公务员期刊网 精选范文 功能高分子材料的概念范文

功能高分子材料的概念精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的功能高分子材料的概念主题范文,仅供参考,欢迎阅读并收藏。

功能高分子材料的概念

第1篇:功能高分子材料的概念范文

关键词 高分子材料 现状 可持续发展

中图分类号:TQ317 文献标识码:A

1高分子材料的相关概念

1.1高分子材料的基本概念及来源

高分子材料(macromolecular material),以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料。按来源可分为分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等

1.2高分子材料的分类

高分子材料按照特性分为橡胶、纤维、塑料、胶粘剂、涂料和高分子基复合材料等,其中前三种被称为高分子的三大材料。

橡胶是一类线型柔性高分子聚合物。其分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。

2高分子材料科学的发展进程

2.1高分子材料科学的发展历史

高分子学科的建立,至今不到80年。从远古时期开始,人类就已经学会使用天然高分子材料,比如天然的树脂、橡胶、棉花、木材等。

20世纪20年代,才出现高分子科学的概念。到了20世纪30年代,高分子材料工业才步入发展阶段,而到了20世纪50年代配位聚合的出现极大地推动了高分子材料的发展。进入20世纪下半叶,高分子取得了一系列突破性的进展,比如聚烯烃的多元聚合,设计合成嵌段,超支化等聚合物等。

2.2高分子材料科学的发展现状

进入21世纪,单单从一个大方向来描述高分子材料的发展现状是不可取的也是不全面的,所以将简单分为几个领域分别介绍目前的发展现状。

在电气工业领域,高分子材料也有杰出的表现。随着时代的发展,高分子材料在电子、家电和通信领域。我国电气生产大国,全行业对高分子材料需求量较大用量。高分子材料轻质、绝缘、耐腐蚀、表面质量高和易于成型加工的特点正是生产各种家用电器的最佳材料,而家用电器是人们的必须生活用品,所以高分子材料在电气工业的发展是会一直进行下去的。

在机械制造领域更加少不了高分子材料。比如,目前世界不少轿车的塑料用量已经超过 120千克/辆,德国高级轿车用量已经达到300 千克/辆。可见在汽车制造方面,高分子的发展还是比较成熟,系统的。并且可以预见,随着汽车轻量化进程的加速,塑料在汽车中的应用将更加广泛

高分子材料还在航空航天,建筑工程,医疗,包装行业等众多领域发展已经比较成熟,并且正在朝着一个更加规范,更加科学,更加和谐的方向稳定发展

2.3高分子材料科学的发展前景

高分子材料科学代表的是一种前沿技术,其发展趋势也必然要适应社会发展的潮流和最先进工业发展的需求。

2.3.1精细化

随着时代的发展,精细化必然成为材料的主流趋势,未来将纳米技术融入其中也是势在必行的。高分子材料的纳米化可以依赖于高分子的纳米合成,这既包括分子层次上的化学方法,也包括分子以上层次的物理方法。利用外场包括电场、磁场、力场等的作用,采用自组装或自合成等方法,靠分子间的相互作用,构建具有特殊结构形态的分子聚集体。

2.3.2绿色友好化

在强调可持续发展的21世纪,任何事物都在渐渐转型,高分子材料也不例外。实现绿色友好化,需要在材料的合成,生产,运用三方面全方位实现。现在的高分子合成材料对石油的依赖性特别强,寻找可以替代石油的其它资源,则成为21 世纪的高分子化学研究中的一个迫切需要解决的问题。调节原子和分子在物质中的组合配置,控制物质的微观性质、宏观性质和表面性质,就可能使某种物质满足某种使用要求,这种物质就能作为材料来使用。

2.3.3智能化

在这个智能材料的时代,高分子化学同样承担着不可替代的作用。智能材料是材料的作用和功能可随外界条件的变化而有意识的调节、修饰和修复,如若实现,也必然会对人类发展发挥巨大的作用。

3结语

本文通过比较浅层次的语言向大家介绍了高分子这门前沿科学,相信在今后的生活中,随着科技的发展,技术的进步,越来越多的人会认识高分子材料,并投入到这门与人类生活息息相关的科学研究中去。

参考文献

[1] 富彦珍,王雅珍,李青山,马立群,高分子化学实验微型化的研究与实践[J].高等工程教育研究,2004(03).

[2] 杨利庭,赵敏,高俊刚.改进实验教学培养应用性理科高分子人才[J].高等理科教育,2007(02).

[3] 何平笙,杨小震.“分子的性质“软件用于高分子科学教学实验[J].高分子通报,2000(01).

[4] 王亚男,李婷婷,徐聪.浅析目前我国高分子化工材料的发展现状[J].人力资源管理,2012(5).

第2篇:功能高分子材料的概念范文

【关键词】高分子材料 合成应用 绿色战略

绿色化学的概念从提出到现在一直备受关注,我国的化学研究工作中也逐渐重视绿色和环保的理念。尤其是在高分子材料的研究方面,人们更倾向于无毒的环保的生产过程。近来,高分子材料的绿色化学有了新的进展,高分子材料合成与应用中的绿色战略已经形成。

1 原材料本身的无毒化

在现今的高分子化学材料的研究过程中我们逐渐引进了生物降解的技术来保证高分子化学材料本身的无毒和绿色,这也是化学研究的一大热门领域。用生物来降解高分子化学材料的方式应用较为广泛,降解的高分子材料包括了天然的有机高分子材料和合成的有机高分子材料。这种技术对淀粉、海藻酸、聚氨基酸等各种高分子的研究非常实用。目前,医药领域的许多材料多采用这种绿色无毒的形式来进行生产,达到和人体的和谐相容。

2 高分子原料合成朝无毒化方向发展

高分子原料的合成也在向绿色的方向发展。在化学合成过程中,许多高分子化学材料的合成可以采用一步催化的方式来完成,转化利用率可以达到百分之一百。而且这种过程避免了使用有毒的化学催化剂,改变了传统的操作模式。例如已二酸的合成就是采用生物合成的技术,使其生产过程完全绿色化,安全可操作。传统的方法生产环氧丙烷是采用两步反应的方式,而且中间使用了氯气。这种气体带有一定的毒性会造成环境的污染。但现在,国内外已经改变了这种生产方法,采用的催化氧化的方法使原材料在制作反应的过程中完全利用,而不产生有的物质来污染环境。目前,在进行制作合成化学材料的过程中,许多都在逐步改善材料合成产生有毒废弃物的或排放物的情况,朝着绿色生态环保的方向发展。

3 合成原料的绿色化

生活物质材料中有许多都是采用高分子合成的原料制造的。尤其是医用材料,这些材料在使用的过程中必须保证无毒,而且必须是生物可降解、可以为人体的免疫系统所接受的。因此,对合成原料的要求必须是绿色的、安全的。近年来,在这方面,国内外已经取得了较多的成就。

1988年在荷兰有相关学着就在研究聚乳酸类网状弹性体材料,这种材料完全采用绿色原料合成,并且可以被生物所降解。他们用赖氨酸二异氰酸醋等扩链了由肌醇、L--丙交酯等生成的星形预聚体。LDI可以称为“绿色”的二异氰酸酯扩链剂,因为LDI扩链部分最终的降解产物是乙醇、赖氨酸等,这些降解产物都是无毒的,完全可以进行生物利用。在这一聚合物生成的过程中,不仅最终的产物是环保安全的,而且其原料肌醇是人体所需的维生素之一,乳酸、6―烃基己酸等在生物医学上颇为常见,也是一些安全的、“绿色”的物质,可以说这一过程接近于“完全绿色”。1994年strey等学者在此基础上进行进一步的研究,合成了与该绿色试剂LDI聚乳酸衍生物,用高结晶性的聚乙醇酸纤维为增强材料,制备了无毒的、可生物吸收的骨科固定复合材料。

4 催化剂的绿色化

在聚乳酸类材料研究过程中,虽然目前的高分子原材料和聚合物都实现了基本的绿色化、无毒化,但在这过程中大家可能会忽略一个因素,那就是催化剂的使用安全问题。例如聚乳酸化合物的生成过程中大多采用辛酸亚锡作为中间催化剂,加快化学反应的过程。但是这种催化剂由于含有锡盐成分可能会具有生理毒性,如果是人体吸收可能会造成中毒的情况。相比而言,用生物酶作催化剂就显得安全可靠。使用生物酶催化的瓶颈在于酶的种类有限问题,致使一些化学反应找不到相应的生物酶进行催化。在目前的高分子聚合物当中,虽然一些加聚反应的原子利用率可以达到100%,但是各种催化剂和添加剂的使用对安全情况造成的影响却不能忽视。尤其是在医用物品当中,必须对这些材料的安全性进行试验和考核。催化剂的绿色化道路的发展还值得我们进一步努力探索。

5 合成高分子材料的安全应用

人工合成的高分子材料可能会对环境存在一定的危害,对不可利用的高分子材料的垃圾处理也得考虑到绿色无毒的问题。我们必须选择正确的方法来安全使用这些高分子材料。

对于可用生物降解的高分子合成材料可以采用填埋的方式进行处理。对于不可生物降解的高分子材料废物进行分类,主要分为可回收利用的废物和不可回收利用的废物。将可回收的高分子材料分类进行整理,实现循环利用,减少资源的浪费。对于可焚烧的高分子材料可以进行焚烧处理,还可以将垃圾焚烧过程中释放的热能加以利用。

(1)对可以再生与循环使用的环境惰性高分子材料,如 PP、PE、PET、尼龙 66、PMMA、PS 等,应尽可能地再次利用,尽可能避免使用填埋方法处理环境惰性塑料垃圾。

(2)PP、PE等聚烯烃具有很高的热值,与燃料油相当,并且具有无害化燃烧特性。因此,可以将这些高分子材料燃烧产生的巨大热能转化为电能或者其他形式的能源,避免热能污染。目前,顺利实施城市生活垃圾变电能的关键是将 PVC 除开,避免与PP、PE等混杂,避免造成能源回收困难而浪费能源。

(3)对 PVC 应合理使用。PVC 的制造、加工、使用和废弃物的处理,都涉及环境问题,其中最危险的是PVC 废弃物的处理。PVC的加工过程使用的添加剂非常多,使用不当就会使材料中的有毒物质渗出,应该尽量避免其与食物和医药产品的接触。PVC废弃物处理要尽可能避免使用焚烧的方式,因为这种高分子材料在焚烧的过程中会产生毒性物质,对环境造成的伤害非常大。应尽快使 PVC退 出包装、玩具 、地膜等使用周期短的应用领域;同时,鉴于PVC具有节约天然资源、适用性广、价格低廉、难燃、血液相容性好等优点,应加强对 PVC 生产、加工、使用、废弃物处理等方面的研究。

6 结语

高分子材料合成与应用的绿色化、无毒化、安全化会是将来高分子材料化学发展的热潮,结合高分子材料特有的实用性因素来建立高分子材料绿色战略的系统,可以使高分子材料化学朝着更加全面的、长远的绿色化道路发展。

参考文献

[1] 戈明亮.高分子材料探寻绿色发展之路[J].中国化工报,2003

[2] 罗水鹏.绿色高分子材料的研究进展[J].广东化工,2012

[3] 石璞,戈明亮.高分子材料的绿色可持续发展[J].化工新型材料,2006

第3篇:功能高分子材料的概念范文

[关键词]分形 自相似 分维 高分子

分形理论与耗散结构理论、混沌理论被认为是70年代科学上的三大发现。1967年曼德布罗特(B.B.Mandelbort)在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。指出海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。实际上,具有自相似性的形态广泛存在于自然界及社会生活中,曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。并在此基础上,形成了研究分形性质及其应用的科学,也就是现在的分形理论(fractaltheory),自相似原则和迭代生成原则是分形理论的重要原则。

由于分形理论研究的特殊性,以及他在自然界应用的广泛性,目前分形理论已迅速成为描述、处理自然界和工程中非平衡和非线性作用后的不规则图形的强有力工具。自分形理论发展以来,国内外对分形理论在各方面的应用进行了大量的理论和实践,材料学中也一样,分型理论目前已渗透到了材料学的各个领域,尤其是高分子材料,下面就分形理论在高分子材料学中的应用做一浅议。

一、分形维数的测定方法

根据研究对象的不同,大致可以分为以下五类:改变观测尺度求维数;根据观测度关系求维数;根据相关函数求维数;根据分布函数求维数;根据频谱求维数,分形在材料科学中应用时,一般应用的测定分维方法是:盒维数法、码尺法和小岛法。

二、分形理论在高分子结构中的研究

(一)高分子链结构中的分形

由于高分子尺寸随链结构象而不断变化,对这类问题的处理属于统计数学中的“无规飞行”。但若从分形的角度来看,则高分子具有明显的分形特征并可以跟踪监测。对高分子中普遍存在的自回避行走也是如此,只是表现出不同的分形行为。又因为这类问题与临界现象很相似,故我们亦能采用重整化群等有力工具。并且分数维的另一独特功能是可灵敏地反映单个高分子的单个构象[4]。

(二)高分子溶液中的分形

由于高分子溶液中的大分子链使得其和普通液体在很多方面存在差异性,如普通液体所不具备的流变行为、应力传输等。在实际研究中。分形结构主要存在于高分子溶液中的凝胶化反应中,高分子溶液的凝胶化反应主要是指聚合物的凝胶化过程,是一种临界现象,是介于晶态与非晶态之间的一种半凝聚态,这个过程中高分子链之间会形成的网络结构,该结构是一类形状无规、无序且不规整的错综复杂的体系。但该体系是可以用分形的方法研究的凝胶化反应,在亚微观水平上存在自相似性。例如左榘等研究的苯乙烯一二乙烯的凝胶化反应。

(三)固体高分子中的分形

对于高分子材料,当固体高分子材料断裂时,不同力学性质的材料将形成不同的断面形貌,而断面形貌一般为不规则形态,是一种近似的或统计意义的分形结构,可用分形理论进行分析表征,从而根据断面的形状定量评价材料的力学性能。而微孔材料中由于分布着大量微小的孔洞,这些微孔具有不规则的微观结构,使得微孔材料无论在总体还是在局部都呈现出较复杂的形态,无法用传统的几何学理论进行描述,但可用分形几何理论对微孔形态的复杂程度作量化的表征[5]。

(四)结晶高聚物中的分形

第4篇:功能高分子材料的概念范文

关键词:保质设计;材料信息;模型研究

Abstract: Design for quality (Design For Quality, DFQ) also known as the "design for quality", is an emphasis on system design ideas and methods for quality. Design of material quality information at different stages through the analysis of products, building materials information model supporting dfq. This paper analyses the technological process design for quality and material information model, for technical exchange and reference.

Keywords: Design for quality; information; model research

中图分类号:S611 文献标识码:A文章编号:

材料信息是制造质量信息的一个重要内容,也是研究和建立统一的、实现保质设计过程中各阶段信息交换与共享的基础。质量保证设计(DFQ)是将质量保证和质量管理融入到产品设计中的一种新的设计方法,能为产品设计和工艺设计人员提供实现产品质量所需要的所有信息,包括概念设计、初步设计、详细设计、工艺设计,并将质量管理与控制融入设计中。然而,目前国内外对保质设计依然存在很多问题,例如关于材料信息建模及利用的研究对制造过程的信息掌握不够;在设计时对制造过程的质量控制实际能力考虑不充分;大多数研究没有考虑到信息表示从面向设计者的信息模型到面向计算机内部存储的物理数据库转化,以及对材料信息与CAD/CAPP/PDM/ERP等集成研究也不充分等等。材料信息可有效支持保质设计决策,给设计人员提供有关质量控制的实际状况与能力方面的相关质量信息,从而避免设计与制造脱节问题的发生,更好的帮助设计人员根据质量控制的实际状况与能力设计产品的质量指标,设计出更多既实用又高质量的产品。

1. 关于保质设计中有关材料信息需求分析

产品设计在产品整个生命周期内占有越来越重要的位置。“质量”首先是设计出来的,产品设计阶段是质量保证的首要环节,是质量保证实施的源头。质量保证应从传统的生产过程质量控制向产品设计、开发质量控制转变,从制造过程控制向前推进到设计过程控制,基于保质设计的材料信息需求模型如图1所示,它可划分为功能设计、概念设计、详细设计和工艺设计等4个阶段,每一设计阶段通过来自设计、工艺、供销、财务及管理等部门的人员组成DFQ小组协同工作,采用综合的、整体性的、并行的产品设计方法。概念设计是根据产品规划提出设计要求表(包括合理设计要求和设计参数)进行产品功能原理设计,形成产品工程设计说明书,概念设计从其它属性中了解设计需求、信息来源等材料信息;初步设计是概念设计的继续、详细设计的基础,主要工作是根据产品的功能,进行产品总体方案的设计和确定。这一阶段既要确定产品的总体结构,又要确定产品零部件的结构和各零部件之间的连接方式,初步设计从材料类型中了解满足设计要求的材料种类;详细设计是对初步设计阶段完成的产品结构方案进行细化工作。在这一阶段,主要完成产品结构总图的设计、零部件图的设计、零件可加工性检查、零件可装配性检查等,详细设计根据材料性能属性作出选材决策;工艺设计是根据产品零部件图进行产品工艺文件的编制、工装夹具的设计,最后,制定相应的产品标准。工艺设计需要从制造属性和基本属性中了解被选材料的实际质量情况。优化是保质设计思想的具体体现。因为只有对设计过程的每一阶段的设计结果进行评价和优化,才能早期发现问题,早期解决,避免前期的设计错误造成后期的重新设计,保证整个设计过程最优化,提高设计效率和设计质量。

2.关于保质设计的材料信息模型分析

根据设计各阶段对材料信息的需求,用来描述材料信息的属性有基本属性、性能属性、材料类型、制造属性及其它属性等。基本属性表明了材料管理方面信息;性能属性表明材料物理和化学性能方面信息;材料类型属性表明了材料主要有金属材料、无机非金属、有机高分子材料、复合材料等种类,每种材料又可进一步细分,比如有机高分子材料可分为功能高分子材料、合成橡胶、纤维和塑料;制造属性表明了材料在制造过程中可切削性、变形程度、可成型性等方面信息;在其它属性中添加了方便产品设计和工艺人员来获取材料信息的设计需求、信息来源、存在形式、存储格式等。设计需求信息表明在某一设计阶段对材料信息是否有需求。信息来源主要包括企业内部信息源和外部信息源,企业内部信息源有产品设计团队、生产制造、质量检验管理、设备维修管理、人力资源等;企业外部信息源则包括供应厂商、外协加工厂等。存在形式主要有以文档、图表、各类信息系统、专业技术人员知识等形式存在。存储格式针对不同信息存在形式会有所不同,如文档形式存在

的信息有Office、XML、STEP等格式;图表信息有CAD、VRML等格式;各类

信息系统如CAD/CAPP/CAM/PDM/PLM/ERP/MRPⅡ/MIS等中的信息大多以关系数据库格式储存;技术人员知识则是以隐性方式存储在专家头脑里,属于企业无形资产。基于此建立了支持保质设计的材料信息模型如图2所示。面向质量设计环境下,初步设计、详细设计和工艺设计都需要材料信息的支持,初步设计从材料类型中了解满足设计要求的材料种类;详细设计根据材料性能属性作出选材决策;工艺设计需要从制造属性和基本属性中了解被选材料的实际质量情况。

3. 关于STEP材料质量信息模型分析

产品数据交换标准(StandardforTheExchangeofProductmodeldata,STEP)是一个关于产品信息表达与交换的国际标准,目标是提供整个产品生命周期内的产品信息描述和交换的中性机制,使产品数据能够在异构计算机系统之间进行共享与交换,从而满足产品生命周期内各阶段对产品信息的不同需求及保证对产品信息理解的一致性。支持保质设计的制造质量信息系统采用STEP的信息建模工具EXPRESS-G来描述基于STEP材料信息模型。它可以支持应用系统共享模型信息,并通过STEP中性文件方式实现与非STEP模型应用系统的数据交换,实现保质设计的材料信息表示从面向设计者的信息模型到面向计算机内部存储的物理数据库转化。材料类是金属材料类、无机非金属类、复合材料类和有机高分子类的父类,材料类的属性描述材料基本管理信息、制造属性信息及为方便设计和工艺人员管理而添加的信息,它被金属材料类、无机非金属类、复合材料类和有机高分子类继承。金属材料类是钢铁类、铝和铝合金类、钛类、形状记忆合金类、非晶态合金类、超导材料类和半导体材料类的父类;无机非金属类是陶瓷类、玻璃类、耐火材料类、水泥类、发光材料类和无机合成高分子类的父类;复合材料类是纤维复合材料类、其它类型复合材料类的父类,而玻璃钢类、硼纤维类和碳纤维类是纤维复合材料类的子类,层叠复合材料类和细粒复合材料类是其它类型复合材料类的子类;有机高分子类是塑料类、纤维类、合成橡胶类和功能高分子材料类的父类。设计人员根据材料信息的不同需求,分别从不同抽象层次获取相关信息,从材料角度方面来确保设计质量目标在制造过程中的实现。其它面向质量设计的结构化制造质量信息也可按照此方法建立相应的STEP模型,方便其与其它应用系统的信息成。

第5篇:功能高分子材料的概念范文

关键词:快速原型技术;复合材料;成形;应用

中图分类号TU5 文献标识码A 文章编号 1674-6708(2012)66-0146-02

随着复合材料制造市场发展的多元化,快速原型技术的产生对复合材料产品的竞争、加速新型产品的开发、制造技术的提高都有很大的推动作用。它综合了数控、检测、激光、机械、计算机、CAD等许多学科的先进技术,很快在复合材料成形方面得到了广泛的应用。现如今,RP技术已经是制造业新产品开发的一项关键技术。

1 快速原型技术的概述

RP技术是基于物体分层原理来进行产品原型的制作的一种方法,RP技术的基本原理是:根据CAD/CAM技术构造出的理想物体的三维模型,将其进行分层处理,然后分析各层截片的轮廓数据,利用CAD/CAM设计软件将数据原型系统的激光装置,有选择的利用激光对物体进行切割箔材、烧结粉末、固化树脂、热熔材料等操作,这样可以使介质行成一系列薄层,再进行层层迭加使其形成我们设计的三维实体,从而完成所设计的新产品三维实体模型。

2快速原型技术(RP技术)的工艺方法

2.1熔融沉积造型工艺

这是一种将各种热熔性的丝状材料(蜡、ABS和尼龙等)加热熔化成形方法,它技术设备简单,运行费用便宜,这种工艺适用场合比较灵活,没有毒气或化学物质的危险,工艺相对于其它成型方法,比较干净、操作比较简单、且不产生多余的垃圾。可以快速成型楼空模型,原材料以线的形式提供,相对于其它成型方法易于搬运和更快速更换。但是问题在于精度相对低,难以成型结果比较复杂的零部件。在垂直方向上强度较小,成形速度也较慢,不适合构建大型零部件。这种工艺方法适合于产品设计的概念建模以及产品的功能测试。其原理图如图1:

2.2三维打印成型工艺

其工艺原理图如图2:

如图所示,左侧是一个储料容器,是材料放置在快速成型设备中的起始位置,工作平台中间有一个平整的金属平台,上面有一层层的粉末材料,它由成型机的滚筒设备铺开,由成型机打印头喷出的粘结剂进行粘接,这种工艺的成形速度快,运行成本也较低,可以使用淀粉、石膏粉等常见的材料做原材料,且废弃物较少,任意结构和形状的零件都适用。

2.3立体印刷成型工艺

其工艺原理图如图3:

它是快速原型技术中技术应用最广泛、最成熟的一种方法。它在工作过程中首先在成型机工作台上铺一层液态树脂,CAD/CAM软件控制的激光束依照截面轮廓做横、纵向上的激光扫描,使轮廓内的树脂固化,然后把工作台下降一定的位置,在涂上一层树脂,再进行扫描,如此反复进行直到整个原型成形完毕。这种工艺可以成形任何形状的三维实体,仿真性很强,成形的精度及材料的利用率都很高。

3 RP技术在复合材料中的应用

3.1复合陶瓷材料的制备

RP技术首先借助支撑材料把陶瓷制品内的可动件和主体联成一体,再经过预烧工艺除去支撑材料,然后经过烧结工艺获得陶瓷制品。虽然陶瓷制品都需要经过高温烧制工艺,但其在制胚过程中可以在常温下进行。

3.2高分子基复合材料的制备

有机高分子材料具有熔点低、密度小、其自身在熔融状态具有一定的粘性,不需要外加粘结剂的特点,所以它是非常理想的快速原型技术的材料。但是有机分子高分子材料的机械的综合性能较低,就连高密度聚乙烯的抗压强度也只有20MPa~ 40MPa。所以,一般都要掺入增强材料来组成有较高机械强度的复合材料。例如:美国用粒度3μm~6μm的玻璃纤维增强的PVC,制备出了大量的特种模具和零件,它们的精度高,抗拉强度好,且其强度是钢材的3.5倍左右。

快速原型技术在制备高分子材料时,要注意尽管增强纤维在引出工作头前已经进行过浸胶处理,即在增强纤维的表面涂抹一层熔融有机高分子材料,这样可以使新原材料间的相互粘接问题得到解决。但是由于零件的形状具有多个凹槽、空洞、凸起等结构,这就使得工作头在越过这些结构时,有些长纤维在离开原来位置时呗自动剪断,而到达新的位置时又自动与工件粘牢的问题。

3.3金属基复合材料的制备

在室温或者较低的温度条件下,高分子材料可以使工作头引出的新料和固化的旧料黏结在一起,在常温的条件下,陶瓷材料本身虽然不会出现黏结的现象,但是经过塑化后的熟料和外加有机黏结剂可以让陶瓷材料黏结成胚,但是,这些工艺都不适合制备金属材料。

金属材料的新、旧料之间的黏合比其它复合材料的要困难和复杂。制备金属和金属基复合材料制品使用快速原型技术有快速凝固的特点。作为基体材料的金属在熔融状态时是以金属流的形式从工作头引出的,这点和快速凝固工艺中的Taglor抽丝方法较为相似。例如:用碳纤维作增强芯料制备复合材料,它既能够有优良的快速凝固金属的性能,又可以制的具有综合性能的纤维增金属基复合材料。所以,使用RP技术制备金属基复合材料是非常具有可行性的。

4结论

RP技术突破了传统机械零件加工制造的材料成形的工艺,它引入了自动控制学、机械工程学、计算机、材料学等多种学科的先进制造技术,并且它在下面两个方面还有非常突出的作用,制备高分子材料基复合材料各复合陶瓷制品方面;在解决金属材料新旧料之间的黏合问题上它使用的是局部跟踪加热技术和焊接技术,对这个问题也有很大的帮助,尤其是RP技术应用在复合材料成形方面,使复合材料的发展得到了很好的前景。

参考文献

[1]胥光申.用于高精度小尺寸零件制作的光同化快速成型技术的现状与发展[J].机械科学与技术,2004,23(10):1222-1224.

[2]唐一平,周宏志,王平,等.基于快速成型技木的电火花加I用石墨电极研磨技术[J].西安交通大学学报,2000,34(11):61-64.

第6篇:功能高分子材料的概念范文

摘 要:由于眼部存在诸多给药屏障,使得许多药物对眼部疾病的防治效果欠佳。为了使药物更好地发挥药效,许多新的给药方法和技术已成为研究热点。对近年来国内外眼部给药的研究进展作一综述。

关键词:眼部给药;新剂型;新技术;药剂学

中图分类号:R988.1文献标识码:A文章编号:1673-2197(2009)03-0125-04

由于眼睛特殊的解剖学构造及生理和生物化学性质,使得外源性物质难以进入其中。这里的外源性物质也包括了用于治疗眼部疾病的药物,上述因素造成最突出的问题就是眼部给药后生物利用度低,个别药物由于鼻泪管引流会引起全身不良反应。另外,传统的滴眼剂易从眼部流出,需要多次给药,眼膏剂易引起雾视,从而导致病人顺应性差。为此,广大的药学工作者一直试图研究采用各种领域的新技术、新方法来提高眼部给药的生物利用度,改善药物疗效,增加临床用药的安全性和病人的顺应性。鉴于此,眼部给药系统的研究越来越成为人们注目的焦点,本文就其研究进展进行综述。

1 前体药物(Prodrugs)

前体药物是指将活性药物衍生化成药理惰性物质,但该惰性物质在体内经化学反应或酶反应后,能够回复到原来的母体药物,再发挥治疗作用。前体药物相比于其母体药物而言,一方面能够改善其母体药物的膜渗透能力、溶解度和稳定性等物理化学性质;另一方面,还可以减轻快速代谢,掩盖不良气味,易于开发成制剂等。SHIRASOKI[1]等报道了多种药物通过采用了前体药物的方法,改善了药物的角膜透过能力。更昔洛韦的二肽单酯前体药物相比于其母体药物有着更好的角膜透过性和生物利用度[2]。阿昔洛韦也被作为模型药物用于前体药物的研究。与更昔洛韦相似,也是采用氨基酸或者肽类来修饰母体药物的,在改善了母体药物水溶性的同时,也降低了其毒性,并且增加了药物在体内的活性[3]。

软药(Soft drugs)是前体药物殊的一类,它被设计成易代谢失活,在完成治疗作用后,按预先规定的代谢途径和可以控制的速率分解、失活并迅速排出体外,从而避免药物的蓄积毒性。可见,其最主要的特点是在发挥出最大的治疗效果的同时,产生最小的副作用。软药研究的热点主要集中在治疗眼部炎症的甾体类抗炎药和治疗青光眼的β-受体阻断剂的开发[4]。

2 凝胶(Hydrogel)

2.1 生物粘附性凝胶

生物粘附性凝胶一般以具有生物粘附性的高分子材料为载体,增加药物制剂的粘度,延长药物在眼部的滞留时间,从而提高药物的生物利用度。常用的高分子材料有:丙纤维素(HPC)、聚丙烯酸类(PAA)、聚乙烯醇(PVA)、高分子量PEG、羟丙甲纤维素(HPMC)、聚半乳糖醛酸(PLA)、木质葡萄糖(xyloglucan)、葡萄糖(Dextrans)等。张宁等[5]采用羟丙甲纤维素(HPMC)制备氟啶酸眼用凝胶。HPMC的加入,增加了制剂的粘度。滴入眼部后,与角膜前的粘糖蛋白结合,延长了药物在眼部的滞留时间。高分子材料的加入,虽然能够增大制剂的粘度,但是由于粘度的增大,可能引起眼部的不适,并且容易导致剂量不易控制。

2.2 即型凝胶

即型凝胶的概念是在20世纪80年代提出的。制剂以滴入的形式滴入眼穹窿,在眼部的生理条件下,经相转变形成粘弹性胶体。眼部滞留时间的增加是最显著的特点。根据在眼表面发生相转变的机理的不同,即型凝胶可分为温度敏感型、pH敏感型、离子敏感型。

2.3 温度敏感型

温度敏感型凝胶的机理为由于高分子材料中氢键或疏水作用,在温度改变的条件下,导致聚合物的物理状态发生改变。温度敏感型凝胶在冷藏或室温下为溶液状态,当温度升到33~37℃时即形成凝胶。常用的高分子材料有:Poloxamer、羟乙基纤维素、木聚糖等。其中Poloxamer是最常用的高分子材料,常被单独使用[6]或联合其它高分子材料一并使用[7,8],形成混合型的即型凝胶。

2.4 pH敏感型

pH敏感型凝胶在pH<5时不能形成凝胶,当与泪液(pH7.2~7.4)接触几秒内即形成凝胶。这类常用的载体高分子材料有:卡波姆(Carbopol)、聚卡波菲(Polycarbophil)、聚丙烯酸树脂类(Eudragit)和PVP。卡波姆是此类中的代表,由于其分子结构中存在大量的羧基集团,在水中溶胀可以形成低粘度溶液,在碱性条件下,羧基离子化后分子链膨胀伸展形成凝胶。

2.5 离子敏感型

离子敏感型凝胶是由高分子材料与泪液中的电解质作用后,发生相转变而形成凝胶。

所用载体有gellan胶和海藻酸等。gellan胶是较理想的眼用材料,它在水溶液当中形成阴离子多糖,在与泪液中的一价、二价的阳离子结合后粘度变大形成凝胶,从而长时间维持药效。

3 微乳(Microemulsion)

微乳是粒径在10~1000nm之间热稳定的乳剂。微乳具有热稳定性好、粒径小、光透过性好、生产费用低、易制备等特点。为此,将微乳作为眼部给药载体的研究引起了人们的广泛关注。制备微乳时,选择合适的表面活性剂/助表面活性剂不仅可以增加微乳的稳定性,还可以改善难溶性药物的溶解度[9]。微乳除了可以改善难溶性药物的溶解度外,还可以增加药物的角膜透过率。A HASSE等[10]以肉豆蔻异丙酯为油相,卵磷脂为乳化剂,丙二醇和PEG-200为助乳化剂制备匹鲁卡品的微乳,采用家兔进行临床前的安全性评价。研究结果表明:该制剂对家兔眼组织无刺激,并且显示出缓慢释药特性。另一种以盐酸匹鲁卡品为模型药物的微乳,通过改变组分中水的含量可以改变微乳制剂的流变学性质,从而增加了药物在眼部的滞留时间,提高了生物利用度[11]。

4 脂质体(Liposomes)

脂质体是由磷脂双分子层构成,类似于生物膜,易于生物融合,可以促进药物对角膜的穿透。脂质体的粒径、表面所带电荷、制备方法以及制备脂质体时所用的类脂成分是影响其性质的关键因素。脂质体有小单室脂质体(SUV)、多室脂质体(MLV)和大单室脂质体(LUV)3种类型。脂质体作为眼部给药载体的研究主要集中在增加角膜透过率上。Y SHENAND等[12]比较了更昔洛韦脂质体与更昔洛韦滴眼液对兔角膜的穿透能力和眼内的组织分布。结果表明:更昔洛韦脂质体的角膜透过能力是更昔洛韦滴眼液的3.9倍,药时曲线下面积(AUC)则为更昔洛韦滴眼液的7倍。环丙沙星制备成多室脂质体(MLV)后,在眼部不易被泪液冲刷而造成药物流失,并且其药物释放特性取决于所用的类脂的种类[13]。

5 纳米混悬体(Nanosuspensions)

纳米混悬体是将水溶性不好的药物分散到合适的分散介质当中,以表面活性剂为稳定剂而形成的胶粒系统。纳米混悬体常采用高分子聚合物作为载体来增加药物的溶解度和生物利用度。文献[14]报道将氢化可的松、泼尼松龙和地塞米松3种甾体类抗炎药制备成纳米混悬体后,体内研究结果表明显著增加了它们在眼部的吸收。将药物制备成纳米混悬体后,也可以增加制剂的稳定性。R PIGNATELLO等[15]以EUDRAGIT RS100 和RL100为载体制备氯克罗孟(Cloricromene)的纳米混悬体,一方面改善了药物的生物利

用度;另一方面也增加了制剂的稳定性。

6 纳米粒(Nanoparticles)

纳米粒是将药物包封于载体材料中形成的固状胶态粒子,粒径通常在1μm以下。常用的包封材料有生物降解或非生物降解高分子材料、脂类、磷脂和金属。纳米粒在眼用制剂当中的研究主要集中在提高药物的生物利用度和缓控性能上。R CAVALLI等[16]采用妥布霉素为模型药物,制备了眼用固体脂质纳米粒。体内研究结果表明:与普通滴眼液相比,眼用固体脂质纳米粒持续释放药物长达6h,Cmax增加了3.5倍,药时曲线下面积(AUC)为普通制剂的4倍。S K MOTWANI等人[17]评价了以壳聚糖和海藻酸钠为载体制备的加替沙星眼用膜粘附纳米粒的体外释放特性。加替沙星在最初的1h内释药量较大,但在随后的24h内持续释药。

7 类脂质体(Niosomes)

类脂质体是由非离子表面活性剂制备的具有双层结构的囊泡,与脂质体有着很大的相似性,所以被称为类脂质体。水溶性药物和脂溶性药物都可以被其包封。Abdelbary等[18]研究了类脂质体包封的庆大霉素眼用制剂,采用不同的表面活性剂(吐温-60、吐温-80、苄泽-35)制备类脂质体。体外释放试验结果表明:经类脂质体包囊过后的庆大霉素与普通滴眼剂相比其释药速度更加缓慢;另外,眼部刺激试验的结果显示,类脂质体包封的庆大霉素眼用制剂家兔眼部组织无明显刺激。

8 树状体(Dendrimers)

根据Sahoo等的定义:树状体是一种在中心周围有一系列树状分支形成的大分子化合物。它们具有纳米级粒径,易于制备,表面含有多种基团的特性,使得它们更加适合作为眼部给药的载体[19-21]。树状体表面具有多种基团,如:氨基、羧基和羟基。由聚酰胺基构成的树状体被广泛用于药物传递系统的研究,亲水性药物和亲脂性药物都可以被其包裹[22]。树状体表面功能基团、分子量和分子大小的选择是考虑将其作为药物载体的重要参数。

9 环糊精(Cyclodextrins)

环糊精系由淀粉经酶解环合后得到的由6~12个葡萄糖分子连接而成的环状低聚糖化合物,是制备包合物的常用材料。药物制备成环糊精包合物后,改善其水溶性的同时且不改变药物原有的分子结构和能力。地塞米松、醋酸地塞米松和匹鲁卡品经环糊精包合后制成滴眼液,表现出了比普通滴眼剂更高的生物利用度[23,24]。KIM[25]等人将人表皮生长因子包合于HP-β-环糊精后,分散于泊洛沙姆的眼用凝胶系统中。体内试验表明:药时曲线下面积(AUC)被显著增加。

10 接触眼镜(Contact lenses)

接触眼镜是20世纪70年代出现的产品,起初并非药物制剂,而是一种放在眼角膜表面用于矫正视力的薄型软性角膜镜片。现在,将其作为眼部给药的载体被广泛关注[26]。接触眼睛作为眼部给药的载体的优点主要体现在:能够控制药物释放,增加药物在眼部滞留时间,改善药物的角膜透过率,提高生物利用度等。KIMAND等[27]以聚羟基乙基甲基丙烯酸为载体制备了地塞米松、醋酸地塞米松、地塞米松磷酸钠各自的含药接触眼镜,结果表明:相比于普通滴眼剂生物利用度更高,并且达到控释效果。

11 植入制剂(Implants)

最先上市的眼部植入制剂是美国ALZA公司的Pilocarpine Ocusert,它是一种控释眼用制剂,可以定时定量的释放药物,从而达到使降低眼内压效果延长的目的。眼用植入制剂根据所用高分子材料的不同,可以分为生物降解型和非生物降解型。生物降解型在释放完药物后,载体材料可被人体代谢而无需将空植入制剂取出;非生物降解型恒速释药后,最后要取出空植入制剂。由于植入制剂在眼部停留的时间较长,有的长达数年,所以对其无菌要求非常严格;同时为了避免眼部排斥,应尽量采用无毒的可生物降解高分子材料。

12 结语

能够制备出高效、方便的眼用制剂是每位药学工作者共同的愿望。但是,真正上市的眼用新剂型品种很少,大多数新方法和新技术都只停留在试验阶段,要实现商品化还有许多亟待解决的问题:药物载体的眼毒性,载药量小,药物释放控制困难,眼后段给药剂量难以控制等。因此,开发更有效的眼部给药方式和新剂型还需进一步努力。

参考文献:

[1] Y. SHIRASAKI. Molecular design for enhancement of ocular penetration [J]. Pharm. Sci,2008(97):2462-2496.

[2] S. GUNDA, S.HARIHARAN, A. K. MITRA. Corneal absorption and anterior chamber pharmacokinetics of dipeptide monoester prodrugs of ganciclovir (GCV): in vivo comparative evaluation of these prodrugs with Val-GCV and GCV in rabbits [J]. Ocul. Pharmacol Ther,2006(22):465-476.

[3] B. S. ANAND, J. M. HILL, S. DEY,et al. In vivo antiviral efficacy of a dipeptide acyclovir prodrug, valval-acyclovir, against HSV-1 epithelial and stromal keratitis in the rabbit eye model [J]. Invest. Ophthalmol. Vis. Sci,2003(44):2529-2534.

[4] NICHOLAS BODOR, PETER BUCHWALD. Ophthalmic Drug Design Based on the Metabolic Activity of the Eye: Soft Drugs and Chemical Delivery Systems [J].AAPS,2005(7):820-833.

[5] 张宁,钟华玉,唐瑞嫦.氟啶酸眼用缓释凝胶的制备及释药研究[J].广东药学,2005,15(4):28-30.

[6] A. H. El-KAMEL. In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate[J]. Int. J. Pharm,2002,2(1):47-55.

[7] VELPANDIAN. Sustained ocular drug delivery from a temperature and pH triggered novel in situ gel system[J]. Drug Deliv,2007(14):507-515.

[8] W. D. MA, H. XU, C. WANG, S. F. NIE, et al. Pan. Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system[J]. Int. J. Pharm,2008(350):247-256.

[9] T. F. VANDAMME. Microemulsions as ocular drug delivery systems: recent developments and future challenges[J]. Prog. Retin. Eye Res,2002(21):15-34.

[10] A. HASSE, S. KEIPERT. Development and characterization ofmicroemulsions for ocular application[J].Pharm. Biopharm,1997(43):179-183.

[11] J. CHAN, G. M. MAGHRABY, J. P. CRAIG,et al. Phase transition water-in-oil microemulsions as ocular drug delivery systems: in vitro and in vivo evaluation[J].Pharm,2007(328):65-71.

[12] Y. SHENAND, J. TU.Preparation andocular pharmacokinetics of ganciclovir liposomes[J]. AAPS,2007(9):371-377.

[13] L. BUDAI, M. HAJDU, M. BUDAI,et al. Gelsand liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations[J].Pharm,2007,34(3):34-40.

[14] M. A.KASSEM, A.A. ABDEL RAHMAN, M. M.Ghorab.Nanosuspensionas an ophthalmic delivery system for certain glucocorticoid drugs[J]. Pharm,2002(340):126-133.

[15] R. PIGNATELLO, N. RICUPERO,C. BUCOLO,et al. Preparation and characterization of eudragit retard nanosuspensions for the ocular delivery of cloricromene[J].AAPS PharmSciTech,2006(7):27.

[16] R. CAVALLI, M. R. GASCO, P. CHETONI,et al. Solid lipid nanoparticles (SLN) as ocular deliverysystem for tobramycin[J].Pharm,2002(38):241-245.

[17] S.K MOTWANI,S. CHOPRA, S. TALEGAONKAR. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery:formulation, optimisation and in vitro characterisation[J]. Eur. J.Pharm. Biopharm,2008(68):513-525.

[18] GHADA ABDELBARY,NASHWA El-gendy.Niosome-Encapsulated Gentamicin for Ophthalmic Controlled Delivery[J].AAPS PharmSciTech,2008,9(3):740-747.

[19] A. QUINTANA, E. RACZKA, L. PIEHLER,et al. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor[J]. Pharm. Res,2002(19):1310-1316.

[20] H. R. IHRE, O. L.PADILLADE JESUS, F. C. SZOKA JR, et al. Polyester dendritic systems for drug delivery applications: design, synthesis, and characterization[J]. Bioconjug. Chem,2002(13):443-452.

[21] S. K. SAHOO, F. DILNAWAZ, S. KRISHNAKUMAR. Nanotechnologyin ocular drug delivery[J]. Drug Discov Today,2008(13):144-151.

[22] O. M. MILHEM, C. MYLES, N. B. MCKEOWN,et al. Polyamidoamine starburst dendrimers as solubility enhancers[J]. Int. J. Pharm,2000,19(7):239-241.

[23] K.A. FREEDMAN, J. W. KLEIN, C. E. CROSSON. Beta-cyclodextrins enhance bioavailability of pilocarpine[J]. Curr. Eye Res,1993(12):641-647.

[24] A.USAYAPANT,A. H. KARARA, M. M. NARURKAR. Effect of 2-hydroxypropyl-beta-cyclodextrin on the ocular absorptionof dexamethasone and dexamethasone acetate[J]. Pharm. Res,1991(8):1495-1499.

[25] E.Y.KIM,Z.G.GAO,J.S.PARK,et al. rhEGF/HP-beta-CDcomplexinpoloxamergelforophthalmicdelivery[J].Int. J.Pharm,2002(233):159-167.

第7篇:功能高分子材料的概念范文

高分子物理主要是讨论高分子的结构与性能间关系的科学,它涉及高分子的结构、分子运动、性能三大方面其中,分子运动是纽带,承前启后的将高分子物理课程串接成一条主线。本教学所采用的金日光主编的高分子物理,结构安排合理,内容清晰。前四章主要讲述高分子的结构,第五章讲述高分子的分子运动,第六章之后开始分别讲述高分子的性质。内容安排极其合理,有效地通过分子运动将高分子的结构与性能之间的关系清晰的表达出来如结构包含高分子链结构、聚集态结构、高分子溶液,性能包括高分子的粘弹性、力学性能、电学性能,分子运动则包含高分子的三种状态及各种松弛转变。温度、时间等作为松弛转变的外部条件分别对应着高分子的热转变和力学松弛。这就使得在授课过程中,沿着一条主线,把高分子物理清晰的展示给同学们,使得学生在理解过程中能够清晰准确的掌握本课程,提高教学效率。

2使用板书与多媒体相结合的授课方式

随着多媒体技术的发展,高分子物理的教学也越来越多的采用了多媒体教学。高分子物理课件将构型与构象的区别、高分子的分子运动方式、高分子材料的高弹性和粘弹性、聚合物的强度与破坏等教学内容制作成动画或视频教材,吸引学生的注意力和兴趣,使教学中的重点与难点迎刃而解。可以说,随着智能手机的普及,很多学生开始把一些教师的讲课视频,上传到网络上,然后通过智能手机,实现随时听课,这些新的通讯技术和信息传播媒介,提高了学生学习的灵活性,增加了课堂的知识量,丰富了教学内容。但是完全的课件教学也会存在一些弊端,会使得学生失去了思考的主动性,教学过程快,学生理解吃力。因此,高分子物理课程应采用多媒体课件教学为主、板书为辅的方式进行教学,在使用板书的过程中,学生和教师之间可以进行深入的沟通,教师答疑解惑,提高授课的实际效率。

3讲授与答疑相结合,激发学生的积极性

能否唤起学生对课程内容的兴趣是能否获得良好的教学效果的重要参考之一。不论老师讲授多么精彩,多么清晰,如果学生没有真正参与进来,最多只能算是老师的精彩表演课。高分子物理课程的学习,就其自身而然,是比较空洞并且复杂的一门课程,所以教师应该有针对性的提高授课的灵活性,打开学生们的思路,用丰富多彩的授课模式,提高学生学习的热情和积极性。相关专业的一些讨论活动、学术交流、科学知识普及等,都可以融入课程的教学中去。对于复杂的问题,教师最需要做的,就是启发学生思考,使学生的注意力集中到对基本概念的学习上,产生强烈的求知欲。例如在讲授聚合物高弹性能时,学生对这个概念并不十分感兴趣。本人首先请学生们思考这样一个问题,同学们在高分子化学课程里面就会经常听到顺丁橡胶,是一种常见的橡胶制品。有同学听说过反丁橡胶吗?每次问到这里,教室里就会一片安静,学生肯定会觉得可纳闷并陷入思索,教师引导学生比较反式聚丁二烯和顺式聚丁二烯的分子结构特征,就很容易明白反式聚丁二烯不能用作橡胶的原因。为此,在高分子物理教学中,以采用启发、互动的方式引起学生的兴趣。即使学生的回答不够准确,也要发现其中正确的部分,并给予肯定,使学生获得成功的感觉,从而提高上课的兴趣。

4引入科研内容,以科研促进教学

高分子物理学和材料科学,是比较前沿的科学技术,在当前我国的科学技术研究领域,例如,在一些技术型企业的科研过程中,其相关专业人才和实验人员,可以和学校之间进行相互协调沟通,充分发挥教学、科研之间的相互促进作用。学生在学校学习期间,接触的理论知识偏多,而缺乏实际的动手实践能力,这两种学科是实践性很强的学科,需要学生掌握大量的实验技巧,而企业的科学研究实验室,可以为学生提供良好的实习场所。在亲自动手参与的过程中,学生可以检验自己所学的理论知识,并在实际操作过程中,提高实验控制标准,切实增强个人的科研能力。

5鼓励学生成立学习小组,发挥学生之间相互监督、鼓励的作用

在大学校园里面,学习兴趣小组如今已经不多见,但是,由于材料学和高分子物理学等专业知识,相对难懂难学,如果没有相应的学习监督、鼓励措施,很难保证学生在课下有足够的学习时间。而通过组织一些学习兴趣小组,可以让小组成员之间相互监督,一些学习成绩较好的同学,可以向大家介绍和分享学习经验,并且帮助一些基础较差的同学,这样学习小组内部成员,相互监督,有利于共同提高。教师在布置作业后,不少同学不能及时完成,而在这方面,教师可以把检查作业这一任务,分配给学习小组组长,发挥学生的自我管理功能,这样也可以提高学生的责任意识。

6结束语

第8篇:功能高分子材料的概念范文

关键词:自由基聚合 机理 发展

1 传统自由基聚合

自由基聚合具有慢引发、快增长的特点。由于增长链自由基很活泼, 容易发生双分子偶合或歧化终止以及链转移反应, 得到无活性的聚合物,聚合产物分子量分布宽、分子量和结构不可控制, 从而影响聚合物的性能。要使聚合物的性能提高, 必须找到一种能控制聚合的技术。1956 年Szwarc 等报道了一种没有链终止和链转移的负离子聚合技术, 第一次提出了“活性聚合的概念”,实际上满足Szwarc所定义的反应体系很少[1]。同时自由基的聚合技术存在着与活性聚合相矛盾的基元反应与副反应,这也使得活性聚合的研究工作一直缓慢。

2 活性自由基聚合的发展

在高分子合成化学发展的初期, 是通过自由基引发乙烯基单体或通过小分子的缩聚得到聚合物材料的, 所得材料的应用领域也十分有限。随后出现了无规共聚技术, 使聚合物具有了一些非常有用的物理性能, 如韧性、弹性、可压缩性、高强度等。随着“活性聚合的概念”的提出,高分子化学家们开始投身于活性聚合的研究。活性聚合有三个明显区别于传统聚合反应的特征:(1)引发反应速率远远大于增长反应速率,而且不存在任何链终止和链转移反应, 因此相对分子质量分布很窄( ); (2)可通过控制单体和引发剂的投料量来控制所得聚合物的聚合度;(3)在第一单体的转化率达到100%时, 再加入其它单体, 可合成具有预定结构的嵌段共聚物。

随着活性聚合研究不断深入和发展,高分子合成化学家们自然联想到自由基聚合,活性自由基聚合能制备具有精确一级结构的聚合物聚合物的分子量可以按设计预测, 同时得到分子量分布窄的聚合物(MW/Mn < 1.3)。一些主要的主要的活性自由基聚合的方法有[3]:引发转移终止剂法、稳定自由基聚合法(SFRP)或氮氧自由基调控聚合法(NMP)、原子转移自由基(ATRP)或金属催化自由基聚合法、高分子设计通过黄原酸酯之间的交换法(MADIX)和其它方法。这些方法的共同点时通过休眠种与活性种增长链自由基之间的快速可逆平衡而实现控制。

3 原子转移自由基聚合的研究

1955,美国Carnegie-mellon大学的Matyjaszew ski 教授和中国旅美学者王锦山博士在多年进行活性聚合研究的基础上, 成功发现了原子转移自由基聚合(atom transfer radical polymerizat ion,ATRP),实现了自由基的活性(可控)聚合。该合成技术一经报道,各国从事该领域研究的科学家们都纷纷给予极高的评价,被认为是几十年来高分子合成化学界的一个重大发现[4]。

ATRP 反应是以烷基卤代烃(RX) 为引发剂,过渡金属卤化物为催化剂, 联二吡啶为配位剂,在60~ 130℃下引发乙烯基单体的聚合。该技术可合成相对分子质量高达105,相对分子质量分布为1.03~1.50的聚合物。ATRP是用RX为引发剂, 这样就可以选用不同的RX,极其方便地在聚合物材料中引入端基官能团。[5]而用大分子有机卤代烃为引发剂, 将可以直接合成一些用其他合成技术不能或难以得到的嵌段、接技聚合物和无规及梯度共聚物。尽管活性阴离子、阳离子聚合可制得许多嵌断共聚物,但只有极少数的无规共聚物由离子聚合制得。ATRP 法还可制得星型、梳型、接枝和超支化聚合物, 都有很乐观的应用前途。

原子转移自由基聚合是一个催化过程。采用过渡金属物种如Cu、Ru 等作为催化剂发生氧化还原反应,使得体系维持一个很低的自由基浓度,大大减少自由基间的终止反应。ATRP反应机理:聚合物卤化物R-Mn-X可与过渡金属化合物Mtn进行原子转移反应, 生成有引发活性的自由基R-Mn・,R-Mn・进行链增长反应,生成新的自由基R-Mn+ 1・,再和Mtn+1X反应生成相应的卤化物,而卤化物则不能和单体发生增长反应。如下:

常规的ATRP 存在两大缺陷:所用卤化物有毒、不易制得、不易保存;金属催化剂[如CuCl、RuCl2 ( PPh3 ) 、FeCl2、]等, 被利用的是其还原形态Mtn还原态金属对氧或湿气很敏感。同时ATRP并不适用于非活性单体(如氯乙烯(VC) 、醋酸乙烯酯(VA) 等) 的聚合;同时,由于采用了低氧化态的过渡金属盐作为催化剂,催化剂在空气中极易被氧化且用量较大,后处理较麻烦等缺点限制了ATRP 的广泛应用。

4 单电子转移活性自由基聚合的研究

为克服以上缺陷, 学者提出了逆向的ATRP,单电子转移活性自由基聚合等其它改性ATRP聚合方式。其中单电子转移活性自由基聚合(SET-LRP)[6]。SET-LRP 的活化过程是由非均相外层单电子转移异裂实现的,这与有机反应中亲核取代的SN1历程相类似,比ATRP活化过程的内层电子转移均裂( 与亲核取代反应的SN2历程相类似)所需的活化能要低很多。SET-LRP反应的主要特点有:反应温度低,可以在室温下进行;催化剂用量小,所得聚合产物的颜色影响小;聚合速率快能够获得超高分子量的线性聚合物;获得的聚合物具有完美的功能链端;单体、溶剂、配体等可以不用提纯直接用于聚合。

关于SET-LRP的研究,目前仅限于Cu及其衍生物,尽管SET-LRP的催化剂用量小,但残留在聚合物中的过渡金属仍将影响产物的颜色及性能,因此,需寻求更广泛的高效金属和非金属催化体系。未来的一个研究方向首先要拓宽并改进SET-LRP的催化体系; 其次,反应介质是实现SET-LRP不可或缺的条件,水和离子液体是SET-LRP的良溶剂,且对环境无污染,因此有必要在水和离子液体中研究SET-LRP。目前,关于SET-LRP的研究主要集中在丙烯酸酯等油溶性单体,而关于水溶性单体的研究还较为少见,因此利用在水介质中聚合的优点实现水溶性单体的聚合,合成多官能度的水溶性聚合物也将成为SET-LRP研究的热点。

参考文献

[1] Szwarc M , Levy M , Milkovich R. Polymeri zat ion Initiated by Electron Transfer to Monomer. A New Method of Formation of Block Polymerization[J]. J Am Chem Soc,1956

[2] 王晓松,应圣康.二十一世纪新材料合成技术―“活性”自由基聚合的发展与前景[J].合成橡胶工业,1988,21(3):129-134

[3] 李强,张丽芬,柏良久等.原子转移自由基聚合的最新研究进展[J].化学进展,2010,22(11)

[4] 袁金颖,楼旭东,潘才元.原子转移自由基聚合反应及其进展[J].化学通报,2000,3:10-15

第9篇:功能高分子材料的概念范文

关键词 可生物降解;聚膦腈;合成;研究;发展趋势

中图分类号:O631 文献标识码:A 文章编号:1671-7597(2013)11-0002-02

自新一轮的工业革命开展以来,在全球发展最快的技术,除了计算机技术以外,材料技术的发展速度也不可小觑。材料的发展和我们的生活息息相关,我们生活的每个细节都离不开材料,由此看来,材料的快速发展有利于我们生活水平、生活质量的提高。然而,近几年以来各种各样的化学物质的合成材料难降解、毒性大,给环境带了了极大的威胁,和现在和谐发展的理念是相违背的,因此可生物降解的概念被提了出来。

我们在运用的时候有多种的可生物降解高分子,并且现在在组织工程、医学工程等方面都有了长足的发展,聚膦腈是一类结构独特的高分子,具有很好的生物相容性,现在在生物方面的应用比较普遍,但是由于聚膦腈的研究成本相对比较高,且降解的速度很慢,这就阻碍了该类材料的进一步发展,而近几年以来采用与可生物降解的聚酯相结合为聚膦腈材料的发展带来了新的生机。

1 聚膦腈的简介

聚膦腈的结构十分独特,其主链是以氮磷单双键交替的,有机侧链基团的连接具有选择性,它是选择与磷原子相连接。较好的生物相容性是聚膦腈的特点之一,要想得到可以生物降解的聚合物,水解敏感的取代基是必不可少的,也是聚膦腈水解的必要条件,聚膦腈在降解后得到的降解产物一般是小分子的氨、磷酸盐和相对应的侧基,这些小分子团都是无毒的,由此可以看出水解敏感的取代基的种类可以决定聚膦腈的水解速度,因此我们就可以通过设计不同的侧链来得到各种各样的降解速度不同的材料。自二十世纪六十年代以来,聚二氯磷腈得以合成后,世界各国的科研人员在聚膦腈方面的研究就进入了一个新的时代,研究成果也是瞩目的,现在大多数的已合成的可生物降解聚膦腈在生物学上的可利用性比较的大,在此方面的发展前景也最好。现在合成可生物降解聚膦腈的方法一般是首先通过热开环聚合法,然后就进行关键的一步:取代基取代聚二氯膦腈上的氯原子,当然是易水解的取代基,但是,这种研究方法的成本一般是比较高的,这就为进行大量的实验带来了很大的困难,局限了这种降解材料的高速发展,而且聚膦腈的降解速度很慢,离我们现在对可降解材料的降解速度还有很大的差距,要克服材料在这方面的瑕疵,我们现在所采取的方法一般是与可生物降解的聚酯或聚酸酐共同混合使用,这样就会令研究成本降低,且提高了聚膦腈的降解速度,达到了双赢的目的,也可以促进聚膦腈的推广应用和研究的进行。

可生物降解聚膦腈是由一种或者多种较易水解的敏感有机基团组成其侧链,比如咪唑基、氨基酸酯基等。其被取代的形式有所不同可将其区分为两种,一种是相同的基团单一取代,另一种是不同的基团混合取代;其连接的取代基不同也可以分为两类,烃氧基取代和氨基取代聚膦腈;还可以根据其与水的相容特性不同来分类,疏水性聚膦腈(如:以氨基乙羟肟酸酯、缩酚肽酯、氨基酸酯、二肽酯等为侧链)和水溶性聚膦腈(如:侧链带有乙氧基吡咯烷酮、糖基、咪唑基、苯氧基羧基等)。

2 可生物降解聚膦腈的合成

得到可生物降解聚膦腈一般分为两步,即先将通过热解分解生成聚二氯膦腈(PDCP),然后根据侧基容易被水解的特性将其被Cl原子取代,具体化学过程如式1。

2.1 合成单一取代基聚膦腈

单一取代其侧基的合成方法应用较为广泛,类型也多种多样,形成的可生物降解聚膦腈包括烃氧基聚膦腈、氨基聚膦腈、等。将聚膦腈中空间位阻较小的亲核试剂作用于聚二氯膦腈,其摩尔比例控制在5:1左右,反应的常用溶剂为苯、四氢呋喃(THF)、二氧六环等。

2.1.1 合成烃氧基聚膦腈

醇酸酯类聚膦腈的合成由式2中的聚合物来完成合成,其将聚二氯膦腈与处在钠盐中的醇酸酯反应,又因为醇酸酯在四氢呋喃中的溶解度不够大,所以在合成的过程中需要很多的相关试剂。国外有很多研究员都针对此情况进行了分析,其中Allcock等人将反应温度定在50℃,实验结果表明这种情况下在保证避免聚膦腈主链被破坏的同时,也可以使聚二氯膦腈的Cl被取代。

在可生物降解的聚膦腈的含有羧基苯氧基的类型中包括聚二(对羧基乙基苯氧基)膦腈(PCEP)和聚二(对羧基苯氧基)膦腈(PCPP),如式3所示。

2.1.2 多官能团亲核试剂取代聚膦腈的合成

被引入到聚二氯膦腈中的基团可以含有一种或者多种官能团,当多种官能团被利用时,就要考虑它们之间的相互影响,为了防止其相连引起其相关功能的减退,必须对每个官能团进行重点保护,如式4中的甘油基取代过程,他其中包括三个羟基,其可行的方式为用丙酮或甲醛与其反应生成异丙叉甘油、甘油缩甲醛,这样可以保护住这两个羟基,再将其通过试剂化学反应与聚二氯膦腈相结合,最后可以用乙酸再进一步处理。

2.2 合成混合取代聚膦腈

在混合取代聚膦腈的过程中可以分为两种方法:可以根据一定的顺序进行逐步的取代;也可以在利用两种以上的亲核试剂进行竞争取代。第一种方法利用广泛且技术较为成熟,在实际的应用过程中也是主要的应用手段。

2.2.1 完全取代聚二氯膦腈中氯原子

在进行基团取代的过程中,因为其空间内的位置阻力无法完全完成取代,导致聚膦腈的无法合成,实际中可以通过一些位阻比较小的基团来进行Cl的取代,如甲氨基或甘氨酸乙酯等,雌激素酮等通过相应甾类羟基负离子连结到聚膦腈侧链上,没有被完全代替下来的氯原子通过与正丁胺、甘氨酸乙酯、甲胺或乙胺反应来使较为完全反应。

2.2.2 调节聚膦腈降解速度

生物降解聚膦腈降解速度从机理上来讲跟替代基团的水解敏感性有很大的关系,此性质较高的基团可改善其降解的速度,改良此化学材料的性质。咪唑基在酸和强碱中要有比其他的氨基酸基团更敏感的水解性质,甲氨基咪唑膦腈相对于甲氨基膦腈来说,在相同的条件下更容易被分解。如果在聚膦腈的侧链被替换为位阻较大的相关官能团时就会使此类物质难以被降解,例如聚丙氨酸乙酯对甲基苯氧基膦腈和聚丙氨酸乙酯联苯氧基膦腈的对比中就可以得到类似的结果。

2.2.3 功能化生物降解聚膦腈的合成

混合取代合成方法的好处就在于可以发挥多种基团的优势功能,聚合物的多功能化已经慢慢成为此类研究的大趋势,合成的聚膦腈对很多外界因素都较为敏感,如温度和PH值,在Song等人的研究成果中,就有甲氧基聚乙二醇和氨基酸酯以及甲氧基聚乙二醇和二肽乙酯为侧基的混合取代聚膦腈,它可降解性和温度敏感性都很强。

2.3 合成共聚或共混聚膦腈

无论是单一替代还是混合替代,都有自己的优势所在,将两种或多种聚合物进行混合生产或者将聚膦腈与其它可生物降解聚合物混合,都会得到较为良好的可降解材料,根据配比来控制降解的速度。

3 结束语

在可生物降解聚膦腈的研究过程中有很多方法可以实现,但是必须通过聚二氯膦腈进行合成,无论是单一还是混合合成都可以生产可降解的聚合物,侧链的合理替代安排也是此聚合物性质是否完善的关键,可生物降解聚膦腈的多功能性可以促进相关高分子材料的发展,新的科学技术会在此领域带来新的革命。

参考文献

[1]张爱迪,德润,朱香利,等.生物降解高分子材料研究应用进展[J].化工新型材料,2011,32(12).

[2]侯洪江,陈复生,程小丽.可生物降解材料降解性的研究研究进展[J].塑料科技,2009,37(3).