前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的基因组学的发展主题范文,仅供参考,欢迎阅读并收藏。
关键词:少数民族 学校教育 现状 发展
20世纪末,随着以“中华文化为母语的音乐教育”①口号的提出,越来越多的学者开始把关注点放在对中国传统音乐文化自身的继承与发展上面。而少数民族地区因其独特的人文风情,拥有着丰富的民族音乐文化资源,这些已然成为少数民族地区学校音乐教育的关注点,但是少数民族地区一般都是经济欠发达的贫困地区,教育资源相对贫乏,尤其是在音乐教育方面,普遍存在着师资力量薄弱、教学设施匮乏、教育理念落后等现象。
一、当前少数民族地区学校音乐教育的现状
由于经济欠发达,桑植地区现今仍属处于国家标准之下的贫困县范畴。由此,在学校音乐教育中所体现出的问题尤为突出。
(一)教学资源极度缺乏仍旧是制约学校音乐教育发展的重要因素
教师队伍薄弱。教师是课堂教学活动的引导者、参与者,是音乐教学中不可缺少的部分。然而在桑植一些偏远的“老、少、边、穷”地区,音乐教师的缺乏仍是制约其学校音乐教育发展的重要因素。相较于桑植县城镇地区的音乐教育而言,位于桑植县偏远的乡村地区,音乐教师的缺乏是存在的普遍现象。尤其是在一些偏僻的乡村学校,音乐教师的岗位常常处于缺乏的状态,甚至一些学校根本就没有专职的音乐教师,音乐课一般由文化课老师兼任,这种状况,严重制约了音乐教育的良好开展。
教学设备匮乏。教学设施包括专门的音乐教室,多媒体设备,各种乐器,辅助实施设施及教材等。其中,最主要的是器材。音乐器材的演绎,是音乐的重要表达形式,因而教学设备对于音乐文化的有效传播起着十分重要的作用;同时,随着互联网时代的到来,多媒体教学在现今社会已然成为了不可或缺的一种教学手段,利用多媒体创设情境,让学生身临其境的感受音乐并融入到音乐学习的文化语境之中去,可以有利于学生更好的理解音乐文化。而桑植地区除了极少数城镇学校配置了音乐教学所必备的相应设备之外,大部分学校连音乐课所必需的基础设施都没有,甚至于在一些乡村小学,每位同学一本音乐课本都是不具备的,这对于学生来说,是多么的可悲!
(二)落后的教学理念是制约当前学校音乐教育发展的主要因素
首先,应试教育背景下忽视了音乐教育的价值。音乐教育对学生健全人格的塑造,创造力思维能力的培养以及自信心的树立等方面有着其它学科所不能替代的作用。但在现行应试教育的背景下,在大多数老师以及家长的思想观念中,音乐课是可有可无的。特别是在“老少边穷”地区的学校这种情况尤为突出。为了在中考、高考中能够取得好成绩,音乐课时被大量占用的现象实属常见。一些教师认为对于身处于偏远地区的学生而言,应该把更多的时间用在文化课的学习上面,只有学好文化课,在考试中取得好成绩,考出高分数才是学习的唯一目标。
其次,音乐课缺乏以文化理解为目标的教学范式。长期以来,学校的音乐教学过程仍旧以教授音乐基础知识和音乐基本技能的“双基”为音乐教学主要目标,甚至是唯一目标。而音乐课的教学模式则为老师给学生教唱一首歌曲,学生通过对音符的学习而学会了该首歌曲,音乐课的任务就算是完成了。而学生对于歌曲所要表达的内容是什么、歌曲背后所蕴含着什么样的文化全然不知。这种缺少文化背景的音乐教学,实际很难达到音乐教育的目的,也不可能让学生真正懂得音乐的内涵。
再者,刻板的教学方式是对音乐教育错误认识的直接体现。许多老师、家长乃至于学生,都没有充分认识到音乐教育的重要性,没有将之作为一门重要的学科来对待,使得音乐课成为了“纯玩课”、“休闲课”、“应付课”、“教唱课”。在桑植县偏远的乡村学校,此种情况尤为突出,音乐课的上课方式为老师教唱一首歌曲,在教唱的过程中,老师先唱一句,学生紧跟着学唱一句,由此刻板循环,直至学生学会为止。整堂课下来,学生犹如“复读机”一样,只知道一句一句的重复老师所唱,一味的机械式的被动学习,而没有充分的发挥自己的主观能动性,其主体地位没有得到实现。
二、少数民族地区学校音乐教育的发展方向
基于以上现象,笔者认为,边远落后少数民族地区的音乐教育,在发展中应当着重从以下几方面入手。
(一)树立正确的教育思想,重视音乐教育
音乐是与生命、生活息息相关的一种艺术形式,是生命意志的直接表现。音乐生于人心,与人的情感联系非常紧密。“凡音者,生人心者也。情动于中,故形于声。声成文,谓之音。”②人的所思所想,喜怒哀乐,素质修养,都会通过音乐表现出来。因而音乐本身就是人类生活的重要组成部分,没有哪一个民族不热爱。再者言之,“致乐以治心者也。”③音乐是社会生活中最广泛又最容易为人们接受的文化形态,也是提高生活质量最直接、最有效的手段,对人的思想、人格、情趣等各方面健康成长具有重要意义,必然成为育德启智和调节情感,提高素质的重要工具。
(二)创办特色教学,将民族音乐纳入到音乐教育之中
近年来,在重视、发扬和传承传统文化的时代背景中,音乐界“以中华文化为母语”的音乐教育理念,呼吁重视中华传统音乐文化,使学生在学习音乐的同时能够理解其所蕴含的文化,理解音乐文化成为了音乐学习的一个重要方面。笔者认为,落实这一理念,关键在于两个方面:一是坚持传统乐教理论,坚守人格培育、美化生活的方向。今天我们的音乐教育,就应当采用优良的音乐资源引导教育学生,接受高尚,拥抱正能量,最终走向幸福美好的前景;二是抓住民族音乐的灵魂,将音乐教育扎根于民族传统文化的沃土之中,中华民族几千年的文化当中,不乏丰富的音乐理论和音乐教育理论,拥有众多令世界惊叹的音乐表现形式。
(三)将学校作为保护、传承和弘扬本地音乐文化的主渠道
少数民族是擅长歌舞的民族,其独特的民俗风情孕育着多姿多彩的音乐文化,桑植县是一个少数民族聚居地区,孕育出了桑植民歌、土家族摆手舞、白族仗鼓舞等多种民间艺术形态,但是现今随着大量年轻人离开村寨外出打工,民族文化难以为继,大多数传承模式都是靠个别年逾古稀的传承人带几个亲传弟子,无法大面积保留和规模化传承,使得一些文化遗产濒临灭绝。因此,将本地特色的音乐文化遗产的保护传承与学校音乐教育相结合,以学校为依托,利用学校音乐教育来发掘传承本地音乐文化,使学校成为其宣传、保护、传承的主渠道,对于保护本地音乐文化是一种行之有效的方式。
现今,随着多元文化背景下的文化冲击,越来越多的学者开始把注意力聚焦在对中国自身传统文化的继承与发展方面,保护好、发展好本地的特色文化成为大家普遍关注的问题,学校作为文化传播的主要途径,理应承担起传承民族音乐文化的重任。但是由于受到种种条件的制约,致使现今大多数少数民族地区的学校音乐教育状况都不容乐观,无论是教学资源,还是教学理念,都存在一定的问题,这就需要切实下大力去改善,一方面地方政府应当加大对少数民族地区学校基础设施的投入,另一方面组建专门的民族音乐师资队伍,更新教育理念,赋予学校研究、传承和保护地方民族音乐文化遗产的责任。由此,不但可以发展少数民族地区的学校音乐教育,体现少数民族地区学校音乐教育的鲜明特色,且通过学校音乐教育的方式来保护和开发本地的音乐文化,从而拓宽了保护传承的渠道,使得少数民族地区的民间音乐文化得以更好的保护与传承。
注释:
①关新.《中华文化为母语的音乐在京研讨会纪要》,《中国音乐》,1996.2
②王书良等:《论语・秦伯》中国文化精华全集哲学卷,北京:中国国际广播出版社,1992:83.
③《礼记・乐记》,北京:北京华文出版社,2009:331.
参考文献:
[1]谢嘉幸,郁文武.音乐教育与教学法[M].北京:高等教育出版社,2006.
[2]管建华.21世纪初:世界多元文化音乐教育与音乐人类学在中国[J].音乐艺术(上海音乐学院学报),2009,(01).
关键词:药物基因组学;中药;基因组技术
中图分类号:[R932] 文献标志码:A 文章编号:1674-9324(2013)44-0160-02
中药是中华民族的瑰宝,随着生物科技的发展,我们也越来越关注运用现代科学技术对中药进行全面研究。基因组学是20世纪末发展起来的一门科学,随着人类基因组计划的完成及后基因组时代的到来,药物基因组(Pharmacogenomics),即研究遗传变异与药物反应相互关系的一门学科,是以提高药物的疗效和安全为目标,已成为新的研究重点。药物基因组学的发展为中药现代化提供了良好契机。
一、基因组学概述
1.基因组学定义。基因组学(Genomics)是研究基因组的科学,它以分子生物学、电子计算机和信息网络技术为研究手段,以生物体内全部基因为研究对象,在全基因组背景下和整体水平上探索生命活动内在规律及内在环境对机体影响机制的科学。它从全基因组的整体水平,而不是单个水平,来研究生命这一具有自组织和自装配特性的复杂系统,认识生命活动的规律,从而将更加接近生命的本质和面貌。
2.基因组研究内容。基因组学作为一门新兴学科,根据其研究对象,研究的重点及研究的目的不同,又分成多分支学科。根据研究的重点不同,基因组学可以分为结构基因组学和功能基因组学,结构基因组学以全基因组测序为目标,而功能基因组学以基因功能鉴定为目标。根据研究的对象不同还可将基因组学分为疾病基因组学、比较基因组学、药物基因组学和环境基因组学等。基因组研究可以理解为:①基因表达概况研究,即比较不同组织和不同发育阶段、正常状态与疾病状态,以及体外培养的细胞中基因表达模式的差异,技术包括传统的RTPCR,RNase保护试验,RNA印迹杂交等。②基因产物-蛋白质功能研究,包括单个基因的蛋白质体外表达方法,以及蛋白质组研究。③蛋白质与蛋白质相互作用的研究,利用酵母双杂交系统,单杂交系统(one-hybrid system),三杂交系统(thrdee-hybrid system)以及反向杂交系统(reverse hybrid system)等。
二、中药研究中常用的基因组技术
1.基因芯片技术。基因芯片又称DNA芯片(DNA chip)、DNA微阵列,是基于核酸、探针互补杂交技术原理,将大量的寡核酸片段按预先设定的排列顺序固化在载体表面如硅片或玻片上,并以此为探针,在一定的条件下与样品中的待测的靶基因片段或DNA序列杂交,通过检测杂交信号的强度及分布来实现对靶序列信息的快速检测和分析。目前已成为基因表达分析的最常用工具。基因芯片技术具有高通量、并行、高内涵的特点,这就为探索中药作用机理开辟了新领域。现代药理学分子水平研究表明药物作用都有其靶点,基因芯片可以确定靶组织的基因表达模式,从而将中药作用的靶基因全部显示出来。如陈明伟利用基因芯片技术检测中药单体人参皂苷20(R)Rg3对肿瘤血管生长调控因子(VEGF)蛋白表达的抑制作用。基因芯片技术还有助于确定中药有效部位,通过基因芯片技术迅速筛选起作用的中药有效成分。此外,基因芯片技术在中药材鉴定,道地药材筛选,中药新药研发等方面都有重要的应用。
2.DNA分子标记技术。①RAPD技术。RAPD即随机扩增多态性DNA,在1990年由Welsh与Williams等人发展起来,是建立在PCR(Polymerase Chain Reaction)基础之上的一种可对整个未知序列的基因组进行多态性分析的分子技术。其以基因组DNA为模板,以单个人工合成的随机多态核苷酸序列(通常为10个碱基对)为引物,在热稳定的DNA聚合酶作用下,进行PCR扩增。RAPD技术能快捷地辨别出不同遗传物质之间最微小的DNA偏差,而且耗材较少,不必提前获知其基因碱基顺序,通过对遗传资源的分析,从遗传多样性中得到详尽的遗传信息。现在,RAPD技术已成功鉴定细辛、蒲公英、龙胆草、人参及西洋参等药材。②RELP技术。RELP技术即限制性长度多态性分析技术,就是将DN段用限制性内切酶消化后,进行限制性片段长度多态性分析。RELP技术可以确定基因种属的特异性和药材的鉴定。陈美兰采用PCR-RFLP方法从分子水平鉴定人参中有效成分人参皂苷的含量,克服了因人参分布易受生长环境、储存条件和加工等诸因素影响,采用传统的形态学和组织学方法难以鉴别的缺点。
3.PCR技术。PCR技术即聚合酶链式反应技术,是体外扩增DNA序列的技术,广泛应用于目的基因的制备等几乎所有的分子生物学领域。DNA的保存需要严格的条件,在正常的中药材加工和储存过程中是很难做到的。王严明等通过PCR技术从保存了9年的药材龟板中提取DNA,成功进行了DNA指纹鉴定。
4.DNA测序技术。DNA测序技术,即测定DNA序列的技术。在分子生物学研究中,DNA的序列分析是进一步研究和改造目的基因的基础。该技术包括单向测序(Single-Read Sequencing),双向测序(Paied-End Sequencing)混合样品测序(Indexed Sequencing)。DNA测序技术在中药品质研究中有重要的应用,刘玉萍等采用PCR直接测序技术测定半夏及其伪品的18SrRNA基因核苷酸序列并作序列变异和选择性内切酶谱(PCR-SR)分析,为半夏正品鉴别提供分子依据。此外,该技术还可以用于中药的品质鉴定,仇萍等通过DNA指纹图谱从分子水平对中药材种质进行准确分析,从而为鉴定药材的真伪优劣提供依据。
三、展望
基因组学研究已把揭示生命本质提高到了一个全新水平,同样它在中药各个领域的渗透也使中药发展有了更广阔的前景,将推动中药在种材培育、药材鉴定、机理阐述和新药研发的进步,促进中药走出中国,走向世界。
参考文献:
[1]侯灿.后基因组时代的统一医药学——展望21世纪复杂性科学的一个新前沿(一)[J].中国中西医结合,2002,22(1):5-7.
[2]朱华,吴耀生.基因芯片技术在药用植物研究中的应用.中草药,2005,36(10):144l-1444.
[3]荆志伟,王忠,高思华等.基因芯片技术与中药研究—中药基因组学[J].中国中药,2007,32(4):289-292.
[4]陈明伟,倪磊,赵小革.人参皂苷R93对肿瘤血管生长调控因子蛋白表达抑制作用的研究[J].中国中药,2005,30(5):357-360.
[5]侯敏芳.分子生物技术在中药鉴定中的应用[J].浙江中医药大学学报,2010,3(4):120-130.
[6]陈美兰.采用RAPD和PCR-RFLP方法从分子水平鉴定人参[J].Biol Pharm Bull,2001,24(8):872-875.
[7]王亚明,周亚光,吴平等.中药龟板和鳖甲中DNA的提取和扩增[J].药学学报,1996,31(6):472-476.
药物基因组学是伴随人类基因组学研究的迅猛发展而开辟的药物遗传学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因多态性及药物作用包括疗效和毒副作用之间关系的学科。
基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、受体、离子通道作为药物作用的靶,是药物基因组学研究的关键所在。基因多态性可通过药物代谢动力学和药物效应动力学改变来影响麻醉药物的作用。
基因多态性对药代动力学的影响主要是通过相应编码的药物代谢酶及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生物转化等方面。与麻醉药物代谢有关的酶有很多,其中对细胞色素-P450家族与丁酰胆碱酯酶的研究较多。基因多态性对药效动力学的影响主要是受体蛋白编码基因的多态性使个体对药物敏感性发生差异。
苯二氮卓类药与基因多态性:咪唑安定由CYP3A代谢,不同个体对咪唑安定的清除率可有五倍的差异。地西泮是由CYP2C19和CYP2D6代谢,基因的差异在临床上可表现为用药后镇静时间的延长。
吸入麻醉药与基因多态性:RYR1基因变异与MH密切相关,现在已知至少有23种不同的RYR1基因多态性与MH有关。氟烷性肝炎可能源于机体对在CYP2E1作用下产生的氟烷代谢产物的一种免疫反应。
神经肌肉阻滞药与基因多态性:丁酰胆碱酯酶是水解琥珀酰胆碱和美维库铵的酶,已发现该酶超过40种的基因多态性,其中最常见的是被称为非典型的(A)变异体,与用药后长时间窒息有关。
镇痛药物与基因多态性:μ-阿片受体是阿片类药的主要作用部位,常见的基因多态性是A118G和G2172T。可待因和曲马多通过CYP2D6代谢。此外,美沙酮的代谢还受CYP3A4的作用。儿茶酚O-甲基转移酶(COMT)基因与痛觉的产生有关。
局部麻醉药与基因多态性:罗哌卡因主要由CYP1A2和CYP3A4代谢。CYP1A2的基因多态性主要是C734T和G2964A,可能影响药物代谢速度。
一直以来麻醉科医生较其它专业的医疗人员更能意识到不同个体对药物的反应存在差异。麻醉药的药物基因组学研究将不仅更加合理的解释药效与不良反应的个体差异,更重要的是在用药前就可以根据病人的遗传特征选择最有效而副作用最小的药物种类和剂型,达到真正的个体化用药。
能够准确预测病人对麻醉及镇痛药物的反应,一直是广大麻醉科医生追求的目标之一。若能了解药物基因组学的基本原理,掌握用药的个体化原则,就有可能根据病人的不同基因组学特性合理用药,达到提高药效,降低毒性,防止不良反应的目的。本文对药物基因组学的基本概念和常用麻醉药的药物基因组学研究进展进行综述。
一、 概述
二十世纪60年代对临床麻醉过程中应用琥珀酰胆碱后长时间窒息、硫喷妥钠诱发卟啉症及恶性高热等的研究促进了药物遗传学(Pharmacogenetics)的形成和发展,可以说这门学科最早的研究就是从麻醉学开始的。
药物基因组学(Phamacogenomics)是伴随人类基因组学研究的迅猛发展而开辟的药物遗传学研究的新领域,主要阐明药物代谢、药物转运和药物靶分子的基因多态性及药物作用包括疗效和毒副作用之间的关系。它是以提高药物的疗效及安全性为目标,研究影响药物吸收、转运、代谢、消除等个体差异的基因特性,以及基因变异所致的不同病人对药物的不同反应,并由此开发新的药物和用药方法的科学。
1959年Vogel提出了“药物遗传学”,1997年Marshall提出“药物基因组学”。药物基因组学是药物遗传学的延伸和发展,两者的研究方法和范畴有颇多相似之处,都是研究基因的遗传变异与药物反应关系的学科。但药物遗传学主要集中于研究单基因变异,特别是药物代谢酶基因变异对药物作用的影响;而药物基因组学除覆盖药物遗传学研究范畴外,还包括与药物反应有关的所有遗传学标志,药物代谢靶受体或疾病发生链上诸多环节,所以研究领域更为广泛[1,2,3]。
二、基本概念
1.分子生物学基本概念
基因是一个遗传密码单位,由位于一条染色体(即一条长DNA分子和与其相关的蛋白)上特定位置的一段DNA序列组成。等位基因是位于染色体单一基因座位上的、两种或两种以上不同形式基因中的一种。人类基因或等位基因变异最常见的类型是单核苷酸多态性(single-nucleotide polymorphism,SNP)。目前为止,已经鉴定出13 000 000多种SNPs。突变和多态性常可互换使用,但一般来说,突变是指低于1%的群体发生的变异,而多态性是高于1%的群体发生的变异。
2.基因多态性的命名法:
(1)数字前面的字母代表该基因座上最常见的核苷酸(即野生型),而数字后的字母则代表突变的核苷酸。例如:μ阿片受体基因A118G指的是在118碱基对上的腺嘌呤核苷酸(A)被鸟嘌呤核苷酸(G)取代,也可写成118A/G或118A>G。
(2)对于单个基因密码子导致氨基酸转换的多态性编码也可以用相互转换的氨基酸的来标记。例如:丁酰胆碱酯酶基因多态性Asp70Gly是指此蛋白质中第70个氨基酸-甘氨酸被天冬氨酸取代。
三、药物基因组学的研究内容
基因多态性是药物基因组学的研究基础。药物效应基因所编码的酶、受体、离子通道及基因本身作为药物作用的靶,是药物基因组学研究的关键所在。这些基因编码蛋白大致可分为三大类:药物代谢酶、药物作用靶点、药物转运蛋白等。其中研究最为深入的是麻醉药物与药物代谢酶CYP45O酶系基因多态性的相关性[1,2,3]。
基因多态性可通过药物代谢动力学和药物效应动力学改变来影响药物作用,对于临床较常用的、治疗剂量范围较窄的、替代药物较少的麻醉药物尤其需引起临床重视。
(一)基因多态性对药物代谢动力学的影响
基因多态性对药物代谢动力学的影响主要是通过相应编码的药物代谢酶及药物转运蛋白等的改变而影响药物的吸收、分布、转运、代谢和生物转化等方面[3,4,5,6]。
1、药物代谢酶
与麻醉药物代谢有关的酶有很多,其中对细胞色素-P450家族与丁酰胆碱酯酶的研究较多。
(1)细胞色素P-450(CYP45O)
麻醉药物绝大部分在肝脏进行生物转化,参与反应的主要酶类是由一个庞大基因家族编码控制的细胞色素P450的氧化酶系统,其主要成分是细胞色素P-450(CYP45O)。CYP45O组成复杂,受基因多态性影响,称为CYP45O基因超家族。1993年Nelson等制定出能反应CYP45O基因超家族内的进化关系的统一命名法:凡CYP45O基因表达的P450酶系的氨基酸同源性大于40%的视为同一家族(Family),以CYP后标阿拉伯数字表示,如CYP2;氨基酸同源性大于55%为同一亚族(Subfamily),在家族表达后面加一大写字母,如CYP2D;每一亚族中的单个变化则在表达式后加上一个阿拉伯数字,如CYP2D6。
(2)丁酰胆碱酯酶
麻醉过程中常用短效肌松剂美维库铵和琥珀酰胆碱,其作用时限依赖于水解速度。血浆中丁酰胆碱酯酶(假性胆碱酯酶)是水解这两种药物的酶,它的基因变异会使肌肉麻痹持续时间在个体间出现显著差异。
2、药物转运蛋白的多态性
转运蛋白控制药物的摄取、分布和排除。P-糖蛋白参与很多药物的能量依赖性跨膜转运,包括一些止吐药、镇痛药和抗心律失常药等。P-糖蛋白由多药耐药基因(MDR1)编码。不同个体间P-糖蛋白的表达差别明显,MDR1基因的数种SNPs已经被证实,但其对临床麻醉的意义还不清楚。
(二)基因多态性对药物效应动力学的影响
麻醉药物的受体(药物靶点)蛋白编码基因的多态性有可能引起个体对许多药物敏感性的差异,产生不同的药物效应和毒性反应[7,8]。
1、蓝尼定受体-1(Ryanodine receptor-1,RYR1)
蓝尼定受体-1是一种骨骼肌的钙离子通道蛋白,参与骨骼肌的收缩过程。恶性高热(malignant hyperthermia,MH)是一种具有家族遗传性的、由于RYR1 基因异常而导致RYR1存在缺陷的亚临床肌肉病,在挥发性吸入麻醉药和琥珀酰胆碱的触发下可以出现骨骼肌异常高代谢状态,以至导致患者死亡。
2、阿片受体
μ-阿片受体由OPRM1基因编码,是临床使用的大部分阿片类药物的主要作用位点。OPRM1基因的多态性在启动子、内含子和编码区均有发生,可引起受体蛋白的改变。吗啡和其它阿片类药物与μ-受体结合而产生镇痛、镇静及呼吸抑制。不同个体之间μ-阿片受体基因的表达水平有差异,对疼痛刺激的反应也有差异,对阿片药物的反应也不同。
3、GABAA 和 NMDA受体
γ-氨基丁酸A型(GABAA)受体是递质门控离子通道,能够调节多种麻醉药物的效应。GABAA受体的亚单位(α、β、γ、δ、ε和θ)的编码基因存在多态性(尤其α和β),可能与孤独症、酒精依赖、癫痫及精神分裂症有关,但尚未见与麻醉药物敏感性有关的报道。N-甲基-D-天门冬氨酸(NMDA)受体的多态性也有报道,但尚未发现与之相关的疾病。
(三)基因多态性对其它调节因子的影响
有些蛋白既不是药物作用的直接靶点,也不影响药代和药效动力学,但其编码基因的多态性在某些特定情况下会改变个体对药物的反应。例如,载脂蛋白E基因的遗传多态性可以影响羟甲基戊二酸单酰辅酶A(HMG-CoA)还原酶抑制剂(他汀类药物)的治疗反应。鲜红色头发的出现几乎都是黑皮质素-1受体(MC1R)基因突变的结果。MC1R基因敲除的老鼠对麻醉药的需求量增加。先天红发妇女对地氟醚的需要量增加,热痛敏上升而局麻效力减弱。
四、苯二氮卓类药与基因多态性
大多数苯二氮卓类药经肝脏CYP45O代谢形成极性代谢物,由胆汁或尿液排出。常用的苯二氮卓类药物咪唑安定就是由CYP3A代谢,其代谢产物主要是1-羟基咪唑安定,其次是4-羟基咪唑安定。在体实验显示不同个体咪唑安定的清除率可有五倍的差异。
地西泮是另一种常用的苯二氮卓类镇静药,由CYP2C19和CYP2D6代谢。细胞色素CYP 2C19的G681A多态性中A等位基因纯合子个体与正常等位基因G纯合子个体相比,地西泮的半衰期延长4倍,可能是CYP2C19的代谢活性明显降低的原因。A等位基因杂合子个体对地西泮代谢的半衰期介于两者之间。这些基因的差异在临床上表现为地西泮用药后镇静或意识消失的时间延长[9,10]。
五、吸入麻醉药与基因多态性
到目前为止,吸入麻醉药的药物基因组学研究主要集中于寻找引起药物副反应的遗传方面的原因,其中研究最多的是MH。药物基因组学研究发现RYR1基因变异与MH密切相关,现在已知至少有23种不同的RYR1基因多态性与MH有关。
与MH不同,氟烷性肝炎可能源于机体对在CYP2E1作用下产生的氟烷代谢产物的一种免疫反应,但其发生机制还不十分清楚 [7,11]。
六、神经肌肉阻滞药与基因多态性
神经肌肉阻滞药如琥珀酰胆碱和美维库铵的作用与遗传因素密切相关。血浆中丁酰胆碱酯酶(假性胆碱酯酶)是一种水解这两种药物的酶,已发现该酶超过40种的基因多态性,其中最常见的是被称为非典型的(A)变异体,其第70位发生点突变而导致一个氨基酸的改变,与应用肌松剂后长时间窒息有关。如果丁酰胆碱酯酶Asp70Gly多态性杂合子(单个等位基因)表达,会导致胆碱酯酶活性降低,药物作用时间通常会延长3~8倍;而丁酰胆碱酯酶Asp70Gly多态性的纯合子(2个等位基因)表达则更加延长其恢复时间,比正常人增加60倍。法国的一项研究表明,应用多聚酶链反应(PCR)方法,16例发生过窒息延长的病人中13例被检测为A变异体阳性。预先了解丁酰胆碱酯酶基因型的改变,避免这些药物的应用可以缩短术后恢复时间和降低医疗费用[6,12]。
七、镇痛药物与基因多态性
μ-阿片受体是临床应用的阿片类药的主要作用部位。5%~10%的高加索人存在两种常见μ-阿片受体基因变异,即A118G和G2172T。A118G变异型使阿片药物的镇痛效力减弱。另一种阿片相关效应—瞳孔缩小,在118G携带者明显减弱。多态性还可影响阿片类药物的代谢。
阿片类药物的重要的代谢酶是CYP2D6。可待因通过CYP2D6转化为它的活性代谢产物-吗啡,从而发挥镇痛作用。对33名曾使用过曲马多的死者进行尸检发现,CYP2D6等位基因表达的数量与曲马多和O-和N-去甲基曲马多的血浆浓度比值密切相关,说明其代谢速度受CYP2D6多态性的影响。除CYP2D6外,美沙酮的代谢还受CYP3A4的作用。已证实CYP3A4在其它阿片类药如芬太尼、阿芬太尼和苏芬太尼的代谢方面也发挥重要作用。
有报道显示儿茶酚O-甲基转移酶(COMT)基因与痛觉的产生有关。COMT是儿茶酚胺代谢的重要介质,也是痛觉传导通路上肾上腺素能和多巴胺能神经的调控因子。研究证实Val158Met COMT基因多态性可以使该酶的活性下降3~4倍。Zubieta等报道,G1947A多态性个体对实验性疼痛的耐受性较差,μ-阿片受体密度增加,内源性脑啡肽水平降低[13~16]。
八、局部麻醉药与基因多态性
罗哌卡因是一种新型的酰胺类局麻药,有特有的S-(-)-S对应体,主要经肝脏代谢消除。罗哌卡因代谢产物3-OH-罗哌卡因由CYP1A2代谢生成,而4-OH-罗哌卡因、2-OH-罗哌卡因和2-6-pipecoloxylidide (PPX)则主要由CYP3A4代谢生成。CYP1A2的基因多态性主要是C734T和G2964A。Mendoza等对159例墨西哥人的DNA进行检测,发现CYP1A2基因的突变率为43%。Murayama等发现日本人中CYP1A2基因存在6种导致氨基酸替换的SNPs。这些发现可能对药物代谢动力学的研究、个体化用药具有重要意义[17,18,19]。
九、总结与展望
【摘要】
整体医学是一种弱整体观,理论基础是还原科学观。未来的整体医学是以中医学为核心的功能与结构统一的医学体系。中医学的整体观经历了一个发展过程,中医现代化必须从《内经》的整体观开始,而中医基因组学和中医心理学是关键。中医现代化的目的就是用现代的语言和当代科学技术重新描述人与自然、人与社会平衡条件下的人整体及其运动规律。整体医学的崛起将给中医药学的国际化带来机遇。
【关键词】 整体医学; 基因组; 中医心理学; 中医基因组学
1 整体医学
整体医学是现代社会正在兴起的一种医学体系,将医学看成一个有机整体,从整体上来认识医学的性质、对象和目的。整体医学与传统中医药学在外表近似,但是本质有所不同。整体医学从本质上说,是一种系统论。整体医学就是用整体观认识医学的各个要素。 而整体医学的整体观是建立在现代科学技术所认识的所有联系的基础上,从科学的长远发展上来说,这是一种弱整体观,一种综合论,理论基础是还原科学观。
医学的发展大致经历了三个时代,即经验医学时代、实验医学时代和当前的整体医学时代。经验医学时代为自然哲学医学模式,实验医学时代为生物医学模式,而整体医学时代为生物-心理-社会医学模式。当今医学的特点是处在实验医学时代向整体医学时代的过渡时期,整体医学的理论体系尚未正式形成,但已具雏形。现代的整体医学是现代科学技术尤其是生命科学发展的结果,但是生命科学——基因组学正在走向完善的基因组联系,将来的发展必然在基因组的普遍联系上证明中医的基本理论,所以随着基因组学的整体化发展,以及中医学的跨越式发展,现代整体医学必然走向更完备的、以中医学为核心的整体医学。
2 中医学现代化
整体医学的崛起给中医药学国际化带来了机遇,整体医学与中医药学的关系是十分密切的。从理论体系看,整体医学的理论与中医药学的学说实际上是相通的。如《黄帝内经》中就提出“人与天地相参”的观点。
中医药学其实就是一门完整的整体医学。中医学有着对人体自身整体性及人与自然、社会环境相统一的认识。但是中医学又是一门模糊的整体科学。《黄帝内经》建立于二千多年前,是古人观察人体与自然所建立的整体医学,其本质就是结构与功能相统一的整体观,但是由于社会发展水平和极端落后的科学技术条件的限制,这个时候形成的整体只能是粗略与模糊的。随着时代的发展,由于封建礼教的限制,加之受中国哲学观重用轻体、重道轻器价值取向的影响,人们开始疏于人体具体的形态和结构,歧视人体解剖,对人体的细节和局部方面未做较深入的剖析研究,随之《内经》的结构功能统一的整体观逐渐演变为单纯的功能性的整体观。由于缺乏了结构和形态的支持,不能得到有效的可见的物质证据来说明自己的科学性,本身也缺乏创新发展,所以随着以结构为主的现代医学的发展,中医学屡次受到打击和排斥。
中医药学的发展必须从《黄帝内经》的整体思想开始做起,真正认识整体的本质,结合现达的科学技术尤其是分子生物学技术,发展新时代的完整的结构与功能统一的整体观。所谓中医现代化就是用现代语言和科学技术重新描述人与自然、人与社会平衡条件下的人整体的运动规律。
当代分子生物学在迅猛发展,借助电子计算机技术处理大量数据,基因组学得到了极大的发展。在足够的时间内,基因组学很可能走向整体,最后可能在基因的相互联系中发现了中医的阴阳五行所存在的基因证据,这时候中医就会被分子生物学所吸收,现代的整体医学就可能吸收了中医药学的优势发展成为完善的结构与功能统一的整体医学,中医不再是中国的中医了。这是好事,但是对于国家和民族,对于中医学的发源地,我们将失去一次崛起的机会。
3 整体的含义
中医学是整体科学,西医学是还原科学。中医现代化首先必须是基础理论的现代化,而基础理论的现代化又以整体为前提,整体观的现代化为首要。 以前中医现代化的失败在于从传统的功能整体观方法论上而不是从整体的根本意义上看待现代化。而西医也是从自身的方法论上看待中医,所以在这种前提下根本的中西医结合是不可能的。
整体是物质的结构与功能的统一,两者互相依存、不能分离,结构是功能的基础,功能是结构的展现。整体是局部的整体,局部是整体的局部。 整体是物质形、气、能的统一,是结构与功能的统一,是一种客观实在。
任何个体都是由两种以上的物质要素混化而成的。这一混化物可以呈质地均匀无别的气态,也可以呈实体存在的实体态。前者固然是一体,后者,尽管它的实体组成部分可以形形,各部分的功能也可千差万别,但该实体物的气却遍布全体、贯穿内外,使组元形成有机联系的和谐整体。这里所说的整体,指形成气的时空结构而言,它是维系气独立性、特殊性的根本,也可把整体理解为气的结构模式。譬如,设某模式为特殊的比附,这种特定的形状结构的性质是不受其所占位置的大小影响的。因而时空结构模式一旦形成,不仅可以使全部事物的各个部分都处在同一结构上,而且这一整体特以渗透到所属各个局部中去,使在这一整体中的局部组元可以体现整体,这是与组元作为独立存在物的根本区别:①整体的实在性。②整体的联系性:任何整体都在和其他整体处在密切的联系当中,联系是这个整体存在的必然条件,没有联系便没有这个整体存在的必然性了。③整体的层次性:任何整体都是大的整体的一个组成部分,而这个整体有包含了小的层次的整体,小的局部组成。④整体规律的类似性:一物生来有一身,一物自有一乾坤。每个整体都是从类似规律演化而来,从无极演化,有太极,从这太极演化阴阳,以至这一整体全部。⑤整体的进化性:宇宙从无极逐渐演化太极,以至现在的万物,在发展至人这个宇宙最高级的生命个体,便是整体演化的最好的证明。
气是中医学的核心。现代医学是从有形的结构上研究,形是气所聚,形散为气,气是形的场,形气是统一的。气是整体的体现。 那么从形气理论的两种医学也是可以统一的。
整体性是贯穿人体宏观和微观的根本。从宏观逐渐微观,每一层次都是结构和功能的统一,每一层次都服从统一的整体性,而整体性是每一层次运动联系的根本。这个的整体规律就是中医基础理论,这个规律指导着每一层次的运动和相互作用。
4 建立中医基因组学
基因组是现代生物学还原到分子的体现,由此生命科学开始转向整体科学。现在的功能基因组学就是这一转向的体现。基因组是整体科学与还原科学的交汇点。
基因组是人体的微观信息调控中心,更体现了人体的整体性。它是人的精气的凝聚态,含有生命的全部信息。宏观人体整体和微观的人体基因组整体性是统一的和同源的,基因组整体是由五脏功能模块组成,这五脏又有亚细的模块组成,这亚细的模块又有更微小的基因模块组成,各个大模块亚细模块之间存在协调的相互关系,这个关系就是微观经络系统。基因功能模块由相应的基因组成,基因组整体是结构和功能统一的整体。建立中医特色的基因组学是为了完善中医药学理论,发展整体医学。建立微观基因组整体辨证论治,并没有否定传统意义上的辨证论治观,而是将其发展一步,深入到基因组整体内部,将整体观深入到基因组整体中,将宏观整体辨证和微观基因组整体辨证结合起来,建立了一个从外至里、从里至外的整体的辨证论治观,建立宏观和微观统一的整体的辨证体系。这才是科学的完整的辨证论治观。
建立中医基因组学是为了在基因研究的基础上,结合证候研究,证明中医证候理论的正确性;进而在分子基础上证明中医脏腑经络理论的正确性,最后深入基因组研究,深入了解基因组所蕴含的生命本质以及生命的发展。
中医基因组学的建立是中医现代化走向未来的一个关键点,整体科学与还原科学都在这一尖端领域进行着研究,而中医学进入这一领域,一可以完善自己的理论体系,解译基因组所包含的全部生命信息,促进人类的健康事业;二则可以引导还原科学的整体化演变。
5 中医心理学的发展
这是中医心理学与现代心理学结合的关键点。也是中医现代化的另一个关键点。
中医心理学原来是中医学的一个分支,以心理的整体功能为本体论述人的心理的,讲的是人的先天功能。传统中医学建立在远古极端落后的社会经济条件下,人们看不出人的社会本质和社会发展,而现代社会条件下,人的心理与健康都受到了社会的极大影响,发生了很大改变,中医心理学也必须随时代的发展而发展。
现代心理学是以人的大脑的具体结构为生理基础,论述人在社会中的各种行为性格等,这是人的后天功能,对人们的各种行为意识均有科学的描述。但是现代心理学没有与人的整体功能结合在一起,没有指出人的根本的社会本质,所以其发展也是有局限的。现代心理学是建立在还原论基础上的,而人的心理是整体的,所以它本身具有很大的缺陷。
人的各种语言、行为以及意识思维等都是在人的元神的支配下进行的,元神是最根本的自我。而心理的进行是在社会背景条件下的,一切心理行为都有社会背景的,社会背景形成了人的心理模块、人格模式,人格模式下的元神系统构成了人的社会自我,心理的行为是在元神的支配下通过心理模块进行的,以此结合这两个心理学,可以从根本上解决人的心理问题。佛学对人的心性理论有深刻认识,但是借鉴之前必须彻底抛弃佛学所具有的唯心思想,心性理论中性与元神相关,而心与元神、元神支配下形成的人格模式有关。
元神可以接受信息,加工、储存、提取信息,发放信息三个方面。人出生时意识是白净的,但是在人从出生开始,人就在不断接受信息,在一定社会文化背景下不断学习,不断加深信息,积累信息,使元神中的信息不断强化与激活而得到强化,最终形成了比较固定的人格参照模式。这个模式一旦形成,就形成了新进入信息的文化背景,形成了人各种意识、行为的模板,形成了特定的性格模式。人的性格模式是在元神支配下形成的,但是性格模式一旦形成就对人的元神人的生理发生作用,形成了人的后天行为的文化背景和模式。人的性格模式与人的后天社会文化环境有很大关系,它也不是固定不变的。
中医心理学和现代心理学是功能与应用的结合。元神是人的整体功能,人的五脏情志、七情等都是人的元神功能的一个方面,但是这些情志的发生必然受到人的性格模式的影响,性格模式又决定了情志的发生模式。中医心理学和现代心理学都是不完整的,各讲述了人心理的一个方面,结合起来才是真正的人的心理整体过程。
人的心理在当今社会是一个比较陌生的领域,佛学、现代心理学、中医心理学都有各自的认识,但是它们又不是完全的,正确的认识是将它们结合起来,建立科学的辨证唯物主义的整体的心理学体系。现代中医心理学的建立不但解决了人的意识的根本问题,促进人类的心理健康发展,而是还对社会的发展有很大的潜在的作用。
6 结论
【关键词】宏基因组学;微生物群落;遗传物质;口腔
【中图分类号】Q781
【文献标志码】A
宏基因组学认为,生命研究的对象应是生物环境中全部微小生物的基因组,即特定环境下所有生物遗传物质的总和。它包含了可培养的和不可培养的微生物的基因总和,微生物主要包括环境样品中的细菌和真菌;因此,宏基因组学就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及与环境之间的关系等为研究目的的新的微生物群落研究方法,也称为微生物环境基因组学、元基因组学或生态基因组学。
利用宏基因组学技术研究口腔微生物,无需单一分离培养某一种类的微生物,即可直接在基因水平上研究口腔微生物,包括可培养和不可培养微生物。宏基因组学应用于口腔微生物的研究,主要包括两个方面:一方面进行微生物生态学研究,从整体微生物群落水平来研究口腔微生物,揭示口腔微生物群落多样性及其变化;另一方面是进行口腔微生物及其基因的研究,从中筛选到新的功能基因及其产物。通过这两方面的研究,较全面地了解口腔微生物的群落结构和功能基因组,为深入探索口腔微生物的代谢活动,最大限度地发掘口腔微生物资源提供可能。
1 宏基因组学的研究方法
宏基因组学是从特定环境中直接分离所有微生物的DNA,选择合适的载体用于克隆DN段,将DN段克隆到宿主细胞中进行表达,根据某些生物活或基因序列筛选有价值的克隆并进行其功能分析。
1.1宏基因组文库的构建
1.1.1环境微生物DNA的提取 环境样品DNA的提取是基因组文库构建中最重要的一步,不仅要尽可能地将环境中所有微生物的DNA提取出来,而且还要保证一定的DN段长度和完整性。根据提取样品总DNA前是否需要分离细胞,可将其提取方法分为原位裂解法和异位裂解法。原位裂解法可直接破碎样品中的微生物细胞而使其DNA得以释放。原位裂解法无需对样品微生物进行复苏,黏附颗粒上的微生物细胞亦能被裂解,所得DNA能更好地代表微生物的多样性。由于原位裂解法所提取的DN段仅为1~50kb,故其通常用于构建小片段插入文库(以质粒或入噬菌体为载体)的DNA提取。异位裂解法则先采用物理方法将微生物从样品中分离出来,然后以较温和的方法抽提其DNA。此法提取可以获得长度为20~500kb的大片段DNA,而且纯度高,但却容易丢失微生物物种信息。该方法适用于构建大片段插入文库(以黏粒或细菌人工载体为载体)的DNA提取。
1.1.2载体选择 目的基因能否有效地转入宿主细胞并在其中高表达,在很大程度上取决于载体。通常用于DNA克隆的载体包括质粒、黏粒和细菌人工染色体(bacterial artificial chromosome,BAC)等。质粒一般用于克隆小于10kb的DN段,适用于单基因的克隆与表达。黏粒又称柯斯质粒或柯斯载体,用于克隆大片段的DNA分子,其克隆外源DN段的极限高达350kb,远远超过质粒载体的克隆能力。BAC用于克隆150kb左右大小的DN段,最多可保存300kb个碱基对,转化率高,而且其以环状结构存在于细菌体内,易于分辨和分离纯化。另外,构建能容纳40kb外源DNA插入片段的fosmid文库也有报道。
1.1.3宿主选择 目前,常用的宿主主要有大肠埃希菌以及链霉菌属或假单胞菌属。一些缺陷型突变体细菌也可以作为宿主进行宏基因组文库的功能筛选。宿主的选择主要应考虑其转化率和宏基因表达以及重组载体在宿主细胞中的稳定性和目标性状的筛选等。对于任何宏基因组来源的基因来说,大肠埃希菌依然是最理想的克隆和表达宿主。也可以用其他宿主菌,例如被用来鉴定与新抗生素生物合成相关基因的浅青紫链霉菌和一些革兰阴性细菌。也可以用穿梭黏粒或BAC载体将构建于大肠埃希菌的文库转入其他宿主,如链霉菌属或假单胞菌属中。根据不同微生物产生活性物质的差异和研究目标的不同,选择不同的宿主。随着技术的成熟和新宿主的选择,基因筛选率和功能基因检测率得以提高,进而宏基因组文库的目标基因的表达也得以提高。
1.2宏基因组文库的筛选
根据研究目的,宏基因组文库的筛选通常有功能筛选和序列筛选两种方法。功能筛选最常用方法是根据重组克隆产生一些酶蛋白功能活性,采用各种检测手段,挑选活性克隆子,得到完整的功能基因和带有目的基因的基因簇,发现全新的基因或活性物质。功能筛选首先要求功能基因或带有目的的基因簇在宿主中表达,但因其受到检测手段的限制,往往是在数千个甚至数百万个重组克隆子中才能检测到有用的活性克隆。序列筛选是依赖于目的基因的保守DNA序列,以序列相似性为基础,执行某类功能的酶可能具有相似的基因序列,根据已有的序列信息设计引物,进行PCR扩增或杂交筛选阳性克隆子。序列筛选一般只能获得结构基因的片段,而不能获得完整的功能基因;但是,它可以将扩增产物进行标志并将其作为探针筛选宏基因文库,以获得完整的功能基因。用这种方法有可能筛选到某一类结构或功能的蛋白质中的新分子。
宏基因组文库的筛选除了功能筛选和序列筛选法外,还可以采用底物诱导基因表达法(sub-strate-induced gene expression,SIGEX)。SIGEX是以代谢相关基因或酶基因往往有底物存在的条件下才表达,反之则不表达的原理来筛选目的代谢基因的。SIGEX的优点在于它为高通量筛选提供了保障,而且不需要对底物进行修饰。
2 宏基因组学在口腔微生物研究领域中的应用
2.1口腔微生物群落结构分析
口腔是一个由大量微生物组成的复杂的生态系统,人类口腔中寄居着大约700多种细菌。人类口腔适宜的温度、湿度,丰富的营养来源,结构的复杂性和理化性质的不同,为口腔内各种微生物的生长、繁殖和定居提供了非常适宜的环境,因而也就造就了口腔微生物群的多样性。口腔微生物大部分可以相互关联并形成生物膜,抵抗机械清除力或抗生素治疗,但是在环境变化或其他口腔情况(如个人口腔卫生质量)变化触发时,它们也可成为致病微生物。
菌斑指示剂和传统培养方法以及常规的PCR特异性扩增的分子生物学方法在某种程度上都不能完整地反映整个微生物群落的组成和动态变化,不适合用其研究复杂的口腔微生物群落。此外,在难培养或不可培养的微生物当中,可能也有致病菌匿藏其中,因而也不能有效地用其研究与病程相关的微生物。
随着分子生物学和分子遗传学技术的发展,在基因组学的基础上诞生了宏基因组学这一门崭新的交叉学科。宏基因组学是继发明显微镜以来研究微生物最重要的进展,将为微生物世界带来革命性的突破。Turnbaugh等利用16S rRNA基因测序发现:胖人和瘦人的内脏中有着不同的微生物菌群;当胖人减肥的时候,他们内脏中的细菌群基因也同样发生变化,更加接近瘦人内脏中的细菌群。
基于常规的口腔细菌培养方法和细胞学显微镜检查,目前公认变异链球菌和乳酸杆菌等是引起龋病的主要致病菌;但是,随着宏基因组学在微生物的种类和多样性研究中的应用,有关龋病是由单一细菌引起或是由生物膜中的多种细菌引起的定论面临质疑。目前普遍认为,龋病并不是仅由变异链球菌或其他任何一种菌斑中的细菌单独引起的,而是由各种产酸菌相互作用的结果。
Aas等在对51名龋患者的1285个菌斑细菌的16S rRNA序列进行分析后发现,50%的细菌不能识别,一些新的细菌菌种与龋病的发生有关。Keijser等在用焦磷酸测序法分析健康人涎液和牙菌斑中细菌群时发现,口腔微生物具有多样性。即他们从98名健康成人口腔中取得的牙菌斑就由1万个微生物表型组成,其种族数远远超过之前报道的通过培养或者传统克隆和测序技术定义的700种口腔微生物表型。
Zaura等在利用焦磷酸测序技术检测了3名健康高加索人口腔内5个部位的微生物组后发现,在健康人的口腔中微生物有3600种独特物序列,超过500种不同的分类单元或“物种级”表型和88~104种高级分类群,每个单独的样品平均藏匿有266种分类单元。从这3名个体微生物组的测序结果分析可知,高级分类群、分类单元和独特序列都有一个较大的重叠,即84%的高级分类群、75%的分类单元和65%的独特序列至少在这3个微生物组中的2个组中存在。这3名个体的总共6315个独特序列中有1660个相同序列,这1660个相同序列,即“核心微生物组”贡献了66%的测序内容,重叠的分类单元贡献了94%的内容,而几乎所有的内容(99.8%)都属于共享的高级分类群。
研究证实,在不同的健康人的口腔微生物中,大部分微生物组是相同的,提示可能存在健康口腔核心微生物组。Kanasi等在对80名患龋和无龋婴幼儿牙菌斑微生物的16S rRNA序列克隆分析中发现,两者之间存在着139种不同微生物。Gross等通过酶促法测序技术对无龋和患龋年轻恒牙牙菌斑微生物的16S rRNA序列进行分析后认为,龋齿中产酸菌除了变异链球菌和乳酸杆菌外,月形单胞菌、奈瑟菌和缓症链球菌同样是潜在的产酸细菌。Willner等等在利用高通量测序技术检测了19名健康人口腔咽部的病毒宏基因组序列后发现,口腔咽部是一个潜在的被噬菌体T3侵蚀的肠道菌储存库。另外,他们还发现了编码血小板凝集因子PblA和PblB的两个寄生于变异链球菌中的噬菌体sm-1基因,而之前有研究称在心内膜上发现了变异链球菌。这说明,口腔中的病毒与心脏疾病存在潜在的联系。
宏基因组学技术可以避开传统的培养方法,在DNA水平来探讨口腔微生物群落结构及其与环境微生物的关系。微生物多样性在基因水平上主要表现为基因组大小和基因数目的多样性,遗传物质化学组成的多样性和某些特异性序列的差异。宏基因组技术为研究口腔微生物复杂群落和多样性提供了重要的技术手段,通过快速可靠地获得口腔微生物中各种微生物的菌落指纹和特征性核苷酸序列,以系统分析口腔微生物的多样性及其分类地位,发掘丰富的口腔微生物资源。
2.2口腔微生物宏基因组文库中的新型基因筛选及其功能
宏基因组学除了研究微生物群落结构及其功能外,还可用于发现新的基因和开发新的微生物活性物质。Jiang等构建土壤宏基因文库,成功地克隆和鉴定出一种新型的β-葡萄糖苷酶基因,该基因包含一个由151个氨基酸编码组成的多肽。该研究对深入挖掘土壤未培养微生物的β-葡萄糖苷酶基因资源和该基因功能具有的重要意义。陈春岚等从富集培养物宏基因组文库中筛选出一个表达木聚糖酶基因umxyn10B,该基因大小为999bp,编码产物的氨基酸序列具有较好的同源性。对其功能进行研究发现,该酶具有优良的理化特性,可广泛应用于食品、能源、造纸和纺织等行业。Yu等利用宏基因功能筛选发现的两个新型低温活性酶脂EstM-N1和EstM-N2,属于细菌脂肪分解酶Ⅷ家族成员。这一发现将推动生物催化剂的应用。
当前,宏基因组学技术已经在微生物学研究的诸多领域,尤其是在发现具有潜在应用价值的次生代谢产物方面显示出了无穷的魅力,但是,利用宏基因组技术探索口腔微生物的新的功能基因尚处于起步阶段。Warburton等对口腔细菌群体中的耐药基因进行了分析,结果发现一个新的耐四环素基因tet32能够使四环素失活。虽然对口腔微生物新的功能基因及其功能研究还太少,但依然可以借助宏基因组学技术发掘新基因,以利用这些新基因在口腔医学行业发挥应有的作用。
[关键词] 中药; 体内代谢; 中药基因组学; 肠道宏基因组学; 个体化医疗
Genomic research of traditional Chinese medicines in vivo metabolism
XIAO Shuiming1*, BAI Rui2, ZHANG Xiaoyan3
(1. Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences,
Beijing 100700, China;
2.College of Pharmacy and Chemistry, Dali University, Dali 671000, China;
3. College of Life Science, Huaibei Normal University, Huaibei 235000, China)
[Abstract] Gene is the base of in vivo metabolism and effectiveness for traditional Chinese medicines (TCM), and the gene expression, regulation and modification are used as the research directions to perform the TCM multicomponent, multilink and multitarget in vivo metabolism studies, which will improve the research on TCM metabolic proecess, effect target and molecular mechanism. Humans are superorganisms with 1% genes inherited from parents and 99% genes from various parts of the human body, mainly coming from the microorganisms in intestinal flora. These indicate that genetically inherited human genome and "second genome" could affect the TCM in vivo metabolism from inheritance and "environmental" aspects respectively. In the present paper, typical case study was used to discuss related TCM in vivo metabolic genomics research, mainly including TCM genomics research and gut metagenomics research, as well as the personalized medicine evoked from the individual difference of above genomics (metagenomics).
[Key words] traditional Chinese medicines(TCM); in vivo metabolism; TCM genomics; gut metagenomics; personalized medicine
doi:10.4268/cjcmm20162204
中药体内代谢研究是阐明中药作用机制的重要途径,也一直是中药现代化研究的难点。虽然同是用于疾病治疗的药效物质,中药是与化学药物迥然有别的复杂生物体系,它作用于人体时响应的是多维非线性的复杂效应[1]。很多中药的疗效经过长期临床实践已经得到证实,但进入体内发挥药效的化学成分及其体内过程并不清楚。研究中药体内代谢可以了解中药在体内的代谢途径、存在形式、影响因素以及药效物质基础。中药体内代谢及药效发挥的基本环节是药物分子与机体生物分子之间的直接或间接的相互作用,引起从遗传信息到整体功能实现中的多个层面的结构与功能状态的改变,而决定这些层面的结构与功能的基础是基因。因此,以基因表达、调控及修饰为研究方向,进行中药多组分、多环节、多靶点的体内研究,可能有助于阐明中药体内代谢过程、作用靶点和分子机制[2]。同时,人作为一个超级生物体,只有1%的基因遗传自父母,其余99%的基因都来自分布人体各部位的微生物,其中肠道是微生物定植数目最高的器官[34]。因而,肠道微生物基因组被誉为“人类的第二个基因组(our other genome)”[5]。
近年来,基于“基因组学”的技术在中药体内代谢领域进行了有益的探索。本文将以典型研究案例为线索,探讨中药体内代谢基因组相关研究,主要包括中药基因组学和肠道宏基因组学研究。
1 中药基因组研究
王升启[6]于2000年提出了中药基因组学(TCM genomics)的概念,即以药物基因组学(pharmacogenomics)理论为基础,将中药的药性、功能及主治与其在人体内代谢/疾病相关基因表达调控相关联,在分子水平研究中药在人体基因组介导下的代谢转化、作用靶点、毒副反应、药效机制和中药整体化作用的规律。中药基因组学的核心内容是应用基因组信息和方法在人类基因组水平研究中药体内代谢和反应的遗传学本质。陈士林等[7]关于中药基因组学的理解,则侧重于中药本身,主要包括中药转录组学、结构基因组学、基因组标记解析和功能基因组学等,属于本草基因组学(herbgenomics)的研究范畴[8],旨在通过对中药原物种遗传信息的揭示,解析重要活性产物的生物合成途径,发掘参与生物合成的功能基因,推动对中药合成生物学、基因组辅助分子鉴定和分子育种及中药道地性遗传机制阐释的深入研究。
药物基因组学是基于药物反应的遗传多态性提出来的,表现为药物代谢酶、受体和靶标的多态性等。这些多态性的存在可能导致许多药物治疗中药效和不良反应的个体差异,这种情况在中药体内代谢过程中将更为复杂。传统中药以口服用药为主,中药成分在体内发生代谢的部位主要有胃肠道、肝脏、肾脏和肺等组织器官,其中肠道和肝脏是多数药物的主要代谢器官。除中药原型成分外,还可能有大量代谢产物的存在,其中的药效成分作用于受体、酶、离子通道等靶点,最终产生药效。中药体内的反应和代谢涉及多基因的相互作用,基因多态性导致药物体内代谢反应多样性,从而为从基因组水平研究中药体内代谢和药物反应奠定了基础。相比于遗传药理学(pharmacogenectics)着重于药物在代谢动力学和药物效应动力学方面单个或少量基因的研究,中药基因组学的研究范畴更广,包括全基因组上决定中药药物效应的所有基因,系统性地评价基因的相互作用及其如何影响疾病的易感性、药理学功能、药物处置和治疗反应,并以此为平台指导中药新药的开发及合理用药。
遗传药理学是药物基因组学的一种雏形,它从单基因的角度研究遗传因素对药物代谢和药物反应的影响,特别是遗传因素引起的异常药物反应。总体而言,个体对药物代谢和反应差异的15%~30%是由基因因素决定的,个别药物基因因素的影响可以占到95%[9]。中药基因组学目前主要关注中药作用机制、毒副作用、有效成分和药物靶点等研究[10],进一步从表型到基因型的中药反应个体多样性研究相对较少。Lee等[11]发现由芍药根诱导的肝细胞凋亡早期其BNIP3基因表达上调,而ZKl,RAD23B及HSPDl基因表达下调,提示芍药根抗肿瘤活性的机制可能与促进细胞凋亡相关;Watanabe等[12]通过观察服用银杏叶提取物(GBE)小鼠皮层及海马组织的基因表达变化,发现皮层内微管相关蛋白、钙离子通道及催乳素等多种与脑功能相关的基因表达的上调,而海马组织内则仅有甲状腺转运蛋白上调,表明GBE可能通过对淀粉样蛋白清除而发挥神经保护作用;Zhang等[1314]构建了栀子苷治疗缺血性模型大鼠的基因表达谱芯片,结果表明栀子苷对局灶性脑缺血大鼠脑组织基因表达具有调控作用,从分子水平阐述了中药清开灵注射液成分栀子苷的药理作用机制;张立平等[15]筛选肝肾阴虚型晚期结直肠癌(CRC)患者使用六味地黄颗粒前后的显著差异表达的基因,干预后129个差异基因,其中128个上调,1个下调。基因功能(GO)富集分析结果显示,干预前后共254个基因GO存在显著差异。在生物过程中,凝血功能相关的基因占41.5%;在细胞组成中,45.5%的差异基因与细胞质膜有关;在分子功能方面,64.9%的差异基因与结合有关。上述结果表明六味地黄颗粒可增强患者凝血功能,增加钙离子结合。
此外,随着中西药联用在我国临床上日趋广泛的应用,中药通过影响药物代谢酶或转运体基因表达和功能改变其底物药物的血药浓度,可能导致临床上药物毒副反应或治疗失败的发生,产生有重要临床意义的中药药物相互作用。高立臣等[16]对药物代谢相关基因介导的中药药物相互作用研究进行了系统的总结。Wang等[17]发现贯叶连翘Hypericum perforatum诱导细胞色素CYP2C19对奥美拉唑的羟化活性和CYP3A4对奥美拉唑的磺化作用,且这种影响具有CYP2C19和CYP3A4基因型依赖性;同时贯叶连翘可诱导CYP2C9对降糖药格列齐特的代谢活性,但这种影响不具有CYP2C9基因型依赖性。
下列3个案例分别从青蒿琥酯抗肿瘤效应,莨菪亭抗药性以及银杏叶提取物对药物代谢酶CYP的影响以及对其他药物药效学的影响等方面,对中药基因组相关研究展开介绍。
1.1 青蒿琥酯抗肿瘤的作用机制研究 研发新的药物及治疗策略以克服肿瘤药物抗性是目前临床肿瘤学最紧迫的任务之一。Sertel等[18]在过去几十年里,系统分析了中药里的药用植物中具有对肿瘤细胞毒性活性的次级植物代谢产物。在诸多的天然产物中,青蒿素及其衍生物青蒿琥酯(artesunate,ART)表现出明显的体内外抗肿瘤活性[19],但其抗肿瘤的分子机制并不明确。Sertel等[20]采用了基因芯片技术,在转录水平解析青蒿琥酯抗肿瘤机制相关的基因。再将表达谱数据导入信号通路分析和转录因子分析,结果表明cMyc/Max可能是作为肿瘤细胞应对青蒿琥酯效应基因的转录调控因子。
在确定青蒿琥酯对具有顺铂(cisplatin)、阿霉素(adriamycin)和紫杉醇(paclitaxel)抗性的卵巢癌细胞的细胞毒性后,采用基于基因芯片的转录组mRNA表达谱和COMPARE分析的基因捕获技术,鉴定出一系列表达量与ART高/低半抑制浓度(IC50)相关的基因。这些基因涉及的生物学功能包括核糖体结构组成(RPL29),ATP结合级联转运(ABCC3),激酶(PRKCSH, ITPK1, IKBKG, DDR2),细胞抗氧化防御和致癌性(ATOX1),肌动蛋白细胞骨架(RRAS),致癌性(SMAD3, WNT7A),细胞黏附及恶性细胞增殖(ST8SIA1),细胞增殖与凋亡(CSE1L),细胞循环、分化(S100A10)和转移(HMGA1, RPSA)等,上述可能是肿瘤细胞应对ART的抗性或增敏因子作用途径。针对信号传导的通路分析表明,ART处理与肿瘤坏死因子(TNF)和肿瘤抑制因子p53信号通路相关,其网络结构涉及细胞形态、抗原呈递和细胞介导的免疫反应相关(图1 A),以及神经系统发育与功能、细胞组装和架构(图1 B)。
另一方面,实验结果也发现与ART作用后细胞应激无明显功能相关性的基因,如耳蜗内外毛细胞相关基因。Sertel等认为ART影响转录因子活性,进而调节涉及肿瘤细胞应对ART的下游基因的表达。在之前的研究中,作者发现cMyc的表达量与ART药物敏感性相关[21],表明cMyc转录调节在介导ART细胞毒性效应中可能起作用。通过ConSite检测转录因子结合位点,56个基因中,大部分分别具有1~12个潜在的cMyc结合位点;只有3个基因启动子不具有cMyc结合位点,这提示cMyc可能是ART细胞反应重要的转录调节因子。Max基因作为cMyc二聚体伴侣分子,作者以关联分析验证了cMyc/Max的mRNA表达量与ART作用于细胞株的IC50的关联性。
综上,cMyc/Max介导的基因表达转录调控,可能有助于提高ART对癌细胞的细胞毒性作用以及对肿瘤的治疗效果,同样也避免因为疗效无关基因表达差异导致的不必要的毒副作用。
1.2 莨菪亭在肿瘤细胞中的抗药性研究 抗药性和不良/副反应是抗肿瘤药物新药研发中必须面对的问题。莨菪亭(scopoletin),来自艾属植物以其他植物的香豆素类化合物,其化学名为6羟基7甲氧基香豆素。香豆素类化合物具有广泛的药理活性,如抗炎、抗菌、扩张血管、抗凝血、抗血栓、退热、镇静等,特别是抗肿瘤及防治尿酸血症方面活性,已引起广泛的关注。戴岳等[22]发现东莨菪素具有抑制体内外血管生成作用,其机制主要是通过抑制内皮细胞的增殖这一环节起效。此外莨菪亭可引起细胞膜完整性缺失和细胞凋亡,具有细胞毒性作用,可诱导肿瘤细胞凋亡[23]。上述结果表明,莨菪亭是一个潜在的用于癌症治疗的抗肿瘤化合物。
Seo等[24]采用基于NCI细胞系的基因芯片RNA表达谱技术探究莨菪亭在肿瘤细胞中的药物基因组学反应。结果表明,细胞对于莨菪亭的反应与经典药物抗性机制(ABCB1,ABCB5,ABCC1和ABCG2)的ATP结合盒(ATPbinding cassette, ABC)转运蛋白的表达并不相关。同样不相关的还包括致癌基因EGFR的表达和抑癌基因TP53的突变状态。然而,致癌基因RAS的突变和以细胞倍增时间表征的增殖活性与莨菪亭抗性显著相关。基于转录组水平的mRNA表达数据经COMPARE和等级聚类分析鉴定出一组40个基因(图2),这些基因在其启动子序列上均有转录因子NFκB的结合基序(binding motifs),而NFκB已知和药物抗性相关。致癌基因RAS突变,低增殖活性和NFκB的表达可能妨碍了莨菪亭的药效。基于计算机模拟的分子对接研究发现莨菪亭与NFκB及其调控子IκB相结合。莨菪亭激活SEAP驱动的NFκB报告细胞株中的NFκB基因,提示NFκB可能是莨菪亭抗性因素之一。
综上,因其良好的抗肿瘤细胞活性,莨菪亭将成为肿瘤药物研发的关键化合物,哪怕NFκB信号通路的活化可能成为其抗性因素。目前需要更多的证据以探究莨菪亭的治疗潜力。
1.3 银杏提取物对不同CYP基因型的代谢影响 银杏叶提取物(Ginkgo biloba extract)含有160多种成分,主要为黄酮苷、萜内酯和有机酸等,具有调节血管、增强认知力、缓解压力等药理作用[25]。随着银杏制剂的广泛应用,与其他药物合用的机会越来越多,因此研究银杏叶提取物对药物代谢酶的影响以及对其他药物药效学的影响在临床应用中具有实践意义。中药对细胞色素P450酶(cytochrome P450, CYP450)及其药物转运体的诱导和抑制是介导中草药药物相互作用和产生药物临床毒副反应的主要机制。中草药能够通过影响药物代谢酶或转运体基因表达和功能改变其底物药物的血药浓度,可能导致临床上药物毒副反应或治疗失败的发生,产生有重要临床意义的中草药药物相互作用[16]。CYP2C19是CYP450酶第二亚家族中的重要成员,对药物的Ι相代谢反应起着关键性作用,而研究表明银杏叶提取物引起具有显著的诱导CYP2C19活性效应[26]。
Yin等[27]研究了不同CYP2C19基因型个体服用银杏叶提取物片剂与奥美拉唑(omeprazole,广泛使用的CYP2C19底物,适用于胃溃疡、十二指肠溃疡,应激性溃疡等)后潜在的中草药药物互作关系。18位经过CYP2C19基因分型的健康志愿者纳入研究。在基线和为期12 d的银杏用药(140 mg)后分别服用奥美拉唑(40 mg),采集服用奥美拉唑12 h血样和24 h尿样。HPLC测定血样与尿样中奥美拉唑及其代谢物浓度,包括5羟基奥美拉唑和奥美拉唑砜,并计算非房室药代动力学参数。
相比于基线水平,服用银杏后,奥美拉唑和奥美拉唑砜血药浓度显著降低,3种CYP2C19基因型[纯合子强代谢型(HomoEM),杂合子强代谢型(HetEM)和弱代谢型(PM)]的奥美拉唑AUC0∞平均下降41.5%,27.2%,40.4%。相应地,奥美拉唑砜下降41.2%,36.0%,36.0%,两者AUC0∞无显著变化。同时,AUCOPZ和AUCOPZSUL在服用银杏提取物前后均显著相关(Spearman相关系数分别为rs=0.88,P
2 肠道宏基因组研究
然而,遗传多态性无法单独解释相同剂量的同种药物在遗传背景一致的实验动物中不同的药代学和毒理学反应[28]。除遗传外,年龄、疾病、营养状况、生活习惯、肠道菌群均可能影响或参与药物体内代谢[2931]。正常成年人肠道内1×1013~1×1014个细菌,约1 000种不同种类,编码基因数为人体基因的100倍以上[3233]。肠道菌群基因组总和,即肠道宏基因组(gut microbiome)提供了宿主自身不具备的酶和生化代谢途径,参与外源异生物质的体内代谢,使肠道成为药物转化独特而重要的场所[28]。而肠道宏基因组学(gut metagenomics)利用分子生物学研究方法,借助高通量测序并结合生物信息学方法绕过纯培养技术研究肠道微生物多样性及功能,发掘微生物多样性结构和功能基因组、寻找新基因及其产物[34]。
中药进入消化道后主要存在以下几种情况:以原型形式被宿主直接吸收;经肠道细菌和/或内源性酶生物转化后以代谢物形式吸收;调节肠内微生态结构;作为废物随粪便直接排出体外[35]。不同类型细菌产生不同代谢酶,催化包括水解、还原、合成、杂环裂解和C葡萄糖苷CC裂解等不同的药物代谢反应,因此肠道菌群被视为药物肝脏代谢的补充或拮抗[36]。约60%的药物反应与肠道菌群相关:肠道菌群与宿主肝脏和免疫系统相互作用,通过直接生物转化或间接调节宿主药物吸收与代谢酶活性影响药物疗效与毒性(图3)[37]。中药大多数为口服药物,少则几十多则上千种的化学成分在进入体内后既有互相促进也会有拮抗作用,其在体内的药效活性成分既可能是原型成分也可能是代谢产物。通常认为,药物必须吸收入血,分布到靶器官,而且在相应的靶器官处在一定时间段内维持一定的浓度水平才可能发挥药效作用。然而很多中药成分难以被人体直接吸收,进入胃肠道与肠道菌群相互作用,进行生物转化或者调节肠道菌群结构与功能,从而影响甚至决定中药的疗效与毒性(图4)[38]。
因此,Nicholson等人提出“系统生物学”(global systems biology)概念,将肠道菌群的代谢作用纳入宿主整体代谢系统,视宿主、肠道菌群和其他环境因素为一个整体,通过基因组学、转录组学、蛋白质组学和代谢组学方法等来阐明药物或其他异源性物质在体内的代谢过程[41],发现能够反映宿主遗传、代谢和环境因素变化的生物信息(标记物)谱系(bioinformatics profile)对患者分类并为其提供个性医疗服务。
肠道菌群作为“内化”了的环境因素,提供人体本身不具备的酶和生化代谢途径,催化包括中药在内的异源生物质体内代谢反应,因此肠道菌群被视为药物肝脏代谢的重要补充或拮抗,而人体全身的整体代谢,包括药物代谢实际上是其体内自身的基因组和其肠道内共生的微生物组活动的整合[42]。一方面,肠道菌群可以作为天然的生物转化器,影响中药疗效的发挥与毒性的改变。黄芩、葛根和豆豉中所含的黄芩苷、葛根素、异黄酮苷普遍存在于中药方剂和营养品中,体外研究表明,葛根素和异黄酮苷能被肠道菌群代谢为比前体物更加有效的大豆黄素和毛蕊异黄酮[43]。黄芩苷在肠道内难以被直接吸收,只有被肠道菌群水解为黄芩素后才能被吸收入血液而发挥作用,而口服黄芩苷的无菌小鼠与常规小鼠相比,肠道内的黄芩苷则几乎没有被代谢[44]。人参的主要活性成分人参皂苷存在类似的情况,在体外实验中人参皂苷的原始成分的生物活性很低,在血浆中的浓度未能达到药效浓度[45];其在肝脏内基本不被代谢,主要是在肠道菌群的作用下降解。研究表明,肠道中的双歧杆菌、拟杆菌、梭菌等能够代谢人参皂苷[46]。另一方面,肠道菌群还可以作为中医药的作用靶点,实现中医药对机体多靶点的治疗作用[42]。含有多糖成分的补益类中药对益生微生物和致病微生物均具有扶植效应,但对益生微生物的扶植效果明显优于致病微生物。因此,长势良好的益生微生物所产的代谢产物又间接抑制了致病微生物的生长[47]。例如,党参多糖在体外可促进双歧杆菌的生长,从而增加乙酸的代谢,增强双歧杆菌的定植抗力[48]。用党参、茯苓、白术等补气类中药制成的复方合剂灌服小鼠发现,与灌服前比较,乳杆菌、双歧杆菌数量明显增加,肠球菌数量明显减少[49]。此外中药含有的黄酮类、萜类、蒽醌类、生物碱类、甾体类等生物活性成分,以及蛋白质、维生素等多种营养成分,对肠道微生态系统的平衡有很好的保护作用,能直接或间接地调节肠道菌群失调。
作为了解微生物群落结构组成与代谢功能金标准的测序技术,在近几年来,二代高通量测序技术(如454焦磷酸测序和illumina测序)朝着快速、高通量、低成本方向迅速发展,同时也促进了宏基因组学的研究。宏基因组(metagenome)是指一个微生物群落内所有成员的基因组的总和[50]。宏基因组学是一种不需要分离培养微生物而直接发现和利用其基因的新的技术策略,能够更加全面而深入的解析微生物群落的结构和组成,挖掘更多未知的功能基因和功能菌。研究策略上,全微生物组关联分析(microbiomewide association study, MiWAS)通过对肠道菌群结构的变化与中药体内代谢/生理病理指征的变化进行全局性相关性分析。MiWAS策略已广泛应用于解析肠道菌群在代谢性疾病,如肥胖、2型糖尿病等中的作用研究[51],在菌群参与中药有效成分体内生物转化和代谢活性方面将是有益的借鉴。肠道菌群的结构变化用二代高通量测序技术对进化标记16S rRNA基因进行测序或者全微生物组的测序(宏基因组)来测量。中药体内代谢指征的变化以血液/尿液原型和代谢物含量、体外代谢活性和代谢酶活等来表征,辅以疾病相关生理指标。多元统计学方法(主成分分析PCA、冗余分析RDA、偏最小二乘法判别分析PLSDA和UniFrac等)以对肠道菌群种类组成、功能基因/通路组成和中药体内代谢的变化进行关联分析。
下列案例将从中药口服进入体内后与肠道菌群相互作用,即肠道菌群参与中药体内代谢和中药成分对菌群结构与功能调节方面展开论述。
2.1 肠道菌群代谢增强人参皂苷体内吸收 人参皂苷具有提高免疫力、抗肿瘤、抗疲劳、抗衰老、降血糖和保护心血管/中枢神经系统等药理作用。然而,人参皂苷口服后其原型药在肠道中的吸收程度低,如人参皂苷Rb1的吸收率仅约为1.0%,Rb2为3.4%,Rg1为1.9%,血药浓度难以达到充分发挥药理活性所需浓度[52]。口服生物利用度低的问题同样广泛存在于其他皂苷类、黄酮类(如大豆黄酮)、异黄酮类(如葛根素)、生物碱类(如小檗碱)和单萜类(如芍药苷)等中药有效成分中,成为制约相关中药制剂发展和临床应用的瓶颈问题[53]。作为“天然活性前体”的人参皂苷在肠道菌群分泌的各类糖苷酶(如β葡萄糖苷酶、α阿拉伯糖苷酶等)作用下逐级水解脱去糖基,转化成为药理作用更强的少糖基皂苷或苷元后吸收率大大增加,且体内分布广泛,在肝脏被酯化后发挥更长久、强劲的药效[54]。目前,人参皂苷Rbl的代谢途径研究较为清楚,即在C20,C3和C3位顺次水解1分子葡萄糖,依次生成人参皂苷Rd、人参皂苷F2,最终形成人参皂苷化合物K(compound K, CK),该化合物也是其他原人参二醇型皂苷在肠道内的主要代谢产物[45]。体外实验证实该过程由肠道细菌分泌的βD葡萄糖苷酶阶梯式地断开糖苷连接完成,Prevotella oris,Eubacterium A44,Bifidobacterium K506,Bacteroides JY6和Fusobacterium K60等肠道微生物协同参与了人参皂苷Rb1的代谢[55]。通过连续过度疲劳和急性冷应激(suffering successive overfatigue and acute cold stress, OACS)建立肠道菌群失调Qi缺陷型的小鼠模型,Zhou等[56]研究了人参多糖对人参皂苷肠代谢和吸收的影响,以及肠道菌群作为中介的作用机制。
HPGPC发现人参多糖具有1.00~1 308.98 kDa的相对分子质量分布,并鉴定出11种主要的皂苷成分,包括人参皂苷Re,Rg1,Rf,Rb1,20(S)Rg2,Rc,Rb2,Rd,F2,20(S)Rg3和CK等。结果表明,人参多糖可有效调节色氨酸、苯丙氨酸、溶血卵磷脂、胆酸、硫酸甲酚、氧化三甲胺(TMAO)、异柠檬酸和4甲基苯酚等内源性代谢物,改善OACS诱导的内源性代谢失调。对肠道菌群结构的影响,主要表现为在门水平上逆转OACS导致的菌群失调,增加厚壁菌门和减少拟杆菌门相对丰度。PCoA结果进一步证实:人参多糖,低聚果糖和空白组的聚集相互交织在一起,但模型组与之分离;与模型组相比,给予人参多糖或低聚果糖的小鼠体内拟杆菌属和乳杆菌属丰度增加(具有明显差异P
独参汤中的多糖成分使失衡的肠道菌群得以恢复,菌群的作用促进汤剂中人参皂苷的溶出与吸收。中药中的多糖成分一直以来被轻视甚至被忽视,现代工业化的中药制剂生产中将多糖作为杂质去除以达到符合要求的纯度;对中药汤剂的科学研究中也把多糖从主要的化学成分中排除。该研究有助于改变这种偏离传统中药的使用方法,也缺乏科学证据的做法,通过研究多糖和药效成分的协同作用,为中药汤剂的科学化和合理化使用提供指导。
2.2 肠道菌群介导灵芝提取物的减重效应 在我国,灵芝的使用已有2 000多年的历史,大量药理研究表明,灵芝具有调节免疫、保肝、抗肿瘤、抗衰老、提高机体耐缺氧能力等活性[57]。灵芝的化学成分复杂,从该属真菌中已分离得到灵芝多糖、三萜类化合物、核苷、氨基酸、甾醇、生物碱等多种成分。其中灵芝多糖和三萜类化合物可抑制糖尿病小鼠的脂肪细胞分化及降低血糖[58];而蛋白聚糖则表现出抗血脂、抗氧化等活性[59]。血糖血脂代谢紊乱的核心,即肥胖已经逐渐成为全球性的公共健康问题,促进包括糖尿病,心血管疾病,高血压和癌症等并发症的发生。研究已经证明肥胖的发生常伴随慢性低度炎症以及肠道菌群生态紊乱,因此如何改善炎症,恢复肠道生态平衡成为肥胖研究的重要课题。
Chang等[60]向高脂饮食饲养诱导的肥胖小鼠食物中添加灵芝的水提取物(WEGL),发现肥胖小鼠表现出体重下降/脂肪积累减少(体重、附睾脂肪垫和皮下脂肪垫),炎症改善(TNFα,IL1β,IL6,IL10和PAI1),胰岛素敏感性增加等获益表型。PCoA分析和聚类分析表明高脂饮食和WEGL分别显著改变了健康/肥胖小鼠的菌群结构,WEGL降低由高脂肪饮食诱导的厚壁菌门/拟杆菌门(Firmicutes/Bacteroidetes)的比例升高以及产内毒素的蛋白菌(Proteobacteria)水平。而且通过恢复紧密连接蛋白ZO1和Occludin的表达,并保持肠屏障的完整性,进一步研究发现WEGL降低肥胖小鼠血清内毒素水平及Toll样受体4(TLR4)介导的内毒素体内信号通路,最终减少内毒素血症发生;同时还观察到,将处理过的小鼠粪便移植给其他肥胖的小鼠,可重现由WEGL所造成的减重等有益代谢效应。进一步地,从WEGL分离纯化得到大分子多糖物质(相对分子质量>300),同样表现出抗肥胖以及肠道菌群结构调节作用。
综上,这项研究首次发现灵芝及灵芝多糖具有降低体重和调节肠道生态平衡的作用,可作为预防菌群失衡和肥胖相关的代谢失调的益生元加以应用,同时表明灵芝补品对于肥胖和相关疾病的潜在治疗作用,但还需要深入研究其作用机制并进一步证明在人身上是否也有类似效应。同上一个案例相似地,中药中的多糖成分,人参多糖和灵芝多糖,都表现出对肠道菌群结构平衡的促进以及对相关症状的改善作用。
2.3 肠道菌群参与葛根芩连汤治疗2型糖尿病 肠道菌群通过调节宿主脂肪代谢和诱发代谢性内毒素血症引起慢性炎症等机制参与宿主肥胖、胰岛素抵抗等代谢性疾病的发生、发展[61]。以中心性肥胖和胰岛素抵抗为核心的代谢综合征是2型糖尿病(T2DM)、心脑血管疾病和动脉粥样硬化等的高危因素[62]。中药复方葛根芩连汤(GQD)出自张仲景的《伤寒论》,由葛根、黄芩、黄连和甘草等组成,是含有小檗碱,并长期用于治疗急性肠炎、细菌性痢疾和肠伤寒等的经典方剂。近年的动物实验或临床观察研究表明,GQD具有显著的降糖、降血脂的效果,在2型糖尿病等代谢性疾病的治疗上具有巨大的应用潜力。但是,已有的研究都是动物实验或者是开放、无安慰剂对照、样本量较小的临床观察,而且GQD的降糖机制目前也并不清楚。研究表明GQD在改善糖尿病大鼠血糖、血脂代谢的同时,显著调节了肠道菌群产生的代谢物。但是,究竟GQD能否调节肠道菌群,以及菌群是否参与了GQD的降糖作用等问题仍有待回答。
Xu等[63]基于随机、双盲与安慰剂对照等临床试验规范,将187例T2DM患者随机分为4组,分别接受高(N=44)、中(N=52)、低剂量(N=50)GQD和安慰剂(N=41)治疗12周,并对治疗前后患者粪便样品中细菌的DNA进行基于16S rRNA基因可变区V3区的454焦磷酸测序和多元统计分析。结果表明,安慰剂组和低剂量GQD治疗组患者临床症状未显著改善,Unweighted Unifrac PCoA和MANOVA分析结果相互印证,表明菌群结构也未发生明显变化。随着GQD剂量的提高,患者治疗后的菌群结构与治疗前的差异不断增加,即菌群结构样本点偏离得越远;T2DM诊断指标空腹血糖(FBG)和糖化血红蛋白(HbAlc)改善也更显著,表现出明显的剂量效应。此外,用药4周后高剂量组患者的菌群已显著不同于用药前,并在此后的8周维持不变,但是血糖水平一直持续改善。冗余分析(RDA)从4 000多种肠道细菌中找到了146种响应GQD治疗的细菌种类,其中47个OTU被显著富集,且17个OTU与FBG显著负相关,9个OTU与HbA1c显著负相关。特别是产丁酸盐的Faecalibacterium prausnitzii,高通量测序及定量PCR结果都证实其丰度变化与T2DM症状指标(FBG,HbAlc和2hPBG等)改善显著负相关,与HOMAβ显著正相关。
研究表明,中药复方GQD可以有效地调节肠道菌群结构,特别是增加有益菌如Faecalibacterium spp.等的含量,且菌群改变与血糖代谢改善显著相关,提示肠道菌群可能参与了GQD降糖作用,也提示中药可作为以肠道菌群为靶点治疗T2DM的新药来源。该研究首次在人群试验中观察了GQD在治疗T2DM过程中患者肠道菌群的变化及其与糖尿病改善的关系,也表明严格质量控制的复方中药也可以做RCT试验验证其疗效,而且基于宏基因组学的肠道菌群结构变化监测为理解中药的作用机制提供了新的途径。
3 研究方法
由于中药的复杂性,多种交叉学科技术被引入到中药体内代谢研究。基于从单一化合物到复杂体系的代谢研究思路与策略,对中药体内代谢的生化过程以及代谢物本身的研究,化学半合成及生物催化合成用于代谢产物的制备;体外代谢模型能更好地对不同组分的体内处置进行模拟并给出解释,常用的体外模型如细胞水平的Caco2模型、血脑屏障模型、酶水平的P450酶系、UGT/SULT酶系。此外,动物或人群试验,以及基于血清中含有的成分才是中药的体内直接作用物质的学说而建立的血清药物化学,是研究中药体内代谢过程的有效方法。
在上述体内外模型基础上开展的中药体内代谢基因组研究,本质上同样基于基因组学技术,主要为微阵列芯片技术和测序技术。以基因芯片为代表的微阵列芯片是研究分析基因的一种强有力的分子生物学技术,是进行中药基因组研究的主要工具。在基因芯片的表面,以微阵列的方式固定大量并行的寡核苷酸或cDNA探针,对生物体整个基因组的基因表达进行测定。基因芯片以高通量、多因素、微型化和快速灵敏的特点而见长,能够针对中药的多成分、多途径、多系统、多靶点的作用特点而进行系统深入的研究。
除常规的微生物分子生态学技术,包括细菌16S rRNA基因克隆文库技术、PCRDGGE/TGGE和TRFLP等DNA指纹图谱技术外,近年来迅猛发展的454,illumina等二代高通量测序技术使得对肠道宏基因组的高通量、大规模深度测序成为可能,极大促进了肠道宏基因组学的发展。同时结合多变量统计方法,如主成分分析(PCA)、偏最小二乘判别分析(PLSDA)等,可直接地获得肠道微生物的组成和功能信息,鉴定出与中药体内代谢密切相关的特定的细菌类群和生物转化基因功能,从而为中药体内代谢研究提供更多的信息[34]。
综上,中药基因组学和肠道宏基因组学从不同角度对中药体内代谢进行研究,但从药物研究和毒理学评价层面来看,基因组学研究的是生物体受外源性物质刺激后基因表达的改变,而基因表达调控与系统的整体功能之间的关系并不清楚。中药作用于人体,一方面自身会被肝药酶或肠道菌群代谢,产生活化或者失活的代谢产物;另一方面中药及其代谢产物会导致机体内源性物质应答的变化,引起全身水平复杂的代谢网络变化,体现在体液内/外源性代谢物的成分构成或相对浓度的变化,从而提供了药物作用机制和作用靶点的信息[34]。随着色谱质谱联用仪法、核磁共振波谱法、色谱核磁质谱联用等分析技术的发展,代谢产物鉴定及多成分药代动力学研究已有较成熟的平台。代谢组学(metabonomics)表征生物体整体功能状态的特点,与中药的“多组分、多靶点、整体调节,协同作用”的特点相吻合,因此是研究系列中药现代化关键科学问题的重要手段。张旭等[34]认为综合运用中药基因组学、肠道宏基因组学、代谢组学以及生物信息学等技术对中药体内代谢进行系统而深入的研究,有望为中药现代化研究打开新局面。
[参考文献]
[1] 韩旭华, 牛欣,杨学智.方剂药效物质系统与单味药成分之间的非线性关系[J].中华中医药杂志, 2006, 21(5):289.
[2] 张昱,谢雁鸣.后基因组时代中医药研究思路方法新探[J].中医药学刊, 2001, 19(5):426.
[3] Lederberg J. Infectious history[J].Science, 2000, 288(5464):287.
[4] Spor A, Koren O,Ley R. Unravelling the effects of the environment and host genotype on the gut microbiome[J]. Nat Rev Microbiol, 2011, 9(4):279.
[5] Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59.
[6] 王升启.试论“中药化学组学”与“中药基因组学”[J].世界科学技术――中医药现代化, 2000, 2(1):19.
[7] 陈士林, 朱孝轩, 李春芳, 等. 中药基因组学与合成生物学[J].药学学报, 2012(8):1070.
[8] 陈士林,宋经元.本草基因组学[J].中国中药杂志,2016,41(21):3381.
[9] Weinshilboum R. Pharmacogenomics――drug disposition, drug targets, and side effects[J]. New Engl J Med, 2004, 348(6):538.
[10] 荆志伟, 王忠, 高思华, 等. 基因芯片技术与中药研究――中药基因组学[J].中国中药杂志, 2007, 32(4):289.
[11] Lee S M Y, Li M L Y, Yu C T, et al. Paeoniae Radix, a Chinese herbal extract, inhibit hepatoma cells growth by inducing apoptosis in a p53 independent pathway[J]. Life Sci, 2002, 71(19):2267.
[12] Watanabe C M, Wolffram S, Ader P, et al. The in vivo neuromodulatory effects of the herbal medicine Ginkgo biloba[J]. Proc Natl Acad Sci USA, 2001, 98(12):6577.
[13] Zhang Z J, Wang Z, Zhang X, et al. Gene expression profile induced by oral administration of baicalin and gardenin after focal brain ischemia in rats[J]. Acta Pharmacol Sin, 2005, 26(3):307.
[14] Zhang Z, Li P, Wang Z, et al. A comparative study on the individual and combined effects of baicalin and jasminoidin on focal cerebral ischemiareperfusion injury[J]. Brain Res, 2007, 1123(1):188.
[15] 张立平, 马建文,张洪亮.六味地黄颗粒对晚期肝肾阴虚型结直肠癌患者基因表达谱的差异分析[J].实用临床医药杂志, 2014, 18(17):52.
[16] 高利臣, 张伟, 刘昭前, 等. 药物代谢相关基因介导的中草药药物相互作用研究[J].中国临床药理学与治疗学, 2012, 17(3):346.
[17] Wang L, Zhou G, Zhu B, et al. St John′s wort induces both cytochrome P450 3A4catalyzed sulfoxidation and 2C19dependent hydroxylation of omeprazole[J]. Clin Pharmacol Ther, 2004, 75(3):191.
[18] Efferth T, Fu Y J, Zu Y G, et al. Molecular targetguided tumor therapy with natural products derived from traditional Chinese medicine[J]. Curr Med Chem, 2007, 14(19):2024.
[19] Kelter G, Steinbach D, Konkimalla V B, et al. Role of transferrin receptor and the ABC transporters ABCB6 and ABCB7 for resistance and differentiation of tumor cells towards artesunate[J]. PLoS ONE, 2007, 2(8):1080.
[20] Sertel S, Eichhorn T, Simon C H, et al. Pharmacogenomic identification of cMyc/Maxregulated genes associated with cytotoxicity of artesunate towards human colon, ovarian and lung cancer cell lines[J]. Molecules, 2010, 15(4):2886.
[21] Scherf U, Ross D T, Waltham M, et al. A gene expression database for the molecular pharmacology of cancer[J]. Nat Genet, 2000, 24(3):236.
[22] Wang C, Dai Y, Yang J, et al. Treatment with total alkaloids from Radix Linderae reduces inflammation and joint destruction in type Ⅱ collageninduced model for rheumatoid arthritis[J]. J Ethnopharmacol, 2007, 111(2):322.
[23] Kim E K, Kwon K B, Shin B C, et al. Scopoletin induces apoptosis in human promyeloleukemic cells, accompanied by activations of nuclear factor κB and caspase3[J]. Life Sci, 2005, 77(7):824.
[24] Seo E J, Saeed M, Law B Y, et al. Pharmacogenomics of scopoletin in tumor cells[J]. Molecules, 2016, 21(4):496.
[25] Ward C P, Redd K, Williams B M, et al. Ginkgo biloba extract[J]. Pharmacol Biochem Behav, 2002, 72(4):913.
[26] Zuo X C, Zhang B K, Jia S J, et al. Effects of Ginkgo biloba extracts on diazepam metabolism:a pharmacokinetic study in healthy Chinese male subjects[J]. Eur J Clin Pharmacol, 2010, 66(5):503.
[27] Yin O Q, Tomlinson B, Waye M M, et al. Pharmacogenetics and herbdrug interactions:experience with Ginkgo biloba and omeprazole[J]. Pharmacogenetics, 2004, 14(12):841.
[28] 徐凯进, 李兰娟,邢卉春.肠道菌群参与宿主代谢对医疗个性化的影响[J].国际流行病学传染病学杂志, 2006, 33(2):86.
[29] Kochhar S, Jacobs D M, Ramadan Z, et al. Probing genderspecific metabolism differences in humans by nuclear magnetic resonancebased metabonomics[J]. Anal Biochem, 2006, 352(2):274.
[30] Holmes E,Nicholson J K. Variation in gut microbiota strongly influences individual rodent phenotypes[J]. Toxicol Sci, 2005, 87(1):1.
[31] Schnackenberg L K. Global metabolic profiling and its role in systems biology to advance personalized medicine in the 21st century[J]. Expert Rev Mol Diagn, 2007, 7(3):247.
[32] Ley R E, Lozupone C A, Hamady M, et al. Worlds within worlds:evolution of the vertebrate gut microbiota[J]. Nat Rev Microbiol, 2008, 6(10):776.
[33] Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728):1635.
[34] 张旭, 赵宇峰, 胡义扬, 等. 基于功能元基因组学的人体系统生物学新方法:中医药现代化的契机[J].世界科学技术――中医药现代化, 2011, 13(2):202.
[35] 杨秀伟,徐嵬.中药化学成分的人肠内细菌生物转化模型和标准操作规程的建立[J].中国中药杂志, 2011, 36(1):19.
[36] 杨秀伟.中药成分代谢分析[M]. 北京:中国医药科技出版社, 2003.
[37] Lhoste E F, Ouriet V, Bruel S, et al. The human colonic microflora influences the alterations of xenobioticmetabolizing enzymes by catechins in male F344 rats[J]. Food Chem Toxicol, 2003, 41(5):695.
[38] Li H, Zhou M, Zhao A, et al. Traditional Chinese medicine:balancing the gut ecosystem[J]. Phytother Res, 2009, 23(9):1332.
[39] Nicholson J K, Holmes E, Lindon J C, et al. The challenges of modeling mammalian biocomplexity[J]. Nat Biotechnol, 2004, 22(10):1268.
[40] Haiser H J,Turnbaugh P J. Is it time for a metagenomic basis of therapeutics?[J]. Science, 2012, 336(6086):1253.
[41] Nicholson J K,D Wilson I. Understanding ′global′ systems biology:metabonomics and the continuum of metabolism[J]. Nat Rev Drug Discov, 2003, 2(8):668.
[42] Jia W, Li H, Zhao L, et al. Gut microbiota:a potential new territory for drug targeting[J]. Nat Rev Drug Discov, 2008, 7(2):123.
[43] Kim D H, Yu K U, Bae E A, et al. Metabolism of puerarin and daidzin by human intestinal bacteria and their relation to in vitro cytotoxicity[J]. Biol Pharm Bull, 1998, 21(6):628.
[44] Akao T, Kawabata K, Yanagisawa E, et al. Balicalin, the predominant flavone glucuronide of Scutellariae Radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form[J]. J Pharm Pharmacol, 2000, 52(12):1563.
[45] Wang H, Qi L, Wang C, et al. Bioactivity enhancement of herbal supplements by intestinal microbiota focusing on ginsenosides[J]. Am J Chin Med, 2012, 39(6):1103.
[46] Bae E A, Han M J, Kim E J, et al. Transformation of ginseng saponins to ginsenoside rh 2 by acids and human intestinal bacteria and biological activities of their transformants[J]. Arch Pharm Res, 2004, 27(1):61.
[47] 徐永杰, 张波,张t腾.牛蒡多糖的提取及对小鼠肠道菌群的调节作用[J].食品科学, 2009, 30(23):428.
[48] 王广, 马淑霞, 胡新俊, 等. 党参多糖对双歧杆菌和大肠埃希菌体外生长的影响[J].中国微生态学杂志, 2010, 22(3):199.
[49] 陈琛, 江振友, 宋克玉, 等. 中草药对小鼠肠道菌群影响的实验研究[J].中国微生态学杂志, 2011, 23(1):15.
[50] Handelsman J. Metagenomics:application of genomics to uncultured microorganisms[J]. Microbiol Mol Biol Rev, 2004, 68(4):669.
[51] Raes J. The gut microbiome――a new target for understanding, diagnosing and treating disease[J]. Arch Public Health, 2014, 72(S1):1.
[52] 李文兰, 南莉莉, 季宇彬, 等. 人参中人参皂苷Rg1,Rb1在体肠吸收影响因素的研究[J].中国中药杂志, 2009, 34(20):2627.
[53] Gao S, Basu S, Yang G, et al. Oral bioavailability challenges of natural products used in cancer chemoprevention[J]. Prog Chem, 2013(9):1553.
[54] Hasegawa H. Proof of the mysterious efficacy of ginseng:basic and clinical trials:metabolic activation of ginsenoside:deglycosylation by intestinal bacteria and esterification with fatty acid[J]. Jap J Pharmacol, 2004, 95(2):153.
[55] Kim D H. Metabolism of ginsenosides to bioactive compounds by intestinal microflora and its industrial application[J]. J Gins Res, 2009, 33(3):165.
[56] Zhou S, Xu J, Zhu H, et al. Gut microbiotainvolved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction[J]. Sci Rep, 2016, 6:22474.
[57] 张晓云,杨春清.灵芝的化学成分和药理作用[J].现代药物与临床, 2006, 21(4):152.
[58] Li F, Zhang Y, Zhong Z. Antihyperglycemic effect of Ganoderma lucidum polysaccharides on streptozotocininduced diabetic mice[J]. Int J Mol Sci, 2011, 12(9):6135.
[59] Pan D, Zhang D, Wu J, et al. Antidiabetic, antihyperlipidemic and antioxidant activities of a novel proteoglycan from Ganoderma lucidum fruiting bodies on db/db mice and the possible mechanism[J]. PLoS ONE, 2013, 8(7):e68332.
[60] Chang C J, Lin C S, Lu C C, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota[J]. Nat Commun, 2015, 6:7489.
[61] Clemente J C, Ursell L K, Parfrey L W, et al. The impact of the gut microbiota on human health:an integrative view[J]. Cell, 2012, 148(6):1258.
最近,有关肿瘤发生发展分子机制的研究表明,在恶性肿瘤细胞中,细胞内的各种基本过程是调节失控。这些过程包括:细胞周期的调控,信号传递通路的阻断,细胞凋亡等。研究者将注意力转向癌的病因学与病理过程中起作用的特异的分子及生物靶点。如细胞凋亡诱导剂、信号传导阻滞剂、血管生成抑制剂、化疗与放疗保护剂的寻找。
1 细胞凋亡诱导剂
细胞凋亡是在基因调控下发生的细胞自杀行为。细胞在各种因素如DNA损伤药物、生长因子撤出等作用下,Bcl-2、p53、C-myc、p21等细胞凋亡调控基因的表达发生改变,同时引起一系列生化变化,如胞内Ca2+水平升高,pH值下降,某些蛋白酶活性增高,最终发生细胞凋亡,已有越来越多的证据表明细胞凋亡与肿瘤的发生、发展、治疗及预后密切相关。
Bcl-2的过度表达使肿瘤细胞对一系列细胞毒化疗药物耐受性增加,p53缺失的小鼠对DNA损伤性药物同样表现高度抗性。因此,可以制定一种联合化疗的策略,一种药物抑制细胞凋亡抑制蛋白(Bcl-2,Bcr-Abl),降低Bcr-abl的表达,使Bcl-2失活,干扰其与Bax的结合,恢复p53功能;另一种细胞毒药物,以远低于通常所用的剂量直接杀伤肿瘤细胞,已得到实验证明是可行的。细胞内Ca2+升高在多种药物诱导的细胞凋亡中有重要作用,因此人为地调节细胞内Ca2+浓度,提高肿瘤细胞对凋亡诱导剂的敏感性,也是一种有效的治疗方法。这一疗法将为治疗非雄激素依赖的前列腺癌展示了美好前景。
2 信号传导阻滞剂
目前,研究肿瘤细胞信号传导机制,选择性阻断肿瘤细胞自分泌或旁分泌的信号传导通路,破坏其自控性生长调节机制,正在成为极具吸引力的研究热点。一方面可以通过阻断生长促进因子或增强生长抑制因子的作用,使肿瘤细胞的生长减慢或停止,另一方面也可以通过促进肿瘤细胞的分化,恢复其正常的生长调节机制而改变其恶性表型。这两方面的作用均可通过选择性地调变肿瘤细胞信号传导系统的不同组分而达到。这与经典的细胞毒性抗癌药物相比,具有选择性强、毒副作用小、不受细胞产生抗药性的影响等优点,尤其对晚期肿瘤或转移癌可能具有独到的疗效,很有希望成为新一代抗癌药物。因此研究肿瘤细胞信号传导机制具有潜在的应用价值和意义。细胞信号传导药物的作用方式可根据不同情况选择:
2.1 多数情况下,正常的细胞信号传导机制在肿瘤细胞中过度活跃,或正常信号分子过度表达。此时可通过部分阻断过度激活的细胞信号传导途径,或抑制过度表达的信号分子的方法,使肿瘤细胞生长速度减慢,直至接近正常细胞水平。
2.2 在某些情况下,肿瘤细胞中的信号分子选择性激活,使得细胞信号传导发生异常。可以利用这个特点,选择性地调变肿瘤细胞中的PKC亚型。许多肿瘤中可见不同的酪氨酸激酶受体的过度表达或过度激活,如上皮细胞肿瘤中常见EGFR家族受体的过度表达,血液细胞肿瘤中常见IGFR家族受体的过度表达,胶质瘤中常见PDGFR家族受体的过度表达等。因此,阻断酪氨酸激酶受体信号转导将抑制肿瘤的生长。
细胞信号传导抑制剂几乎是与基因治疗同步进入肿瘤临床治疗实验的。肿瘤细胞信号传导药物将是抗癌药物研究的一个重要方向。
3 血管生成抑制剂
从癌前病变到侵袭,癌发展阶段伴随着血管生成。目前已经阐明新生血管形成的机制,无疑为抗肿瘤药的发现提供了新的靶点,现已明确至少有12种血管生成促进剂和抑制剂,包括:血管内皮生长因子、FGF、血管生成剂等。这些因子在许多人、鼠肿瘤及正常组织中均有表达;同时,在肿瘤及正常组织中抗血管生成因子也有表达,这表明血管生成的调控有赖于正、负信号的相对平衡,这种平衡的失调便导致新的血管生成。
许多血管生成抑制剂已进入临床试验,包括TNP-470, Marimastat,干扰素(INF)α2a等。其中INFα-2a为第一个应用于临床,用以治疗晚期儿童血管瘤,第二代更为有效的内源性血管生成抑制剂,如Endostatin和可溶性VEGF受体均已进入临床试验。这些效果很好的血管生成抑制剂均需长期服药才能在动物模型上抑制血管生成以引起肿瘤减退,临床疗效有待证实。但无论如何,血管生成抑制剂是抗癌药物研究领域一个颇有前景的发展方向。
4 化疗与放疗保护剂
最新的研究进展表明,p53基因与肿瘤化疗和放疗所引起的副作用有着密切的关系。自1989年以来,人们在越来越多的不同类型的肿瘤中发现了p53基因的突变,其频率可达50-60%,突变的形式可表现为点突变、缺失突变、插入突变、移码突变、基因重排等。存在p53突变的肿瘤包括胃癌、结直肠癌、膀胱癌、乳腺癌、头颈部鳞状细胞癌、肺癌、前列腺癌、肝癌、胶质细胞瘤、软组织肉瘤等大多数实体瘤。目前临床上常用的抗肿瘤药如紫杉醇、阿糖胞苷等以及放疗所采用的UV射线、g射线等均被认为是通过诱导p53基因依赖性的细胞凋亡而发挥抗肿瘤作用。新近研究表明,在小鼠的一些正常组织如淋巴组织、造血器官、肠上皮、等均有p53高表达,而这些组织也正是许多抗肿瘤药物易损伤的部位,也即多数抗肿瘤药产生副作用的敏感器官,如白细胞减少、血小板减少、造血功能降低、胃肠道反应等等。
5 药物基因组学
信息、生物、新材料三大前沿领域
信息、生物、新材料是21世纪前30年发展最快、最热门的三大领域,它们集结了当今世界最强势的研究力量。但在这些关系未来发展的关键领域中,我国许多核心技术仍依赖追踪、模仿和引进国外技术,原始创新能力明显不足。
从更宽的视野来看,不仅仅是这三个领域的发展需要高扬“自主创新”的信心与勇气。实际上,整个中国科技正面临着前所未有的发展压力:对外要适应国际科技竞争的紧迫形势,对内要满足经济社会发展进程中的重大战略性需求。而原始创新能力和技术创新能力的薄弱,已成为当前和未来相当长时期内影响我国整体竞争力的极大障碍。
面向未来15年的《国家中长期科学和技术发展规划纲要》即将,科技部等有关部门正在着手制定科技“十一五规划”——关于中国科技“未来”的探讨与关注,在最近一年多来达到了前所未有的程度。就是在这样带着几分焦灼、几分期待、几分信心的探讨氛围中,“自主创新”成为人们关于中国科技发展的共识。
带着这个共识,再来看中国科技发展面临的“压力”,在很大程度上已经变成了未来发展的重大机遇。未来10年,中国在这三大领域中最有可能实现自主创新的关键技术群究竟有哪些?有限的科技经费究竟应当投入到哪些突破口?
下一代移动通信技术
移动通信是人类社会发展中的一大奇迹。2004年12月,全球(蜂窝)移动通信用户总数已达17亿以上,超过已有百年发展历史的固定通信用户数。过去10年,移动通信技术完成了由第一代模拟通信技术向第二代数字通信技术的过渡,当前正处于由其巅峰状态向第三代(3G)移动通信技术过渡的进程中。
目前,世界发达国家纷纷投入力量进行第三代及下一代移动通信标准、技术和产品的开发。
——3G移动通信:国际电信联盟(ITU-T)批准为3G的三大标准分别是欧洲的WCDMA,美国高通公司的CDMA2000和中国大唐电信的TD-SCDMA。3G已在全球30多个国家开始商用。
——增强型3G(Enhanced3G):为了克服3G技术不能很好支持流媒体等业务的不足,国际电信联盟已在制定增强型3G技术标准。专家预测,增强型3G技术将进入商用。
——4G(或Beyond3G):下一代移动通信即所谓超3G(以下统称Beyond3G)技术的研究是国际上的热点。Beyond3G具有更高的速率与更好的频谱利用率。欧盟、日本、韩国等国家已开始4G框架的研究,预期Beyond3G技术可望在2010年后开始商用。
中国移动用户总数已达3.34亿,居世界第一,总体技术水平与国际同步,处于由第二代向第三代的过渡时期。我国3G移动通信技术已经具备了实现产业化的能力,我国大唐电信2000年5月提出的TD-SCDMA标准已成为国际电信联盟正式采纳的三大标准之一。此外,在国家“863”计划的支持下,开展了Beyond3G技术的研究,预期该技术可望在2010年后开始商用。
Beyond3G技术对我国经济社会发展和国防建设具有十分重要的意义。德尔菲专家调查统计结果显示,我国研发水平比领先国家落后5年左右,通过自主开发或联合开发,在未来5年可能形成自主知识产权。以华为、中兴为代表的一批高技术通信设备制造业公司,在第三代移动通信设备(3G)等研发方面紧跟国际前沿,打破了国外公司对高技术通信设备的垄断,开始参与国际通信标准的制定,开发具有自主知识产权的核心技术,具备了参与国际竞争的能力,具备实现技术和产业跨越式发展的契机。
中国下一代网络体系
下一代网络(NGN)泛指以IP为核心,同时可以支持语音、数据和多媒体业务的因特网、移动通信网络和固定电话通信网络的融合网络。
世界各国和国际通信标准化组织都在积极开展下一代网络的研究开发工作。国际电信联盟电信标准化部门(ITU-T)、欧洲电信标准化协会(ETSI)、互联网工程任务组(IETF)、第三代伙伴组织计划(3GPP)等,都在致力于下一代网络体系的研究。目前,美国、日本、韩国、新加坡以及欧盟都已启动了下一代互联网研究计划,全面开展各项核心技术的研究和开发。
我国在下一代网络的研究方面已取得了较大进展。“九五”期间,863计划建成了“中国高速信息示范网”(CAINONET)、国家自然科学基金委支持的“中国高速互连研究试验网NSFCNET”等重大项目,目前已开始基于NGN的软交换技术在移动和多媒体通信中的应用研究。中兴、华为等企业还推出了基于软交换的NGN解决方案;在下一代互联网研究上,中兴、港湾网络等推出的高端路由交换机,可应用于国家骨干IP网络建设,以及大中型宽带IP城域网核心骨干和汇聚。国内公司还开始自行设计高端分组交换定制ASIC芯片。我国已成为少数几个能够提供全系列数据通信设备的国家之一。
下一代网络技术对促进我国高新技术的发展,以及对改造和提升我国传统产业具有举足轻重的作用,对国家安全至关重要。从总体上看,我国互联网技术跟随国外发展,在技术选择上缺乏系统研究,走过一些弯路,至今与国外仍存在较大差距。无论网络用户规模、网络应用、网络技术或网络产品都尚有很大的发展空间。从全局着眼,应不失时机地开展中国下一代网络体系的研究、应用试验、关键技术研究和产品开发。不能像第一代互联网那样,技术、标准都是外国的,给国家安全造成隐患。
纳米级芯片技术
当前,集成电路的发展仍遵循“摩尔定律”,即其集成度和产品性能每18个月增加一倍,按照器件特征尺寸缩小、硅片尺寸增加、芯片集成度提高和设计技术优化的途径继续发展。
自上世纪90年代以来,全球集成电路制造技术升级换代速度加快。当前国际上CMOS集成电路大规模生产的主流技术是130nm,英特尔等部分技术先进的芯片制造公司已在用90nm进行高性能芯片生产。2005年,美国AMD公司已开始量产90nm的高性能芯片,国际上对65nm技术的开发也已成功。伴随130nm到90nm技术的升级,考虑到扩大生产规模和降低成本,大多数公司将使用12英寸替代8英寸硅基片,这也必将带来半导体设备的大量更新。
近年来我国一些先进集成电路制造公司的崛起,使国内集成电路制造工艺技术与国际先进水平的差距有了显著的缩小,但整体水平仍与先进国家相差2~3代。目前,我国集成电路设计公司年设计能力已超过500种,主流设计水平达到180nm,130nm技术正在开发中,90nm技术的研发也开始着手进行。从产业发展看,我国集成电路已初步形成由十多家芯片生产骨干企业、十多家重点封装厂、二十多家初具规模的设计公司、若干家关键材料及专用设备仪器制造厂组成的产业群体,设计、芯片制造、封装三业并举的蓬勃发展态势。以中科院计算所为代表的研究机构和企业在CPU研发方面所取得的新进展,标志着我国集成电路设计具有较强能力,与国际先进水平的差距进一步缩小。目前我国芯片业大多集中在低端的交通、通信、银行、信息管理、石油、劳动保障、身份识别、防伪等领域,IC卡芯片所占比重一直占据芯片总体市场的20%左右。
世界第一颗0.13微米工艺TD-SCDMA3G手机核心芯片10月9日在重庆问世
今后的IC是纳米制造技术的时代,而纳米级芯片技术是我国赶超国际的关键,它的成功将会是我国IC工业发展史上的重要里程碑和持续发展的动力,专家认为应优先发展。
中文信息处理技术
包括汉字和少数民族文字在内的中文信息处理技术,是汉语言学和计算机科学技术的融合,是一门与语言学、计算机科学、心理学、数学、控制论、信息论、声学、自动化技术等多种学科相联系的边缘交叉性学科。
随着互联网的发展,中文信息处理技术已渗透到社会生活的各个方面。1994年,微软开始进入中文软件市场,微软的WORD把国产WPS挤出了市场,继而Windows中文版又把国产中文之星挤垮。微软凭借其强大的优势地位,使国产的中文信息处理软件举步维艰。中文版的Windows、Office等占据了大部分的中文软件市场,使中文信息处理逐渐丧失了其特殊地位。
经过二三十年的努力,我国的中文信息处理,包括中文的编码、字型、输入、显示、输出等的基本处理技术已经实用化,目前正在逐渐摆脱“字处理”阶段,处于向更高级阶段快速发展的时期。包括中文的文字识别机和手写文字识别、语音合成、语音识别、语言理解和智能接口等技术的研究已获得进展。中文的全文检索、内容管理、智能搜索、中文和其他文字之间的机器翻译等技术也正在开发、研制,并取得了较大进展,涌现了联想、方正、四通、汉王、华建等公司。
随着中国加入WTO与世界各国交流的逐渐扩大以及网络信息时代的来临,中文信息处理技术越发显得重要,其自动化水平的提高,将大大促进我国科技、国民经济和社会发展,同时使中华民族的文化在信息时代得到新的发展。未来无疑应当加强中文信息处理技术的研发投入与政策倾斜。
人类功能基因组学研究
20世纪末启动的人类基因组计划被公认为生命科学发展史上的里程碑,其规模和意义超过了曼哈顿原子弹计划和阿波罗登月计划。随着人类基因组、水稻基因组以及其他重要微生物等50多种生物基因组全序列测定工作的完成,国际基因组研究进入到功能基因组学新阶段。
功能基因组学已成为21世纪国际研究的前沿,代表基因分析的新阶段。它是利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究,是在基因组静态的碱基序列弄清楚之后转入对基因组动态的生物学功能学研究。从1997年迄今已发表的有关功能基因组学的论文数以千计,其中不少发表在《细胞》《自然》《科学》等国际著名刊物上。
目前功能基因组研究的重点集中在四个方面:一是基因测序技术研究。预计今后几年内,测序技术将继续发展,特别是有一些重要的改进将直接用于功能基因组的研究;二是单核苷多态性(SNP)以及在此基础上建立的SNP单体型研究;三是基因组有序表达的规律研究。主要包括基因的深入鉴定、基因表达与转录组研究、蛋白和蛋白质组研究、代谢网络和代谢分子研究、基因表达调控研究等;四是计算生物学和系统生物学研究。
近几年来,在国家“863”计划、国家重大科技专项等的资助下,我国功能基因组学研究取得了一系列进展。中华民族占世界人口的1/5,有丰富的遗传疾病家系资源,这是我国发展功能基因组研究的有利因素。“十五”期间,我国参与国际蛋白质组计划、国际人类基因组单体型图计划,高质量按时完成了项目中所承担的21号染色体区域的任务,建立并完善了中华民族基因组和重要疾病相关基因SNPs及其单倍型的数据库的建设,在国际一流杂志上发表了一批高水平学术论文,申报了一批国家专利,收集、保存了一批宝贵的遗传资源,并初步建立了遗传资源收集网络和资源信息库的采集管理系统,组建了一批国家级基地,培养了一支队伍,建立了一批技术平台。但总体而言,我国在功能基因组研究及应用方面的原始创新成果数量较少,还不能为医药生物技术产业的发展提供足够的知识和产品。
未来研究重点包括:
——功能基因组研究。重点开展植物功能基因组研究、人类功能基因组研究和重要病原微生物及特殊微生物功能基因组研究;
——蛋白质组学研究。蛋白质组学是一个新生领域,目前还处于初期发展阶段,仍有许多困难有待克服。我国应选择具有特色的领域开展研究;
——生物信息技术。我国的研究重点应集中在生物信息数据库的构建、生物信息的开发、加工、利用及生物信息并行处理方面;
——生物芯片技术及产品。通过微加工技术和微电子技术在固体芯片表面构建的微型生物化学分析系统,以实现对细胞、蛋白质、DNA以及其他生物组分的准确、快速、大信息量的检测。常用的生物芯片包括基因芯片、蛋白质芯片、生化反应芯片和样品制备芯片等。生物芯片的主要特点是高通量、微型化和自动化。我国生物芯片研究紧跟国际前沿,它将对我国生命科学研究、医学诊断、新药筛选具有革命性的推动作用,也将对我国人口素质、农业发展、环境保护等作出巨大的贡献。
专家认为,我国人类功能基因组学研究的研发水平比领先国家落后5年左右,若能高度重视,充分利用我国已有的技术和资源优势,未来10年我国可能实现人类功能基因组学研究的跨越发展。
蛋白质组学研究
随着被誉为解读人类生命“天书”的人类基因组计划的成功实施,生命科学的战略重点转移到以阐明人类基因组整体功能为目标的功能基因组学上。蛋白质作为生命活动的“执行者”,自然成为新的研究焦点。以研究一种细胞、组织或完整生物体所拥有的全套蛋白质为特征的蛋白质组学自然就成为功能基因组学中的“中流砥柱”,构成了功能基因组学研究的战略制高点。
目前蛋白质组学的主要内容是建立和发展蛋白质组研究技术方法,进行蛋白质组分析。为了保证分析过程的精确性和重复性,大规模样品处理机器人也被应用到该领域。整个研究过程包括样品处理、蛋白质的分离、蛋白质丰度分析、蛋白质鉴定等步骤。
附图
自1995年蛋白质组一词问世到现在,蛋白质组学研究得到了突飞猛进的发展。我国的蛋白质组研究也在迅速开展,并取得了许多有意义的成果,中国科学家已经在重大疾病如肝癌,比较蛋白质组学的研究等方面取得了重要成就,在“973”计划的资助下,我国已经开始了二维电泳蛋白组分离研究、图像分析技术和蛋白质组鉴定质谱技术研究等。
如何抓住国际上蛋白质组学研究刚刚启动的时机,迅速地进入到蛋白质组学研究的国际前沿,是摆在我国生命科学研究发展方向上的一个重要课题。
目前我国在该领域的研发基础较好,只比先进国家落后5年左右。蛋白质组学属科学前沿,专家建议结合我国现行的基因组研究及其他有我国特色或优势的领域开展研究,不要重复或追随国际已有的工作,而应走自己的路,未来10年内有可能取得重大科学突破。
生物制药技术
生物制药被称为生物技术的“第一次浪潮”,其诱人前景引起了全世界各国政府、科技界、企业界的高度关注。
在过去的30年间,全球生物技术取得了令人瞩目的成就。据美国著名咨询机构安永公司2004年和2005年发表的第十八和第十九次全球生物技术年度报告分析,2003年全球生物技术产业营收达410亿美元。目前已有190余种生物技术产品获准上市,激发起投资者对生物技术股与融资的兴趣。
近20年来,我国医药生物技术产业取得了长足的进步,据《中国生物技术发展报告2004》统计,我国已有25种基因工程药物和基因工程疫苗,具有自主知识产权的上市药物达9种,重组人ω-干扰素喷鼻剂2003年4月获得国家临床研究批文,可用于较大规模高危人群的预防。但总体上与世界先进水平相比还存在很大的差距,医药生物技术产品的销售收入仅占医药工业总销售额的7.5%左右。
为加快我国生物制药技术的发展,今后的研究开发重点是:
——生物技术药物(包括疫苗)及制备技术。围绕危害人民健康的神经系统、免疫系统、内分泌系统和肿瘤等重大疾病和疑难病症的防治与诊断,应用基因工程、细胞工程、发酵工程和酶工程等技术,开发单克隆抗体、基因工程药物、反义药物、基因治疗药物、可溶性蛋白质药物和基因工程疫苗,拓宽医药新产品领域;
——高通量筛选技术。目前,国外许多制药公司已把高通量筛选作为发现先导化合物的主要手段。典型的高通量筛选模式为每次筛选1000个化合物,而超高通量筛选可每天筛选10万多个化合物。随着分析容量的增大,分析检测技术、液体处理及自动化、连续流动以及信息处理将成为未来高通量筛选技术研究的重点;
——天然药物原料制备。目前,已经发现人类患有3万多种疾病,其中1/3靠对症治疗,极少数人能够治愈,而大多数人缺乏有效的治疗药物。以往多用合成药物,随着科技的进步,人们自我保健意识增强,对天然药物的追求与日俱增。当前世界各国都在加强天然药物的研发。
生物信息学研究
在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析,对基因组研究相关生物信息获取、加工、储存、分配、分析和解释——上世纪80年代一经产生,生物信息学就得到了迅猛发展。其研究一方面是对海量数据的收集、整理与服务;另一方面是利用这些数据,从中发现新的规律。
具体地讲,生物信息学是把基因组DNA序列信息分析作为源头,找到基因组序列中代表蛋白质和RNA基因的编码区;同时,阐明基因组中大量存在的非编码区的信息实质,破译隐藏在DNA序列中的遗传语言规律;在此基础上,归纳、整理与基因组遗传信息释放及其调控相关的转录谱和蛋白质谱的数据,从而认识代谢、发育、分化、进化的规律。另外生物信息学还利用基因组中编码区的信息进行蛋白质空间结构的模拟和蛋白质功能的预测,并将此类信息与生物体和生命过程的生理生化信息相结合,阐明其分子机理,最终进行蛋白质、核酸的分子设计、药物设计和个体化的医疗保健设计。
生物信息学的发展已经将基因组信息学、蛋白质的结构计算与模拟以及药物设计有机地连接在一起,它将导致生物学、物理学、数学、计算机科学等多种科学文化的融合,造就一批新的交叉学科。
科学家们普遍相信,本世纪最初的若干年是人类基因组研究取得辉煌成果的时代,也是生物信息学蓬勃发展的时代。据预测,到2005年生物信息的全球市场价值将达到400亿美元。
我国生物信息学研究起步较早。20世纪80年代末,国内学者就在《自然》上报道了免疫球蛋白基因超家族计算机分析的工作。目前,多家大学和研究机构也相继成立了生物信息中心或研究所,各种原始数据库、镜像数据库和二级数据库也已经逐步建立,同时我国还建立了相关的工作站和网络服务器,实现了与国际主要基因组数据库及研究中心的网络连接,开发了用于核酸、蛋白结构、功能分析的计算工具以及蛋白质三维结构预测、并行化的高通量基因拼接和基于群论方法开发的基因预测等多种软件。中国学者还运用自主开发的电脑克隆程序,开展了大规模EST数据分析,建立了一系列基因组序列分析新算法和新技术,并在国内外著名科学杂志上发表了一系列论文,取得了引人注目的进展,尤其在人类基因组基因数目的预测上获得了与目前的实验事实相当吻合的结果,在国际上获得普遍认可。
农作物新品种培育技术
最近几年,农业生物技术的发展对农业产业结构调整产生的巨大影响,已引起各国政府和科学家的高度重视。农业生物技术领域研究中最活跃的是育种技术——应用现代分子生物学和细胞生物学技术进行品种改良,创造更加适合人类需要的新物种,获得高产、优质、抗病虫害新品种。这使得新品种层出不穷,品种在农业增产中的贡献率将由现在的30%提高到50%。国际水稻研究所已经培育出每公顷7500公斤的超级水稻,非洲培育出增产10倍的超级木薯。
我国该领域的基础研究和高技术研究取得了一批创新成果:如植物转基因技术、细胞培育技术、籼稻的全基因组测序、花粉管通道转基因方法等,使研制具有自主知识产权的转基因农作物新品种成为现实和可能。目前,已培育出亩产达到807.4公斤的超级杂交稻;2004年转基因抗虫棉的种植面积已占全国棉花种植面积的50%左右;利用细胞工程技术培育的抗白粉病、赤霉病和黄矮病等小麦新品种已累计推广1100多万亩;植物组织培养和快繁脱毒技术在马铃薯、甘蔗、花卉生产中发挥了重要的作用。
专家认为,我国农作物新品种培育的研发基础较好,整体科研技术与国外处于同等水平,只要充分利用资源,发挥优势,很可能在该领域取得突破。
纳米材料与纳米技术
纳米科技是上世纪末才逐步发展起来的新兴科学领域,它的迅猛发展将在21世纪促使几乎所有工业领域产生一场革命性的变化。纳米材料是未来社会发展极为重要的物质基础,许多科技新领域的突破迫切需要纳米材料和纳米科技支撑,传统产业的技术提升也急需纳米材料和技术的支持。
近年来,科技强国在该领域均取得了相当重要的进展。
在纳米材料的制备与合成方面,美国科学家利用超高密度晶格和电路制作的新方法,获得直径8nm、线宽16nm的铂纳米线;法国科学家利用粉末冶金制成了具有完美弹塑性的纯纳米晶体铜,实现了对纳米结构生长过程中的形状、尺寸、生长模式和排序的原位、实时监测;德国科学家巧妙地利用交流电介电泳技术,将金属与半导体单壁碳纳米管成功分离;日本用单层碳纳米管与有机熔盐制成高度导电的聚合物纳米管复合材料。
在纳米生物医学器件方面,科学家用特定的蛋白质或化合物取代用硅纳米线制成场效应晶体管的栅极用以诊断前列腺癌、直肠癌等疾病,成百倍地提高了诊断的灵敏度。另外,纳米技术在医学应用、纳米电子学、纳米加工、纳米器件等方面也有新进展。与此同时,国外大企业纷纷介入,推动了纳米技术产业化的进程。
当前纳米材料研究的趋势是,由随机合成过渡到可控合成;由纳米单元的制备,通过集成和组装制备具有纳米结构的宏观试样;由性能的随机探索发展到按照应用的需要制备具有特殊性能的纳米材料。
纳米材料和技术很可能在以下四个领域的应用上有所突破:一是IT产业(芯片、网络通讯和纳米器件);二是在生物医药领域应用纳米生物传感的早期诊断和治疗,到2010年将给人类带来新的福音;三是在显示和照明领域的应用已有新的进展,纳米光纤、纳米微电极等已产生极大影响;四是纳米材料技术与生物技术相结合,在基因修复和标记各种蛋白酶等方面蕴育新的突破,预计2010年纳米技术对国际GDP的贡献将超过2万亿美元。
我国纳米材料研究起步较早,基础较好,整体科研水平与先进国家相比处于同等水平,部分技术落后5年左右。目前有300多个从事纳米材料基础研究和应用的研究单位,并在纳米材料研究上取得了一批重要成果,引起了国际上的广泛关注。据英国有关权威机构提供的调查显示,我国纳米专利申请件数排名世界第三位。
国内目前已建成100多条纳米材料生产线,产品质量大都达到或接近国际水平。与发达国家相比,我国的差距一是在纳米材料制备与合成方面尚处于粗放阶段,缺乏应用目标的牵引,集成不够;二是纳米材料计量、测量和表征技术明显落后于国外,对标准试样和标准方法的建立重视不够,对表征手段的建立投资不足;三是纳米材料的基础研究、应用研究和开发研究出现脱节,纳米材料研究缺乏针对性;四是学科交叉、技术集成不够。
链接:
信息技术正在发生结构性变革
目前,信息技术正在发生结构性的变革,在信息器件向高速化、微型化、一体化和网络化发展的同时,软件和信息服务成为发展重点。大规模集成电路正快速向系统芯片发展;移动通信技术正在向第三代、第四展,将提供更优质、更快速、更安全的服务,并带来巨大的经济利益;电信网、计算机网和有线电视网三网融合趋势进一步加快,无线网络成为世界关注的重点;全球化的信息网络将像电力、电话一样为社会公众提供各种信息服务,越来越深刻地改变着人们的学习、工作和生活方式,也将对产业结构调整产生重大影响。
微电子技术、计算机技术、软件技术、通信技术、网络技术等领域的发展方兴未艾,极有可能引发新一轮产业革命。
大显神通的新材料
高性能结构材料是具有高比强度、高比刚度、耐高温、耐腐蚀、耐磨损的材料,对支撑交通运输、能源动力、电子信息、航空航天以及国家重大工程起着关键性作用。
新型功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的材料,是信息技术、生物技术、能源技术和国防建设的重要基础材料。当前国际上功能材料及其应用技术正面临新的突破,诸如信息功能材料、超导材料、生物医用材料、能源材料、生态环境材料及其材料的分子、原子设计正处于日新月异的发展之中。
【关键词】生物信息学;计算机科学;基因组学
生物信息学是利用计算机为工具,用数学及信息科学的理论和方法研究生命现象,对生物信息进行收集、加工、存储、检索和分析的科学。生物信息学的核心是基因组信息学,基因组学是研究生物基因组和如何利用基因的一门学问,该学科提供基因组信息以及相关数据系统,试图解决生物、医学和工业领域的重大问题。对于基因组学研究所产生的大量数据必须借助于先进的计算机技术收集和分析处理这些生物学信息,因此计算机科学为生物信息学的研究和应用提供了非常好的支撑。
1.序列比对
序列比对其意义是从核酸、氨基酸的层次来比较两个或两个以上符号序列的相似性或不相似性,进而推测其结构功能及进化上的联系。研究序列相似性的目的是通过相似的序列得到相似的结构或功能,也可以通过序列的相似性判别序列之间的同源性,推测序列之间的进化关系。序列比对是生物信息学的基础,非常重要。
序列比对中最基础的是双序列比对,双序列比较又分为全局序列比较和局部序列比较,这两种比较均可用动态程序设计方法有效解决。在实际应用中,某些在生物学上有重要意义的相似性不是仅仅分析单条序列,只能通过将多个序列对比排列起来才能识别。比如当面对许多不同生物但蛋白质功能相似时,我们可能想知道序列的哪些部分是相似的,哪些部分是不同的,进而分析蛋白质的结构和功能。为获得这些信息,我们需要对这些序列进行多序列比对。多重序列比对算法有动态规划算法、星形比对算法、树形比对算法、遗传算法、模拟退火算法、隐马尔可夫模型等,这些算法都可以通过计算机得以解决。
2.数据库搜索
随着人类基因组计划的实施,实验数据急剧增加,数据的标准化和检验成为信息处理的第一步工作,并在此基础上建立数据库,存储和管理基因组信息。这就需要借助计算机存储大量的生物学实验数据,通过对这些数据按一定功能分类整理,形成了数以百计的生物信息数据库,并要求有高效的程序对这些数据库进行查询,以此来满足生物学工作者的需要。数据库包括一级数据库和二级数据库,一级数据库直接来源于实验获得的原始数据,只经过简单的归类整理和注释;二级数据库是对基本数据进行分析、提炼加工后提取的有用信息。
分子生物学的三大核心数据库是GenBank核酸序列数据库,SWISS-PROT蛋白质序列数据库和PDB生物大分子结构数据库,这三大数据库为全世界分子生物学和医学研究人员了解生物分子信息的组织和结构,破译基因组信息提供了必要的支撑。但是用传统的手工分析方法来处理数据显然已经无法跟上新时代的步伐,对于大量的实验结果必须利用计算机进行自动分析,以此来寻找数据之间存在的密切关系,并且用来解决实际中的问题。
3.基因组序列分析
基因组学研究的首要目标是获得人的整套遗传密码,要得到人的全部遗传密码就要把人的基因组打碎,测完每个小的序列后再把它们重新拼接起来。所以目前生物信息学的大量工作是针对基因组DNA序列的,建立快速而又准确的DNA序列分析方法对研究基因的结构和功能有非常重要的意义。对于基因组序列,人们比较关心的是从序列中找到基因及其表达调控信息,比如对于未知基因,我们就可以通过把它与已知的基因序列进行比较,从而了解该基因相关的生理功能或者提供疾病发病机理的信息,从而为研发新药或对疾病的治疗提供一定的依据,使我们更全面地了解基因的结构,认识基因的功能。因此,如何让计算机有效地管理和运行海量的数据也是一个重要问题。
4.蛋白质结构预测
蛋白质是组成生物体的基本物质,几乎一切生命活动都要通过蛋白质的结构与功能体现出来,因此分析处理蛋白质数据也是相当重要的,蛋白质的生物功能由蛋白质的结构所决定,因此根据蛋白质序列预测蛋白质结构是很重要的问题,这就需要分析大量的数据,从中找出蛋白质序列和结构之间存在的关系与规律。
蛋白质结构预测分为二级结构预测和空间结构预测,在二级结构预测方面主要有以下几种不同的方法:①基于统计信息;②基于物理化学性质;③基于序列模式;④基于多层神经网络;⑤基于图论;⑥基于多元统计;⑦基于机器学习的专家规则;⑧最邻近算法。目前大多数二级结构预测的算法都是由序列比对算法BLAST、FASTA、CLUSTALW产生的经过比对的序列进行二级结构预测。虽然二级结构的预测方法其准确率已经可以达到80%以上,但二级结构预测的准确性还有待提高。
在实际进行蛋白质二级结构预测时,往往会把结构实验结果、序列比对结果、蛋白质结构预测结果,还有各种预测方法结合起来,比较常用的是同时使用多个软件进行预测,把各个软件预测结果分析后得出比较接近实际的蛋白质二级结构。将序列比对与二级结构预测相结合也是一种常见的综合分析方法。
蛋白质二级结构指蛋白质多肽链本身的折叠和盘绕的方式。二级结构主要有α-螺旋、β-折叠、β-转角等几种形式,它们是构成蛋白质高级结构的基本要素,常见的二级结构有α-螺旋和β-折叠。三级结构是在二级结构的基础上进一步盘绕,折叠形成的。研究蛋白质空间结构的目标是为了了解蛋白质与三维结构的关系,预测蛋白质的二级结构预测只是预测蛋白质三维形状的第一步,蛋白质折叠问题是非常复杂的,这就导致了蛋白质的空间结构预测的复杂性。蛋白质三维结构预测方法有:同源模型化方法、线索化方法和从头预测的方法但是无论用哪一种方法,结果都是预测,采用不同的算法,可能产生不同的结果,因此还需要研究新的理论计算方法来预测蛋白质的三维结构。
图4.1 蛋白质结构
目前,已知蛋白质序列数据库中的数据量远远超过结构数据库中的数据量,并且这种差距会随着DNA序列分析技术和基因识别方法的进步越来越大,人们希望产生蛋白质结构的进度能够跟上产生蛋白质序列的速度,这就需要对蛋白质结构预测发展新的理论分析方法,目前还没有一个算法能够很好地预测出一个蛋白的三维结构形状,蛋白质的结构预测被认为是当代计算机科学要解决的最重要的问题之一,因此蛋白质结构预测的算法在分子生物学中显得尤为重要。
5.结束语
现如今计算机的发展已渗透到各个领域,生物学中的大量实验数据的处理和理论分析也需要有相应的计算机程序来完成,因此随着现代科技的发展,生物技术与计算机信息技术的融合已成为大势所趋。生物学研究过程中产生的海量数据需要强有力的数据处理分析工具,这样计算机科学技术就成为了生物科学家的必然选择,虽然人们已经利用计算机技术解决了很多生物学上的难题,但是如何利用计算机更好地处理生物学中的数据仍是一个长期而又复杂的课题。
【参考文献】
[1]孙啸,陆祖宏,谢建明.生物信息学基础[M].清华大学出版社,2005.
[2]张阳德.生物信息学.科学出版社[M].2004.
[3]Dan E.Krane & Michael L.Raymer,孙啸,陆祖宏,谢建明译.生物信息学概论[M].2004.