公务员期刊网 精选范文 工程力学与流体力学范文

工程力学与流体力学精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的工程力学与流体力学主题范文,仅供参考,欢迎阅读并收藏。

工程力学与流体力学

第1篇:工程力学与流体力学范文

[关键词]工程流体力学 教学方法 改革 工程实践

一、提炼课程核心思想、调整教学内容

近几年来,随着我国及上海市海洋战略布局和海洋经济的发展,上海海洋大学作为一所以海洋、水产和食品为特色的高校,在学科和专业建设方面取得了较大进步,《工程流体力学》作为一门专业基础理论课,其地位愈来愈显得重要。其中海洋学院、食品学院和工程学院几十年来在本科和研究生教育中,一直将《工程流体力学》和《高等流体力学》作为一门相当重要的专业基础课。特别是,工程学院的机制专业将《工程流体力学》作为该专业学生的一门必修课,随着学校的发展,这门课程必将渗透到生命学院的水产、水生物、设施渔业、水环境等专业和方向中。目前根据已定的教学计划,每学年有近650名学生学习这门课,由于各专业对其内容眼球的不同,需要结合各专业的特点,提炼课程核心思想、调整教学内容,通过不同的模块组合,确实提高学生的学习兴趣,促进教学质量的提高。

上海海洋大学《工程流体力学》任课教师根据多年的教学大纲及要求编写了“工程流体力学”教材,同时完成了配套教材的ppt电子教案,要求学生掌握流体力学的基本知识、原理和计算方法,主要包括:静平衡微分方程、流体对固壁的总压力、流体运动的描述、伯努利方程、动量(矩)方程、量纲分析、相似原理、绕流阻力等。在弄清概念,掌握理论的基础上,能够学会运用基本理论分析解决实际问题,并掌握基本的实验技能,为从事专业工作、科研和其他专业课的学习打下基础。为了便于学生的自主学习,又出版了配套教材的“工程流体力学习题解析”一书。同时根据实际工程需要,将《工程流体力学》的教学内容分为3个层次,即流体力学的基础理论、流体力学知识与进展、流体力学应用与实践, 克服了以往过分重视理论知识的介绍,轻视其应用的弊端。此外,还相继开出了流体力学独立实验课、计算流体力学等。

同时,根据不同专业的具体需求,在课程设置、教学内容上都作了许多相应的调整。例如在全校新开了“工程流体力学的应用”课程,受到了学生们的欢迎,选修这门课的学生相当多,容量达95%以上。并设计了不同的模块组合,对机械专业的学生,在已完成《工程流体力学》教材的二版修订中,在第8章中增加了明渠流动内容,增加了水波理论等内容;针对食品专业的需要,增加了气体及热力学类内容,并补充五套自测题供学生选用,确实提高了学生的学习兴趣,并促进了教学质量的提高。

二、改进教学手段,优化教学过程,加强教学互动

由流体力学团队编写的《工程流体力学》教材,于2006年由上海交通大学出版社出版,同时出版了与之配套的“工程流体力学习题解析”,为了便于教师教学,同时制作了与本教材配套的制作精美、图文并貌的CAI课件,生动地描述了流体力学的一些理论及现象,大大减轻了流体力学理论的学习难度,提高了学生学习的兴趣和效率。这些系列教材的出版,对该课程的建设和质量提升,起到了非常重要的作用。不但受到了本校学生的好评,同时还受到陕西理工大学、中国民航大学、浙江海洋学院及天津城市建设管理职业技术学院等许多学校的欢迎,这些学校对系列教材给予了充分肯定。图书发行突破2万本,出版方已无库存。

充分利用网络资源,将课堂理论教学教案、主讲教师课堂教学的部分录像进行网上共享,使用录像片、流体力学演示实验教学片、电子教材等多媒体教学手段,使学生感到难以接受的流动力学概念变得十分生动具体,加深对教材内容的理解,提高教学质量。使学生能够随时复习、预习相应的课堂教学内容。同时充分利用上海海洋大学的E-Class网络平台,进行网络实时习题、例题解答,以及课后答疑网络资源及软硬件的建设,形成师生交流的互动平台,真正提高网络教学的实用性。强调计算机在流体力学教学中的应用

在充分利用现代教学手段的同时,不能忽视传统教学方法的作用。本课程采用多媒体与板书相结合的教学模式,充分利用多媒体教学信息量大,图像清晰生动的特点, 结合传统板书讲解复杂理论推导的优点,不仅直观清晰,一目了然,而且对重点部分又能反复讲解,以达到学生基本理解并具有一定想象能力。例如在讲解研究流体运动的两种方法:质点法和空间点法时,多媒体上会出现公交车客流量观察方法的动画,使学生既易于分清这两种方法的不同,同时又强调一个相同的目的。又如在讲到流体的漩涡运动时,有龙卷风作强烈旋转运动的画面;讲到伯努利方程时,有踢任意球进球门的画面。理论教学上严谨,但是动画及多媒体生动、形象,使得学生在学习时既不感到枯燥,同时又能加强对基本理论的理解。由于学生数很多,教学上采用大班课的形式(基本上每个教学班有近100名学生),多媒体教学发挥了很大的作用。它使繁冗的公式推导成为一个简单的讲解过程,将复杂的流体运动生动形象地表现出来,同时对重点和难点反复在黑板上演示讲解。这两个方法相辅相承,取得了很好的教学效果。这种授课方式既有利于避免研究生因长时间精力高度集中而产生疲劳,又有利于他们理解并掌握复杂的流体力学基本理论。

2008年“工程流体力学”教材获上海海洋大学教学成果一等奖。作为普通高校重点教材建设项目之一,2009年被上海市教委评为优秀教材三等奖,2011年获得上海市教委重点课程建设项目(沪教委高〔2011〕48号),极大地提高了上海海洋大学来在流体力学行业的影响力。

三、完善实验教学条件,形成完整的教学实验体系

在注重理论教学的同时,加强实验教学环节,2011年3月由上海海洋大学主编的《力学基础实验指导-理论力学、材料力学、流体力学》,由同济大学出版社正式出版发行,其中的流体力学部分(第三大部分),从根本上解决了实验指导书与实验仪器不配套的问题,有效提高了流体力学实验教学质量。2009年下半年新添置了多功能流体力学实验装置、动量定理实验仪、流动图形显示仪、毕托管测速实验仪、虹吸管实验仪、势流叠加仪、空化实验仪等流体力学实验设备,新开设了大量的设计型和创新型流体力学实验,使学生、教师互动,用实验数据来验证理论,来观察抽象的流体运动;用理论知识解释一些流体现象,发现新的现象。这种教学手段提高了教学效果。同时在互动中,将有关科研上对于流体力学的一些热点问题以讨论的形式引入教学,充分地调动了学生的学习热情。通过实验验证加强感性认识:在许多重点和难点的地方,基本上有配套的实验,从实验中学习,既能培养学生从实践中发现问题并进行深入分析的思维习惯,激发他们的学习热情,同时也是加强印象、加深理解、克服难点的手段之一。

针对个别专业的特殊需要,开设了流体力学独立实验课。实际的流体运动非常复杂,因此通过流体力学实验是揭示流体运动规律的一种重要手段,为了帮助学生加深对所学理论的理解,更好的用所学理论解决生产实际中的问题,经过多方筹建,2009年我校海洋环境专业开设流体力学独立实验课,共16学时,实验内容主要包括:能量方程实验、雷诺实验、动量定律实验、沿程水头损失实验、局部水头损失实验、毕托管测速实验、管道测流量实验、流动显示实验、虹吸实验及势流叠加实验等;针对食品专业的需要,开设了气体及热力学类实验。

四、实现教学和科研的互动

在任课教师积极参加各类相关的学习与培训的同时,强化任课教师的科研观念,以科研带动教学,以教学促进科研,进行有效的纵、横向科研联合。任课教师积极参与各类教学改革和科研项目,如深水网箱水动力研究、渔船螺旋桨软件系统设计、人工鱼礁流场分析、海洋结构物的流固偶合分析、海洋波浪能的研究开发等。通过这些项目的研究,加深了对流体力学在海洋科学中实际应用和最新进展的了解。在毕业设计环节,每年选作以流体力学基础理论及其工程应用为毕业论文课题的本科学生20余人,研究生10人。取得多项教学改革和教学研究成果,并在生产实践中得到应用,如流体力学团队教师编制的“渔船螺旋桨系统设计软件”获得2007年上海海洋大学科技成果三等奖,该软件目前已被潍坊柴油机厂、玉林柴油机厂等国内主要柴油机生产厂家广泛应用。我校工程学院羊晓晟、侯淑荣、马利娜、沈小青同学的“一种新型海洋波浪能发电装置”项目,参加2011年由、中国科协、教育部、全国学联和地方政府共同主办的、在大连理工大学举行的第十二届“挑战杯”终审决赛,在全国1935所高校选送的16976件作品中突颍而出,获得“全国竞赛三等奖”。该项目由流体力学老师指导,并突破了波浪及流固耦合理论,极大地激发了学生对本课程的学习热情。今后,本课程将在大学生科技创新中发挥更大的作用。

五、教学效果的考核

《工程流体力学》课程具有理论性强、公式多、数理基础要求高的特点,为帮助学生的学习,仅仅通过教材讲解还远远不够,需要配套必要的习题。在现有基础上,更新试题内容,完善试题库建设,考虑到我校研究生教学的特点, 团队根据新编著教材的主要内容, 以章节为单位,精心筛选和编写了典型习题集,力图做到其中的习题一定要具有典型性。习题的数量不能多,更不能类似和重复,学生通过习题练习,能有效地掌握教材中的基本知识。提高试题质量,真正做到教考分离,促进教学质量的提高。该试题库具有以下功能:平台提供自动组卷、手动组卷、互动组卷,条件设定灵活全面;试卷自动转换成WORD文档,方便打印输出;自定义追加试题入库,采用WORD文档格式编辑批量入库。

在考核中,平时成绩、实验课成绩和期末成绩比例为15%、20%和65%。实践证明,该考核方法取得了很好的效果。

六、结语

总之,对于《工程流体力学》课程教学内容改革的初步探索分析,可以促进教学观念的改变,按此目标授课,对教师提出了更高的要求。同时,还可以促进教材建设、实验室建设及其仪器设备的更新,提高学生的动手能力及科研能力,从而实现“学有所用”,“教学相长”。

高等教育教学改革,特别是专业基础课程体系及教学内容的改革,是一个系统和长期艰巨的实践过程,专业教师任重而道远。只要不断努力和探索实践,就可以开拓出一条符合各个专业需求的、更加富有成效的新途径,取得更好的教改成果。

本文受“2011年度上海市教委重点课程建设项目(沪教委高〔2011〕48号)”资助

[参考文献]

[1]袁恩熙.工程流体力学[M].北京:石油工业出版社,2002.

[2]James A.Fay.Introduction to Fluid Mechanics.Cambridge: MIT Press,1994

[3]Bruce R Munson, Donald F.Young and Theodore H.Okiish. Fundamentals of Fluid Mechanics,5th Edition, New Delhi:John Wiley &Sons,2002

[4]Robert W.Fox,Philip J.Pritchard and Alan T McDonald. Fluid Mechanics,7th Edition. Hoboken:John Wiley&Sons,2009

[5]Frank M.White.Fluid Mechanics,6th Edition.New York: McGraw-Hill,2008

[6]毛根海.应用流体力学.北京:高等教育出版社,2006

第2篇:工程力学与流体力学范文

关键词:流体力学;制冷与低温工程;教学改革

作者简介:尹雪梅(1979-),女,四川资中人,郑州轻工业学院机电工程学院,讲师;张文慧(1980-),女,河南焦作人,郑州轻工业学院机电工程学院,讲师。(河南郑州450002)

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)10-0098-02

目前,郑州轻工业学院(以下简称“我院”)的制冷与低温工程专业已被评为国家级特色专业。为了加强制冷与低温工程专业学生能力的培养,造就人才,有必要对制冷与低温工程专业的教学进行全面的改革。

“流体力学”是制冷与低温工程专业的一门重要的专业基础课,主要分为流体静力学和流体动力学,研究流体平衡、运动规律、流体和周围物体之间的相互作用力及其实际应用的科学。由于流动现象和流动规律及其影响因素十分复杂,故其具有理论性强、概念抽象和公式较多、实际工程应用广、对学生的综合分析处理问题的能力要求较高等特点。[1]加上学生对流体流动机理普遍缺乏感性认识,导致“流体力学”课程历来被公认为是教师难教、学生难学难懂的课程之一。[2]因此,迫切需要进行“流体力学”课程教学改革,使学生学好本门课程,提高课程教学质量,使学生能更深刻地理解和掌握专业理论知识,培养学生的综合分析应用能力和创新能力,全面提高专业素质。

分析目前我院制冷与低温工程专业“流体力学”课程教学的现状,发现存在以下主要问题:首先,“流体力学”理论性强,概念多而抽象,难以理解,学生普遍缺乏对流体力学问题的感性认识,学习兴趣不高;其次,课程中公式繁多,推导过程复杂,且大多涉及到“高等数学”的偏微分方程,另还涉及到“大学物理”、“理论力学”、“材料力学”等方面的知识,学生理解困难;另外,学生对所学的知识不能灵活应用。因此怎样激发学生的学习兴趣,选择合适的教学模式组织教学,全面实现该课程教学目标,提高教学质量,是该课程教学亟待解决的问题。

一、改革教学方法

学好“流体力学”这门课对于制冷与低温工程专业的学生来说至关重要。让学生理解流体静止和运动的规律及其影响因素,不仅能为学生学习后续的专业课程提供必要的理论基础,也能为学生以后分析解决实际工程中的实际问题提供理论指导。怎样才能让学生学好这门课,笔者结合自己的教学经验,认为可以从以下几方面着手。

1.激发学生学习兴趣

学生是学习的主体,而“流体力学”又是大家公认难学的课程,因此学生的学习积极性高低决定着“流体力学”这门课教学的成败。

要提高学生学习“流体力学”的积极性,首先要上好“绪论”课。“绪论”课是学生接触和了解“流体力学”这门课的窗口,也是教师的教学水平和教学方式的第一次展示,“绪论”课上得好不好直接影响到“流体力学”课程教学的成功与否。通过“绪论”课让学生对“流体力学”的发展及其广泛的工程实际应用有一个大致的了解,使他们充分意识到“流体力学”知识和我们的生活及国家的建设密切相关,深刻理解“流体力学”知识在今后的学习和解决实际工程问题中的重要作用。[3]

教师在讲授一些理论知识之前,可先举出很多贴近生活的有趣实例或者先提一些问题来激发学生的学习兴趣,启发引导学生积极地思考。例如在讲液体的粘性之前,可以先问学生:在水中游得快还是在油中游得快?为什么?又如在描述流体运动有两种方式――拉格朗日法和欧拉法时,可以将在座的学生和教室里的每个座位作为研究对象来进行类比,从而让学生很容易的理解两种方式。通过举例和提问的方式,让学生带着问题去学习,让学生亲身感受到参与教学活动是一件乐事、趣事,由愿学到爱学再到乐学。实践表明:列举事例或提问的方式可以避免学生学习的枯燥感,活跃课堂气氛,不仅可以吸引学生的注意力,激发学生学习的主观能动性,还可以使学生充分意识到本课程对今后学习和工作的重要意义,并且能加深学生对所学知识的理解和记忆,使学生分析问题和解决问题的能力得以提高。

另外,还应充分利用多媒体,通过图片、动画让学生直观了解各种流动现象,而不是停留在抽象层面,从而提高学生学习“流体力学”的兴趣。

2.巧妙讲解公式

为了定量地描述流动现象和分析流动机理,需要应用数学工具。学生要真正理解基本概念、重要公式,首先就要读懂数学,然而读懂了数学不一定意味着明白了数学符号背后所代表的物理意义。“流体力学”教学实践表明,学生从读懂数学到理解流动问题的物理本质有一个过程。教师的一个重要任务就是做好各方面的工作,帮助学生完成从读懂数学到理解流动的物理本质这一过程的转变,进一步建立起科学的思维方式。

“流体力学”在分析介绍欧拉平衡微分方程、欧拉运动方程、连续方程、动量方程、伯努利方程等理论知识时都有大量的公式,这些公式涉及一些高数、物理、力学方面的知识,特别是大量的偏微分方程,加上“流体力学”的公式推导采用欧拉法,与物理及其他力学不同,学生的观念不易改变,而且推导过程复杂,学生理解掌握很困难。如果过分强调“流体力学”知识的严密性和完整性,对每个公式的每个推导细节都逐一介绍,推导过程将会枯燥无味,学生只会被弄得糊里糊涂,兴趣全无。而如果直接给出公式,让学生死记硬背,只能让学生不知其所以然,当然也就不能真正用所学知识来解决实际问题了。

根据多年的教学经验,笔者认为:“流体力学”中公式的讲解应将重点放在概念引入、理论模型建立的思想、基本原理和主要步骤以及公式的物理意义与应用限制上。首先对基本概念力争讲透,概念清楚了,公式的讲解推演才有意义。然后重点使学生明确公式的物理意义及公式中各项参数的物理意义和几何意义,只有真正理解了公式的物理意义,才能灵活使用公式解决实际工程问题。最后应强调公式的应用范围及应用注意事项。由于流动的多样性,“流体力学”中的很多方程都是在一定的条件下得到的,如伯努利方程就有多种形式(理想流体、实际流体、流体是否可压等),在具体运用时,要根据具体情况选用正确的形式。

3.充分利用作业

学习的最终目的是让学生能够独立自主地解决实际工程问题。如果基本原理掌握了,接下来就是如何用这个原理去解决实际问题。课后作业是检查学生对所学知识理解、掌握程度的一种手段,同时也是培养学生分析、解决问题能力的一种方法。

首先应由学生独立地完成一定量的课后练习题,这是“流体力学”学习过程的重要组成部分,解题过程实质就是利用“流体力学”的基本原理和基本方程分析和解决实际问题的一个训练过程,课后习题可以帮助学生加深对基本概念和基本理论知识的理解。

然后再由教师通过习题课的方式,利用具有代表性的习题和一些学生普遍认为困难、出错多的习题,讲述流体力学原理在工程实例中的应用。在讲解习题时,重在提供条理清晰的解题思路、详细具体的解题步骤,使学生在此过程中掌握解决问题的正确方法和技巧,以便在以后的学习工作中举一反三、触类旁通、学以致用。这一过程增强了学生对流动过程物理本质的理解,将物理问题与数学工具有机地结合起来,有助于学生对与专业相关联的实际工程问题进行认真思考,有效的增强了学生分析并解决实际问题的能力。

二、改革教学手段

多媒体教学以其形象、直观、生动、具体、易于理解的教学特点,丰富的教学内容,被高等院校广泛采用,并深受广大师生的欢迎。[4]

多媒体教学在“流体力学”教学过程中发挥着重要的作用。利用多媒体,可将“流体力学”中那些难以用语言描述的流动图像、抽象难懂的知识点,如拉格朗日和欧拉法的描述,流线与迹线、层流、湍流等,通过图片、动画和视频资料直观形象地展现给学生,使其从感性认识开始建立清晰的物理概念,较容易地掌握相关内容,并使学生的逻辑思维、综合分析能力得以提升。另外一些需占用大量时间写板书表述的和不易通过板书表述的内容也可利用多媒体制作Power Point课件。如莫迪图、水头线、各种流场和一些典型的例题习题等。采用多媒体教学,授课的信息量增多了,教学内容更丰富了,学生在有限的时间内接收的知识更多了,学生的学习兴趣提高了,学生的思路拓宽了,教学质量也提高了。

多媒体教学的发展并不意味着要摒弃传统的板书教学。有很多学生认为板书能让他们有更多的时间去思考消化一些抽象的东西,更有利于对基础知识的理解和掌握。根据“流体力学”既有抽象复杂的流动机理又有大量的基本概念、基本方程的特点,在教学过程中应将多媒体教学与板书教学相结合,扬长避短,发挥各自的优势,为教学工作更好地服务。如对某些特定的流动现象,可以通过多媒体教学,加深学生对流动现象和机理的理解。而对于较重要的公式及一些重点难点内容还是采用板书教学,例如流体力学基本方程的推导过程依然使用传统教学中的板书,有利于学生集中注意力,让学生更清楚地看清步骤、方法和解题思路。这样既可留给学生足够的思考时间,又可加深学生对重要知识的理解,从而获得良好的教学效果。

三、 结束语

总之,高等教育教学改革,特别是专业课程的教学改革,是一个长期而艰巨的实践过程。“流体力学”是制冷与低温工程专业的一门重要的专业基础课,在教学中要根据学校的具体情况改革教学方法和教学手段,借助现代教育技术与手段,充分调动学生的学习兴趣,结合生活、生产、科研中的实际问题,进行深入浅出、生动活泼的讲解,揭示问题的本质,向学生传授治学方法,扩大学生的知识面,培养学生独立思考问题、分析问题、解决问题的能力,培养学生的创新精神,以取得更好的教学效果。

参考文献:

[1]王伟.土木专业工程流体力学课程教学研究[J].山西建筑,2008,34(21).

[2]吴光林.《流体力学》课程教学改革的思考[J].科技信息(科学教研),2008,(14):172-173.

第3篇:工程力学与流体力学范文

【关键词】工程流体力学 石油教学 学习 改革

【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2013)12-0231-02

近几年随着后备储量持续增长,我国的石油工业以前所未有的速度向前发展,这就要求石油工程技术人员必须掌握扎实先进的专业知识。石油工程专业有其自身浓郁的行业特点,其目标是培养能在石油工程领域从事油气钻井工程、采油工程、油藏工程、油气储运等方面人才。在油气勘探开发储存运输过程中,存在广泛而复杂的流体流动现象,所以工程流体力学一直以来都是石油工程专业的核心基础课。

一、上好“绪论”课

“绪论”是教材的开篇之言,通常对全书有一个概括性的介绍。包括内容的设置、该学科的发展简史、与相关学科的联系和今后的发展方向及动态。在教学过程中,充分备课,形象生动地上好绪论课,使教师在后继的教学工作中事半而功倍。总结多年的实践经验,讲好“绪论”可从以下几个方面对教学产生积极的作用和影响:1.可激发学生的学习兴趣和求知欲。知之者不如好之者,好之者不如乐知者,三个层次呈递进状态,乐学是最高层次的学习热情,浓厚的兴趣能推动学生独立进行探索性的学习,而且在学习中主动克服困难,排除干扰;2.可促使学生在学习过程中将流体知识运用到专业课中,使知识融会贯通,有利于加深对专业知识的理解;3.可帮助学生了解学科的前沿动态,吸收最新知识,有利于学生对个人求学生涯的整体规划,优化职业生涯。

二、定位教材,扩展内容

很多工科院校都开设了工程流体力学,针对不同的专业,流体力学的学习侧重点肯定不一样,那么对于石油工程专业而言,流体力学知识服务于钻井、采油,偏重于工程运用,所以在讲授过程中不必要求学生熟练掌握每一个公式的推导过程,只需了解就可以,更多讲解与专业相关的实际运用,那么教材的选择就很重要了。广泛阅读流体教材,选择与专业最匹配的教材是首要任务。目前市面上有很多版本内容不同的教材,在定位教材后,难免教材在编排上不是尽善尽美,那么就要对选定教材的内容进行适当的扩展,可以加深加宽知识体系,更有利于激发学生的学习热情。

三、讲究课堂内教学方法和手段

自工作来,对于教学方法和手段进行了不断的摸索完善,工程流体力学侧重于应用流体力学的基本原理、理论与方法研究,解决工程实际问题。研究方法也遵循“实践-理论-实践”的基本规律。在实际教学过程中,发现学生最大的问题在于――不知道怎么学,不是学不会,而是没有找到适合这门课的学习方法。所以需要教师讲究课堂教学方法,采用合适的教学手段,让学生不至于感到知识晦涩难懂,继而失去学习兴趣。例如:每次上课前提问回答上次课的学习重点内容,集中学生的注意力,在此同时给了学生收拾情绪的时间,以利于新课的讲授;在上课过程中对于有散发性的问题,可以采用提问的方式调动学生主动思考,并给予一定的奖励;如果章节内容相对简单易懂,可以促使学生自己上台讲授,一方面激发学生自主学通学透,另一方面建立学生强大的自信心。

四、积极收集反馈信息

一方面在课间与学生主动沟通,了解学生的思想动态,拉近与学生的距离,才能最广化地获得反馈信息,师生关系。另一方面及时布置练习,既要起到巩固的作用,又要充分发现学生的学习难点,然后有的放矢的解决难题。要想获得预期的效果,教师在布置作业前必须精心研究习题内容,布置有代表性的习题,既不重复也不遗漏,然后尽快批改作业,在知识遗忘的截止时间前纠正错误,使学生形成正确的知识结构。

五、善用多媒体工具

随着科技越来越发达,原本的板书形式慢慢远离学生的视线,取而代之的是多媒体教学,在充分享受信息化的同时,要考虑学生的接受能力与接受程度。目前学生普遍反映多媒体教学虽然信息量大,但对于较大的信息量,学生难以全部接受,更容易形成抵触心理。在充分征求学生的意见后,得到的结论是:善用多媒体工具――用于展示图片、动画和教学影像。

将板书与多媒体合理地结合在一起,板书用于基础知识的学习,多媒体展示流体复杂的流动状态与工程实际运用,便于学生的理解接受,最大化地保持学生的学习热情。

六、重视实验课

目前,学生中普遍存在重理论轻实践的心理,做实验敷衍了事,写实验报告只用粘贴复制就可以了,无论数据合理与否,应付交差就完事了,数据不正常也不思考,实属本末倒置。流体力学是一门以实验为基础的力学分支,实验探究不仅是教学的内容,更是培养学生科学素养的手段。加强实验教学有利于激发学生学习兴趣、有利于培养学生动手能力、有利于概念的构建、有利于模型的建立、有利于定律的导出、有利于结论的检验、有利于创新能力的培养。特别是流体力学中很多经验公式,都是大量做实验总结出来的,所以实验是理论的源泉。现在实验课均是实验教师演示给学生看,然后学生参照实验指导书依葫芦画瓢做一遍,遇到问题依赖于教师,不主动思考,完全失去了做实验的意义。

七、结论

工程流体力学是一门专业基础课,对专业知识的学习有着至关重要的意义,对工程流体力学的教学思考是永无止境的,作为一线教师,要在工作中不断摸索实践,积累丰富的教学经验,在教学中实践改革,提高教学质量,使学习工程流体力学的过程充满乐趣与动力。

参考文献:

[1]李会芬.热能动力类《工程流体力学》课程学习的几点建议[J].广西大学学报,2007,(10).

[2]黄卫星,肖泽仪,伍勇,魏文韫.过程装备专业工程流体力学课程的地位与教学要求[J].化工高等教育,2010,(1).

第4篇:工程力学与流体力学范文

关键词:工程流体力学;环境类;教学难点;教学方法;衔接技巧

作者简介:齐旭东(1981-),男,河北唐山人,河北工业大学能源与环境工程学院,讲师。(天津 300401)

中图分类号:G642 文献标识码:A 文章编号:1007-0079(2013)34-0130-02

一、环境类工程流体力学的学科特色分析

环境类专业涉及流体力学的内容广泛,而且与机械、热能动力、水利等传统学科对流体力学的要求有明显不同。[1-3]河北工业大学(以下简称“我校”)环境工程专业采用闻德荪先生编著的《工程流体力学》教材,由高等教育出版社出版,分上下两册,上册为《理论流体力学基础》,下册为《应用流体力学》。该教材与其它传统学科所采用的流体力学教材相比区别较大:由于人类生活和生产主要局限在生物圈,生物圈中水和气是无处不在的,环境类专业主要围绕水和气,因此,上册《理论流体力学基础》的覆盖面极大,包括静力学、运动学、动力学、恒定平面势流、流动相似原理、流动阻力和能力损失等模块;下册《应用流体力学》包括孔口和管嘴出流、有压管流、明渠流、堰流、渗流等模块。下册以水为主,旁及气体,实际上是水力学基础。但是,与传统水力学又有着明显的不同,这一不同并不是教材主要内容的差异,而是学科体系的构建不同。传统水力学在学科构建上有着鲜明的学科特色,而环境类专业所学习的《应用流体力学》(教材下册)是采用更加简单的方式初步介绍水力学。换言之,是上册《理论流体力学》的动力学在几种特殊边界流场中的具体应用,这些特殊流场的研究对于设计和计算环境类的反应器、构筑物的形式和尺寸,以及流体输配具有重要意义。

工程流体力学与三大力学(理论力学、材料力学、结构力学)相比,其主要概念和原理几乎没有相似之处,[4-6]与大学物理学相比也无相似之处。[7]换言之,在工程流体力学中涉及的概念和原理对本科生来说几乎是全新的。工程流体力学建立在连续介质假设基础上,是通过牛顿经典力学和高等数学知识对流体静止和运动规律进行研究,通过欧拉法或拉格朗日法对流动现象建立数学模型,从而用微积分等高等数学方法解决流体流动问题。该学科的基本概念和原理在三大力学或大学物理学中几乎是从未提及过的。

可见,工程流体力学的学科特点鲜明,是环境类专业的重要骨干课程。笔者从事工程流体力学教学7年有余,并主动向老教师或其他同行学习探讨,发现除了要把握好该课程的学科特点外,对教学难点也要广泛筛选、收集和研究,并结合教学方法进行探讨论证,[8-12]具体分析见表1及下文。

表1 若干教学难点与教材章节对应一览表

序号 教学难点 教材章节[1]

1 连续介质假设 第一章绪论

2 隔离体受力分析 第一章绪论

3 流体相对平衡 第二章流体静力学

4 流体静力学基本方程、阿基米德原理 第二章流体静力学

5 拉格朗日法、欧拉法 第三章流体运动学

6 亥姆霍兹速度分解定理 第三章流体运动学

7 理想流体动力学、实际流体动力学 第四章理想流体动力学和平面势流、第五章实际流体动力学基础

8 牛顿一般相似原理、单项力相似准则 第六章量纲分析和相似原理

9 普朗特混和长度理论 第七章流动阻力和能量损失

10 孔口、管嘴出流和有压管流 第九章有压管流和孔口、管嘴出流

11 堰流 第十章明渠流和闸孔出流及堰流

12 渗流 第十一章渗流

二、环境类工程流体力学的教学难点与教学方法衔接技巧分析

连续介质假设(序号1)是工程流体力学的基础,其重要性不言而喻,但是作为一门新课程的开始,学生往往很难接受这样的模型假设。因此,宜采用讨论法处理该问题,讨论法的难点是避免讨论课的无计划性。质点的概念对于研究流体运动是至关重要的,但是有大半学生掌握不到要领。具体体现在,把流体质点的概念与物理学刚体质点的概念混淆,觉得二者完全一致,没有特殊涵义。面对这一问题,与学生针对两个“质点”概念进行详细的机理分析是很必要的。连续介质假设的核心理念是流体质点概念的提出,流体质点是这样定义的:流体质点是指尺度大小同一切流动空间(流场)相比微不足道又含有大量分子,具有一定质量的流体微元;物理学中的刚体如果只发生平移运动的话,该刚体可简化成质点处理,即用一个质点代替刚体,使物理运算变得很方便。因此,这两个“质点”概念有着不同的涵义,流体的主要特点之一就是易流动性,流场的形状受制于边界条件,流场在流动过程中,边界形状不断变化,所以,流场形状也在不断变化,因此,流体质点不能替代流场,而是由大量的流体质点组成连续介质,填充整个流场。

工程流体力学本质上讲是力学问题,需要在解题前进行受力分析(序号2)。在中学物理学中,受力分析贯穿始终,为中学生所熟知。所以,该部分的学习推荐采用自学指导法和对比分析法,这样可以充分调动学生的学习积极性。由于流场形状受制于边壁,流体的受力分析规律性不明显,这与中学物理学的刚体受力分析区别较大。流体受力分析,均可从两个方面进行,即质量力和表面力。质量力包括重力和惯性力,属于远程力,作用在整个流场的所有质点上,其中,惯性力的存在与否取决于坐标系的选择。如果选择惯性坐标系,则惯性力肯定不存在;如果选择非惯性坐标系,则惯性力肯定存在。表面力包括切应力和压应力,概念的内涵与刚体的表面力相似,切应力和压应力之间的区别在于作用力方向的不同。

很多学生不了解学习流体相对平衡(序号3)的意义何在,根据该知识的特点,可采用探究发现法处理该部分内容。流体相对平衡的意义,在于将特殊的运动问题转化成相对静止的问题,从而使计算得到简化。当整个流场与固体边壁无相对运动时,选择非惯性坐标系,根据达朗贝尔原理引入惯性力,可用相对平衡条件来处理该问题,即对隔离体采用受力平衡条件,可使计算过程大大简化。

中学物理学所熟悉的流体静力学基本方程()和阿基米德原理(F浮=ρgV排),二者如何从流体静力学的角度来重新定义(序号4),也是这一章的难点。该难点的讲解宜采用启发性谈话法,该方法一定要注意谈话内容的设计合理性,以期对整个谈话过程有的放矢。流体静力学基本方程的限定条件是质量力仅有重力,也就是说,坐标系为惯性坐标系。如果将其推广到非惯性坐标系,则计算方法应为欧拉平衡微分方程的积分式,欧拉平衡微分方程是建立在牛顿第二定律基础上的。该部分需要学生将流体静力学基本方程与欧拉平衡微分方程积分式进行对照。阿基米德原理是计算浮力的基本原理为中学生所熟知,在中学物理中往往解释成由实验研究获得,实际上在大学工程流体力学中可以解释成曲面所受静压力的合效应使其意义更广泛。

流动现象如何用数学语言描述,这是流体力学建立的基础,该难点的处理宜采用讲授法。描述流体运动的方法有两种,即拉格朗日法和欧拉法(序号5)。拉格朗日法是从流场中选择关键性流体质点组成流体质点系,跟踪每一个流体质点,研究其运动规律,进而总结出质点系运动规律,从而推演出整个流场运动规律,该方法概念清晰,但是分析和计算过程复杂。欧拉法是从流场中选择有代表性的空间点,分析这些空间点的运动规律,从而总结出整个流场运动规律。在计算流体力学中,常常采用拉格朗日法,在工程流体力学中常常采用欧拉法。

流体微元运动的基本形式包括平移、转动、角变形、线变形等。在流体微元内部,如果已知其中一点的运动要素,在微元内其他空间点的运动要素可以用已知点的运动要素表达出来,该定理称为亥姆霍兹速度分解定理(序号6)。很多学生对该定理存在疑问:微元内部这两个空间点之间怎么会存在联系?该问题适合采用探究发现法进行介绍,教师可首先将其转化成高等数学的模型,提示学生用微积分的方法来处理,具体而言,二者之间的联系是通过高等数学中的泰勒公式建立的。

理想流体动力学和实际流体动力学(序号7)在工程流体力学中是可以合并讲授的,采用系统讲授法更合适,这样更有利于知识的完整性。流体动力学主要涉及三大方程的后两个,即能量方程和动量方程。首先介绍理想流体运动微分方程和实际流体运动微分方程,前者也称为欧拉运动微分方程,后者也称为N-S方程,这两个重要方程均由牛顿第二定律推导获得,二者可作为计算流体力学基础,由此也可推导出能量方程。另一点需要注意,能量方程有两种形式,理想流体能量方程和实际流体能量方程,前者可以统一到后者中去,由于实际流体存在粘滞力,可产生能量损失,即单位重量流体从计算断面1-1运动到计算断面2-2时的平均能量损失;如果是理想流体,则粘滞力不存在,产生的能量损失为0。

量纲分析和相似原理主要涉及到(动力)相似准则里的牛顿一般相似原理和单项力相似准则之间的辩证关系(序号8)。该部分知识琐碎,宜采用讲授法。两个流动,即原型和模型流动,如果要实现流动相似,几何相似和初始条件、边界条件相似是基础,动力相似是保证,运动相似是目标。如果要实现动力相似,需要对应空间点处各个同名力方向相同,大小成固定比例,这称为牛顿一般相似原理。但如果在几何相似和牛顿一般相似原理都成立的前提下,原型和模型的几何形状和大小完全一致,失去了模型实验可缩小原型几何尺寸的意义。正是基于此,所以提出单项力相似准则,在流动中起主导作用的力往往只有一种,这是流动现象的特点,所以如果在原型和模型中,起主导作用的力相似的话,可认为二者的动力相似已实现。

普朗特混和长度理论(序号9)是学生学习的难点,大多数学生感觉该部分不知所云。比如说,该半经验理论的意义是什么,问题从何而来?该部分宜采用讨论法。流体处于湍流状态时,运动参数可以分为时均流速和脉动流速,时均流速产生时均切应力,脉动流速产生附加切应力,时均切应力的计算采用牛顿内摩擦定律,附加切应力计算采用脉动流速计算,即,其中脉动流速ux’和uy’计算困难,需要通过普朗特混和长度理论进行计算,该理论通过将湍流脉动与理想气体自由程理论进行类比,提出自由程概念,从而将脉动速度与时均速度建立联系,实现了附加切应力的计算可行性。

孔口、管嘴出流和有压管流(序号10)是研究水力设备和输配水管网的基础,这一部分的模型主要涉及孔口、管嘴、短管、长管、管网,对这些模型的深入研究需要采用上册流体动力学的连续性方程和能量方程,在深入分析流动规律后,可得最一般的规律性,即流量和断面平均流速的计算公式。这部分可以看成针对几种特殊边界应用动力学方程来求解计算题,所以在介绍了孔口或短管以后,其他形式的边界流动由学生通过练习法和讨论法来自学,最后由教师进行总结。

在缓流中,为控制水位和流量而设置的顶部溢流的障壁称为堰,缓流经堰顶溢流的局部水流现象称为堰流(序号11)。在环境类专业中,堰是常用的溢流集水设备和量水设备,在一确定的堰流中,流量与其它特征量的关系明确。薄壁堰可在环境类构筑物中作为出水设施,如二次沉淀池出水等。该部分内容生疏,宜采用演示法和讲授法。

渗流(序号12)是指流体在孔隙介质中流动,该流动状态在地下水中广泛存在,对地下取水井的设计往往要采用该模型的相关理论。该部分多在研究生阶段深入学习。

三、结语

工程流体力学在环境类专业中的现实意义和理论意义重大,在注册环保工程师基础考试中份额可观。该课程学习难点颇多,对于本科生来说学习的压力较大,需要教师在知识点梳理、难点筛选、师生沟通、教学方法总结等方面多做工作,笔者通过对环境类专业工程流体力学教学的自身体会完成此文,希望对教学一线的教师有所帮助。

参考文献:

[1]闻德荪.工程流体力学(水力学)[M].第3版.北京:高等教育出版社,2010.

[2]陈卓如.工程流体力学[M].第2版.北京:高等教育出版社,2008.

[3]吴持恭.水力学[M].第4版.北京:高等教育出版社,2008.

[4]哈尔滨建筑工程学院,沈阳建筑工程学院.理论力学[M].哈尔滨:哈尔滨船舶工程学院出版社,1992

[5]刘鸿文.简明材料力学[M].北京:高等教育出版社,2007.

[6]王焕定,章梓茂,景瑞.结构力学[M].第3版.北京:高等教育出版社,2011

[7]东南大学等七所工科院校.物理学[M].第五版.北京:高等教育出版社,2008

[8]教育部人事司.高等教育学[M].北京:高等教育出版社,1999.

[9]教育部人事司.高等教育心理学[M].北京:高等教育出版社,1999.

[10]河北省教师教育专家委员会.教育原理[M].石家庄:河北人民出版社,2007.

第5篇:工程力学与流体力学范文

1 实验实践教学中的相关问题

从国内相关院校以及上海海洋大学工程学院工程基础实验、实践教材建设情况看,目前理论与实际相联系的内容详实、规范实用的实验、实践教学系列教材十分缺乏[5]。上海海洋大学经过几年的实践教学探索,虽然取得一些成绩,但也存在需要改进与完善的问题:首先,在实验、实践教材建设上没有系列化,正式出版的实践教材很少;其次,实验实践教学内容缺少深度和层次性,缺乏相关课程群组的关联与集成,较常采用传习性、因袭性的教育方法,缺乏对学生探究问题的鼓励;再次,实验实践教学考核模式单一,缺乏考核的层次性和多样性,采用所有学生按部就班地做一样的案例的方式较多,不利于学生综合能力和创新意识的培养[6]。

为了解决上述问题,实现上述目标,就要更好地发挥高校本科实验实践教学的作用。工程力学基础尤其是工程流体力学是海洋类大学的重要基础课程,本文以工程力学基础课程(工程流体力学)为主要研究对象,通过对本课程大纲、环节模块以及相关课程群的梳理,调研分析现行课程实验实践内容、条件以及不足之处,利用模块化层次化的架构,探索实验实践中的管理与运行机制。鉴于上海市教委对大学生创新的鼓励与项目的加大投入,本文提出对基于大学生创新能力培养的实验实践教学优化管理方案的研究,通过本科生创新思路、想法以及项目的综合分析利用,推动实验实践教学体系的优化进程。针对实验实践环节条件与教材完善,学生创新思想引导理论教学与实验实践内容深化,以及实验实践教学多方式灵活考核方法等方面展开探索,对现行工程力学基础课程实验实践教学的优化管理进行研究。

2 基于创新能力培养的教学优化管理方法

针对上述问题,基于大学生创新能力培养,推进工程力学基础课程实验实践教学的优化管理模式,优化工程综合类本科实验实践教学质量的关键领域和薄弱环节,优化本科实验实践教学的管理模块与层次,更好地为学校教学综合管理提升以及本科学生能力培养和素质提高提供服务和参考。

方法实施的主要流程包括:

1)以工程流体力学专业基础课程为对象,分析现有教学大纲,理清各个环节模块关系,研究构建学校、学院其他与之相关的课程群模型,完成与工程流体力学课程内容匹配与互补的体系架构;

2)总结现有实验实践课程开设情况与条件,分析与现有课程群组的关联关系,总结尚缺的环节条件;

3)调研分析现有大学生创新项目,结合工程流体力学理论课程与实验实践课程,完善更新实验实践教学系列教材;

4)以现有大学生创新思想需求及项目为基础,深化扩充现有实验实践教学案例、内容、环节及模块;

5)按照模块化训练模式,主要包括基础训练模块、专业训练模块以及综合训练模块来进行。

3 实施效果及分析

以上海海洋大学大三下学期本科学生为对象,针对开设的工程流体力学理论课程与实验课程、物流系统建模与仿真实践课程,采用上述方法,具体步骤如下。

1)整理大学生创新思想及项目,融入实验实践课程内容中,推进完善教学内容。

2)基于层次化、模块化的递阶式研究方法,分析并构建工程力学基础课程本科实验实践教学的优化管理机制与体系。

3)结合理论教学条件内容,在基础训练模块中,所涉及的实验实践内容主要是操作性实验,此类实验着重培养学生对应用及专业基本知识的理解和掌握,培养学生严肃认真的态度并为后续课程的学习提供基础知识。

4)在专业训练模块所涉及的实验实践内容主要是分析设计性实验,此类实验着重训练学生运用所学知识和获得的基本的实验技能,综合多课程群组的综合知识,在教师指导下对专业知识的全面理解和掌握,培养学生综合运用知识的能力以及创新思维设想。

5)在综合训练模块中所涉及的实验实践内容主要是综合性实验,结合现有和预想的创新思路项目,此类实验着重把理论知识和实际运用结合起来,接近实际工作,并深化学生在前两个模块中掌握的实验方法和操作技能,培养学生的综合分析能力和创新能力。

6)利用实验与问卷调查结合的方法,验证所获得的研究成果的有效性和实用性。

方法通过两届学生课堂实施进行验证,实施过程中的课堂效果与学生表现良好,课堂质量以及互动明显提升。分别对两届4个班的48名学生进行抽样问卷调查,通过结果分析显示:42名学生喜欢基于大学生创新能力培养的实验实践课程改革模式,3名学生选择一般,3名学生选择不喜欢而更习惯于传统教学方式;43名学生认为该方法值得推广到其他相应课程,4名选择一般,1名选择不值得推荐;对于存在的问题,学生反映较多的是除了大学生创新思想引导,还应加入更多的工程案例,因此融入合适的工程案例是继续改进的内容;同时学生通过课程引导,思路源于课程实验与实践,新增获5项大学生创新项目。

4 结束语

本科实验实践教学是培养大学生动手能力、创新能力以及解决分析处理实际问题能力过程中不可缺少的重要环节,而大学生创新精神和创新能力的培养与实验实践教学的管理机制是相辅相成、密不可分的。以工程流体力学实验实践课程为例,本文提出的基于大学生创新能力培养的方法在于改革优化现有的工程力学基础实验实践教学管理体制和运行模式,突破实验实践教学传统的不适应新形势的管理理念,创造新的人才培养模式,多角度全方位为学生实验实践教学管理与质量的提升提供参考。基于大学生创新能力培养,促进本科实验实践教学质量及管理机制的有效运转与提升,在全方位培养学生创新项目与能力的基础上,更好地推动工程力学基础课程本科实验实践教学的完善运转,更好地为学校其他专业课程的实验实践教学管理给予借鉴与参考。

参考文献

[1]孔鹏.高校文科类开放式实验教学的研究[J].高校实验室工作研究,2011(2):26-28.

[2]王伟,孟祥贵,安寅.“创新人才培养模式”下的实验教学改革探索[J].实验科学与技术,2013,11(2):144-146.

[3]程瑛琨,孟庆繁,刘成柏,等.高校基础实验教学质量评估体系的研究[J].高教论坛,2006(2):116-118.

[4]阳国亮,曾冬梅.构建创新教育体系全面提高大学生的创新精神和实践能力[J].实验室研究与探索,2008,27(12):

4-6.

[5]程永强,苗淑清,张建文,等.地方工科院校加强实践教学的探索与实践[J].实验技术与管理,2013,30(2):5-9.

第6篇:工程力学与流体力学范文

关键词 工程力学 理论研究 发展现状

中图分类号:TB121 文献标识码:A

1绪论

工程力学是20世纪50年代末出现的。首先提出这一名称并对这个学科做了开创性工作的是中国学者钱学森。

在20世纪50年代,出现了一些极端条件下的工程技术问题,所涉及的温度高达几千度到几百万度,压力达几万到几百万大气压,应变率达百万分之一~亿分之一秒等。在这样的条件下,介质和材料的性质很难用实验方法来直接测定。为了减少耗时费钱的实验工作,需要用微观分析的方法阐明介质和材料的性质;在一些力学问题中,出现了特征尺度与微观结构的特征尺度可比拟的情况,因而必须从微观结构分析入手处理宏观问题;出现一些远离平衡态的力学问题,必须从微观分析出发,以求了解耗散过程的高阶项;由于对新材料的需求以及大批新型材料的出现,要求寻找一种从微观理论出发合成具有特殊性能材料的“配方”或预见新型材料力学性能的计算方法。在这样的背景条件下,促使了工程力学的建立。工程力学之所以出现,一方面是迫切要求能有一种有效地手段,预知介质和材料在极端条件下的性质及其随状态参量变化的规律;另一方面是近代科学的发展,特别是原子分子物理和统计力学的建立和发展,物质的微观结构及其运动规律已经比较清楚,为从微观状态推算出宏观特性提供了基础和可能。

总的来说,工程力学具有现代工程与理论相结合的特点,有很大的知识面和灵活性,对国家现代化建设具有重大意义。

2工程力学的发展

2.1工程力学的特点

工程力学虽然还处在萌芽阶段,很不成熟,而且继承有关老学科的地方较多,但作为力学的一个新分支,确有一些独具的特点。工程力学着重于分析问题的机理,并借助建立理论模型来解决具体问题。只有在进行机理分析而感到资料不够时,才求助于新的实验。

工程力学注重从微观到宏观,以往的技术科学和绝大多数的基础科学,都是或从宏观到宏观,或从宏观到微观,或从微观到微观,而工程力学则建立在近代物理和近代化学成就之上,运用这些成就,建立起物质宏观性质的微观理论,这也是工程力学建立的主导思想和根本目的。

虽然工程力学引用了近代物理和近代化学的许多结果,但它并不完全是统计物理或者物理化学的一个分支,因为无论是近代物理还是近代化学,都不能完全解决工程技术里所提出的各种具体问题。工程力学所面临的问题往往要比基础学科里所提出的问题复杂得多,它不能单靠简单的推演方法或者只借助于某一单一学科的成就,而必须尽可能结合实验和运用多学科的成果。

2.2研究内容和方向

工程力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,工程力学主要借助统计力学的方法。

工程力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。

工程力学研究方向主要有:非线性力学与工程、工程稳定性分析及控制技术、应力与变形测量理论和破坏检测技术、数值分析方法与工程应用、工程材料物理力学性质、工程动力学与爆破。

3工程力学的应用

3.1材料力学

材料力学在生活中的应用十分广泛。大到机械中的各种机器,建筑中的各个结构,小到生活中的塑料食品包装,很小的日用品。各种物件都要符合它的强度、刚度、稳定性要求才能够安全、正常工作,所以材料力学就显得尤为重要。

生活中机械常用的连接件,如铆钉、键、销钉、螺栓等的变形属于剪切变形,在设计时应主要考虑其剪切应力。汽车的传动轴、转向轴、水轮机的主轴等发生的变形属于扭转变形。火车轴、起重机大梁的变形均属于弯曲变形。有些杆件在设计时必须同时考虑几个方面的变形,如车床主轴工作时同时发生扭转、弯曲及压缩三种基本变形;钻床立柱同时发生拉伸与弯曲两种变形。

利用材料力学中卸载与在加载规律得出冷作硬化现象,工程中常利用其原理以提高材料的承载能力,例如建筑用的钢筋与起重的链条,但冷作硬化使材料变硬、变脆,是加工发生困难,且易产生裂纹,这时应采用退火处理,部分或全部地材料的冷作硬化效应。

3.2固体力学

自然界中存在着大至天体,小至粒子的固态物体和各种固体力学问题。人所共知的山崩地裂、沧海桑田都与固体力学有关。现代工程中,无论是飞行器、船舶、坦克,还是房屋、桥梁、水坝、原子反应堆以及日用家具,其结构设计都应用了固体力学的原理。

固体力学研究的内容既有弹性问题,又有塑性问题;既有线性问题,又有非线性问题。在固体力学的早期研究中,一般多假设物体是均匀连续介质,但近年来发展起来的复合材料力学和断裂力学扩大了研究范围,它们分别研究非均匀连续体和含有裂纹的非连续体。

第7篇:工程力学与流体力学范文

全国正在规划建设的13处大型煤炭基地,其中西部地区占7个,西北地区占5个。目前西部地区矿业工程专业的毕业生需求量较大,从近3a采矿工程等专业毕业生就业率高达90%以上就能说明这一点。所以必须针对西部地区经济特点等实际情况,提高西部矿业工程大学生的综合素质、科研及创新能力等综合素质。在这种意义上称之为“基于西部情结的综合素质”,也就是说西部的人才培养体系主要依靠西部人来支撑与建设。

1特色及优势分析

根据调研资料分析[4~6],结合我校西部矿业这一特色与优势学科的实际情况,对国内外目前矿业工程力学课程体系与实验示范(基地)构建的模式及特色进行全面分析,其主要包括以下几大优势。

1)国际优势及特色。在国外,采矿专业,目前只有美国的西弗吉尼亚大学、哥伦比亚大学、宾尼法尼亚州立大学、印度矿业学院、英国诺丁汉大学、澳大利亚的新南威尔士大学等还保留有采矿专业,波兰的矿业领域人才培养也已经萎缩。在国内,只有我校拥有西部惟一的矿业工程一级学科,而中国矿业大学、太原理工大学、山东科技大学、重庆大学虽然还开设有矿业类基础工程专业的课程,但毕业生所服务的地区很少涉及西部矿区。

2)项目构建优势。2000年山东科技大学获得的教育部教改项目“矿业类专业课程体系整体优化与实践”属于“世行”贷款21世纪初高等教育教学改革项目,并于2002-12-17在西安交通大学由教育部召开的高等理工科教育教学改革交流会上进行了经验交流交流,获得好评与认可。但是针对力学实验教学与示范建设,涉及西部矿山工程力学实验教学改革却是凤毛麟角。

3)地域优势。若仅从工程力学的角度进行教改项目申请,在西安乃至全国,我校均不占优势,如果站在西部矿业工程人才培养的角度来进行矿山工程力学实验教学与示范构建,我校有独特的优势。西部地区经济相对东部地区落后,这是不争的事实。西部的教育更需要加强,贫困地区必须立足自己的实际,培养自己的高素质精英人才。作为西部地区的高等教育,尤其是工程基础类专业的教育,对西部经济发展有重要奠基性作用,其教育内涵必须拓宽与拓深。随着国家对西部大开发的力度逐渐加大加强,西部矿山能源的战略地位已经凸显,采矿类优秀能源科技人才的培养、质量提高、需求模式等问题更是亟待研究的重大问题之一。

4)学科特色优势。我校在矿业工程领域虽然已形成特色和优势,但还需借鉴国内外著名大学相关课程设置与教学改革的成就和做法,结合我校矿业工程类专业课程与教学体系的建设以及毕业生综合素质拓展进行综合建设,以教学研究型大学的定位,争取建成西部矿山工程力学教学与示范基地或平台,为巩固我校西部矿业特色以及夯实内涵奠定基础。从传统的基础力学与矿业工程专业的课程设置方面分析,采矿工程专业学生的数学、力学知识学习较多,但有关矿山工程力学(包括岩石力学、岩层控制学、井巷工程、瓦斯动力学以及工程流体力学等)的教学与示范建设还比较薄弱,这一矛盾在近2a从采矿工程与安全工程专业的研究生招生与教育过程中也凸显出来。

5)人才需求优势。矿业工程学科中涉及到的采矿工程等专业属于矿业工程类基础性专业,毕业生在矿山主要从事矿山生产(安全开采与灾害防治)技术管理与科学研究方面的工作,要求基础知识扎实,综合性强。从现场反馈的信息亦如此。在教学改革中拓宽专业后需要夯实工程力学(矿山岩石力学与岩层控制)知识及实际应用能力,尤其是工程现场所需要的工程力学监测方面的仪器仪表相关配套课程与知识体系。这样毕业生到现场后能立即找到自己的定位,为后期发展奠定基础。

2理论教学平台内涵构建

2.1内涵构建目标与关键

随着现代科学技术与生产组织模式对高等教育要求的不断提高,人们更多地倾向采用项目(case)教学法来培养学生的实践能力、社会能力以及其他关键能力。根据国家教育部门有关的方针和政策,结合我校的优势学科和已经取得的一系列优秀教学科研成果情况,要实现西部矿业工程力学理论与工程实践的渗透,完成教学内涵的拓展,“基础厚、专业宽、能力强、素质高”的目标是理论教学平台构建的关键。

1)基础厚:系统学习理论力学、材料力学、弹性力学、结构力学等基础理论与矿山工程力学(主要包括矿山岩体力学、岩层控制学、井巷工程、矿山工程流体力学等)实验课程;

2)专业宽:在系统掌握矿山工程力学基础与实验(实践)理论的前提下,拓展对实验数据的深入分析与问题解决;

3)能力强:能对所遇到的工程问题形成正确判断,提高研究与创新能力;

4)素质高:能综合提出(或解决)现场工程问题的技术方案和具体运作程序,为决策者提供依据。

2.2关键教学手段

根据目前我校的教学软硬件建设环境,该课程开设的前提条件是学生建立在已经参加过认识实习和已经建立现场工程感性认识的基础上。教学方法主要采用4种:①理论教学;②实验室观摩与体验(有条件的情况下,自己亲自动手开展实验);③进行野外岩(土)石的参观与实践;④采用论文(大作业)和考试相结合的方式进行考核。

要有效实现以上过程,概括地讲,Case教学法是最有效的教学方法。该方法是由美国著名教育家、伊利诺易大学教授凯兹博士和加拿大教育家、阿尔伯特大学教授查理博士共同推创的一种以学生为本的教学法。该教学法在北美高校广为使用,因效果良好颇受欢迎,是符合构建教学理论、促进学生全面发展的科学的教学方法。清华大学等著名高校的教学研究人员,在构建性教学理论的指导下,结合我国高校的教学改革,进行了深入研究,取得了重大进展。由于矿业工程力学专业及课程的特点和学生毕业后所从事工作环境的特殊性,在力学课程教学与实践中采用Case教学法是非常有必要的。

2.3网络辅助教学

为了更好地实现以上教学手段,需要利用校园网、数字化和视频资料辅助进行Case教学,其中数字化格式主要为下列3种(正在进行修改素材):①MSWord文档,主要是教案和本书的主要教学与授课的关键点;②MSPowerPoint文档,主要授课讲义;③AdobePDF文档,为网络教学提供图片等素材。另外,为了及时更新教学内容,反映本课程或学科的当前状况,摒弃教学内容陈旧等缺陷,采用(最新)科研成果进课堂和教学名师上讲台等模式,对丰富课程内涵和提高教学质量大有裨益。

3实验示范教学平台构建

创建一流大学离不开实验室,建设教学研究型大学要有完善的本科教学体系的实验室条件保障、研究生培养的实验室条件保障[7,8]。为此,结合我校的矿业工程的西部特色,提出整合资源、组建矿山工程力学实验示范教学的平台。

3.1实验教学平台建设

1)构建以岩石力学性质伺服试验系统(MTS)为中心的基础实验平台。以岩石力学伺服试验系统(MTS)为中心,对已建岩石力学实验室进行改造,构建岩石(土)力学行为基础实验平台,进行岩层控制和岩土工程领域的基础教学与实验研究。

2)建设以三维可加载相似模拟系统为中心的物理模拟实验教学平台。围绕“大比例可加载三维实验模型系统”“固-液-气三相模拟实验系统”“可变角块体模拟架”,构建物理模拟实验平台,以提高试验测试水平和精度为目标,使物理模拟向定量化和可重复性发展,进行岩层运移和围岩灾变控制理论教学和实验技术教学与研究。

3)以三维相似模拟实验平台、固液气三相模拟实验台和数值模拟实验系统为中心,结合数值模拟试验系统和边坡稳定性物理实验系统,建设矿区地表移动与环境灾变预测实验平台,对西部特殊赋存条件下矿山开采引发的边坡稳定基础理论和控制技术、采动损害主导因素与控制机理的基础理论和方法以及矿区地质环境承载能力的基础理论和技术体系进行教学与研究。

第8篇:工程力学与流体力学范文

关键词:岩石力学;采矿;问题;措施

中图分类号: P58 文献标识码: A

在矿山的开采中对于岩石力学的应用是非常普遍的,其主要来源于大规模的工程实践。由于采矿工程一般规模比较大、施工条件复杂,不管是地下还是露天的采矿工程,都是以具有地质构造的岩石为对象,这也就决定了岩石力学的问题将贯穿于整个采矿工程的实际。在采矿工程中的岩石力学,主要包括岩石的稳定性以及强度等,它是会随着矿山中岩石内部的结构发生不同的变化。与此同时,因为采矿工程是一个动态的过程,所以在这其中岩石的力学性质会随着矿山工程的进展发生变化,还有就是自然环境也对其有一定的影响。这就决定了在矿山工程中的岩石力学应用手段必须多样化。

1、岩石力学研究的目的和内容

岩石力学研究的目的是对矿区内不同类型岩体的地质结构、岩石组成及其强度和应力的资料给以解释,按岩石力学的要求对矿、岩体进行分类,以便根据其自然崩落性选择合适的开拓方式和采矿方法,从而为制定采矿试验计划和编制采矿设计提出推荐意见。

岩石力学研究的主要内容有:断层和破碎带的位置、形态和相对运动;不同类型岩石及其夹层的抗压、抗张、抗剪强度;微裂隙的类型及系统;区域残余应力的大小、方向和变化;应力释放的方法;在一段时间内岩石的应力集中及其移动的性态,坑内井巷工程不同支护方法的效果;使应力影响减少到最小的井巷工程的位置及方向等等。

2、背景研究

2.1、采矿工程的力学背景

采矿工程的力学背景,主要指的是在原有平衡关系的基础之上建立起新的平衡结构,它具有一定的时代特色。现如今,采矿工程已经打破了以往的规划设计理念和方法。主要表现在:对相关地表下经历数亿年形成的平衡结构的,建立起来一个新的稳定空间,更加的具有平衡性,很好的减少了岩石碎裂现象的发生。也就是说在具体的采矿工程的工作中一定要注意其开采的背景,注重工程的安全性问题,以此来极大地维持好新建的平衡空间的稳定性。

2.2、岩体力学的时代背景

岩体力学不是一门系统的学科,它属于地质学与力学之间的一门边缘学科,但是它却可以帮助施工人员解决一些地质学和力学无法解决的实际问题,现如今我国对于岩石开采量逐年增大,所涉及的规模和复杂程度也不是同日而语,在智能化时代中处理这些规模巨大的岩石问题时必须要采用岩体力学的知识来加以帮助,我国的地质人员经过努力已经在这方面积累下了丰富的经验,虽然说与国际先进水平相比还是有一定差距,但也不可否认我国在这方面所做出的进步,不足之处主要是在于我国在综合实际应用过程中未能将已有的研究成果灵活成功应用到过程实践中去。

3、岩石力学和其他学科在采矿中的结合应用

在采矿工程中对于岩石力学的应用并不是单一化的,而是同其他的一些应用性的基础学科相结合应用的。岩石力学的理论基础是相当广泛的,也就涉及到很多的其他的基础性应用学科。主要有:

3.1、固体力学

固体力学是一门在力学当中形成的比较早且其理论性比较强的分支,固体力学主要是对可变形固体在外界因素作用下对于它内部的质点所产生的各种规律的研究。而在具体的采矿工程中,固体力学的应用主要有材料力学、结构力学以及断裂、损伤力学等等。

3.2、流体力学

流体力学主要是对于流体本身的静止以及运动状态,以及其在运动时的相互作用规律的研究。在这其中对于流体研究最多的就是水和空气。比如说在采矿工程中的地下采矿工程中,主要研究的对象就是地下的水以及瓦斯等矿井气体。而在露天的采矿工程中,主要研究的对象就是当地开采的地质以及相应的自然条件。

3.3、爆炸力学

爆炸力学是研究工作中爆炸的发生情况以及其自身规律,并且做出对爆炸力学效应的合理利用和有效的防护。它主要是从力学的角度来研究爆炸的能量以及急剧转化的过程中产生的各种效应。与此同时,爆炸力学还是流体力学、固体力学以及物理、化学之间的一门交叉学科。

3.4、计算力学

计算力学是综合力学、计算数学和计算机科学的知识,以计算机为工具研究解决力学问题的理论、方法,以及编制软件的学科。从20世纪50年代以来,它在力学的各分支学科和边缘学科中得到了很大的发展,无论是在科学研究还是工程技术中均得到了广泛应用。常见的计算力学方法并已广泛用到数值模拟计算中的有:几何非线性有限元法、热传导和热应力有限元法、材料非线性有限元法、离散元法、无网格法、有限差分法、非连续变形分析等。以计算力学为基础的数值模拟方法在采矿工程中的研究应用也正广泛地开展起来。

4、力学问题与采矿工程的关系

4.1、钻井工作

在具体的采矿工程中,对于钻井的选型,要进行前期的细致检查以及过程中的保养。对于在工程中发生的特殊事故,比如在工程中当采油出现意外、瓦斯发生渗漏的时候等等,就必须应用到力学问题分析对地层致裂和渗流的工作问题。

4.2、矿场环境监测

在具体的采矿工程中,要对采场的地压进行监测,当出现异常情况的时候,及时预警,同时要考查矿石滚动的规律,一次预防意外事故的发生。对采矿区的路段也要进行严密监测,对露天陡坡进行监测,确保其稳定性。

4.3、爆破工作

对于采矿工程中的爆炸问题要特别的关注,努力做好岩爆机制的预防,关注硬岩的非爆炸破碎方法,研究矿岩的粉碎力学和岩石的爆破力学问题。以此保证爆破工作的顺利、安全开展。

4.4、崩落采矿工作

对于崩落采矿工作,要做到:了解岩石的力学性质、岩性、地质因素等工程以及开挖、回采地压等生产因素,注重它们的关联性。岩石力学对崩落采矿具有关键的指导性作用,其主要的应用范围有:应用岩体自身特征,结合地应力对工程进行控制,达到实现崩落采矿的目的。在采矿工程中使用崩落采矿法的决策时,运用力学充分掌握岩体的断层特点,深入研究岩体的可崩性,才能够将比较适合的崩落采矿方案制定出来。

5、岩石力学在采矿工程中应用现状

5.1、对深部开采所带来的灾害预测

要知道对于矿山的深部开采是一件具有一定危险系数的工作,可能会遇见矿震、岩石爆炸等危险,并且这类事故是常有发生的,目前已经有很多国家有过类似的经历,但是目前对于岩爆的预防以及防止工作却没有引起相应的重视,施工队伍对矿山的开采已经越来越深入,所面临的危险也自然越来越大,因此对于这方面必须加以重视,应用岩石力学的相关知识对工程地质进行调查,应力测量以及一些岩石力学实验,通过对能量的聚集和变化的研究去探讨岩爆的发生原理,从而对岩爆进行一定的防治工作。

5.2、矿山地应力场测量

地应力是存在于地质底层中的天然力量,它是引起在岩石开挖过程中原岩应力发生变化的力量,对其进行研究是对于开采方案进行研究的首要前提,对于采矿工程来说,实现必须要了解掌握具体工程中的地应力状况,这样才能对矿山进行合理的总体布置并且选取适当的采矿方法,长期以来,我们所生存的地球已经经历了无数次的构造运动,逐步演变出地球地应力复杂性,要想安全的进行采矿工程,就必须对其进行实地应力测量。

5.3、大型露天矿边坡设计优化

现在我国已经有很多露天矿山开采转为了深凹开采,随着开采难度的越来越大,对于安全性以及稳定性的维护就越来越难,边坡滑移的破坏事故发生日益频繁,这些都严重的威胁到了矿山开采工作的安全性,但是,减少边坡角滑坡事故与增加成本之间却出现了矛盾,对于这种情况,我们就需要经过精确的定量而不只是定性计算并充分考虑岩体条件和地应力的作用,在能够保证安全的前提条件下,尽量的节省成本,保证工程效益。

6、岩石力学在采矿工程中的发展趋势

岩石力学在采矿工程的发展趋势之一就是多学科的相互交叉综合集成。在采矿工程中,很多不确定的因素都会导致工程的安全性下降。所以在以后的工作中综合地质、力学试验以及物理、化学分析等学科知识将是解决该问题的最好途径。其二是多尺度的综合集成,现阶段,随着矿井开采深度的日益加大,采矿工程中的岩石力学问题出现了热、流、固、化多场并存的状况。所以对于多相运动的研究还有待深入,在以后的工作中将会更加的关注多尺度的综合集成问题。

总而言之,采矿工程是一个十分复杂的系统工程,涉及许多不同的专业领域。而运用力学知识完善采矿工程是现如今采矿业的一大要务,但是力学在促进采矿业发展的同时,依旧存在许多不足。这就要求相关的采矿工作人员应该紧密结合采矿工程实践与采矿工程力学关系理论研究,通过完善我国的采矿技术,提高我国的采矿率,以此来有效地降低采矿成本。

参考文献

[1]赵双德.关于采矿工程与力学关系的探讨[J].黑龙江科技信息,2013,16:24.

[2]曹旭.岩石力学在采矿工程中的应用探讨[J].河南科技,2013,18:44.

第9篇:工程力学与流体力学范文

专业

代码

专  业  名  称

专业课Ⅰ

专业课Ⅱ

01

汉语言文学(文)

现代汉语

中国现代文学

02

法学(文)

法理学

宪法学

03

工商管理(文)

管理学

会计学

04

金融学(文)

货币银行学

会计学

05

旅游管理(文)

旅游学概论

中国旅游地理

06

思想政治教育(文)

哲学原理

政治经济学

07

历史学(文)

中国古代史

世界近代史

08

广播电视学(文)

新闻学理论

汉语写作

09、44

学前教育(文、理)

学前教育学

学前心理学

10

应用心理学(文)

普通心理学

实验心理学

11、41

会计学(文、理)

财务会计

会计学基础

12

国际经济与贸易(文)

西方经济学

会计学

13

市场营销(文)

市场营销

会计学

14

财务管理(文)

财务管理学

会计学

15、43

地理科学(文、理)

中国地理

地图学

16

英语(外)

综合英语

翻译写作

17

视觉传达设计(艺)

素描

平面构成

18

服装与服饰设计(艺)

素描

平面构成

19

艺术教育(艺)

艺术学概论

中外艺术史

20

美术学(艺)

素描

色彩

21

音乐学(艺)

声乐

钢琴

22

通信工程(理)

电路分析基础

模拟电子技术

23

网络工程(理)

计算机网络

微机原理

24

计算机科学与技术(理)

电路分析基础

模拟电子技术

25

工程管理(理)

建筑材料

建筑构造

26

机械设计制造及其自动化(理)

材料力学

机械设计基础

27

电气工程及其自动化(理)

电路分析基础

模拟电子技术

28

机械工程(理)

材料力学

机械设计基础

29

电子信息科学与技术(理)

电路分析基础

模拟电子技术

30

数学与应用数学(理)

高等代数

数学分析

31

纺织工程(理)

纺织材料学

纺纱工程

32

化学(理)

分析化学

无机化学

33

化学工程与工艺(理)

物理化学

化工原理

34

生物技术(理)

植物学

动物学

35

生物科学(理)

植物学

动物学

36

药学(理)

有机化学

分析化学

37

园林(理)

植物学

生态学

38

动物科学(理)

动物生理学

动物生物化学

39

油气储运工程(理)

工程力学

工程流体力学

40

植物科学与技术(理)

植物学

植物生理学

42

软件工程

数据结构

C语言

45

中药学(医)

中药学

中药制剂

46

临床医学(医)

解剖学

诊断学

47

口腔医学(医)

口腔解剖生理学

口腔综合

(口腔内科学、口腔颌面外科学、口腔修复学)

48

医学检验技术(医)

生物化学

检验综合

(微生物学检验、免疫学检验、寄生虫学检验、血液学检验、生物化学检验、临床检验基础)

49

康复治疗学(医)

康复评定学

康复技术学

(作业与物理疗法)

50

护理学(医)

解剖学

诊断学

51

中医学(医)