是指元件在起始时刻正常的条件下,在时间区间(0,t)不发生故障的概率。对于继电保护装置,注意力主要集中在从起始时刻到首次故障的时间。

(三)可用率 。可用率a(t)是指元件在起始时刻正常工作的条件下,时刻t 正常工作的概率。可靠度与可用率的区别在于,可靠度中的定义要求元件在时间区间(0,t)连续地处于正常状态,而可用率则无此要求。

(四)故障率。故障率h(t)是指元件从起始时刻直到时刻t 完好条件下,在时刻t 以后单位时间里发生故障的概率。

(五)平均无故障工作时间 。平均无故障工作时间MTBF(Mean Time Between Failure)。设从修复到首次故障之间的时间间隔为无故障工作时间,则其数学期望值为平均无故障工作时间。

(六)修复率 。修复率m(t)是指元件自起始时刻直到时刻t 故障的条件下,自时刻t 以后每单位时间里修复的概率。

(七)平均修复时间。平均修复时间mttr(MeanTime to Repair)是修复时间的数学期望值。

六、配电系统继电保护存在的问题

(一)电流互感器饱和。随着供电系统规模的不断扩大,很多低压配电系统短路电流会随着变大,当变、配电所出口处发生短路时,短路电流往往很大,甚至可以达到电流互感器一次侧额定电流的几百倍。若是在变电所出线故障则要靠母联断路器或主变压器后备保护来切除,延长了故障时间,使故障范围扩大;而若是在配电所的出线过流保护拒动,则将使整个配电所全停。

(二)二次设备及二次回路老化 。现在我国很多配电系统的继电器是20世纪七八十年代的老式继电器,节点氧化尘太多,压力不够,也会造成保护误动,出口不可靠。

(三)环网供电无保护。目前我国环状配电网基本采用负荷开关为主,目前不设断路器,也没有保护。若装设断路器,由于运行方式变化,负荷转移等因素,继电保护选择性无法协调。

七、配电系统继电保护的改进措施

(一)避免电流互感器饱和。避免电流互感器饱和主要从3个方面入手:首先是电流互感器的变比不能选得太小,要考虑线路短路时电流互感器饱和问题。其次要尽量减少电流互感器二次负载阻抗。尽量避免保护和计量共用电流互感器,缩短电流互感器二次侧电缆长度及加大二次侧电缆截面。第三是遵守速断保护的原则。高压电动机按起动电流乘以1.2~1.3倍可靠系数确定,如超过其数值就可确定故障电流。时限整定Os。超过2倍的电流整定值,按计算数据乘以可靠系数确定,采区变电所内进线柜则遵照最大整定值数据加上其余变压器的额定负荷。按等级划分,确定延时时间,仍有选择性。但短路情况下速断保护无选择性。

(二)完善环网结构的配套建设,目前环网结构是电缆网络采用的主要形式,目前还没有性能颇为理想的继电保护装置,为快速隔离故障、恢复供电,可以考虑结合配电自动化系统的建设,继电保护与自动化系统相互配合使用。

(三)实行状态检修。继电保护发展至今,从保护原理的设计,到生产厂家制造工艺,到售后服务,各方面都已比较完善。微机保护装置的性能已非常稳定。近几年在我区范围内,由于保护装置性能不稳定引起的误动基本上没有出现过,所发生的保护误动作基本上是保护装置外部原因引起的。因此我们建议对继电保护设备实行状态检修,也就是说,只要保护装置不告警,就不用进行检修。

(四)增加投入,更新设备,及时更新保护校验设备,完善供电网络建设,在不影响正常安全生产的情况下,确保各回路均有足够保护整定时间,使保护装置校验做到应校必校,不漏项,不简化。

八、结语

继电保护是保障电网安全稳定运行的第一道防线。近年来随着电网系统的不断发展,输送线路容量更大、线路距离更长、系统短路容量更大,因而对线路继电保护的要求也就更高。因此,如何在今后确保继电保护的更可靠运行,实施继电保护全过程管理,是牵涉继电保护可持续发展的重要课题。希望广大现场工作的运行维护技术人员能结合运行经验,提出对应的措施,共同做好工作。从而提高电网的可靠运行。

参考文献:

[1]赵勇,杨鑫.电力系统继电保护技术研究[N] .科技创新导报,2009-19

第3篇:继电保护的工作原理范文

关键词:电力继电保护技术;基本原理;应用分析

中图分类号: F406文献标识码:A

一、前言

随着经济的发展,电力系统在社会发展中的作用越来越重要,而继电保护技术在电厂中具有非常重要的作用,对电力继电保护技术的基本原理及其应用进行分析和研究,对于促进电力继电保护技术的发展具有重要作用。

二、电力系统继电保护技术概述 1.继电保护基本概念 在电力系统运行中,由于外界因素和内部因素都可能引起各种故障及不正常运行的状态出现,常见的故障有:单相接地;三相接地;两相接地;相间短路;短路等。电力系统非正常运行状态有:过负荷,过电压,非全相运行,振荡,次同步谐振,同步发电机短时异步运行等。电力系统继电保护和安全自动装置是在电力系统发生故障和不正常运行情况时,用于快速切除故障,消除不正常状况的重要自动化技术和设备。 2.电力继电保护的工作原理 继电保护的工作原理,是根据电力系统发生故障前后电气物理量变化的特征为基础来构成,电力系统发生故障后,工频电气量变化的主要特征是:

电流增大。短路时故障点与电源之间的电气设备和输电线路上的电流将由负荷电流增大至大大超过负荷电流。

电压降低。当发生相间短路和接地短路故障时,系统各点的相间电压或相电压值下降,且越靠近短路点,电压越低。

电流与电压之间的相位角改变。正常运行时电流与电压间的相位角是负荷的功率因数角,一般约为20°,三相短路时,电流与电压之间的相位角是由线路的阻抗角决定的,一般为60°~85°。

测量阻抗发生变化。测量阻抗即测量点(保护安装处)电压与电流之比值,正常运行时,测量阻抗为负荷阻抗;金属性短路时,测量阻抗转变为线路阻抗,故障后测量阻抗显著减小,而阻抗角增大。利用短路故障时电气量的变化,便可构成各种原理的继电保护。

3.继电保护在电力系统安全运行中的作用 一个可靠稳定的继电保护系统是整个机电系统安全运行的保障。通常来说继电保护的稳定性能主要是由搭配合理的技术终端和安全可靠的继电保护设施来决定的,它们是整个电力系统安全运行的基本保障。

继电保护在电力系统安全运行中的作用如下:

(一)保障电力系统的安全性 当电力系统元件在受保护的状态中发生故障的时候,保护该元件的继电保护装置应及时准确的通过距离该原件最近的断电保护,使得故障元件能够快速的的与电力系统脱离,最大程度的减少对整个电力系统元件的破坏,把对整体供电系统的影响降低到最小。

(二)对电力系统的不正常工作进行提示

对于没有正常运行的电气设备,要根据不同的故障情况和设施运作过程中的不同情况,来发出相应的提示信息,以便值班的工作人员对故障进行相应的处理,比如:有系统进行自动的调整;手动使故障的电气设备脱离系统;手动脱离故障连带的设备。同时在设备发生不正常工作的时候,允许继电保护装置有一定的延迟,以免过度敏感的保护装置发生误报。

4.电力继电保护技术的重要性 用电设备在运行中都会发生故障致其不能正常运行,最常见的就是短路现象,短路可能产生严重的后果,它能损害发生故障的元件,也能减少元件的使用寿命甚至能影响广大人民群众的生命财产安全,继电保护技术的出现可以将其伤害降到最低,它分为测量、执行、逻辑三部分,当用电设备发生短路故障的时候,它能够快速、正确地将发生故障的元件从电力系统中撤除,避免其受到更多的损害,这样也能保障其他正常元件不会受其影响继续正常运行。并且这种保护技术还能够根据自身所处的环境,元件受损伤的程度,选择合适的方式,做出保护动作。

三、电力继电保护的基本要求1.可靠性是指保护该动体时应可靠动作。不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本的要求。继电保护的可靠性主要由配置合理,质量和技术性能优良的继电保护装置以及正常的运行维护和管理来保证。任何电力设备都不允许在无继电保护的状态下运行。220KV及以上电网的所有运行设备都必须由两套交,直流输入,输出回路相互独立,并分别控制不同断路器的继电保护装置进行保护。当任一套继电保护装置或任一组断路器拒绝动作时,能由另一套继电保护装置操作另一级断路器切除故障。在所有情况下,要求这套继电保护装置和断路器所取的直流电源都经由不同的熔断器供电。2.选择性是指首先由故障设备或线路本身的保护切除故障,当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护,线路保护或断路器失灵保护切除故障,为保证对相邻设备和线路有配合要求的保护和同一保护内有配合要求的两元件的选择性,其灵敏系数及动作时间,在一般情况下应相互配合。3.灵敏性是指在设备或线路的被保护范围内发生金属性短路时,保护装置应具备必要的灵敏系数,各类保护的最小灵敏系数在规程中具有具体规定。选择性和灵敏性的要求,通过继电保护的速定实现。4.速动性是指保护装置应尽快地切除短路故障,其目的是提高系统稳定性,减轻故障设备和线路的损坏程度,缩小故障波及范围,提高自动重合闸和备用电源或备用设备自动投入的效果等。一般从装设速动保护,充分发挥零序接地瞬时段保护及相间速断保护的作用,减少继电器固有动作时间和断路器跳闸的时间等方面入手来提高速动性。

四、电力继电保护技术的主要特点

继电保护技术的主要特点是:

自主化运行率提高,计算机的数据处理技术能够使得继电设备具有很强的记忆功能,加之自动控制等技术的综合运用,使得继电保护能更好地实现故障分量保护,提高运行的正确率。

兼容性辅助功能强,继电保护技术在保护装置的制造上采用了比较通用兼容的做法,便于统一标准,并且装置体积小,减少了盘位数量,在此基础上,还可以扩充其它辅助功能。

操作性监控管理好,该技术主要表现在一些核心部件不受外在化境的影响,能够产生一定的使用功效。与此同时,该保护技术能够通过计算机信息系统,具有一定的可监控性能,大大降低了成本。

五、电力继电保护技术的应用工厂和企业的高压供电系统和变电站都会运用到继电保护装置。在高压供电系统分母线继电保护的应用中,分段母线不并列运行时装设的是电流速断保护和过电流保护,但是在断路器合闸的瞬间才会投入,合闸后就会自动解除。配电所的负荷等级如果较低,就可以不装设保护装置。变电站常见的继电保护装置有线路保护、母联保护、电容器保护、主变保护等。 1.线路保护 ,通常采用二段式或者三段式的电流保护。其中一段是电流速断保护,二段是限时电流速断保护,三段是过电流保护。

母联保护 ,限时电流保护装置联同过电流保护装置一起装设。

电容器保护,包括过流保护、过压保护、零序电压保护和失压保护。 4.主变保护,包括主保护(重瓦斯保护、差动保护),后备保护(复合电压过负荷保护、过流保护)继电保护技术在目前已经得到飞速的发展,各种各样的微机保护装置正逐渐被投入使用,微机保护装置是有各种不同,但是其基本原理和目的都是一样的。

六、结束语

随着时代的进入,科研的深入,加强继电保护技术的应用对于提高社会生产力和生产效率具有重要作用,是社会发展的必然趋势。

参考文献:

[1]齐俊玲.继电保护在电力系统中的应用[J].民营科技,2013(1):43.

[2]王金明.浅谈电力继电保护[J].大科技,2012(12):86-87.

第4篇:继电保护的工作原理范文

关键词:变电站;变压器;运行;继电保护;措施

Abstract: The grid is to maintain the state in the economic field all the activities of the core link, the most powerful tool to bring rapid innovation in economic society. A part of the transformer is very important in power system, the safe operation directly affect the grid is efficient, safe operation. For further analysis on the related problems in transformer operation of 110 kV substation and protection measures.

Key words: substation; transformer; operation; relay protection; measures

中图分类号:TU994文献标识码: 文章编号:

对于变电站的保护,不仅要求供电技术能力上的精确,也要求在每一个细节处做到最好。外部环境对变电站的影响也是极其重要的,空气湿度和气候干燥直接影响输出源。所以也要对其基本保护措施加以重视。我们不仅要做好变压器的管理维护工作,保证其安全高效的运行,同时也要做好对其运行状况的记录工作,及时发现问题,并妥善解决,消除潜在隐患,保障电力系统的正常运转。继电保护装置就是为了及时发现故障并进行切除而装设的一种对变压器和变电站甚至整个电力系统的保护装置。

1、110 kV 的变电站变压器运行

1.1、工作原理

变压器是变电站的主要设备,分为双绕组变压器、三绕组变压器和自耦变压器,即高、低压每相共用一个绕组,从高压绕组中间抽出一个头作为低压绕组的出线的变压器。电压高低与绕组匝数成正比,电流则与绕组匝数成反比。

电压互感器和电流互感器。其工作原理和变压器相似,它们把高电压设备和母线的运行电压、大电流即设备和母线的负荷或短路电流按规定比例变成测量仪表、继电保护及控制设备的低电压和小电流,在额定运行情况下电压互感器二次电压为l00 V,电流互感器二次电流为5 A 或1 A。电流互感器的二次绕组经常与负荷相连近于短路,需要注意的是,绝不能让其开路,否则将因高电压而危及设备和人身安全或使电流互感器烧毁。

1.2、变压器运行异常的情况

当出现过负荷或者外部短路的情况,引起温度升高、油面降低和过电流等现象时,根据不同的情况,变压器主要的保护装置有以下几种:(1)气体保护,该保护方式是瞬间作用于信号式跳闸的,可用于变压器的油箱发生内部故障,或者油面降低时;(2)电流速断保护和差动保护,这种保护方式也是瞬间作用于跳闸,可用于变压器的引出线间的短路、接地短路,或者变压器的内部故障时;(3)过负荷保护,当变压器出现过载时可装设,作用于信号,主要用于因为过载而引起过电流时;(4)过流继电保护,这种保护方式可以作为气体保护和电流速断保护两种保护方式的后备保护,主要带时限动作用于跳闸,一般可用于出现外部短路引起过电流时;(5)温度信号,当变压器的温度发生变化,出现升高或者油冷却系统的异常时,可作用于信号。变压器的故障对电力系统造成的损失是相当严重的,为了防止出现这种情况,安装相应的过流继电保护装置是非常必要的。

2、110kV 变电站的继电保护措施

2.1、继电保护综述

继电保护措施,是研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。电力系统继电保护的基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内自动将故障设备从系统中切除,或者给出信号由值班人员消除异常工况的根源,以减轻或避免设备的损坏和对相邻地区供电的影响。

随着电力系统容量日益增大,范围越来越广,仅设置系统各元件的继电保护装置,还远不能避免发生全电力系统长期大面积停电的严重事故。为此必须从电力系统全局出发,研究故障元件被相应继电保护装置动作切除后,系统将呈现何种工况;系统失去稳定时将出现何种特征,如何尽快恢复其正常运行等。系统保护的任务就是当大电力系统正常运行被破坏时,尽可能将其影响范围限制到最小,负荷停电时间减到最短。

2.2、 继电保护的具体措施

继电保护安全运行的主要措施有以下几点:

2.2.1特别要注意对继电保护装置的检验工作,只有在检验工作的最后才能进行电流回路升流以及进行整组的试验,当这2 项试验都完成后,绝不能拔掉插件,或者改变定值(定值区),对二次回路的接线进行改变等等。此外,电压回路升压的试验也是要放在最后进行的。

2.2.2 定值区的问题。拥有多个定值区一直是微机保护的一个很大的优点,因为电网在发生运行方式的变化时,更改定值就显得很方便了,但是若出现定值区错误,对继电保护来说就是一个非常严重的问题,所以工作人员需加强对定值区的管理,确保定值区的正确。

2.2.3 一般性的检查工作。它对于任何保护措施来说,都是相当重要的,绝对不能疏忽,一般性的检查基本包含2方面:①检查机械特性和焊接点是否牢固,同时也对连接件是否紧固进行清点;②将插件全部拔下来进行检查,如按紧芯片、拧紧螺丝等,及时发现虚焊点。

2.2.4 接地的问题。其对继电保护格外重要,首先是装置机箱和屏障的接地问题,这些都是必须要接在保护屏的铜排上的。而更重要的是,铜排本身是否已经可靠地接入地网,这个可以采用大截面的铜缆或者导线将其紧固在接地网上来解决,对其电阻还应用绝缘表进行测量,确定其是否符合规定;其次是电压回路和电流的接地问题,若是接地在端子箱,则必须要确定端子箱的接地是可靠的。

3、继电保护装置的维护

若要继电保护装置正常高效运行,就要定期对继电保护装置进行维护,只有先维护好继电保护装置,才能使其最大程度发挥效用,保护电力系统的正常运行。在对继电保护装置进行维护工作时,首先要对设备的初始状态有一个较为全面的了解,才能对以后的工作做出正确的判断;其次还要对其运行时的状态数据进行及时的统计分析,随时掌握设备的运行情况;再次是对继电保护装置的新技术和新发展,要及时跟进,才能保证其科学性。我国的在线监测技术还处于发展的阶段,不够成熟和完善,对于日常的检修工作并不能做出最准确及时的判断,这就要求工作人员必须对各种数据加以统计分析,做出综合的评价。

4、总结

本文从普通变电站的运转概况谈起,使我们对变电站变压器的运行有了一定的了解,而继电保护也是工作中的重点。希望电厂从业者在熟练掌握其基本操作原理后,再接再厉,将电力这个能够创造更多财富的国家资源的功用提升至更高层面,为人民、国家谋取更多利益。

参考文献:

1.孙杰华. 110KV变电站综合自动化系统与继电保护研究[J]. 黑龙江科技信息. 2010(28)

2.GB/T 50062-2008.电力装置的继电保护和自动装置设计规范[S]. 2008

3.殷柯. 高压电网继电保护装置故障仿真系统研究[D]. 南京理工大学 2003

第5篇:继电保护的工作原理范文

关键词:特高压;输电线路;继电保护;问题;策略

中图分类号:TM77 文献标识码:A 文章编号:1671-2064(2017)11-0151-02

因为人们的生活和生活质量在不断地提高,所以人们对于精神层面和物质层面的追求也发生了变化,这点在人们对于特高压输电线路继电保护问题由不了解到很重视的态度变化中可以明显体现。尽管特高压输电线路继电保护问题已经受到了研究人员和管理人员的重视,相关技术人员也在特高压输电线路继电保护设计和制造中进行研究,但是我国相关领域发展缓慢和基础较差的劣势还是给现阶段特高压输电线路继电保护问题的解决增加了难度。我国的特高压输电线路继电保护还与不同地方的环境,用电状况,建筑设施和经济负担等有重要联系,在建立模型进行特高压输电线路继电保护问题解决时要结合实际情况进行深入研究,才能利用特高压输电线路继电保护的原理进行相关措施的落实,为特高压输电线路的发展和继电保护策略的创新打下良好的基础。

1 特高压输电线路继电保护问题的概况

虽然当前阶段研究人员和管理人员对特高压输电线路继电保护问题非常重视,许多合理可靠的措施也被应用到了工程施工中去,但是受到传统观念和管理模式的限制,特高压输电线路继电保护问题还将在未来发展中遇到很多阻碍。特高压输电线路继电保护问题一般在我国西北地区比较严重,加之高海拔和恶劣天气的消极影响就使得该问题的解决难上加难,所以需要研究人员在克服我国缺乏特高压输电线路继电保护的设计,制造和运行经验的前提下采取有效措施来保证继电保护的可靠性与输电线路运行的安全稳定。因此,除了要借鉴国外特高压输电线路继电保护设计经验来达到少走弯路和加快设计速度的目的,还要对特高压输电线路继电保护的基本理论和特殊问题进行研究。

1.1 特高压输电线路继电保护的现状

随着时代的发展和社会的进步,经济状况好转使得人们对生活质量的要求变高,电力系统的运行承担了很多任务和更多压力,其中电网的电压等级提高使得输电的经济性能很难满足大容量和远距离输电的要求,所以建立大容量,长距离和低损耗的输电系统就成为了各国电网发展的必然趋势。但是许多国家建成的特高压输电线路只能以低电压等级运行,而我国早期研究在取得了可观成果的同时也遇到了很多阻碍,在此过程中总结出了分布电容产生了较大电容电压,短路过程中的高频分量频率距离工频很近,短路时非周期分量衰减常数较大,故障分量较小等特性,需要研究人员利用保护原理和可靠的性能对相关策略加以论证和改进,才能实现特高压输电线路继电保护的现实意义。

1.2 特高压输电线路继电保护的原理

关于特高压输电线路继电保护的原理,可以分为电流纵联差动保护原理和差动保护新原理两方面进行分析和研究。一方面,特高压输电线路继电保护电流纵联差动保护原理涉及到电容电流补偿方法,基本思路是在线路两端电流中减去相应电容电流,得到电流后利用基尔霍夫电流定律,才能实现特高压输电线路电流纵联差动保护;迄今为止提出的补偿算法有相量补偿算法和时域补偿算法,在理论上都是成立的。另一方面,因为上述方法不能很好地解决特高压输电线路继电保护问题,所以在现阶段出现了耐受甚至不受电容电流影响的差动保护新原理,比如建立在输电线电磁波传播过程之上的贝瑞隆模型,具有求解速度快和精度高的优点。除此之外,特高压输电线路其他保护原理还有成为后备保护的距离保护,利用光电互感器和光纤通道使得成本下降行波保护等,都需要在实践中通过可靠检验才能进一步推广。

2 特高压输电线路继电保护中出现的问题

基于对特高压输电线路继电保护问题概况的了解,可以发现我国相关研究并不成熟和完善,与发达国家相比还有很大的差距,所以需要在现阶段特高压输电线路继电保护运行过程中找出差距和发现问题,才能在未来对这些问题采取针对性策略加以处理和解决。根据特高压输电线路继电保护的工作原理,结合其电压等级高和线路自然功率大的特点,就能知道特高压输电线路继电保护问题主要表现在过电压水平过高和电容电流大小得不到保证这两个方面。尽管特高压输电线路在运行过程中为社会建设带来了电力供应安全可靠的好处,但是也使得继电保护装置出现了拒动和灵敏度下降等问题,使得特高压输电线路继电保护问题越来越严重甚至威胁到了用电客户的人身安全,所以针对这些特殊问题进行深入分析就成为了解决特高压输电线路继电保护问题的必要工作。

2.1 降低绝缘费用和过电压水平

当前阶段特高压输电线路继电保护问题产生的一个重要原因就是电压等级升高,绝缘费的比例也在大幅度增高,所以在特高压输电线路继电保护过程中降低过电压水平就成为了当前工作的一大重点。正是因为在进行特高压输电线路继电保护时必然会产生过电压,所以保证绝缘子不受破坏的提高绝缘水平,配置合理的避雷器,增设并联电抗器,设置合理的保护动作顺序等就成为了解决该问题时值得尝试的措施。

2.2 在电容电流下实现继电保护

特高压输电线路继电保护的另一问题是电容电流过高,在长距离和电压等级高的特高压输电线路继电保护中比较常见,需要另辟蹊径进行差动保护。尽管我国500kV输电线路运行质量高而且切断故障及时,但是在长距离特高压输电线路继电保护性却会出现问题。

3 特高压输电线路继电保护策略的具体分析

根据特高压输电线路继电保护问题的表现,可以得知如果想要特高压输电线路正常运行和继电保护安全有效得以实现,就需要针对出现问题的两方面进行试验后做出调整,才能利用已有的有利条件促进特高压输电线路继电保护问题得到妥善处理。除此之外,基于Marti模型的特高压输电线路继电保护利用电流差动保护原理得到了有效的研究成果,在现阶段的研究和尝试中势头良好,所以可以进一步在实际工程中进行针对试验和经总结,才能在未来发展中借助该模型促进特高压输电线路继电保护朝着健康高效的方向发展。笔者结合自身的经验和已有的研究,选取其中典型有效的策略进行分析,从而可以为同行业人员的研究提供科学合理的借鉴。

3.1 过电压现象以及相关保护措施

特高压输电线路继电保护中过电压现象发生的原因一般是由不当的操作问题产生的,对于经常会发生故障的线路运行会有正常操作和故障后分断操作,这两个操作是特高压输电线路继电保护的重点考虑方面。举例来说,单相接地故障发生后不能按照规定进行重合闸的操作,就会使得特高压输电线路继电保护失去作用。所以,由于断路器动作特性差异而使得两端保护动作不同,两端不能同时断开来保护线路,从而导致过电压现象的产生。如果想要通过特高压输电线路继电保护来避免过电压现象的出现,就要提前进行保护动作顺序的设定,才能通过降低过电压水平来保证系统运行的安全性。

3.2 特高压输电线路分布电容电流及分析

因为特高压输电线路继电保护问题有着自然功率大,波抗阻小,单位长度电容大和易计算得到的特点,所以在运行过程就容易造成电容电流超过额定电流的现象,这就给特高压输电线路的差动保护带来很大的困难。结合单相接地故障的例子来说,传统的分相电流差动保护应用于特高压输电线路继电保护是非常困难的,所以需要采取相应的补偿措施来解决这个问题;但是如果想要从根本上解决特高压输电线路继电保护问题,还需要寻找合理方式来有效控制电容电流的大小,使得特高压输电线路继电保护能够通过纵联差动来实现,才能最终逐渐解决好特高压输电线路继电保护问题。

3.3 基于Marti模型的特高压输电线路继电保护

基于Marti模型的特高压输电线路继电保护主要利用分相形式的保护装置,主要反映了输电线路稳态运行时线路两侧电压电流之间关系,所以如果特高压输电线路中没有故障时线路两侧电流计算值和实测值应当是相等的;而出现故障时Marti模型被故障,两侧的值差距较大,保护装置就会产生保护动作,体现出较高的灵敏度。除此之外,如果电路装设了并联电抗器则要启用新的判断依据再进行处理,才能在每种电路运行过程中都能利用适合的继电保护装置保证系统运行的安全稳定。最后,在实际线路运用基于Marti模型的特高压输电线路继电保护装置之前还要进行仿真和模拟试验对有关参数进行调整,确认无误后方能进行广泛应用。

4 总结

总而言之,研究特高压输电线路继电保护问题是切实有效的,既能在了解特高压输电线路继电保护现状和工作原理时发现其中的潜在问题,又能利用有效策略对过电压和电容电流问题的解决奠定良好的基础,从而完成社会建设中电力行业和供电企业发展的目标。为了迎合当前阶段城市建设中建筑工程对特高压输电线路安全和质量要求越来越高的趋势,满足人们生产生活对于特高压输电线路继电保护的要求,就需要针对特高压输电线路继电保护中出现的问题,并且结合现阶段我国特高压输电线路继电保护的发展概况和国外先进技术与经验,对特高压输电线路继电保护的创新策略进行试验和应用,从而可以为实际工作总结经验和教训,在电力行业和供电企业高压输电线路继电保护问题的解决做好铺垫。讨论特高压输电线路继电保护问题不仅促进了相关问题的解决,还为特高压输电线路继电保护未来的发展和创新提供了新思路。

参考文献

[1]马光成.特高压输电线路继电保护问题研究[J].中国科技纵横,2015,(20):148.

第6篇:继电保护的工作原理范文

关键词:电力系统;继电保护;评价统计指标;配电运行;配置原则

中图分类号:TM77 文献标识码:A

前言:

随着电力系统的快速发展和计算机通信技术的进步,继电保护技术的发展向计算机化、网络化、一体化、智能化方向发展,这对继电保护工作者提出了新的挑战。只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,提高供电的可靠性。

1.继电保护的概念

继电保护装置是电力系统中的发电机、变压器、输电线路、配电装置等电气设备发生故障,危及电力系统安全运行时,能够向运行值班人员及时发出警告信号,或者直接向所控制的断路器发出跳闸命令,终止这些故障发展的一种自动保护装置。

2.继电保护的工作原理

供电系统发生故障时,会引起电流增加、电压降低、以及电流电压间相位角的变化,因此出现故障时的参数与正常运行时的参数差别就可以构成不同原理和类型的继电保护。一般情况下继电保护是由测量部分、逻辑部分、执行部分组成,其原理如图1所示。

图1 继电保护装置原理图

测量部分从被保护对象读取有关信号,与给定的整定值相比较,比较结果输出至逻辑部分;逻辑部分根据测量部分各输出量的大小性质、出现的顺序或它们的组合,决定是否动作;如需动作,则发出信号给执行部分;执行部分立即或延时发出警报信号或跳闸信号。

3.对继电器的要求

3.1.动作值的误差小

由于保护装置的灵敏度与动作值的误差有关,因此,继电器动作值的误差应尽可能小,以免引起误动作或降低保护的灵敏性。

3.2.接点可靠

继电器接点接触要良好,并具有一定的负荷能力。对于常闭接点要有一定的压力;对于常开接点,闭合时要有一定的行程。

3.3.返回时间短

继电器动作将故障切除后,继电器应在最短时间内返回到起始位置。

3.3.消耗功率小

继电器消耗的功率通常指继电器线圈在额定状态下(额定电流或电压)所消耗的功率。继电器消耗的功率小,可以减轻互感器的负担。

4.目前常用的评价统计指标

4.1.正确动作率

正确动作率即为一定期限内(例如一年)被统计的继电保护装置的正确动作次数与总动作次数之比。用公式表示为:

正确动作率=(正确动作次数/总动作次数)×100%

用正确动作率可以观测该继电保护系统每年的变化趋势,也可以反映不同的继电保护系统(如220kV与500kV)之间的对比情况,从中找出薄弱环节。

4.2.可靠度

可靠度r(t)是指元件在起始时刻正常的条件下,在时间区间(0,t)不发生故障的概率。对于继电保护装置,注意力主要集中在从起始时刻到首次故障的时间。

4.3.可用率

可用率a(t)是指元件在起始时刻正常工作的条件下,时刻t 正常工作的概率。可靠度与可用率的区别在于,可靠度中的定义要求元件在时间区间(0,t)连续地处于正常状态,而可用率则无此要求。

4.4.故障率

故障率h(t)是指元件从起始时刻直到时刻t 完好条件下,在时刻t 以后单位时间里发生故障的概率。

4.5.平均无故障工作时间

平均无故障工作时间MTBF(Mean Time Between Failure)。设从修复到首次故障之间的时间间隔为无故障工作时间,则其数学期望值为平均无故障工作时间。

4.6.修复率

修复率m(t)是指元件自起始时刻直到时刻t 故障的条件下,自时刻t 以后每单位时间里修复的概率。

4.7.平均修复时间

平均修复时间mttr(MeanTime to Repair)是修复时间的数学期望值。

5.配电系统继电保护存在的问题

5.1.电流互感器饱和

随着供电系统规模的不断扩大,很多低压配电系统短路电流会随着变大,当变、配电所出口处发生短路时,短路电流往往很大,甚至可以达到电流互感器一次侧额定电流的几百倍。在稳态短路情况下,一次短路电流倍数越大,电流互感器变比的误差也越大,使灵敏度低的电流速断保护就可能拒绝动作。在线路短路时,由于电流互感器饱和,感应到二次侧的电流会很小或接近于零,造成定时限过流保护装置拒动。若是在变电所出线故障则要靠母联断路器或主变压器后备保护来切除,延长了故障时间,使故障范围扩大;而若是在配电所的出线过流保护拒动,则将使整个配电所全停。

5.2.二次设备及二次回路老化

现在我国很多配电系统的继电器是20世纪七八十年代的老式继电器,节点氧化尘太多,压力不够,也会造成保护误动,出口不可靠。我们知道,二次回路分直流和交流2部分,如果交流回路实验端子老化,锈蚀,接触电阻过大,严重时会引起开路,引起保护误动或拒动。直流部分在系统失电和系统严重低电压时可靠性难以保证,事故情况下更难以保证可靠动作,会导致越级跳闸,扩大事故范围。

5.3.环网供电无保护

目前我国环状配电网基本采用负荷开关为主,目前不设断路器,也没有保护。若装设断路器,由于运行方式变化,负荷转移等因素,继电保护选择性无法协调。目前环网运行方式是开口运行,故障时,故障环网全部停电,绝大部分网络是用人工操作对网络重构来恢复供电。

6.配电系统继电保护的改进措施

6.1.避免电流互感器饱和

避免电流互感器饱和主要从3个方面入手:首先是电流互感器的变比不能选得太小,要考虑线路短路时电流互感器饱和问题。其次要尽量减少电流互感器二次负载阻抗。尽量避免保护和计量共用电流互感器,缩短电流互感器二次侧电缆长度及加大二次侧电缆截面。第三是遵守速断保护的原则。高压电动机按起动电流乘以1.2~1.3倍可靠系数确定,如超过其数值就可确定故障电流。时限整定Os。单台变压器按所供电最大1台电动机的起动电流加上其余电动机及照明等负荷的额定电流进行整定,如整定值计算小于变压器额定电流2倍,按2倍的电流整定。超过2倍的电流整定值,按计算数据乘以可靠系数确定,采区变电所内进线柜则遵照最大整定值数据加上其余变压器的额定负荷。按等级划分,确定延时时间,仍有选择性。但短路情况下速断保护无选择性。

6.2.完善环网结构的配套建设

目前环网结构是电缆网络采用的主要形式,目前还没有性能颇为理想的继电保护装置,为快速隔离故障、恢复供电,可以考虑结合配电自动化系统的建设,继电保护与自动化系统相互配合使用。

6.3.实行状态检修

继电保护发展至今,从保护原理的设计,到生产厂家制造工艺,到售后服务,各方面都已比较完善。微机保护装置的性能已非常稳定。近几年在我区范围内,由于保护装置性能不稳定引起的误动基本上没有出现过,所发生的保护误动作基本上是保护装置外部原因引起的。因此我们建议对继电保护设备实行状态检修,也就是说,只要保护装置不告警,就不用进行检修。

6.4.增加投入,更新设备

及时更新保护校验设备,完善供电网络建设,在不影响正常安全生产的情况下,确保各回路均有足够保护整定时间,使保护装置校验做到应校必校,不漏项,不简化。

结语

继电保护是保障电网安全稳定运行的第一道防线。近年来随着电网系统的不断发展,输送线路容量更大、线路距离更长、系统短路容量更大,因而对线路继电保护的要求也就更高。因此,如何在今后确保继电保护的更可靠运行,实施继电保护全过程管理,是牵涉继电保护可持续发展的重要课题。希望广大现场工作的运行维护技术人员能结合运行经验,提出对应的措施,共同做好工作。从而提高电网的可靠运行。

参考文献

【1】赵勇,杨鑫.电力系统继电保护技术研究 [N] .科技创新导报,2009-19.

第7篇:继电保护的工作原理范文

【关键词】 电力系统 电流传感器 继电保护

前言:随着我国科学技术的快速发展,在电网的等级和压力不端增大时,对与电网的继电保护有了新的要求。在继电保护中,要求对互感器具有较为敏捷的反应速度。这样才能将故障的数据信息真实的反映出来,进而使得继电保护装置能在暂态过程中,做出正确的动作。从目前技术的层面来看,电流传感器能有效的应对这样的问题。

一、电流传感器简介

在电流传感器不断发展的过程中,第二代的电流传感器在实际的应用中较为广泛。第二代的电流传感器是一种三端口的电流型有源集成器件。与上一代相比,在其基础之上,增加了缓冲器、电流镜以及电流模等,通过新技术和就技术的有效融合,提高了动态的范围,同时,电路结构简单,运转的速度较高,功率较低等优势。所以,如若将会电流传感器与其他电子器件进行重新组合。则可以形成其他的电路结构,进而实现电流器得到广泛应用,从而设计出性能较好的模拟电路。

二、电流传感器在继电保护中的可行性研究

在我国电力工业的不断发展过程中,对电力系统的要求越来越高。但传统的传感器在使用时,存在很多的问题和不足之处。例如,以往使用的绝缘材料的结构都比较复杂,并且体积也相对较大,成本也比较高。而电流传感器的出现为改变这一现象提供了一定的技术支持。电流传感器具有广泛的使用前景,是电力技术未来发展的主要方向之一。电流传感器在整个电力系统的监控方面具有很大的作用,对于电力系统实现设备的自动化化具有一定的影响。新研制出的传感器克服了传统传感器质量体积大、抗干扰能力弱等缺点,优化电力系统的安全运行,节约电力系统的运行成本。

在我国计算机技术和控制技术发展的进程中,电力运行系统中的继电保护装置也达到了微机化控制的要求,使继电保护控制设备日趋小型化,这也要求了与其相关的设备接口要做出相应的改变,以满足继电保护设备对于接口的要求。而电流传感器正满足上诉的要求,相较于其他的控制设备,电流传感器具有十分明显的优势。除了满足基本的设备连接要求,其本身具有的良好兼容性、简便性等方面都要比传统的设备更加的优秀,并且更加的节约成本。而且利用电流传感器进行继电保护满足技术上的要求,可以进行推广和广泛的使用。

三、电流传感器在继电保护中应用

3.1电流传感器和继电保护接口

电流传感器是电力系统中的检测装置,能将检测到的电流信息,按照设定的方式将这些数据信息进行传送,进而满足对电力系统中,电流信息的存储、显示、记录以及控制的需求。在应用到继电保护中,电流传感器不仅是提供光信号和电信号。同时能将光信号和电信号进行有效的结合[1]。在科学技术不断发展的过程中,新型的电流传感器增加了输出端口,在原有技术的基础之上,增加了电子模块,这样的方式有利于拓展继电保护的应用和推广。同时,还减轻了电流传输器的自身的质量,增强了使用的效率。

3.2电流传感器对继电保护的影响

电流传感器对于继电保护产生的影响主要体现在以下几个方面,其一是,促成了电路保护方面的探讨。现今在我国电器市场中,关于继电保护的商品有较多,其各自的工作原理也具有多样化,最基本的工作原理就是滤波。这样就会产生延迟,对电力资源的消耗极大。因此,为了保障电力系统中电流的正常运转,就要对故障进行科学系统的分析,对电路的高速运转进行保护。其二是电流传感器能提高对继电保护的可靠性[2]。以往的电流传感器在使用的过程中,基于其自身的局限性,很多情况下没能使继电保护作出正确的动作,这就产生了不平衡。而新型的电流传感器的容量较大,能对电流大规模的动态范围进行保护,这就在很大的程度上提高了继电保护的可靠性。

四、结论

在电力系统中,电流感应器能对电流属性进行感知,并对具有特殊性的电流状况反馈给电力系统中的继电保护中。通过本文的论述得知,在第一代的电流传感器对继电保护的中,还存在一定的问题,而第二代的电流传感器能弥补其中的不足。随着科学技术的不断进步,电流传感器对电力系统中继电保护起到重要的推动作用。

参 考 文 献

第8篇:继电保护的工作原理范文

【关键词】 继电 保护 趋势

我国自上世纪90年代后期开始也开展了配电自动化研究与应用工作,目前,经过十几年的探索与实践,配电自动化技术已经比较成熟,为故障的快速和科学处理奠定了良好的基础。长期以来,在配电自动化系统的故障处理功能研究领域,国内外开展了大量卓有成效的研究。

1 继电保护的发展现状

1.1 继电保护的现状

继电保护技术是随着电力系统的发展而发展起来的。几十年来,随着我国电力系统向高电压、大机组、大电网发展,继电保护技术及其装置应用水平获得很大提高。在20世纪50年代以前,继电保护是用电磁型的机械元件构成的。随着半导体器件的发展,利用整流二极管构成的整流型元件和由半导体分立元件组成的保护装置得到了推广利用。20世纪70年代以后,利用集成电路构成的装置在电力系统继电保护中得到广泛应用。到80年代后,计算机技术发展很快,利用计算机强大的计算分析能力来分析电力系统的有关电量,判定系统是否发生故障。目前,在电力系统中,微机型继电保护及自动装置得到了广泛应用,它与传统保护相比有明显的优越性。

继电保护技术与其他技术不同的是,新技术不能完全取代老技术。电力系统中运行的继电保护可以说是“四世同堂”。由于计算机网络的发展和其在电力系统中的大量采用,给微机保护提供了无可估量的发展空间,微机硬件和软件功能的空前强大,变电站综合自动化的提高,电力系统光纤通信网络的逐步形成,使得微机保护不再是一个孤立的、任务单一的、消极待命的装置,而是积极参与、共同维护电力系统整体安全稳定运行的计算机自动控制系统的基本组成单元,进入20世纪90年代以来,它在我国已得到了广泛应用,受到电力系统运行人员的欢迎,已经成为继电保护装置的主要形式,从而使得继电保护成为电力科学中最活跃的分支。电力系统的快速发展又给继电保护技术提出了艰巨的任务,电子技术、计算机技术、通信技术又为继电保护技术的发展不断注人新的活力。

1.2 继电保护技术的发展趋势

继电保护技术的未来趋势是向微机化、网络化、一体化的方向发展。电力系统对继电保护的要求不断提高,除了实现基本功能外,还应具有故障信息和数据的存储、对数据的快速处理、与其他继电保护联网、共享信息和网络资源等能力。因此,继电保护的微机化是保护技术的必然发展趋势。

保证系统安全稳定运行,就要求各个继电保护共享全系统的运行和故障信息的数据,各个继电保护在分析这些信息和故障的基础上协调动作,才能确保系统的安全稳定运行。实现这种功能的基本条件是将全系统的继电保护全部用计算机网络连接起来,实现继电保护的网络化。计算机网络作为信息和数据的通信工具,已成为当前的技术支柱,那么实现继电保护的网络化,在当前的技术条件下是完全可能的。

如果实现了继电保护的微机化和网络化,继电保护可从网上获取电力系统运行和故障的任何信息和数据,也可将自身所获得的信息和数据传送给网络控制中心或任一终端。因此,各个继电保护不但可完成本身基本功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,即实现了保护、控制、测量、数据通信一体化。

2 继电保护的目标

2.1 继电设备的故障

电力系统继电保护是电力系统安全、稳定运行的可靠保证。电力系统中的电气设备在运行中,受自然的(如雷击、风灾、机械损伤等)外力破坏、内部绝缘击穿、人为的(如设备制造上的缺陷、误操作等)原因等,不可避免地会发生各种形式的短路故障和不正常工作状态。

电气设备故障最常见的是短路,其中包括三相短路、两相短路、大电流接地系统的单相接地短路及电气设备内部线圈的匝间短路。在大电流接地系统中,电气设备短路故障以单相接地短路的机会最多。

最常见的异常运行状态是电气元件的电流超过其额定值,即电气元件处于过负荷状态。长时问的过负荷会使电气元件的载流部分和绝缘材料的温度过高,从而加速设备的绝缘老化,或者损坏设备,甚至发展成事故。故障和异常运行状态都可能发展成系统中的事故。事故是指整个系统或其中一部分的正常工作遭到破坏,以致造成对用户少送电、停止送电或电能质量降低到不被允许的地步,甚至造成设备损坏和人身伤亡。在电力系统中,为了提高供电可靠性,防止造成上述严重后果,要对电气设备进行正确的设计、制造、安装、维护和检修;对异常运行状态必须及时发现,并采取措施予以消除;一旦发生故障,必须迅速并有选择性地切除故障元件。

2.2 继电保护装置的任务

继电保护装置是一种能反映电力系统中电气元件发生故障或异常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务有以下两方面:

(1)当电力系统中被保护元件发生故障时,继电保护装置应能自动、迅速、有选择地将故障元件从电力系统中切除,并保证无故障部分迅速恢复正常运行。

(2)当电力系统被保护元件出现异常运行状态时,继电保护应能及时反应,并根据运行维护条件,动作于发出信号、减负荷或跳闸。此时一般不要求保护迅速动作,而是根据电力系统及其元件的危害程度规定一定的延时,以免不必要动作和由于干扰而引起的误动作。

继电保护装置的功能,就是将检测到的电气量与整定值或设定的边界进行比较,在越过整定值或边界时就动作。这里的越过有两层含义:①对于反应被测量的增加而动作的保护装置,是指测量的量大于整定值或越过边界到界外;②对于反应被测量的减小而动作的保护装置,是指测量的量小于整定值或越过边界进入界内。

3 对继电保护的要求

继电保护的种类有很多,按保护基本工作原理不同归类:有反映稳态量的常规保护和反应暂态量的新原理保护两大类。其中,根据所反应参数不同,常规保护有过电流保护、低电压保护、距离保护、差动保护、高频保护、方向电流保护、零序保护及气体保护等;新原理保护有工频变化量保护和行波保护等。按保护动作原理不同归类:有机电型保护、整流型保护、晶体管型保护、集成电路型保护及微机型保护等。实际上继电保护的动作原理也表明了继电保护技术发展的进程,目前通常把微机保护之前的保护称为传统保护或模拟保护,与此相对应,微机保护还可称为数字保护。

为了能正确无误而又迅速地切除故障,要求继电保护具有足够的选择性、快速性、灵敏性和可靠性。

3.1 选择性

系统发生故障时,继电保护装置应该有选择地切除故障部分,非故障部分应能继续运行,使停电范围尽量缩小。

继电保护动作的选择性,可以通过正确地整定上下级保护的动作时限和电气动作值的大小来达到配合。一般上下级保护之问的时限差取0.5~0.7s,即同一故障电流通过时,上一级保护的整定时间应比下一级保护整定时间长0.5~0.7s,故下一级开关比上一级开关先动作。

3.2 快速性

快速切除故障可以提高电力系统并列运行的稳定性,减少电压降低的工作时间。理论上讲,继电保护装置的动作速度越快越好,但是实际应用中,为防止干扰信号造成保护装置的误动作及保证保护问的相互配合,继电保护不得人为地设置动作时限。目前最快的继电保护装置的动作时间约为5ms。

3.3 灵敏性

灵敏性是指继电保护装置对其保护范围内的故障的反应能力,即继电保护装置对被保护设备可能发生的故障和不正常运行方式,应能灵敏地感受和很灵敏地反应。上下级保护之间灵敏性必须配合,这也是保证选择性的条件之一。

3.4 可靠性

为保证继电保护装置具有足够的可靠性,应力求接线方式简单,继电器性能可靠,回路触点尽可能减少。除此之外,还必须注意安装质量,并对继电保护装置按时进行校验和维护。

以上四个基本要求贯穿整个继电保护内容的始终,要注意四个基本要求间的矛盾与统一,例如强调快速性时,可能会影响到可靠性和选择性;强调选择性时可能会影响到快速性。可以想象,同时满足四个基本要求的继电保护装置,其造价一定昂贵。所以对具体的保护对象,装设怎样的继电保护装置,在满足技术条件的同时,还要分析其经济性。

继电保护发展到今天,它的构成原理已形成了两种逻辑:一种为布线逻辑,另一种为数字逻辑。布线逻辑的继电保护装置,其功能靠接线来完成,不同原理的继电保护装置其接线也不同;数字逻辑的继电保护装置其功能由计算(程序)来完成,不同原理的装置计算方法(程序)不相同,但硬件基本相同。布线逻辑的装置要实现一种完善的特性(如四边形阻抗边界),接线将十分复杂,有些边界还不可能实现。数字逻辑的装置其原理是由计算(程序)来实现的,因此,可实现特性完善的装置。

4 结语

继电保护技术的发展先后经历了机电型、晶体管型、集成电路型和微机型,从初期的机电型发展到今天的微机型,已经历了四代的更新。继电保护的种类虽然很多,但就其基本组成而言,整套继电保护装置是由测量部分、逻辑部分和执行部分三部分组成。

第9篇:继电保护的工作原理范文

【关键词】电力系统自动化;继电保护自动化;智能电网

1.概述

继电保护装置在电力系统中是十分重要的设备,它能维护电力系统的正常运行。在电力系统正常时继电保护装置会对电力系统的工作状态进行监督和反应,当电力系统出现间题时,继电保护装置会迅速运用遥调和遥控等方式对系统间题进行处理,避免了间题的扩大。因此保证继电保护装置的正常运行对电网系统来说是非常重要的。在现今社会,原有的传统继电保护装置已经逐渐不符合电网系统的要求,因此继电保护装置开始朝着自动化、智能化发展,并且已经取得了一定的成就。

2.继电保护自动化的概念及工作原理

为了保护电力系统能够正常运行,或者在发生间题时能够及时的发现和解决,技术人员对电网系统设置了继电保护装置,维护了电网的正常运行。而最新技术下产生的继电保护自动化则更加有效的解决了这个间题。它会在电网系统发生间题时,立即予以发现,然后自动采取相应措施,这些措施包括报警信号、跳闸等。如果有必要,这种装置会把故障部分进行隔断,避免事故的进一步扩大,对一些比较简单的故障继电自动保护化装置也可以直接予以解决。

继电保护装置通常由引脚,线圈,衔铁,触点等构成。输人信号是指源于其传输系统的保护对象的信号,测量模块通过采集被保护对象的有关运行特征信号,而得到测量信号,须与整定值进行对比,比较结果被送达至逻辑模块。逻辑模块依据测量模块的比较值的大小、性质及产生的次序或以上几种参数的组合,来进行逻辑运算,其逻辑值决定动作是否进行。

在自动化的电网实际运行中,它对于发电、配电、输电等电气设备的监控,都是由传感器来完成的,并且结合网络系统来采集和整合监控数据,然后把获得的数据通过网络系统进行收集、整合,最后对数据进行分析。利用这些信息可对运行状况进行监测,实现对保护功能和保护定值的远程动态监控和修正。因此,这种分布式发电、交互式供电对继电保护提出了更高要求。因此自动化的继电保护装置不仅需要确保保护对象信息的安全,还需要关联到其它电气设备的运行信息。

在新型的自动化继电保护系统中,主要通过监控系统,讲被保护对象所有的电气量信息以及与其关联节点的其他节点的运行状况信息进行分析和决策,实时对相应继电保护装置的保护功能和保护定值进行修正、调整,确保保护装置能够适应灵活变化的情况。

3.继电保护自动化关键环节

根据继电保护的工作范围和效果进行详细的特征分类,可分为选择性、灵敏性、快速性、可靠性,这四个点是继电保护的系统能否正常运行的客观要求。

3.1灵敏性

在继电保护系统中,当电力系统发生其维护范围之内的故障时,可以通过灵敏系数有效的反应,确保系统的运行安全。

3.2可靠性

继电保护系统的可靠性是指当在规定的范围之内,系统产生了其应该动作范围内的故障时,装置不该拒绝该动作。然而不是它的动作范围内的情况时,该装置不应误动作操作。

3.3快速性

为了防止故障蔓延,减轻危害,尽可能的恢复电压。因此,当系统发生故障时,装置应保证动作迅速,及时切除故障。

3.4选择性

在故障发生时继电保护系统会对故障的严重程度进行判断,然后将故障点的线路切断,让无故障的系统能继续进行正常工作,最大程度上减少故障对整个系统带来的危害,使电网系统能够保持常规状态下的运行。

4.新时期电力系统对继电保护自动化的影响和挑战

在目前我国的继电保护装置水平还比较落后,传统的继电保护装置还占到了主流,阻碍了我国电力系统的发展。我国的电网继电保护水平必须跟上世界的先进水平,让我们的继电保护装置能从传统中得到改变吗,走向数字化、自动化、智能化。这不仅是对于继电装置的革新,也是整个电网系统的一个重大升级,也符合时展的需求。在目前我国的电网系统正在朝着智能电网迈进,许多新的设备投人运营,这就导致设备的故障率有了一定的增加,对继电保护来说也提出了更高的要求。所以需要提高继电保护装置的技术水平,以便适应不断发展的电网系统,切实保护电网系统的正常运行。目前,在电力系统的大力发展下,针对自动化的继电保护技术,需要解决的间题主要只有:时间和数据的同步性以及继电保护的整定计算。

智能电网中的额电子式互感器是分布式的,数据采集模式也是通过单元合并的,为了保证数据采集和传输的同步,在系统中需要精确的时钟同步。

在电网继电保护整定计算中,需要考虑很多的因素,比如电网的接线方式,以及运行方式,它们会对定值计算产生很大的影响。为了合理协调保护的灵敏性、速动性、选择性和可靠性之间的关系,保证各保护达到最佳的配合状态,就要求我们对电网的各种运行方式及多种故障情况进行反复而周密的计算。

5.继电保护的未来发展趋势

继电保护的技术发展道路已经越来越明确,就是智能、数字、网络,并通过信息处理技术将数据整合在一起。

目前继电保护技术正在朝着智能化、数字化以及网络化发展,适应了智能电网的技术水平要求。在以往的继电器使用中往往有一些间题,表现最明显的间题是系统的定值计算与管理系统定值分离,这种分类导致了数据的不准确,给操作带来了较大的困难,同时比较容易产生较大的失误。因此技术人员加人了智能化概念,就是通过模糊逻辑、神经网络等控制手段对继电保护装置进行控制,保证了数据的准确性。因此,数字化的继电保护装置在人工智能的控制下建立了继电保护网络,从而最大程度的实现了对于继电保护装置的控制,也加强了对于电网系统的监测与故障处理,是未来继电保护装置未来的发展趋势。

结束语

在智能电网不断发展的今天,对于整个电网系统的安全与稳定来说也提出了挑战,继电保护技术就是在这种挑战下得到了创新和发展。目前我国的继电保护技术还不够先进,传统的继电保护装置还占领了大部分的电力系统,因此我们需要不断加快对于继电保护技术的研发,提高先进继电保护装置的更新频率,让我国的继电保护技术朝着智能化、数字化以及网络化道路不断前进。

参考文献

[1]陈勇军,赵玉梅.智能电网中的继电保护技术分析【J】.科技与企业,2012(23).