公务员期刊网 精选范文 数学建模基本知识范文

数学建模基本知识精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学建模基本知识主题范文,仅供参考,欢迎阅读并收藏。

数学建模基本知识

第1篇:数学建模基本知识范文

关键词:数学建模;概率模型;数学教育

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)51-0178-02

一、概率理论与数学建模

随着数学教育的发展,通过数学建模的教学实践,可以看到作为数学知识与数学应用桥梁的数学建模活动,对培养学生从实际中发现问题、归结问题、建立数学模型、使用计算机和数学软件解决实际问题的能力,起到了其他数学课程无法替代的作用;对于培养学生的独立思考和表述数学问题和解法的能力,有其独到之处.国际数学教育界对数学建模教学的共识和重视的程度也随之提高,数学建模是指根据具体问题,在一定假设下找出解这个问题的数学框架,求出模型的解,并对它进行验证的全过程.数学模型从影响实际问题的因素是确定性还是随机性的角度上可以分为确定性的数学模型和随机性的数学模型.如果影响建模的主要因素是确定的,并且其中的随机因素可以忽略,或是随机因素的影响可以简单地表现为平均作用,那么所建立的模型应当是确定的数学模型;相反地,如果随机因素对实际问题的影响是主要的,不能忽略,并且在建模过程中必须考虑到,此时,建立的模型应是随机性数学模型.本文主要讨论了简单的随机问题中的概率模型,通过举例说明概率基本知识在数学建模中的应用.建立概率模型的过程主要有如下特点:

1.随机性.随机性体现在整个概率模型的建立中,由于随机因素对实际问题的影响不能忽略,在建模初期的模型分析与模型假设中必须考虑到随机性的影响,在模型建立环节也会用到分析随机问题的思想.

2.基础性.在概率模型中,用到的概率知识基本上是期望、方差、概率分布等基本知识,所以对这些基础知识的全面掌握是建立概率模型的关键.

3.启发性.在概率模型中,如何全面地考虑建模中的不确定因素具有探索性与启发性,而且对这些随机因素的考虑可以激发学生的学习兴趣与创造能力.

4.可转化性.有很多确定性模型在考虑了随机性的影响后,都可以转化成相应的随机性模型.

二、概率基础知识在数学建模中的应用

客观世界中,事物的产生、发展变化往往具有随机性,它的特点是条件不能完全确定结果.例如某地区的降雨量、某流水生产线上的次品数、某商场一天中顾客的流量,某射手在射击中命中靶心的次数,等等.这就要求学生在分析和求解模型中运用随机性的思想.在此情况下,概率知识在模型中的应用也就成为必然,而且概率知识的引入也能极大地丰富了数学建模活动中数学方法的使用.

从概率模型的特点可以看出,有很多确定性的模型,当考虑了其中随机因素的影响之后,它们都可以转化成概率模型来求解.例如,人口模型中的指数增长模型和阻滞模型,在给定了生育率、死亡率和初始人口等数据基础上预测了未来人口,但事实上人口的出生与死亡是随机的,当考虑到这一点时,我们所建立的应当是随机人口模型;再如确定性存贮模型可以转化为随机存贮模型等.

为了更好地将概率知识应用到数学建模中,我们应当做到以下几点:(1)熟练地掌握概率的基本知识;(2)全面地理解所研究的实际问题;(3)充分地考虑到实际问题中的随机性影响,并在建立模型过程中体现出随机性;(4)对所建立的模型能作出准确地检验.下面举例说明.

案例1 机票预售问题.

航空公司采用超额预订机票的对策来应付某些旅客可能不能按时乘机的情况,以增加航空公司的收入.但预订机票数超出座位数太多,不仅影响航空公司的信誉,而且损失过多的付给旅客的补贴.因此存在一个适度超额预订机票的问题.

我们首先通过分析、假设,来简化、明确问题:设f表示某航班飞行一次的固定费用,包括燃料费和维护费、机组人员的工资和报酬,以及租用机场的设施等费用.以N记飞机的座位数,以g记每位旅客所付机票费.设一个已订票的旅客按时到达机场的概率为p,设航空公司已订出的机票数为m,在已订机票的m人中有k人未能按时到达机场的概率为pk,则pk=C(1-p)kpm-k. (1)

下面计算一次飞行的利润S.

(i)如果飞机满座,且订票数恰好等机的座位数,即m=N,那么S=Ng-f.

(ii)如果实际订票数大机的座位数,即m>N,而且m人中有k人未按时到达,在不考虑补偿已定票而未能乘上飞机的旅客的情况下,一次飞行的利润为:S(m-k)g-f,若m-k≤NNg-f,若m-k>N

由于“m人中有k人未按时到达”是随机事件,其概率可由(1)表示,于是一次飞行的平均利润应该用S的数学期望表示,记作,因此我们有:

为了获得最大利润,从(2)式可看出:唯一的办法是减小一切0≤j≤N时Pj+m-N之值,使它尽可能接近零.由二项式分布性质可知,当m增大时Pj+m-N减小,因此增大可增加利润.

但是,增大m会导致过多预订了票的旅客乘不上飞机的情况发生.因此航空公司对超额预订机票应采取一定的补救措施,如支付给这些旅客一定的补贴以消除影响.

(iii)如果实际订票数大机的座位数,即m>N,而m人中有k人未按时到达,在考虑给每一位已订票而未能乘上飞机的旅客补偿费b的情况下,航班飞行的利润公式应改为S(m-k)g-f,若m-k≤NNg-f-(m-k-N)b,若m-k>N

于是一次飞行的平均利润即S的期望利润为

由上式可以看到期望利润与g、b、f、N、m、p诸因子有关.如果固定其他因子不变,仅考虑求m使得S达到最大,这就是航空公司希望解决的问题.

上面所举的例子是概率模型中常见的素材,其中概率的思想和方法都体现在了建模过程中,因此概率知识在数学建模中的应用极大地丰富了建模方法,推动了数学建模的发展.

在教育向素质教育全面发展的过程中,要求学生不但要掌握知识,同时还要学会应用知识,数学建模毫无疑问是应用知识的一种很好的方式.所以在教学过程中应当注重知识的应用性,以促进学生的全面发展.

参考文献:

[1]袁震东,等.数学建模[M].第3版.上海:华东师范大学出版社,1997.

[2]袁震东,等.数学建模方法[M].上海:华东师范大学出版社,2003.

[3]李大潜,等.中国大学生数学建模竞赛[M].北京:高等教育出版社,1998.

第2篇:数学建模基本知识范文

关键词:建模思想 ;高等数学;必要性;可行性

一、高等数学的教学目标

1.1 高等数学的总体目标

高等数学课程在高等学校非数学专业的教学计划中是一门重要的基础理论课。它是为培养适应我国社会主义现代化建设需要的高质量专门人才服务的,在培养高素质科学技术人才中具有其独特的、不可替代的作用。通过对这门课程的学习,为今后学习其它基础课及多数专业课打下必要的数学基础,为这些课程提供所必需的数学概念、理论、方法和运算技能。作为未来的工程技术或研究人员,也需要通过对这门课程的学习,获得必不可少的数学方面的修养和素质。

通过本课程的学习,要使学生获得:1.函数、极限、连续;2.一元函数微分学及应用;3.一元函数积分学及应用; 4.空间解析几何与向量代数;5.多元函数微分学及应用; 6.多元函数积分学及应用;7.无穷级数; 8.微分方程等方面的基本知识(基本概念、基本理论、基本方法)和基本运算技能,为今后学习后续课程及进一步获得数学知识奠定必要的连续量方面的数学基础。

在传授知识的同时,要通过各个教学环节培养学生运算能力、空间想象能力、抽象思维能力和逻辑推理能力,培养学生具有综合运用所学知识去分析问题和解决问题的能力以及较强的自主学习能力,逐步培养学生的创新精神和创新能力。

1.2 数学建模教学的背景与状况分析

美国国家科学研究会在一份提交给美国政府的研究报告中也明确指出:“在经济竞争中数学科学是必不可少的,数学科学是一种关键性的、普遍的、能够实行的技术。”21世纪是工程数学技术的时代。与我们所处的时代相适应,理工科数学教育应当包括如下三个方面的内容:基本知识的传授,自学能力锻炼,应用数学知识解决实际问题能力的培养。然而,旧的理工科数学体系存在一个很大弊端:大多数学生毕业后不懂得如何运用学过的数学知识去解决实际问题,甚至有人因此认为学数学无用。形成时代要求培养掌握和运用技术的新型人才与现行理工科数学教育脱离实际的矛盾。钱学森同志 1989 年曾就数学教育改革问题指出:“理工科大学的数学课是不是要改造一番”,以“应付现在的实际”。改革理工科数学内容需要找到一个突破口。

二、在我校高职高专高等数学教学中融入建模思想的必要性与可行性

2.1 建模思想融入高等数学教学的必要性

我们知道微积分的发明起源于物理学与几何学等实际问题的推动,并且微积分也极大地推动了科学的进步,直到今天,微积分仍在各个领域发挥着重要作用。但是今天的高等数学教学往往是过分强调理论的系统性,结构的严密性,而轻视了基本概念的实际背景,基本定理、基本理论的物理、几何等实际意义的解释,割裂了微积分与外部世界的密切联系,没能充分显示微积分的巨大生命力与应用价值,使学生学了一大堆的定义、定理和公式,却不知道对实际问题有什么用。而数学建模是通过调查、收集数据、资料,观察和研究其固有的特征和内在的规律,抓住问题的主要矛盾,运用数学的思想、方法和手段对实际问题进行抽象和合理假设、创造性地建立起反映实际问题的数量关系,即数学模型,然后运用数学方法辅以计算机等设备对模型加以求解,再返回到实际中去解释、分析实际问题,并根据实际问题的反馈结果对数学模型进行验证、修改、并逐步完善,为人们解决实际问题提供科学依据和手段。因此数学模型是数学与客观实际问题联系起来的纽带,是沟通现实世界与数学世界的桥梁,是解决实际问题的强力工具。然而在实践中能够直接运用数学知识去解决实际问题的情况还是很少的,而且对于如何使用数学语言来描述所面临的实际问题也往往不是轻而易举的,而使用数学知识解决实际问题的第一步就是要从实际问题的看起来杂乱无章的现象中抽象出恰当的数学关系,即数学模型,数学模型的组建过程不仅要进行演绎推理而且还要对复杂的现实情况进行归纳、总结和提炼,这是一个归纳、总结和演绎推理相结合的过程。这就要求我们必须改变传统数学教学只重视推理的教学模式,突出对数学结论的理解与应用,精简一些深奥的数学理论,简化复杂的抽象推理,强调对数学结果的说明、直观解释和应用举例等。逐步训练学生不仅掌握了数学知识而且学会“用数学”,学会用数学的知识与方法解决实际问题,因此,在高等数学教学中渗透建模思想的训练是十分必要的。

2.2 建模思想融入高等数学教学的可行性

我校的高职高专教育是一种职业技术教育,其目标是培养能够解决生产中实际问题的人才,这一点与数学建模竞赛活动“提高学生建立数学模型和运用计算机技术解决实际问题的综合能力”的目的是一致的。首先,计算机高职的学生对一些实际生产问题的流程要比传统大专和本科的学生更加清楚.而数学建模的题目通常是与一些实际生产问题的流程结合在一起的,只有对这些实际生产问题的流程有了比较具体的了解后,才能够比较好地完成题目的解答,从这一点来看,计算机高职的学生更有优势。其次,由于计算机高职的学生要掌握一些理论知识(如微积分初步、线性代数、概率初步等),并具备一定的运用所掌握的知识解决实际问题的能力,使得将数学建模引入计算机高职数学教学成为可能。

第3篇:数学建模基本知识范文

1.数学建模竞赛有利于学生创新思维的培养。数学建模是对现实问题进行合理假设,适当简化,借助数学知识对实际问题进行科学化处理的过程。数学建模竞赛的选题都是源于真实的,受社会关注的热点问题[2]。例如:小区开放对道路通行的影响(2016年赛题),2010上海世博会影响力的定量评估(2010年赛题),题目有着明确的背景和要求,鼓励参赛者选择不同的角度和指标来说明问题,整个数学建模的过程力求合理,鼓励创新,没有标准答案,没有固定方法,没有指定参考书,甚至没有现成数学工具,这就要求学生在具备一定基本知识的基础上,独立的思考,相互讨论,反复推敲,最后形成一个好的解决方案,参赛作品好坏的评判标准是模型的思路和方法的合理性、创新性,模型结论的科学性。同一个实际问题从不同的侧面、角度去思考或用不同的数学知识去解决就会得到不尽相同的数学模型。数学建模竞赛不仅是培养和提高学生创新能力和综合素质的新途径,也是将数学理论知识广泛应用于各科学领域和经济领域的有效切入点和生长点。

2.数学建模竞赛有利于促进学生知识结构的完善。高校的理工科专业都开设很多基础数学课,例如:高等数学、线性代数、概率统计、运筹学、微分方程等,目前这些课程基本上还是理论教学,主要以考试、考研为主要目标。由于缺少实际问题的应用,知识点相对分散,很多学生不知道学了有什么用,怎么用。那么如何将所学的基础知识高效的立体组装起来,并有针对性拓展和延伸,是一个重要的研究课题[3]。实践表明:数学建模竞赛对于促进大学生知识结构完善是一个极好的载体。例如在解决2009年赛题———眼科病床的合理安排的问题时,学生不仅要借助数理统计方法,找到医院安排不同疾病手术时间的不合理性,还要结合运筹学给出新的病床安排方案,并结合实际情况评估新方案合理性;2014年赛题嫦娥三号软着陆轨道设计与控制策略,参赛学生首先根据受力分析和数据,判断出可能的变轨位置,再结合微分方程和控制论构建模型,并借助计算机软件求解,找到较好的轨道设计方案。整个数学建模过程中,参赛学生将所学分散的数学知识点拼装集成化,在知识体系上,数学建模实现了知识性、实践性、创造性、综合性、应用性为一体的过程;在知识结构上,数学建模实现了学生知识结构从单一型、集中型向复合型的转变。

3.数学建模竞赛有利于培养学生的团队协作精神,提高沟通能力。现代社会竞争日趋激烈,具备良好的团队协作和沟通能力的优秀人才越来越受到社会的青睐。数学建模竞赛也需要三个队员组成一个团队,因为要在规定的时间内完成确定选题,分析问题、建立模型、求解模型,结果分析,单靠一个人是很难完成的,这就必须要由团队成员之间相互尊重、相互信任、互补互助,并且发挥团队协作精神,才能让团队的工作效率发挥到最大。同时,数学建模作为一种创造性脑力活动,不仅要求团队成员之间学会倾听别人意见,还要善于提出自己的想法和见解,并清晰、准确地表达出来。团队成员间良好的沟通能力,不仅可激发团队成员的竞赛热情和动力,还可以形成更加默契、紧密的关系,从而使竞赛团队效益达到最大化。

二、依托数学建模竞赛,提升大学生创新实践能力的对策

1.以数学建模竞赛为抓手,构建分层的数学建模教学体系,拓宽学生受益面。不同专业和年级学生的学习基础、学习能力和培养的侧重点都存在较大差异,构建数学建模层次化教学课程体系有利于增强学生学习和使用数学的兴趣,让更多的学生了解数学建模以及竞赛,通过自己动手解决实际问题,更加真切感觉到数学的应用价值,切实增强数学的影响力,扩大学生的受益面。南京邮电大学、华南农业大学、重庆大学和南京理工大学等高校这些方面相关工作和经验值得借鉴。因此,构建数学建模分层课程体系,在课程内容设置上,结合专业特色,有针对性设置教学方案和内容,逐步完善具有不同专业特色的数学建模教材,讲义和数据库、并保持定期更新,不断深入推进创新教学理念[4];在课程时间的安排上,遵循循序渐进的基本思路,一、二年级大学生开设数学建模选修课,介绍数学建模的基本理论和一些基本建模方法,三年级、四年级和研究生阶段开设创新性数学实验课程,重点训练学生应用数学知识解决实际问题的动手能力,并通过参加建模培训、数学建模竞赛以及课外科研活动,培养学生学习解决实际问题的能力;在课程目标的定位上,数学建模有别于其他的数学课程,集中体现在数学的应用、实践与创新,因此,数学建模不仅是一门课程,同时也是一门集成各种技术来解决实际问题的工具[6]。

2.以数学建模竞赛为载体,搭建横纵向科技服务平台,扩大数学建模影响力。数学建模竞赛的理念是“一次参赛,终身受益”,这就要求数学建模活动要立足高远,不断向纵深推进与发展,将数学建模应用融入服务国计民生。因此,选择优秀本科学生、研究生和毕业生,结合大学生创新创业计划,科研课题以及企事业单位关注的问题等,让他们自己动手去调查数据,查阅相关建模问题的文献资料,建立数学模型,借助软件进行模型求解,最后独立撰写出建模科技论文或决策咨询报告。全程参与“课外实习与科技活动”的方式,不仅实现了因需施教、因材施教的目标,还搭建了连接企业和学生的桥梁,不仅让大学生创新创业落到实处,为企事业单位提供了智力支撑,真正实现所学知识服务社会。

3.以数学建模竞赛为平台,加强教师的队伍建设,提升教师教育教学能力。数学建模授课和指导教师的教育教学能力直接影响着学生的创新能力。教育教学能力是指教师从事教学活动、完成教学任务、指导学生学习所需要的各种能力和素质的总和。数学建模的教学与传统数学教学相比,对教师的动手能力、教学内容驾驭能力、教学研究和创新能力等有较高的要求,因此,数学建模指导教师可以通过自主研修,网络研修,参与集体备课、听评课、教学研讨等方式提高自身业务水平,同时积极参与赛区、全国组织的学习和培训,加强交流,开阔视野,不断地提高自我认知、认识水平。只有建成一支高素质、实力雄厚、结构合理、富有创新能力和协作精神的学科梯队,数学建模整体水平才能有较大提升,才能适应数学建模发展的现实需要,切实有利于学生创新实践能力的提高[6,7]。

三、我校数学建模教学和竞赛改革的实践

1.构建模块化教学体系。针对我校轻工特色,结合专业培养需求,构建模块化教学体系。针对食品、生工、医药、化工和轻化等实验科学为主的专业,重点将实验设计、数据处理、数据分析和预测分析等内容模块化;针对数学基础较好的物联网、计算机、信息计算和自动化等专业,构建微分方程,运筹优化和控制论等内容模块化;偏于社科类的管理、会计、金融和国贸等专业,重点将概率模型、优化等内容模块化。再结合数学建模竞赛和大学生创新创业计划,构建“专业基础模块+知识拓展模块+竞赛需求模块+科研论文写作模块”的实践教学体系。

第4篇:数学建模基本知识范文

目前,我国13所民族院校中,基本上都开设了数学与应用数学、信息与计算科学、统计学或相关数学专业。由于数学学科基础性较强,因此在专业基础课的设置方面,民族院校与普通高校没有本质区别。然而,由于民族院校师生结构的特殊性及理工类专业设置的滞后性等原因,导致大部分学校在数学教学方面仍存在一些问题。民族院校是在人文学科的基础上增设理工类学科的,除张大林提到的学生数学基础较薄弱、教师教学方法较传统等问题外,还存在专业课程的设置不合理、课程衔接不当、教师不能较好地把握因材施教原则等问题。随着素质教育理念的推广,在大学数学教学中融入数学建模思想已普遍达成共识。然而,受师资力量和水平的限制,在大学数学教学中很难做到引进与专业相关的数学建模案例。当前大学数学教学基本分为文科类、经济管理类、理工科类和数学类几个层次,为了便于同步教学,教师在教学过程中一般只从这几个层次上加以区分。因此,结合人才培养目标、社会需求和专业特点开展教学是今后大学数学教学改革的一个方向。

何伟等在阐述关于民族院校数学教育的思考中提到,自然科学没有民族性,但自然科学的掌握者有民族性,对其进行的教学可以有民族特点。因此,民族院校的数学教育可以结合民族特性开展。在完成基础数学教学的基础上,应以数学建模系列课程教学为载体,根据民族地区经济发展对人才的需求,选择有利于发展民族经济的教学内容和人才培养模式,大力开展具有民族特性的数学教育。在教学过程中,重点培养学生把握民族地区发展的前景分析能力和项目开发能力。在地方民族院校中,应结合地方实际,针对民族旅游开发、民族工艺品设计、民族药品研制过程中涉及的数学模型展开教学,探索合适的具有地方特色的创新性人才培养模式。

数学建模教学与竞赛活动,是一项成功的高等教育改革实践。从13所民族院校的人才培养方案中不难看出,随着数学建模竞赛活动影响力的扩大,各民族院校也加大了对数学建模与数学实验系列课程的教学力度。然而,纵观各民族院校数学与应用数学专业、信息与计算科学专业、统计学专业等数学相关专业的培养方案,不难发现其课程体系中与数学建模和数学实验课相关的课程之间不能较好地衔接。因此,在公共课挤压专业课学时的情况下,只有科学有效地开设数学建模系列课程,将拟开设的课程有机地衔接起来,才能让学生系统地学习数学建模的思想和方法。综合各高校课程设置情况与教学实践,我们认为数学建模与数学实验系列课程可以按下图的关系加以衔接。另外,因为这一系列课程中均包含数学建模的思想和方法,所以在教学过程中可以将课程之间交叉的内容着重放在一门课中展开,从而突破各门课程的学时限制。

例如,线性规划、非线性规划和动态规划等优化数学模型可以放在运筹学课程中进行教学,而在数学模型课程教学中不再重复这部分内容。这种将数学模型课程中涉及的具体模型放到相关课程里进行教学,是将数学建模思想融入其他课程教学的最好体现。当然,教学的内容除覆盖基本知识点外,应结合专业特点展开。只有灵活选取有利于学生就业的内容进行教学,才能让学生学以致用。教学的形式应多样化,可以开展专题讲座,也可以引导学生从简单课题入手,将实验室交给学生,让学生自己去思考、去实践。

高等教育的发展趋势更强调素质教育,而强调学生学习活动的实践性是素质教育的内涵之一,从实践中获得的经验与知识,更容易产生沉淀而成为人的素质。应用数学知识分析和解决一些问题的实践活动统称为数学建模活动,它是一种小型的科研活动。通过参加这项活动,学生可以对科研活动的全过程有一个初步的了解,在科研的各个环节均可得到训练,这些环节包括:分析和理解问题背景、收集相关信息、明确主攻目标、方案比较与抉择、模型建立与求解、仿真检验与模型改进等。数学建模活动作为全国高校规模最大的课外科技活动,它可以拓宽学生的知识面,培养和提高学生运用所学的数学知识和其他各专业知识解决实际问题的综合能力。

第5篇:数学建模基本知识范文

关键词:数学建模思想;高职数学;渗透研究

1在高职数学中渗透数学建模思想的意义

在高职数学的教学中逐渐渗透数学建模思想,能够潜移默化地影响学生的学习能力和思考方式,并且提升学生的创新能力和实践操作能力,能够更好地帮助高职学生成为高质量、高技能的专门应用型人才。数学建模就是将生产生活和学习工作中遇到的各种实际问题转化为数学问题,让学生能够在解决数学问题的基础上更多地考虑到实际情况。从实际问题出发,将问题类比规划并且通过抽象形式的表达转化为数学问题,在数学公式的变化中将实际问题解决,并且能够更好地理解实际问题和数学之间的紧密联系,这就是数学建模思想的重要意义。数学建模思想能够更好地帮助学生提高中职数学的学习能力,并且在中职数学学习中能够独辟蹊径,寻找出新的解决问题的方法,能够提升学生的创新应用能力,增强学生对中职数学学习的兴趣,在数学学习中更具有积极性和主观能动性。

2数学建模思想和高职数学的结合

高职数学教学中加入数学建模的思想能够在学生学习数学的过程中慢慢地对学生学习能力和创新能力产生影响,主要作用是在潜移默化的基础上产生的,在实际高职教学中能够将数学建模思想和实际的高职数学教育目标结合在一起,是高职数学改革的主要目标。高职数学教育更多地趋向于理论知识的教学,而数学建模思想则更好地将实际问题推送到数学面前,培养学生应用数学理论知识解决实际问题的能力,在长久的数学建模思想和高职数学教学的结合培养下,学生的数学建模能力能够得到有效的培养,这种长时间潜移默化的影响更能帮助学生提升创新实践能力,完成高职数学教学目标。

3数学建模思想在高职数学中渗透方法研究

3.1在高职数学的教学内容上引入数学建模思想

以往的高职数学的教学内容更趋向于对理论数学知识和公式概念的教学,这些基本知识都不能很好地和实践应用相联系,不能很好地让高职学生明白数学的意义和数学在生活中的应用,而将数学建模思想渗透到高职数学中则能够更好地帮助学生理解数学和实际工作学习生活的联系,增强学生对高职数学的学习兴趣,同时也更能加深学生对数学理论知识的理解。在高职数学学习内容中函数是教学中的重点和难点,学生往往在这部分数学知识的学习上掌握得不够好,函数是个非常抽象的概念,而如果将数学建模思想渗透到函数的教学内容中,通过数学建模思想将实际生产生活中的问题应用到函数的学习和应用中,能够更好地帮助学生学习和理解函数知识。比如在高职学生参加工作后最常见的问题就是工时和工作任务量的关系,如何在有限的工作时间T内完成最大的工作量X,则需要学生利用函数关系得出最大工作效率Y,这些应用都加深了高职学生对数学知识的理解。

3.2在高职数学知识的应用上加以渗透数学建模思想

高职教育的教学目标和教学任务就是为社会培养更多的专门性技能人才,他们更多地和实际操作工作相接触,而数学建模思想在高职数学知识应用上的渗透则很好地帮助学生提升实际操作能力,帮助学生更好地理解数学知识,利用数学的知识和方法解决实际技能型工作中的问题。在高职数学知识的应用上渗透数学建模思想就是将具体的生产工作中遇到的各类问题类比抽象为相应的数学模型,进而利用数学知识解决实际生产中的问题,数学模型的建立则更好地帮助高职学生解决生产工作中的问题,并且能够加深学生对理论公式的理解和记忆。数学建模思想在中职教学中知识内容应用上的渗透则更注重于培养学生的实际应用能力,而不仅仅是数学知识的死记硬背和大量的数学计算。例如,在饮料工厂的生产中如何设计饮料瓶使工厂达到最大的经济效益,在生活中我们很少见到方形的瓶子,而更多的是圆形饮料瓶,这就是通过装等体积的饮料,如何设计才能使得饮料瓶的面积最小,也就在最大程度上达到节约物料、节约成本的目的。通过面积和直径,体积和直径的关系来设计出最经济的饮料瓶外形,则是对数学建模思想在高职数学内容应用上比较好的案例。

3.3在高职数学考试中运用数学建模思想

在高职数学教学中,不仅要在数学知识内容和数学知识应用上渗透数学建模思想,更要在实际的学习中应用到数学建模思想。比如在高职数学的教学考核上,采用更多的方法对学生的能力进行判断,可以利用小组同学间合作与竞争的关系,增强学生对数学建模思想在数学应用中的理解,利用考试中数学建模方法和思想帮助学生提升独立思考能力和探索创新能力。

4结语

数学建模思想在高职数学中的应用符合高职教育的培养目标,为社会提供了更多高能力、高素质的专门技能型人才,数学建模思想在高职数学教学中的应用提升了学生的创新实践能力,同时也加深了学生对高职数学知识的理解和应用,进而帮助学生能够将数学知识更好地应用到以后的生产实践工作中,利用数学知识解决工作的实际问题,进而为社会做出更大的贡献。

参考文献:

[1]钟国富,郭宗庆.关于在高职数学教学中融入数学建模思想的思考[J].教育与职业,2011,(04):143-150

第6篇:数学建模基本知识范文

(一)缩短课时,让学生能迅速掌握知识

高职院校高等数学课时普遍较本科院校少。项目教学法不仅解决了课时少的难题,更提高了学生的学习兴趣与效率,让学生在完成项目的过程中积极、主动、轻松地掌握知识。当然,课时的减少,并不代表教师的工作量减少。任务的选取、布置、指导和评价都对教师提出了更高的要求。

(二)拓展学生的知识面,掌握数学建模方法

因为项目任务往往是跨学科、跨专业的。学生在项目的完成过程中自然拓宽了知识面,当然更主要的是掌握了数学建模的方法,这种方法正是教师“授之以渔”中的“渔”。

(三)在实践中培养综合职业能力

由于从项目的计划、实施、完成及评价均由学生自主完成,对学生的综合能力培养提出了更高的要求。学生在项目的完成中要真正地走入社会,学会收集资料,学会调研,学会与人沟通,学会团结与分工合作,在实践中锻炼自己。

二、高职数学建模项目教学的实施对象

由于数学建模教学面对的是全院学生。学生的水平参差不齐。本着因材施教的教学基本原则,大部分学院数学建模的教学均采取分层教学模式,一般分为基础普及层、能力提高层和优秀拔尖层。针对基础普及层的学生,一般教师会通过启发式教学法和案例教学法,在高等数学课堂教学中融入简单数学建模案例,让学生初步体会数学建模的思想。如在函数最值应用中可引入易拉罐形状的最优化设计问题、绿地喷浇设施的节水设想和竞争性产品生产中的利润最大化等模型;在常微分方程中引入人口问题、刑事侦查中死亡时间的鉴定和名画伪造案的侦破问题等模型;在线性代数中引入矩阵密码、投入产出等模型;在概率统计中引入考试成绩的标准分、保险问题、风险分析等模型,使学生从各类建模问题中逐步领悟到数学建模的广泛应用,从而激发学生对数学建模的兴趣。针对能力提高层和优秀拔尖层的学生一般采用实验教学法与项目教学法,可通过开设选修课《数学建模与数学实验》和数学建模培训班的形式进行。另外,针对这类学生,一般院校还会积极组织他们参加各类数学建模竞赛,申报省大学生科研项目等。事实证明,经历过数学建模锤炼后的学生,自主学习、科研能力、实践能力、自信心等都明显增强,而且大部分同学都会进入本科院校继续学习深造。

三、高职数学建模项目教学的实施过程

(一)项目选取

首先,教师根据课程特点和学生认知水平,设计相应的项目任务并下达给学生。项目可分为初等模型、微分方程模型、预测类模型、图论模型、规划类模型、评价类模型、概率类模型和多元统计分析这八类,每一类设计不同专业领域的项目。学生可根据自身专业和兴趣选择不同的任务,也可根据实际自选任务。项目任务的设计要具有示范性、覆盖性、实用性、综合性和可行性。

(二)项目分析

为使项目活动顺利开展,教师可将与任务相关的数学概念或内容呈现出来,供学生参考。指导学生将任务细化,明确任务目标。对于一些较复杂的项目,可以指导学生将其阶段化,分为若干子项目加以完成。

(三)制定计划

学生根据任务目标,制定实施计划,具体到时间与人员分工,在制定计划时可兼顾学生自身特点,如计算机专业的学生可以以程序的编写和运行为主。

(四)自主学习

知识的理解和运用、软件的学习和使用、算法的编写与运行等,这些具体细节都需要学生自主地去学习和探究。

(五)完成任务

根据实施计划,分阶段、分步骤、分工合作完成数据的收集与整理、模型的建立与求解以及论文的写作。

(六)评价、修改与推广

在这一环节,主要以学生代表展示成果的方式进行,对已建立的模型进行讲解与分析,对已完成的任务开展自评和互评,最后由教师总评。学生再根据教师和学生的意见对模型进行修改与推广。

四、高职数学建模项目教学的评价体系

(一)过程性评价

主要指项目进行过程中学生的全方面表现,主要包括八个方面:1.认真,自主学习能力强;2.有创新性,敢于挑战;3.团结友好,善与人沟通;4.考虑问题全面;5.数学基础厚实;6.编程能力强;7.写作能力强;8.有领导才能。评价结果综合学生自评、学生互评和教师评价三方面。这样的评价方式,不仅要求学生们对自己能力的了解以及相互之间相互了解,更需要教师对每个学生的了解,要求教师与学生的零距离接触,充分发挥教师的指导性作用。

(二)终结性评价

主要指对最终成果的评价,以数模论文假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主。

五、高职数学建模项目教学案例

下面以图论模型的项目教学为例说明具体实施过程。图论是用点和边来描述事物和事物之间的关系,是对实际问题的一种抽象,能够把纷杂的信息变得有序、直观、清晰。自然界和人类社会中的大量事物以及事物之间的关系,常可用图形来描述。例如,物质结构、电气网络、城市规划、交通运输、信息传输、工作调配、事物关系等等都可以用点和线连起来所组成的图形来模拟并转化为图论的问题,再结合图论算法,计算机编程,从而解决实际问题。本教学单元从图论的实际应用中选取“物流线路与管网设计”这两个典型应用作为项目任务导入。

项目1:(物流线路问题)物流运输作为重要的物流网络优化问题,其方案的设计直接影响企业的运输成本和运输时间等。请以实际城区主干线为例,构建图论模型,利用图论算法,给出城区主干线上的结点间最短路径,并通过构建欧拉回路,给出最优巡回运输路径。相关知识:无向连通图,一笔画问题,欧拉回路,历遍性最短路,最大流,Dijkstra、Floyd、Edmonds、Fleury等算法。教师活动:布置任务,提供必要的知识和软件指导,协助组员分工,引导学生顺利完成任务。学生活动:明确任务目标,根据自身特点组队,制定实施计划并分工合作,完成任务。(1)基本知识与软件的学习阶段;(2)数据的收集与整理阶段;(3)城区主干线图论模型的构建;(4)利用Dijkstra和Floyd算法计算出结点间最短路径;(5)利用Edmonds和Fleury求最小权理想匹配和欧拉巡回。项目推广:车载导航仪、中心选址问题、最佳灾情巡视路线等。

六、结束语

第7篇:数学建模基本知识范文

【关键词】数学建模 高职数学

高职教育是以培养应用型人才为主要目标的高等教育,以凸显实用技能为原则的教学理念也渗透到了专业课程的教育进程中,充分强调课程内容的实用性和学生解决实际问题的自觉性。作为一门在社会生活中应用极广的学科,数学课程亦需要与实践土壤相结合,方能显出其教学职能。然而不少高职学生数学基础薄弱、兴趣低沉,仅仅将数学学习看作是应付考试的枯燥过程。应试化的数学学习模式显然与高职教育阶段的教学理念相悖,而要改变这一局面,则应当在高职数学教学中引入新型的教学手段。

一、数学建模的涵义

数学建模是将一个实际问题,根据其特有的内在规律,作出一些必要的简化和假设,运用适当的数学工具将其转化成一个明确的数学问题,用数学方法精确或近似地解决该问题,并将求得的数量结果返回到实际问题,检验结果是否与实际现象符合,这样的过程多次反复进行,直至能较好地解决实际问题为止。现代科学技术发展的一个重要特征是科学技术日益精确化、定量化,许多问题的解决,都必须建立其模型,数学模型的应用已渗透到各个领域,如工程、经济、管理、医学、生态、环境、社会、体育、人文等。

二、数学建模应用于高等数学教学的必要性

目前,高等数学课教师主要采用传统的“粉笔加黑板”为主的教学方法来授课。在教学过程中,基本上采取统一上课进度、统一的辅导和作业批改、统一的课程考试的方式进行教学,只是简单地把知识灌输给学生,而且过于注重演绎证明、运算技巧,忽视了应用理解和学生创新能力的培养,学生的潜在能力不但没有得到挖掘。数学建模教学具有紧密结合多领域实际问题,将实际案例分析作为教学内容等特点,因此有助于克服传统数学教学中知识与能力脱节的弊端,可以启迪学生应用数学的意识、兴趣和能力。数学建模教学中所采用的多为研讨班模式,可以充分发挥学生的参与意识;在研讨过程中,教师和学生地位平等,通过共同讨论,能让学生从被动学习转变为主动学习,从而极大地调动学生自觉参与的积极性。数学建模教学中,可采用分层次、模块式的教学体系,运用现代数学的观点和方法改造传统教学内容和教学体系,从而探索出高等数学教学的新路子。

三、高职数学课程与数学建模的结合路径

(一)在数学概念教学中应用数学建模思想

在数学概念的教学中,运用数学建模思想能取得较好的实效。比如,在讲授导数的概念时,可以给出两个模型:模型一是变速直线运动的瞬时速度,模型二则是非恒定电流的电流强度。在模型的建立过程中,可以运用简单的物理知识,由师生一起来共同进行分析讨论。通过对问题展开分析,对于以上两个不同的模型,一旦抛开其实际意义,单纯地从数学结构上来看待,它们都有相同的形式,都能归结为同一个数学模型,也就是函数的改变量和自变量改变量的比值。当自变量改变量趋于零时的极限值,这种形式的极限,在数学上即定义为函数的导数。在有了导数的定义之后,前面的两个模型很容易就能得到解决。这样既得出了导数的概念,又能让学生体验到数学的魅力。

(二)构建问题情境,以建模为方式加强对数学问题的解释与应用

根据教学内容的特点,教师可以利用数学建模来讲复杂的原理、抽象的概念与实际理解领域相结合,比如引入多媒体计算机技术,将趣味故事、史料、图片、影像资料作为知识导入环节,用计算机来操作模型来化解课本上数学知识的平面性,从而让一个个数学问题融入到具体教学情境中,变得形象丰满起来。要让学生们树立起数学问题意识,需要教师在数学建模中注重材料的多样性以及与现实生活的联系性。例如,在函数章节中可以分析银行存款复利问题;学习完极值问题后可以引入最优价格设计、最佳订货周期问题、最大收益问题等案例;在介绍了线性方程组求解后,可以引进投资组合问题;在学习微分方程概念后引进人口问题的马尔萨斯人口模型(英国人口学家马尔萨斯于1798年提出了著名的人口指数增长模型)。教师可以设计出相关的问题情境,然后让学生们在模型演练中对这些问题加以分析和解决。这种以建模为方式的问题情境可以打破以往对数学的片面化认识,释放学生们的多维度数学思维。

(三)优化教学内容作为数学建模的载体

高职数学内容历来要求“以应用为目的,以必需、够用为度”,其知识范围广、线条粗、深度浅。教师应积极开展课程论研究,在教学中要善于挖掘教学内容与学生所学专业及实际生活中实例的联系,根据学生专业的实际需求编排高等数学课程教学内容和教学重点。同时适当增加数学实验等辅的教学内容,建立知识、趣味、实用和现代化技术为一体的内容体系。这样既能提高学生的学习兴趣,拓宽视野,又能突出高职应用性的培养目标,提高学生利用所学数学知识,结合数学模型的思想和方法,借助计算方法和数学软件解决问题的能力。例如,机械类专业可以将微积分作为教学重点,电气类专业可以适当加入线性代数、积分变换等内容,信息类专业则可加入概率论、计算初步和数学实验等。

值得注意的是,数学建模在课堂教学中仅是建模思想和方法的渗入,是在掌握必要的数学基本知识和基本能力基础上,通过建模的思想将所学的数学知识应用于专业和生活实际,使学生具备数学应用意识和初步建模的能力,而不是要学习和掌握数学建模的专门知识,因此不能改变高等数学教学的主要要求和基本目标,要协调好二者的关系,既要相互促进,又要主次分明

总之,数学建模思想的应用,对于高等数学教学改革具有非常重要的意义。将数学建模思想引入高等数学教学,其目的是更好地促进学生的数学学习,提高他们运用数学思想分析问题、解决问题及抽象思维的能力。教师要通过数学建模思想的应用,使学生初步掌握从实际问题中概括数学内涵的方法,激发学生的数学学习兴趣,并为高校学生的专业课学习奠定坚实的数学基础。

参考文献:

第8篇:数学建模基本知识范文

[关键词] 数学建模; 管理会计; 教学改革

doi : 10 . 3969 / j . issn . 1673 - 0194 . 2013 . 15. 069

[中图分类号] G420 [文献标识码] A [文章编号] 1673 - 0194(2013)15- 0105- 02

管理会计是高职会计专业的核心课程和工商管理专业的必修课程,其理论和方法已经成为企业管理必须掌握的基本知识。管理会计越来越多地应用现代数学方法来进行分析研究。具体地说,管理会计中数学方法的应用是以广泛地应用数学模型为重要标志。管理会计中所用的数学模型具有多种表现形式,包括一般代数模型、数学分析模型、数学规划模型、矩阵代数模型及概率模型等。所以,管理会计教学中突出数学思想方法,特别是数学建模思想的渗透就显得十分重要。如何将数学建模思想和管理会计课程的教学改革有机地结合起来,是对管理会计教学改革的大胆探索和有益尝试。

1 管理会计教学融入数学建模思想的意义

1.1 符合管理会计的学科特点

管理会计的学科特点之一是数学方法的广泛应用。财务会计应用数学方法的范围较小,一般只涉及初等数学。而现代管理会计越来越广泛地应用许多高等数学和现代数学方法。随着科学技术的不断进步,生产经营的日趋复杂,企业规模的不断扩大,整个企业管理正朝着定量化的方向发展。现代管理会计为适应企业管理的这一重大转变,要求用高等数学和现代数学方法来“武装”自己,使其与企业管理的发展相适应。把高等数学、运筹学和数理统计学中的数量方法吸收、引进、应用到现代管理会计中来,可以将复杂的经济活动用简明的数学模型表述出来,揭示有关变量间的内在联系及变化规律,以便为管理人员正确地进行经营决策提供依据。所以,一方面,管理会计是一门实践性、应用性较强的课程,教学中的许多案例,包括根据实际问题改编的案例都可以充实数学建模的内容。另一方面,数学思想方法,特别是数学建模思想运用于管理会计教学不仅是教学方法的改变,而且可以更好地培养学生的数学应用意识和能力。因此,管理会计课程的教学改革和数学建模能力的培养是相得益彰的关系,而不是鱼和熊掌不可兼得的关系。

1.2 改善管理会计教学现状

目前,管理会计教学中存在许多问题,如教学内容与实际应用脱离严重,教学方法单一,教学手段落后,学时少,考核制度不完善等。这些问题直接导致课堂上学生学习目的不明确,积极性不高,课堂参与程度低。如何改善这种状况呢?在管理会计教学中渗透数学建模思想是一个有效的办法。首先,传统教学中,以基本概念和基本理论的讲授为主,而数学建模思想从解决实际问题出发,在课堂上引入实际的管理案例,或者根据实际问题改编的案例容易引起学生的兴趣。其次,传统教学以教师为中心,而数学建模思想采用分组讨论的形式,学生各抒己见,每个人都有参与的机会。再次,可以培养学生的综合能力。在数学建模时,常常需要数学知识的综合运用、良好的专业背景和一定的计算机基础及文字表达能力。由于数学建模教学本身是一个不断探索、不断创新、不断完善的过程,所以在这个过程中,教师可以通过实际教学案例的设计有意识地培养学生的抽象概括能力、洞察力、想象力、自学能力和创新能力。

1.3 推动高职课程改革的进程

管理会计教学融入数学建模思想是高职教学改革的新思路。首先,它密切了公共基础课与专业课之间的联系,更好地推动基础课教学改革。以经济管理类专业为例,管理会计、统计学、财务管理和经济学等课程不但与数学课之间有着直接的关系,而且也与公共英语、计算机基础等公共基础课有着密切的联系。分析这些联系,更有利于将公共基础课的改革落到实处。其次,它密切了专业课之间的联系,提高了专业课的教学实效。目前,在高职教学中,不同程度地存在着专业课内容重复的现象。如管理会计与财务管理、成本会计之间的内容都有交叉。数学建模思想融入专业课教学不仅是教学方法的改变,更有利于打破专业课之间界限,有利于解决专业课教学理论学时减少与学科门类繁杂,内容重复等矛盾。再次,它密切了高职教师之间的联系,有利于打造复合知识结构的教师队伍或教学团队。目前,高职院校不同程度地存在轻视基础课、重视专业课,轻视理论教学、重视专业实训的现象。导致这种现象的原因主要是高职教师缺乏对课程体系的整体认识,割裂了学科之间的联系。解决这一问题的有效途径是,一方面要求教师之间增加互动,特别是公共基础课教师与专业课教师之间的经常性互动,另一方面教师通过进一步学习不断丰富和调整知识结构。

总之,在管理会计教学中渗透数学建模思想,不仅是对管理会计教学方法改革的大胆探索,也是对高职课程体系改革的有益尝试。

2 管理会计教学融入数学建模思想的原则

2.1 循序渐进,体现教学过程的“活动”特点

数学建模思想融入管理会计教学首先应体现“活动”的特点,教学过程设计的着眼点应考虑怎样让学生更多地参与进来,让他们做什么,怎么做,或者怎样让他们自己悟出该做什么,该怎样去做。而要体现这一特点需要一个循序渐进的过程。首先,教师的思想准备和知识储备问题。教师必须乐于探索这一教改活动,从观念上更新,从知识结构上做必要的准备,要有比较合理的知识结构。其次,为了更好地突出“活动”特点,必须对学生进行全面了解,比如学生的数学基础、计算机水平和已有的专业背景等。从教学内容上看,哪部分适宜进行课改,哪部分适宜首先进行课改。

2.2 找好“切入点”,与正常教学环节相结合

“切入”是指教师通过一定的方式把一个较复杂的问题进行分解,或者根据实际情况把建模的某一环节(如问题分析,假设,模型求解等)放到正常的局部环节上,并且注意要经常这样做。我们可以用“化整为零”、“细水长流”来描述这种做法。比如,在讲授成本性态时,让同学们搜集有关行业的成本构成情况,分析哪些是变动成本,哪些是固定成本,哪些是混合成本。在讲解混合成本的分解前,让大家了解Excel软件关于数据拟合的方法等。在讲解存货管理时,引导学生考虑存货管理的目标是什么,影响存货成本有哪些因素,哪些是相关成本,哪些是非相关成本。课堂上重点介绍基本模型的建立,把模型的求解和模型的拓展通过设计实际问题交给学生去完成。教师也可以向学生布置一些开放性的、有一定难度的题目,放在课后以小组的形式完成,或者撰写小论文作为期末考核的一部分。总之,“切入”的内容应该和正常的教学环节相协调,以便于学生更好地理解和掌握专业知识。

2.3 突出重点,反映管理会计的学科特点

目前, 数学建模思想教学得到越来越多的关注。有些高校正在探索在数值分析、离散数学、程序设计、数据结构、电动与拖动和物理学等课程教学中渗透数学建模思想,并取得一定的成效。自2003年起,中国电机工程学会杯全国大学生电工数学建模竞赛已经成功举办10年,产生了一定的影响。管理会计教学中渗透数学建模思想应该注意精选教材内容,针对核心概念,不搞遍地开花,不追求自成体系,自我完善,在与教材内容结合时,要自觉当好配角。总之,将数学建模思想融入管理会计教学,对管理会计的教学改革应是锦上添花,而不是喧宾夺主。

3 管理会计教学融入数学建模思想的基本思路

3.1 培养学生实际问题数学化的能力——突出模型假设的讲解

所谓实际问题数学化就是数学模型的建立过程。数学模型的建立过程一般要经过问题分析、合理的简化假设、建立模型、求解模型和对模型解的分析、检验、修改与推广等环节。这里模型的假设很重要,有时也很复杂。管理会计课程中有许多数学模型,这些模型都是建立在一定假设基础上的,如存货控制的基本模型有“七大假设”,很多教材根本不提及,有的教材把确定性存货控制模型分解成若干种情况,直接给出结论。数学基础差的学生面对大量复杂的公式望而生畏,数学基础好的学生也只是盲目套用公式,知其然而不知其所以然,形成了基础课做题,专业课也套用公式做题的局面。在管理会计教学中,分析、强调这些假设非常重要,一是可以体验问题分析的过程,了解结论形成的前提条件,养成严谨的学习态度。二是通过对已有模型假设的分析提高自身解决问题的能力。在具体问题中,合理的假设不仅要求有一定的数学功底,比如能够捕捉经济变量之间的关系,数学符号的使用要简洁、通用等,同时也需要具备良好的专业背景,如在存货管理中,要明确哪些是决策需要考虑的相关成本,哪些是可以不考虑的非相关成本,存储费用和进货费用包括哪些内容,等等。在建立模型时,如果考虑的假设过少,特别是遗漏关键性假设,就不能建立起高质量的模型,考虑的假设过多,往往难以将实际问题转化成数学模型,有时即使能转化成功,也可能是一个复杂的难以求解的模型,从而使建模失败。所以模型假设可以直接影响所建模型的质量。

3.2 提高数学模型求解能力——加大Excel软件的使用力度

管理会计是以定量计算为主的学科,涉及大量的数学计算和数学模型,选择适当的计算工具或计算软件非常重要。与Matlab、Mathematics等专业数学软件相比,Excel是一款特别值得关注的软件。首先,操作简单。Excel软件汉化水平非常高,而Matlab、Mathematics等软件都是英文的;Matlab、Mathematics等软件需要记住一些命令和编程,而Excel软件以菜单操作为主,所见即所得,直观易操作。所以,Excel软件相比其他软件更容易挖掘其功能。其次,功能强大。Excel软件具有丰富的函数、强大的数值计算、数据分析和绘图等功能,所以特别适合于作为管理会计中的计算和模型求解工具。再次,转换成本低。Excel软件不需要专门购买和学习。目前几乎每一台电脑都安装Excel软件,作为公共基础课计算机基础的重要内容,每个学生对Excel软件都有一定的了解,而其他软件需要专门购买和从头学起。

3.3 模型结论实践化的能力——提高管理决策能力

所谓模型结论的实践化能力就是将数学模型求解得出的结论,经过整理和组织,再应用于实际问题中的能力,它是一种解决问题能力的延伸,强调“从实践中来,回到实践中去”的能力,是数学建模的高要求,这也符合高职教育和管理会计教学改革的方向。如在本量利模型中得出的结论都是基于单位变动成本和产品单价与产量或销量保持线性关系、产销平衡和品种结构稳定等假设的基础之上的,这些假设与某些企业的实际情况接近,但与多数企业的实际情况并不相同,这时就要修正假设,进一步根据实际情况建立模型,得出恰当的结论。管理实践中有时为了获得满意的数学模型,常常需要经历几次建模过程,包括由简到繁,也包括由繁到简,这符合人们认识问题的规律。教师在设计教学案例时,要注意问题的开放性,不要搞“唯一正确答案”。在这个过程中,教师要计划地培养学生的问题意识和问题解决能力,提高他们的总结归纳能力和知识迁移能力等。

主要参考文献

[1] 于学文,高淑娥. 财务管理中的数学思想[J]. 会计之友,2011(9).

[2] 李大潜. 将数学建模思想融入到数学类主干课程[J]. 中国大学数学教育,2006(1).

[3] 于学文. 基于Excel的数学模型求解[J]. 信息技术,2011(7).

[4] 谢亮,等. 数学建模的专业教学实践与认识 [J]. 黑龙江高教研究,2004(12).

[5] 乐艳芬. 管理会计[M]. 第3版. 上海: 上海财经大学出版社,2012.

[6] 吴大军. 管理会计[M]. 第2版. 大连: 东北财经大学出版社,2010.

第9篇:数学建模基本知识范文

关键词:高中数学;学习障碍;高中生

高中数学思维能力是指对高中数学感性认知的能力,突破数学学习障碍是要求学生充分理解并掌握基本知识,根据具体的数学问题进行推论和判断,从而实现解答数学问题、升华数学知识规律的认知。高中数学突破学习障碍可以给我们提供广阔的四维空间,对具体的数学问题可以延伸出多种思维方式,提高数学学习的针对性和实效性。

一、突破高中数学学习障碍重要性

首先,突破高中数学学习障碍有助于高中生树立良好的数学思维,同时帮助高中生增强其发现问题、提出问题和解决问题的能力,突破高中数学学习障碍是学生学习素养的标志,其扩展了学生思维,帮助我们更好驾驭数学问题,并强化自我的解题能力和数学推理能力。再者,突破高中数学学习障碍可以提高高中生数学应用能力,更好的把数学知识和实际问题结合在一起,数学问题解决能力可以强化学生的数学学习,并有助于其形成全面科学的数学知识框架,同时巩固了高中生对数学基础知识的认识,促使高中生用数学的眼光看待世界。最后突破学习障碍可以提高学生的数学学习信心,并激发其数学学习的兴趣,体会到成功解决数学问题的乐趣,同时初步培养学生的创新思维和能力。

二、高中生数学学习障碍产生的原因

(一)基础知识不牢固。基础知识是数学问题解决的关键,只有把基础的数学知识全部融会贯通之后,才能熟练的解答数学问题,但是部分高中生的基础知识学习不扎实,对新学的知识缺乏深刻的理解,从而不能灵活的运用数学基础知识,一旦遇到较为复杂的数学问题,就会分不清各种概念之间的关系,从而造成了数学问题解决障碍。例如在函数问题的学习上,要求我们掌握函数公式,并对函数区间有明确的界定,但是很多同学对基础知识掌握不足,各种基础概念和转化关系不明确,从而形成了学习障碍。

(二)数学问题背景的存在。数学问题是一个系统性的问题,其中涉及的关系变量较多,对一定语境下的数学问题,通常会蕴藏着相应的问题背景条件,如果不能准确发现其中的蕴含条件,就会感觉数学问题的给定信息不足,从而造成数学问题解决障碍。数学问题来源于现实生活,其题目语境也受到社会、经济、生活、物理、化学等方面的影响,如果缺乏相应的生活常识,很难抓住数学问题隐含的条件,从而对数学问题感觉到无从下手。

(三)数学思想方法的缺失。数学问题的解决需要建立数学模型,并对数学模型进行简化,再进行相应数据的解答,但是部分高中生的数学解决思想缺失,对抽象化的数学模型理解不深刻,从而造成数学模型的混淆,同时也不能有效对数学模型进行简化,从而影响了数学问题解决。例如在数学思路的建立中,学生不能灵活运用简化、归纳、一般化、特殊化等数学处理,就会阻碍解题思路的扩展。

三、数学问题解决障碍的解决方法

(一)加强数学基础知识教学。数学基础知识是正确解题的“钥匙”,因此我们在学习中要强化数学基础知识教学,例如要熟练掌握数学概念、性质、定理、公式、公理等,培养学生基础知识串联的能力,帮助学生建立基础知识条件反射。同时要设置相应的数学问题来强化其数学基础知识,只有进行大量的重复性训练才能加强高中生对基础的理解和记忆,并帮助其灵活的应用基础知识。

(二)加强数学建模能力培养。数学建模是解决数学问题的工具,数学建模能力是衡量学生数学学习的标志之一。数学建模要求学生把实际数学问题进行归纳,并构建出相应的数学建模模型,然后再进行数学问题的解答,因此,在加强数学建模能力的培养时,要重视建模方法的基础教学,突出建模方法的具体步骤,同时要注重研究建模的应用范围,利用给定条件对数学建模进行相应的归纳简化。再者要在实际数学问题的背景下应用数学建模,强化对建模方法的理解和应用。

(三)克服数学思维定势。数学思维定势是数学问题解决障碍的原因之一,因此在学习中我们要勇于突破思维定时,对数学问题进行反思,准确寻找到解题错误的原因,并突破解题思维定势,树立正确的解题思维。此外,要通过举一反三的解题方式来锻炼高中生的思维灵活性,培养自我的逆向思维方式,巧妙利用反证法、逆命题、公式逆用的数学思维,培养自己的数学思维能力。

结语:总而言之,高中数学学习是整个高中阶段的关键,良好的数学思维能力有助于我们提高数学学习效率,当前在学习过程中很多同学都会陷入到数学障碍中,从而影响了学习成绩提升。因此,我们应当重视数学基础的夯实,培养适合自己的学习方法,克服数学思维定势,突破高中数学学习障碍。

参考文献: