公务员期刊网 精选范文 生物统计学数据分析范文

生物统计学数据分析精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的生物统计学数据分析主题范文,仅供参考,欢迎阅读并收藏。

生物统计学数据分析

第1篇:生物统计学数据分析范文

【论文摘要】所谓统计思想,就是在统计实际工作、统计学理论的应用研究中,必须遵循的基本理念和指导思想。统计思想主要包括均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等思想。文章通过对统计思想的阐释,提出关于统计思想认识的三点思考。

【论文关键词】统计学;统计思想;认识

1关于统计学

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。

2统计学中的几种统计思想

2.1统计思想的形成

统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。

2.2比较常用的几种统计思想

所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:

2.2.1均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.2.2变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

2.2.3估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

2.2.4相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

2.2.5拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

2.2.6检验思想

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

2.3统计思想的特点

作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:

(1)统计思想强调方法性与应用性的统一;

(2)统计思想强调科学性与艺术性的统一;

(3)统计思想强调客观性与主观性的统一;

(4)统计思想强调定性分析与定量分析的统一。

3对统计思想的一些思考

3.1要更正当前存在的一些不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

3.2要不断拓展统计思维方式

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

3.3深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

参考文献:

[1]陈福贵.统计思想雏议[J]北京统计,2004,(05).

[2]庞有贵.统计工作及统计思想[J]科技情报开发与经济,2004,(03).

第2篇:生物统计学数据分析范文

【关键词】统计学;统计思想;认识

1关于统计学

统计学是一门实质性的社会科学,既研究社会生活的客观规律,也研究统计方法。统计学是继承和发展基础统计的理论成果,坚持统计学的社会科学性质,使统计理论研究更接近统计工作实际,在国家和社会得到广泛发展。

2统计学中的几种统计思想

2.1统计思想的形成

统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。

2.2比较常用的几种统计思想

所谓统计思想,就是统计实际工作、统计学理论及应用研究中必须遵循的基本理念和指导思想。统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想。现分述如下:

2.2.1均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.2.2变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

2.2.3估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

2.2.4相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

2.2.5拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

2.2.6检验思想

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

2.3统计思想的特点

作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点能从以下四个方面体现出:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。

3对统计思想的一些思考

3.1要更正当前存在的一些不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂越科学,在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。新晨

3.2要不断拓展统计思维方式

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设,即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

3.3深化对数据分析的认识

任何统计研究都离不开数据分析。因为这是得到统计研究结论的必要环节。虽然统计分析的形式随时代的推移而变化着,但是“从数据中提取一切信息”或者“归纳和揭示”作为统计分析的目的却一直没有改变。对统计数据分析的原因有以下三个方面:一是基于同样的数据会得出不同、甚至相反的分析结论;二是我们所面对的分析数据有时是缺损的或存在不真实性;三是我们所面对的分析数据有时则又是海量的,让人无从下手。虽然统计数据分析已经经历了描述性数据分析(DDA)、推断性数据分析(IDA)和探索性数据分析(EDA)等阶段,分析的方法技术已经有了质的飞跃,但与人类不断提高的要求相比,存在的问题似乎也越来越多。所以,我们必须深化对数据分析的认识,围绕“准确解答特定问题并且从数据中获取一切有效信息”这一目的,不断拓展研究思路,继续开展数据分析方法技术的研究。

参考文献:

[1]陈福贵.统计思想雏议[J]北京统计,2004,(05).

[2]庞有贵.统计工作及统计思想[J]科技情报开发与经济,2004,(03).

第3篇:生物统计学数据分析范文

一、统计学中的几种常见统计思想

统计思想主要包括:均值思想、变异思想、估计思想、相关思想、拟合思想、检验思想等。统计思想不是天然形成的,需要经历统计观念、统计意识、统计理念等阶段。统计思想是根据人类社会需求的变化而开展各种统计实践、统计理论研究与概括,才能逐步形成系统的统计思想。作为一门应用统计学,它从数理统计学派汲取新的营养,并且越来越广泛的应用数学方法,联系也越来越密切,但在统计思想的体现上与通用学派相比,还有着自己的特别之处。其基本特点:(1)统计思想强调方法性与应用性的统一;(2)统计思想强调科学性与艺术性的统一;(3)统计思想强调客观性与主观性的统一;(4)统计思想强调定性分析与定量分析的统一。

1.均值思想

均值是对所要研究对象的简明而重要的代表。均值概念几乎涉及所有统计学理论,是统计学的基本思想。均值思想也要求从总体上看问题,但要求观察其一般发展趋势,避免个别偶然现象的干扰,故也体现了总体观。

2.变异思想

统计研究同类现象的总体特征,它的前提则是总体各单位的特征存在着差异。统计方法就是要认识事物数量方面的差异。统计学反映变异情况较基本的概念是方差,是表示“变异”的“一般水平”的概念。平均与变异都是对同类事物特征的抽象和宏观度量。

3.估计思想

估计以样本推测总体,是对同类事物的由此及彼式的认识方法。使用估计方法有一个预设:样本与总体具有相同的性质。样本才能代表总体。但样本的代表性受偶然因素影响,在估计理论对置信程度的测量就是保持逻辑严谨的必要步骤。

4.相关思想

事物是普遍联系的,在变化中,经常出现一些事物相随共变或相随共现的情况,总体又是由许多个别事务所组成,这些个别事物是相互关联的,而我们所研究的事物总体又是在同质性的基础上形成。因而,总体中的个体之间、这一总体与另一总体之间总是相互关联的。

5.拟合思想

拟合是对不同类型事物之间关系之表象的抽象。任何一个单一的关系必须依赖其他关系而存在,所有实际事物的关系都表现得非常复杂,这种方法就是对规律或趋势的拟合。拟合的成果是模型,反映一般趋势。趋势表达的是“事物和关系的变化过程在数量上所体现的模式和基于此而预示的可能性”。

6.检验思想

统计方法总是归纳性的,其结论永远带有一定的或然性,基于局部特征和规律所推广出来的判断不可能完全可信,检验过程就是利用样本的实际资料来检验事先对总体某些数量特征的假设是否可信。

二、对统计思想的若干思考

1.要改变当前存在的一些不正确的思想认识

英国著名生物学家、统计学家高尔顿曾经说过:“统计学具有处理复杂问题的非凡能力,当科学的探索者在前进的过程中荆棘载途时,唯有统计学可以帮助他们打开一条通道”。但事实并非这么简单,因为我们所面临的现实问题可能要比想象的复杂得多。此外,有些人认为方法越复杂,越科学。在实际的分析研究中,喜欢简单问题复杂化,似乎这样才能显示其科学含量。其实,真正的科学是使复杂的问题简单化而不是追求复杂化。与此相关联的是,有些人认为只有推断统计才是科学,描述统计不是科学,并延伸扩大到只有数理统计是科学、社会经济统计不是科学这样的认识。这种认识是极其错误的,至少是对社会经济统计的无知。比利时数学家凯特勒不仅研究概率论,并且注重于把统计学应用于人类事物,试图把统计学创建成改良社会的一种工具。经济学和人口统计学中的某些近代概念,如GNP、人口增长率等等,均是凯特勒及其弟子们的遗产。

2.要不断拓展统计思维方式

统计学是以归纳推理或归纳思维为主要的逻辑方式的。众所周知,逻辑推理方式主要有两种:归纳推理和演绎推理。归纳推理是基于观测到的数据信息(尤其是不完全甚至劣质的信息)去产生新的知识或去验证一个假设。即以所掌握的数据信息为依据,归纳得出具有一般特征的结论。归纳推理是要在数据信息的基础上透过偶然性去发现必然性。演绎推理是对统计认识能力的深化,尤其是在根据必然性去研究和认识偶然性方面,具有很大的作用。

第4篇:生物统计学数据分析范文

统计学发展到如今已有300多年的历史.它是分支众多、实用性强、应用面广、体系比较完整的方法论科学,是探索自然、认识社会、推断未知的重要思维方式与工具.它融合于自然科学、实验科学、经济科学、管理科学等学科.

我校统计学专业是一个新专业,2010年开始招生.综合性大学背景下省属院校的统计学专业人才培养模式,值得我们思考,确定了我院统计学专业的人才培养目标,即培养适应我国社会主义现代化建设的需要,德、智、体全面发展,具有良好的数学、经济学素养,掌握统计学的基本理论和方法,能够为实际问题的解决和决策提供量化的依据,熟练地运用常用的统计软件处理和分析数据,能在企业、事业单位和经济、管理部门从事统计调查、统计信息管理、数量分析等开发、应用和管理工作,或在科研、教育部本文由收集整理门从事研究和教学工作的专门人才.本文在综合性大学背景下,利用多学科交叉的优势,对统计学专业的人才培养模式进行研究.

一、优化课程体系,培养应用型和创新型人才

在课程体系设置上,体现“以人为本”的精神,以培养应用型和创新型人才为目的,调整重组专业,优化整合课程结构,拓展强化实践技能,注重实施创新教育,将整个课程体系构建为“四个平台,八个模块”,即通识教育平台、公共基础平台、学科基础平台、专业方向平台;进一步细化为通识教育必修课程模块、通识教育选修课程模块、学科基础必修课程模块、学科基础选修课程模块、专业方向必修课程模块、专业方向选修课程模块、实践性教育模块、素质教育模块.

主要课程为数学分析、高等代数、空间解析几何、概率论、数理统计、常微分方程、应用随机过程、应用回归分析、时间序列分析、多元统计分析、金融数学、风险理论、抽样调查、统计计算等.

根据专业发展将课程分为数理模块、应用模块;根据能力和兴趣将学生分为提高型和应用型两类人才分别培养,强化学生的应用统计软件能力和各种资格证的职业技能,按照多元化人才培养目标,构建层次、课程模块,不同层次的学生选择不同的模块,满足学生个性化发展需要,为因材施教创造条件.

二、优化教学内容,重视与其他学科的交叉融合

根据学生能力和兴趣将按照提高型和应用型两类人才分别培养,满足学生个性化发展需要.由此整合教学内容,统筹兼顾.具体如下:

优化整体课程结构.按照提高型和应用型的多元化人才培养目标,逐步修订教学计划,从课程设置、学时安排、教学内容、实践性环节上,全面构筑新的课程体系,根据专业发展构建层次、课程模块,不同层次的学生选择不同的模块;从教学内容上揭示各课程之间相互关系,从必修课、选修课、限选课等设置上科学安排模块课程,实现多种课程形态有机结合,为因材施教创造条件.在教学内容上,根据培养方案,认真研究各学期的课程安排,本着“拓宽知识,保证基础,提高素质,重在应用”的原则,由浅入深,循序渐进,制定课程教学大纲,统筹考虑各门课程的教学内容应该讲哪些内容,讲到什么程度,从而避免教学内容的重复性.

强化基础,突出应用.在大学二年级,为学生开设spss统计软件课,这样在后面的课程教学中,要求学生结合所学统计理论和方法,用spss、sas等统计软件进行数据分析及处理,进一步提高学生的计算机和统计软件应用能力,与保险公司、证券公司、调查公司、统计局等企事业单位合作,作为稳定的教学实践基地,增强专业实践能力.

利用综合性大学多学科的优势,重视统计学与其他一些学科的融合.统计的理论与方法来源于各种学科领域数据分析的需要,统计学作用的发挥及地位的提高也取决于统计方法对这些学科领域的应用.从这个意义上看,可以说,没有与专门学科的相结合,统计学

就失去生命力.因此开设一些边缘学科课程,如统计模型、运筹与优化、实验设计、计量经济学、保险统计、会计学、证券与期货投资分析、金融管理原理、应用统计专题等,同时让学生用统计方法及统计软件解决生物、医学、林学、教育、心理、体育等其他学科的问题.

三、改革实践教学体系,培养学生的综合素质

适当增加实践教学课程,调整实践教学课时比例和学时分配.结合理论知识增加综合性、设计性、开放性实验内容,充分利用实验室资源训练学生的计算机操作能力和数据处理能力.根据专业技能需求适当增加实践性强的课程.在掌握一定统计学专业基础知识的基础上,增设实验设计、生物统计学、统计预测与决策、数据挖掘技术与应用、市场调查与分析等一系列与实际应用紧密结合的实践性课程.

第5篇:生物统计学数据分析范文

关键词:生物统计学;统计思维;应用意识

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)44-0191-03

生物统计学是利用概率论和数理统计的原理和方法研究生物数量性状变化规律的一门学科,是应用数学领域的重要学科分支[1]。它涵盖了生物学试验设计、数据收集和数据整理、统计分析方法的选择以及统计结论的得出与解释等内容。生物统计学不仅广泛应用于传统的生物学、生态学、医学、药学和农学等各学科专业中,也是现代分子生物学研究中数据分析的重要工具[2]。数据分析与处理能力是当今生物学领域科研工作者的必备技能之一,且随着生物组学时代的来临,生物统计学的应用更加广泛和深入,生物统计学在高校生物学课程体系中的位置也愈发重要,肩负着培养学生数据分析技能和科研素养的重要使命。因此,生物统计学已成为我国高等院校生物科学类专业的一门基础课程,也是广东海洋大学水产养殖学专业的一门专业必修课。

然而,生物统计学课程不同于其他的理论基础课和专业课,其最大特点是概念抽象、公式复杂、计算烦琐,是一门教师和学生普遍反映难教、难学、难懂的课程,这也导致学生缺乏学习兴趣和动力,难以取得预期的教学效果[3]。为此,本文将结合笔者近年来水产生物统计学的教学实践,就如何培养学生统计思维能力和应用意识进行分析和探讨,以期为水产生物统计学课程的教学提供一定的参考。

一、统计思维能力培养

生物统计学作为一门工具学科,是一种思维方法(或统计思想)在生物学中的应用。学习生物统计学就是要学会利用统计思想分析问题和解决问题。姚亮等(2015)归纳了四条统计思想,分别是或然性思想、小概率原理、大概率原理和信息最大化原理。这些统计思想存在于生物统计学理论体系的各个角落,共同构成了统计学学科的思想基础。为此,生物统计学的课堂中,教师应将核心统计思想的阐述贯穿于基础理论知识讲解中,努力帮助学生理解复杂统计理论和方法的思想本质。

1.注重核心统计思想的讲解是培养学生统计思维能力的首要任务。生物统计学教学活动中,由于较多的数学推理与计算等难点需要讲解,因此会占用教师较多的授课时间和精力,从而面临能力培养难于知识传授的困境,这就与“知识传授与能力培养”的高等教育课程基本培养目标相违背。另一方面,正是因为生物统计学课程较大的教学与学习难度,才更需要学生掌握核心的统计学思想及应用统计学思想思考问题的思维模式,这样才有助于学生更深层次地理解理论性较强的具体统计理论与方法,并将其灵活运用于解决各种实际科研问题。

举例来说,若某事件发生的概率很小,其在一次(或极少次)试验中几乎不可能发生,统计学上将该事件称为小概率事件。小概率事件对应的小概率原理是假设检验理论的思想基础,几乎所有假设检验的推理均是依据小概率原理来进行的。具体来说,首先假定原假设成立并进行检验统计量的计算,推导出其为一小概率事件,那么依据小概率原理则有理由相信原假设在概率上是不成立的;反之,若无小概率事件的发生,则无充分理由质疑原假设。显然,小概率原理是假设检验理论最为关键的思想基础。倘若教师在讲授假设检验理论之前注重小概率事件原理的讲解,便能帮助学生更好地理解统计推断的推理过程和判断依据。同样,注重或然性现象(随机性现象)、大概率原理以及信息最大化原理等统计思想的讲解,对于帮助学生透彻理解统计学基本理论、培养学生统计思维能力均具有十分重要的作用。

2.模型构建训练及实例结合教学是培养学生统计思维能力的主要途径。源于数学学科分支的统计学可以理解为对现实问题的抽象概括,即现实统计问题的模型化表达。比如,生物统计学中的方差分析将总变异分解为组内变异和组间变异两部分,分别代表误差和试验的处理效应,并将生物学中的各种控制试验采用统一的符号及线性公式来描述,进而计算统计量来衡量因素的效应值。教学过程中教师可要求学生将实际科研问题中的因素、水平、重复、组间、组内等具体名词代入方差分析的理论线性模型,反复开展模型构建训练,以加深对方差分析的理解。再如假设检验,一般将检验过程分为“假设提出”、“选择及计算统计量”、“确定显著性水平”和“统计推断”四个步骤,而任何实际问题的假设检验分析均可构建为由这四个步骤构成的模型。课程讲授初期务必严格要求学生遵守“四步走”的分析流程,进行统计模型的构建训练,不断增强学生对该统计模型的熟悉程度,这样做,让同学们在更好地掌握统计学理论知识的同时,又培养了其模型思维能力。

实例结合教学是生物统计学教学的重要方法,也是模型构建训练的重要组成部分。课堂教学活动中,教师可选择一些贴近生活、科研与生产的实例来讲解抽象的统计学理论和模型。比如,笔者在讲解假设检验理论时,选用水产饲料装包机工作是否正常的实例来讲解假设检验的基本步骤。首先提出原假设和备择假设,讲解两种假设各自表示的实际含义;根据“装包机是否工作正常”及“额定标准”确定检验统计量为样本均值并计算;确定P值后,做出统计推断,并解读统计结论所代表的实际统计学含义。

通过以上模型构建训练和实例结合教学,将抽象的统计学理论、方法与具体的实际问题相结合,达到化繁为简的目的,进而提高生物统计学的教学效果。当然,模型训练与实例结合教学是一项系统工程,需要教师投入更多的时间和精力备课,并循序渐进地将其贯穿于整个生物统计学的教学过程。

3.计算机辅助分析训练是培养学生统计思维能力的有效措施。生物统计学基本理论往往涉及复杂的推理和计算过程,而作为生物专业的学生并无必要完全掌握其中的每一个具体细节和过程。从生物统计学课程的教学目的来看,基本原理和知识的讲解固然非常重要,但更应强调对学生的生物学试验设计、数据收集、分析以及处理技能的培养。生物统计学教学的最高目标是让学生从抽象、复杂的统计学知识中解放出来,学会利用计算机统计工具高效地进行生物数据的分析、处理和解释。更为重要的是,计算机辅助分析过程中的数据录入、统计方法的选择与应用、适用前提条件的判断以及结果的解释等各环节的实训操作是学生对统计思想、统计模型的再次复习和巩固,是培养学生统计思维能力的有效措施。

二、统计应用意识培养

生物统计学是探讨生物学研究的试验设计、数据收集与整理、分析与推论,并最终从样本信息中获取有关总体的科学可靠的结论的科学,是将数学方法应用于生物学研究领域的工具学科,是生物科学应用型人才的必备知识,也是广大科研工作者从事科学研究的重要工具和手段。因此,着力培养学生综合运用生物统计学知识和方法的能力、增强学生分析问题与解决问题的能力,进而提高学生的综合素质和科学素养是生物统计学课程教学的又一目标。

1.教材选择与课程内容体系的优化。教材是体现教学内容和教学要求的知识载体,也是教学最基本的工具,它不仅是教师进行教学的依据,而且是学生获取知识的重要资料。生物统计学课程主要包括统计理论知识和统计软件的使用两部分内容,二者相互依存,不可分割。因此,教师应结合课程属性,选择统计理论与实际学科相结合、统计原理与试验设计相结合、统计学方法与统计软件相结合的生物统计学教材进行教学较为合适;同时选择若干具有一定实用性且难易程度、侧重点不同的参考书让学生课后参考学习,以取长补短,开阔学生视野。其次,在生物统计学课程课时减少和教学内容增加的现实背景下,课程内容体系的编排和优化在兼顾该课程的理论性的同时,更要突出其应用性和实践性。也就是说要根据教学内容的难易程度和理论的系统性,合理分配学时;尽量压缩复杂统计学定理的证明和公式数理推导等内容,相应增加统计学基本理论和统计分析方法及其应用的内容。

2.加强生物统计学的计算机辅助实验教学,重视知识的应用性。计算机技术的发展给统计学带来了巨大的变化,它帮助科技工作者摆脱了繁重的手工计算的麻烦,同时计算机技术的发展和计算机技术在统计学中的应用,为培养学生分析问题、解决问题的能力,提高其综合素质提供了广阔的空间。因此,教学过程中应适当压缩统计学理论的教学时间,注重统计学软件的操作,增加学生上机操作时间。笔者在各基本理论知识讲授完毕之后,开设相应实验课程,讲授统计软件的使用方法和演示例题的计算及分析过程;同时,要求学生结合实例,进行计算机软件的操作,重点掌握统计软件的数据录入、储存,各种基础统计方法的选择与应用、适用前提条件的判断、结果的解释等内容。在计算机辅助实验教学中,利用统计软件把基本原理与统计方法的实际应用有机结合起来,不仅使复杂的统计数据处理工作变得简单,而且充分调动了学生的主观能动性和学习兴趣,从而提高了学生的统计学应用能力。

3.合理运用案例教学和专题训练,强调知识应用性。生物统计学课程的理论性强、内容抽象,照本宣科的传统教学方法,更会使学生失去学习兴趣,不利于培养学生独立思考能力,且难以取得良好的教学效果。案例教学是实现以应用能力培养为导向的生物统计学课程教学改革目标的一个重要手段。教师将生物学领域的科研工作或生产实践等案例贯穿到教学过程中,应用统计学理论知识对试验设计、方案制订、样品采集与测量、数据收集整理、数据的统计分析等各个研究步骤进行讲解与分析,既增强了学生的学习兴趣,又培养了学生的统计学思维及统计学应用能力。教师在案例选择上,尽量减少陈旧的、与社会发展不相适应的实例,及时增加统计学课程呈现的新理论、新方法和新应用,将反映专业发展最前沿的成果实例转化为教学内容,使学生在掌握统计学理论的同时及时了解专业技术发展和应用的最新动态,与时俱进,适应专业发展的需要,提高学生的科研素质。

专题训练是培养生物统计学应用能力、达到从感性认识到理性认识的又一有效途径。教师可以将统计学课程内容分为若干模块,每一模块包含若干统计学方法,并分专题讲解各种统计方法和理论在生物学中实际应用。通过专题训练培养学生提出问题、分析问题和解决问题的思维习惯,引导学生合理、科学地应用统计学方法,进而逐步掌握生物统计学的基本原理及常用统计方法。

4.改革考核方式,突出统计工具的运用能力。考试是高等院校的一个重要教育制度,考试成绩是检验教学质量和学生学习效果的一项重要指标。考核方式的合理与否,决定着教学效果的好坏以及学生学习积极性能否得到最大限度地调动。目前我国许多高校的考试制度和考核方式缺乏一定合理性和灵活性,如以闭卷考试为主和限定的考试题型等。就生物统计学课程而言,这种考核方式不能真正体现生物统计学课程的本质属性,不能全面考察学生对生物统计学原理的掌握及运用能力。为此,笔者认为生物统计学的考核方式应实行考查学生掌握理论知识与统计方法应用技能结合情况的综合考核方式,将考核成绩分为三个部分:平时成绩(占20%,包括课堂表现、出勤率、作业情况)、理论考试成绩(30%)和上机操作考试成绩(50%)。闭卷考试命题应突出基础性和实用性,少出或不出理论性强但无实际应用的偏题,同时考虑学生掌握基本知识的程度及灵活应用知识的能力;上机操作考试部分是在计算机上进行试验数据的整理、输入、分析和统计结论的获得等,是考查学生应用统计学软件对常用统计方法的分析运用能力。采取闭卷考试和上机操作考试有机结合的考核方式,同时加大上机操作的考核比重,既调动了学生学习的主动性,摆脱了单纯的应试考核模式,又培养了学生运用统计学理论和方法解决实际问题的能力,提升了学生的统计学应用能力。

三、结语

针对生物统计学课程的属性和特点,笔者认为生物统计学的教学既要注重学生统计思维能力的培养,也要重视学生统计学应用意识的培养。为此,本文探讨了培养学生统计思维能力的主要途径和方法,主要包括统计思想讲解、模型构建训练与实例结合教学及计算机辅助分析训练;同时,本文还从教材选择与课程内容体系的优化、加强计算机辅助实验教学、合理运用案例教学和专题训练及改革传统考核方式等方面阐述了培养学生统计学应用意识的教学策略。随着生物组学时代的来临,科研数据分析和处理能力将显得尤为重要,相信以上教学方法和策略的应用,将会显著提高学生运用生物统计学知识分析问题、解决问题的能力,帮助学生抓住生物统计学的发展和应用机遇。

参考文献:

[1]张力,甘乾福,吴旭.SPSS19.0(中文版)在生物统计中的应用[M].厦门大学出版社,2013.

第6篇:生物统计学数据分析范文

【关键词】大数据 统计学 挑战 机遇 教学

【基金项目】贵州省科技厅、贵州民族大学联合基金(黔科合J字LKM[2011]09号)

【中图分类号】G642 【文献标识码】A 【文章编号】2095-3089(2014)08-0235-01

1.引言

“大数据”时代的来临和“大数据”处理技术的发展深深的影响着统计学的发展。能否利用传统的统计理论和统计方法对海量的数据做出快速、准确的处理并获取相关信息?如何对传统的统计理论与方法进行改进或探索新的统计理论和方法来对大数据进行挖掘与处理以获取信息?如何在“大数据”时代背景下培养符合市场需求的统计分析师或数据分析师?如何将“大数据”处理技术融入相关统计学课程教学以促进数据处理与分析技术的发展?这些都是我们在统计学相关课程教学过程中必须思考的一个问题。

2.大数据与统计学

“大数据”随着社交网络、物联网、云计算等的兴起而产生。一般认为大数据具有规模性、多样性、实时性及价值性四个基本特征,包含分析、带宽和内容三个要素。“大数据”在数据来源、数据结构和处理方法方面对传统的统计分析方法产生了冲击。第一,在大数据背景下,数据来源不再是原来的简单抽样,而是“样本即总体”,直接将总体作为研究对象。第二,在大数据时代,研究对象也不是原来单一的结构化数据,由于数据的多样化与规模化,我们更多的是研究非结构数据,采用人工智能来进行数据挖掘和信息获取。第三,数据处理方法也不是简单的采用传统的假设检验方法进行研究,特别是对于统计学中的异常点,不再采取以往的丢弃或者平滑处理方式。

“大数据”处理技术对统计学的发展提出了巨大挑战,但我们必须认识到学科之间的发展是相互交融的,“大数据处理技术”其本质上是数据处理与分析技术,其发展对统计学学科的发展也有积极的一面,同时统计学作为一门独立的学科,有其自身独特的学科优势。首先,海量的数据有利于提高各类统计分析的精度,如减小抽样误差等。其次,较之于传统的统计学方法,现有的“大数据”分析方法难度较大、成本较高、耗时较长。而在实际的应用中,我们关心的不是数据量的多少,而是数据量所蕴含的信息。传统的统计学分析方法是以较少的数据进行精确度相对较高的统计分析,这是“大数据”分析所无法替代的。另一方面,统计学在数据收集方法、模型选择、模型假设以及模型诊断方面有很大优势。而且并不是所有的问题都具有海量的数据,并不是每一个“大数据”问题都适合用现有的“大数据处理技术”来处理。

3.对策与建议

3.1 夯实基础教学

针对以上的分析我们可以看出,大数据对统计学的发展既是机遇,又是挑战。因此我们在教学过程中要夯实统计学基础知识的教学,讲清楚统计学的基本原理与基本方法,特别是数据分析与数据处理的基本原理与方法。对于许多传统领域,如生物、医药以及质量与可靠性工程等,我们面对的多是“小数据”而不是大数据,因此基于样本的统计分析方法仍然是进行此类问题研究的最有效的科学手段。

另一方面,我们要结合大数据技术的特点,对统计学的基本知识进行拓展教育,引导学生思考怎样将已有的统计学基本原理与方法运用到大数据处理的技术研究中。如在大数据环境下怎样进行数据的收集、筛选与甄别、存储与分析等,如何分析并厘清可能的数据来源与范围,如何建立相关指标体系并对数据进行分类,如何制定或调整相应的统计参考标准,以及如何对依靠非传统数据源加工生产的统计数据进行规范的统计推断等。

随着大数据时代的来临,各行各业对具有统计背景知识人才的需求必定越来越多。因此,在统计学教学过程中,一定要结合各专业的特点,特别是“大数据”的特点,切实加强统计学的基础知识教学与拓展教学。

3.2 加强统计学专业软件教学

“大数据”环境下,对统计人才需求也发生了变化。面对海量的数据与多样化的数据,一名合格的统计人才或数据分析人才不单需要良好的统计素养与扎实的统计基础知识,更需要具有数据的存储与整理能力、计算能力以及数据分析与处理能力等。这就要求在教学过程中,加强统计软件或数学软件的教学。

针对传统的“数学证明+手工计算”或“重理论轻专业统计软件”的统计学课程教学模式,可将统计软件或数学软件融入课堂教学并安排一定的课时上机学习统计软件,以此提高学生数据处理能力,加深对统计学基本原理的理解与掌握。

在加强统计软件或数学软件,如SPSS、R、SAS以及Matlab的教学过程中,要摈弃“会软件的操作即会统计技术”的思维,要让学生真正掌握相关操作与相关算法,深入思考算法的实现与相关理论的应用。同时引导学生思考对“大数据处理”的技术要求,包括数据搜集、发掘、存储以及计算分析过程中的算法与设备要求等,引导学生针对大数据进行软件升级与开发。

3.3 突出案例教学与实践教学

大数据的产生和发展源于规模经济问题或超规模经济问题的研究。每一个大数据问题的研究都是与实际经济或社会问题紧密相联的,因此,在实际教学过程中,要突出案例教学与实践教学,由易到难,通过案例教学逐步引入大数据的概念以及大数据处理的基本技术,提高学生的分析全局观以及进行实际数据分析与处理的能力。

教学改革的目的是培养在“大数据”时代背景下,符合市场需求的专业统计人才,而合格的专业统计人才必须具备良好的统计实践能力。案例教学与统计实践活动是培养学生统计实践能力的有效途径。因此,在教学过程中,一方面,教师可融合各种与实际问题相关的案例进行分析和讲解,加深学生对相关统计理论知识的理解,激发学生的学习兴趣,培养学生解决实际问题的能力。另一方面,教师可以组织多种形式的课堂或课堂外的统计实践活动以培养学生统计实践。如,指导学生针对他们感兴趣的与经济、社会发展相关的统计实际问题展开统计研究,设计调查问卷,收集数据、整理和分析数据,撰写研究报告,实现对实际问题的分析和解决等。

4.结束语

总之,在“大数据”环境下我们既要积极面对挑战,又要紧紧抓住机遇,切实结合“大数据”的特点和“大数据处理技术”发展的需求,既加强对传统的统计学方法、统计理论的教学,又积极开展 “大数据“环境下的拓展教学,推动统计学的发展,在数据收集、数据分析以及统计制度等方面进行改革和创新。

参考文献:

[1]李国杰. 大数据研究的科学价值[J]. 中国计算机学会通讯,2012,8(9) .

[2]姜奇平. 2013 全球大数据-大数据的时代变革力量[J]. 互联网周刊,2013,1.

[3]游士兵,张佩,姚雪梅.大数据对统计学的挑战和机遇 [J]. 珞珈管理评论标,2013,2(13).

第7篇:生物统计学数据分析范文

摘要:要培养出新型的21世纪的人才,统计教育必须高瞻远瞩。本文从统计学的发展趋势谈了统计教育急需改革的几个方面。

关键词:统计学;发展趋势;统计教育改革

随着国家创新体系的建立,统计创新工程已经提上议事日程,统计创新包括两个方面,一是统计实践的创新;二是统计教育的创新。创新的基础在于教育,没有统计教育的创新,就谈不上统计实践的创新。准确把握统计学的发展方向与发展形势,培养适应新世纪社会经济发展需要的人才,是统计教育工作者必须面对的问题,本文从统计学的基本发展趋势谈一谈统计教育急需改革的几个方面。

一、统计学的基本发展趋势

纵观统计学的发展状况,与整个科学的发展趋势相似,统计学也在走与其他科学结合交融的发展道路。归纳起来,有两个基本结合趋势。

(一)统计学与实质性学科结合的趋势

统计学是一门通用方法论的科学,是一种定量认识问题的工具。但作为一种工具,它必须有其用武之地。否则,统计方法就成为无源之水,无用之器。统计方法只有与具体的实质性学科相结合,才能够发挥出其强大的数量分析功效。并且,从统计方法的形成历史看,现代统计方法基本上来自于一些实质性学科的研究活动,例如,最小平方法与正态分布理论源于天文观察误差分析,相关与回归源于生物学研究,主成分分析与因子分析源于教育学与心理学的研究。抽样调查方法源于政府统计调查资料的搜集。历史上一些著名的统计学家同时也是生物学家或经济学家等。同时,有不少生物学家、天文学家、经济学家、社会学家、人口学家、教育学家等都在从事统计理论与方法的研究。他们在应用过程中对统计方法进行创新与改进。另外,从学科体系看,统计学与实质性学科之间的关系绝对不是并列的,而是相交的,如果将实质性学科看作是纵向的学科,那么统计学就是一门横向的学科,统计方法与相应的实质性学科相结合,才产生了相应的统计学分支,如统计学与经济学相结合产生了经济统计,与教育学相结合产生了教育统计,与生物学相结合产生了生物统计等,而这些分支学科都具有"双重"属性:一方面是统计学的分支,另一方面也是相应实质性学科的分支,所以经济统计学、经济计量学不仅属于统计学,同时属于经济学,生物统计学不仅是统计学的分支,也是生物学的分支等。这些分支学科的存在主要不是为了发展统计方法,而是为了解决实质性学科研究中的有关定量分析问题,统计方法是在这一应用过程中得以完善与发展的。因此,统计学与各门实质性学科的紧密结合,不仅是历史的传统更是统计学发展的必然模式。实质性学科为统计学的应用提供了基地,为统计学的发展提供了契机。21世纪的统计学依然会采取这种发展模式,且更加注重应用研究。

这个趋势说明:统计方法的学习必须与具体的实质性学科知识学习相结合。必须以实质性学科为依据,因此,财经类统计专业的学生必须学好有关经济类与管理类的课程,只有这样,所学的统计方法才有用武之地。统计的工具属性才能够得以充分体现。

(二)统计学与计算机科学结合的趋势

纵观统计数据处理手段发展历史,经历了手工、机械、机电、电子等数个阶段,数据处理手段的每一次飞跃,都给统计实践带来革命性的发展。上个世纪40年代第一台电子计算机的诞生,给统计学方法的广泛应用创造了条件。20年展起来的多元统计方法虽然对于处理多变量的种类数据问题具有很大的优越性,但由于计算工作量大,使得这些有效的统计分析方法一开始并没有能够在实践中很好推广开来。而电子计算机技术的诞生与发展,使得复杂的数据处理工作变得非常容易,那些计算繁杂的统计方法的推广与应用,由于相应统计软件的开发与商品化而变得更加方便与迅速,非统计专业的理论工作者可以直接凭借商品化统计分析软件来处理各类现实问题的多变量数据分析,而无需对有关统计方法的复杂理论背景进行研究。计算机运行能力的提高,使得大规模统计调查数据的处理更加准确、充分与快捷。目前企业经营管理中建立的决策支持系统(DSS)更加离不开统计模型。最近国外兴起的数据挖掘(Datamining,又译"数据掏金")技术更是计算机专家与统计学家共同关注的领域。随着计算机应用的越来越广泛,每年都要积累大量的数据,大量信息在给人们带来方便的同时也带来了一系列问题:信息过量,难以消化;信息真假,难以辨识;信息安全,难以保证;信息形式不一致,难以统一处理;于是人们开始提出一个新的口号"要学会抛弃信息"。人们考虑"如何才能不被信息淹没,而是从中及时发现有用的知识,提高信息利用率?"面对这一挑战,数据挖掘和知识发现(DMKD)技术应运而生,并显示出强大的生命力。数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘是一门交叉学科,它把人们对数据的应用从低层的简单查询,提升到从数据中挖掘知识,提供决策支持。在这种需求牵引下,汇聚了不同领域的研究者,尤其是数据库技术、人工智能技术、统计、可视化技术、并行计算等方面的学者和工程技术人员,投身到数据挖掘这一新兴的研究领域,形成新的技术热点。虽然统计学家与计算机专家关心Datamining的视角不完全相同,但可以说,Datamining与DSS一样,使得统计方法与计算机技术的结合达到了一个更高的层次。

因此,统计学越来越离不开计算机技术,而计算机技术应用的深入,也同样离不开统计方法的发展与完善。这个趋势说明:充分利用现代计算技术,通过计算机软件将统计方法中复杂难懂的计算过程屏障起来,让用户直接看到统计输出结果与有关解释,从而使统计方法的普及变得非常容易。所以,对于财经类统计专业的学生来说,一方面要学好统计方法,但另一方面更加要学会利用商品化统计软件包解决实践中的统计数量分析问题,学好计算机信息系统开发的基本思想与基本程序设计,能够将具体单位的统计模型通过编程来实现,以建立起统计决策支持系统。

所以统计与实质性学科相结合,与计算机、与信息相结合,这是发展的趋势。了解这一点,再来看我们目前教育中的问题就更加明显了,所以一些课程要改革,教学方式也要改革。以下谈一谈统计教育需要改革的几个方面。

二、统计教育的改革

(一)统计专业课程建设问题

专业建设考虑的是应当培养什么样的人才和怎样培养这样的人才。专业建设的核心问题是课程设置和规范课程内容。课程设置主导学生的知识结构,培养统计理论人才应当设置较多的数学课程,目的是让学生能对各种统计方法有较深刻的理性认识;培养应用统计人才应当设置较多的相关应用领域的专业课程,目的是让学生如何能将统计方法正确地运用到相关领域。例如培养从事经济管理的统计人才,在课程设置上至少应当包括四方面的知识:(1)经济理论课程,让学生了解经济活动的主要进程和基本规律;(2)研究社会经济问题主要统计方法,包括常用的统计数据搜集方法,统计数据处理方法和分析方法;(3)适用电脑技术,让学生初步掌握运用电脑进行统计数据处理和分析的基本理论和技能;(4)有关统计理论和统计实践中的前沿性问题,目的不在于要学生真正掌握这些问题,而是让学生了解统计理论和统计实践的前沿发展动态,启迪学生的科学思维能力。

(二)教学方法和教学手段的改革

统计教学方法和教学手段改革中,有两个焦点问题:一是如何激发学生学习统计学的兴趣;二是应用什么教学手段来达到较好的统计教学效果等。充分运用现代教育技术、教学手段,更新教学方法,促使教育技术、教学手段和教学方法有机结合。

1.改灌输式教学为启发式教学,特别注重教育多样化和多层次性,不仅让学生掌握如何搜集、整理数据的技术,还要教学生读懂数字背后的事实。学会按照具体与抽象、动态与静态、个体与总体、绝对与相对、一般与特殊、演绎与归纳等不同的思维方式分析问题和解决问题。注重利用一题多解与一题多变,开拓学生的发散思维。

2.改单向接受式的教学为双向互动式教学,以案例分析与情景教学开启学生的思维闸门,使学生更形象、快捷的接受知识,发挥其独立思考与创造才能,培养学生创造性思维能力。

3.构建以课堂、实验室和社会实践多元化的立体教育教学体系。在传授和学习已经形成的知识的同时,加强实践能力锻炼,提高学生的动手能力和创新能力。只有将统计学的方法结合实际进行应用,找到应用的结合点,才能使统计学获得最大的生命力。

(三)统计学与计算机教学相结合

教材要与统计软件的应用相结合。现在许多教材都是内容与软件分家,现在计算机已非常普及,无论是高校、高职和中专,培养出来的学生不会用统计软件分析数据,不管哪一个层次,都已说不过去。统计学是一门应用的方法型学科,统计学应从数据技巧教学转向数据分析的训练。统计学与计算机教学有机地合为一体,让学生掌握一些常用统计软件的使用。除了要培养学生搜集数据、分析数据的能力外,还要培养学生处理大量数据的能力,即数据挖掘的能力。

(四)教学与实际的数据分析相结合

统计的教学不能只停留在课本上,案例教学与情景教学应成为统计课程的重要内容。统计教学和教材增加统计实际案例,通过计算机对大量实际数据进行处理,可以在试验室进行,亦可在课堂上进行讨论,这样学生不仅理解了统计思想和方法,而且锻炼和培养了研究和解决问题的能力。

(五)要有一批能用电脑、网络来教学的新型教师

电脑、网络的出现,不仅改变了教学的手段,还深深地影响着教学的内容,因为它影响着经济、生活的发展和需求。语文(中文、外文)、数学、计算机、专业知识是一个统计人才必备的素质,它们之间不是分离的,而是要尽可能结合在一起来进行教学,各管各教一套的办法已不适应现代化教育教学的需要,现代教育特别注重教育信息技术中的多媒体、网络化、社会化和国际化、多样化和多层次,有了电脑、网络,必需要更新,要培养出一批能用电脑、网络来教学的新型教师,以便培养出新型的21世纪的人才。

[参考文献]

[1]贺铿.关于统计学的性质与发展问题.中国统计,2001.9.

[2]袁卫.国外统计高等教育发展的趋势及对我国统计教育改革的思考.中国统

第8篇:生物统计学数据分析范文

关键词 Excel;生物统计学;t检验;单个总体平均数

中图分类号 O212.1 文献标识码 A 文章编号 1007-5739(2017)02-0276-01

随着计算机技术的发展,已有更多的件被应用于生物统计学,如SPSS[1-4]、Excel[5]、SAS[6]等,但是不同的统计软件具有着不同的统计特点,如Excel统计功能虽然简单,但是操作方便,分析出来的结果更为直观,更适合生物统计学的初学者。本文主要介绍如何利用Excel对单个总体平均数进行t检验,以案例的形式详细阐述其分析过程。

1 分析工具库的安装

Excel一般不直接装配“分析工具库”这一模块,需要在Excel的基础上自行安装。安装步骤:Excel的工具加载宏分析工具库确定。

2 单个总体平均数的t检验

单个总体平均数的t检验一般是用一个样本平均数与一个已知总体平均数进行比较,检查此样本是否来自已知总体平均数的总体。

2.1 数据资料的建立

例:已知约克夏母猪体重的总体平均数为μ0=130 kg,现在某猪场随机测定了15头母猪的体重(kg),数据值:121、127、103、132、157、133、130、139、140、136、111、126、153、142、120。试检验该样本是否来自总体平均数为130 kg的总体[7]。以列的形式建立数据,也可以以行的形式建立。

2.2 t检验分析

在Excel中:工具数据分析描述统计,点击“确定”进行分析。输入区域:选择原始数据;分组方式:逐列(如果数据是以行的形式构建的,则逐行);“标志位于第一行”,指的是在建立数据的时候在数据最上方有数据的变量名,而且在输入区域选择的时候将变量名也选上了,这时候可以勾选“标志位于第一行”,否则就不选择此项。输出选项:输出区域处选一空白处,然后把“汇总统计”和“平均数置信度”进行勾选。单击“确定”按钮,得到描述性统计量(图1)。

2.3 结果分析

结果部分如表1所示,表1中只是对数据进行了描述统计量的分析,还不能直接看出结果,需要利用表1的结果进一步分析,需要计算总体平均数的置信区间,看这个区间里是否包括了μ0=130。总体平均数的置信区间应该是表1中的算术平均数加上或减去置信半径(置信度)。由此可知,本例题中的置信区间为[131.33-7.97,131.33+7.97],即为[123.36,139.30],可以看出μ0=130就在总体平均数的置信区间内,所以试检验该样本是自总体平均数为130 kg的总体。如果μ0=130不在这个置信区间,则试检验该样本不是来自总体平均数为130 kg的总体,或者两者差异不显著(P

3 结语

本文主要介绍如何利用Excel对单个总体平均数的t检验,在这个t检验中与所有其他t检验相比是最简单的一个,不但可以进行t检验,还可以输出一些其他的统计量,如标准误差、峰度、最大值、最小值等,这些统计量有利于对数据资料更全面地了解。

4 参考文献

[1] 白俊艳,徐廷生,张小辉.《生物统计附试验设计》上机实验改革与实践[J].教育教学论坛,2015(18):247-248.

[2] 白俊艳,贾小平,张小辉,等.生物统计学课程改革与实践[J].畜牧与饲料科学,2013,34(10):57-58.

[3] 白俊艳,武晓红,张小辉,等.生物统计附试验设计课程考核方式的改革与实践[J].安徽农业科学,2015,43(5):369-370.

[4] 秦立金.SPSS统计软件在生物统计课程中的探索研究[J].赤峰学院学报(自然科学版),2014,30(3):198-199.

[5] 韦若勋.生物统计学上机实验课中Excel互动教学方式的应用[J].高等教育,2013(8):185-186.

第9篇:生物统计学数据分析范文

关键词: 统计学;发展趋势;统计教育改革

        0  引言

        随着国家创新形式的发展,统计创新工作已经得到相关部门的重视,统计创新包括统计实践创新和统计教育创新两个方面。统计教育的创新是统计创新的基础,没有统计教育的创新,就谈不上统计实践的创新,下面我从统计学的基本发展趋势来探讨目前统计教育的改革方向。

        1  统计学的基本发展趋势

        统计学的发展与其它学科的发展相似,也需要走与其它学科相联系的发展道路。

        1.1 统计学与实质性学科相结合的趋势  统计学是一门通用方法论的 科学 ,是一种定量认识问题的工具。统计方法只有与具体的实质性学科相结合,才能够发挥出其强大的数量分析功效。并且,从统计方法的形成 历史 看,统计方法基本是从一些实质性学科的研究活动得来的,例如,最小平方法与正态分布理论源于天文观察误差分析,相关与回归源于生物学研究,抽样调查方法源于政府统计调查资料的搜集。同时历史上一些着名的统计学家同时也是生物学家或 经济 学家等。另外,从学科体系上看,统计学与实质性学科之间的关系不是并列的,而是相交的,统计方法与实质性学科相结合,才产生了统计学的分支,如统计学与经济学相结合产生了经济统计学,与社会学相结合产生了社会统计学等,而这些分支学科都具有“双重”属性:一方面是统计学的分支,另一方面也是相应实质性学科的分支,所以经济统计学、经济计量学、社会统计学不仅仅属于统计学,同时也属于经济学、社会学、生物学的分支等。这些分支学科的存在主要不是为了发展统计方法,而是为了解决实质性学科研究中的有关定量分析问题,统计方法是在这一应用过程中得以完善和发展的。这个发展趋势说明了统计方法的学习必须与具体的实质性学科知识学习相结合。因此,统计专业的学生必须在学好本专业知识的同时,也要通晓相关的实质性学科的课程知识,只有这样,所学的统计方法才有用武之地。

        1.2 统计学与 计算 机科学结合的趋势  纵观统计数据处理手段发展历史,数据处理手段的每一次飞跃,都给统计实践带来革命性的发展。 电子 计算机技术的诞生与发展,使得复杂的数据处理工作变得非常容易,那些计算繁杂的统计方法的推广与应用,由于相应统计软件的开发与商品化而变得更加方便与迅速,非统计专业的理论工作者可以直接凭借商品化统计分析软件来处理各类现实问题的多变量数据分析,而无需对有关统计方法的复杂理论背景进行研究。计算机运行能力的提高,使得大规模统计调查数据的处理更加准确、充分与快捷。随着计算机应用的越来越广泛,信息数据也越来越多,大量信息在给人们带来方便的同时也带来了许多问题:信息过量、信息真假、信息安全等问题出现了,同时信息形式的不一致也导致信息难以统一处理。于是如何从大量的信息中找出有用的信息?如何提高信息的利用率?数据挖掘和知识发现(dmkd)技术随之应运而生了。数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘是一门交叉学科,它把人们对数据的应用从低层的简单查询,提升到从数据中挖掘知识,提供决策支持。在这种需求下,汇聚了不同领域的研究者们投身到数据挖掘这一新兴的研究领域。虽然统计学家与计算机专家关心data mining的视角不完全相同,但可以说,data mining与dss一样,使得统计方法与计算机技术的结合达到了一个更高的层次。

        因此,统计学越来越离不开计算机技术,而计算机技术应用的深入,也同样离不开统计方法的发展与完善。所以,对于统计专业的学生来说,一方面要学好统计方法,但另一方面更加要学会利用商品化统计软件解决实践中的统计数量分析问题,学好计算机信息系统开发的基本思想与基本程序设计,能够将具体单位的统计模型通过编程来实现,以建立起统计决策支持系统。所以统计与实质性学科相结合,与计算机技术相结合,这是发展的趋势。所以统计教育的一些课程要改革,教学方式也要改革。以下谈一谈统计教育需要改革的几个方面。

        2  统计 教育 的改革

        2.1 统计专业课程建设  专业建设考虑的是应当培养什么样的人才和怎样培养这样的人才。专业建设的核心问题则是课程设置和规范课程的内容。培养统计理论人才应当设置较多的数学课程,目的是让学生能对各种统计方法有较深刻的理性认识;培养应用统计人才应当设置较多的相关应用领域的专业课程,将统计方法与相关领域的专业知识完美结合。例如培养从事 经济 管理的统计人才,在课程设置上至少应当包括三方面的知识:(1)经济理论课程,让学生了解经济活动的主要进程和基本 规律 ;(2)研究社会经济问题主要统计方法,包括常用的统计数据搜集方法,统计数据处理方法和分析方法;(3)适用电脑技术,让学生初步掌握运用电脑进行统计数据处理和分析的基本理论和技能。

        2.2 教学方法和教学手段的改革  统计教学方法和教学手段改革中,应充分运用 现代 教育技术、教学手段,更新教学方法,促使教育技术、教学手段和教学方法有机结合。

        2.2.1 改接受式的教学为互动式教学,以案例分析与情景教学开启学生的思维,使学生更形象、快捷的接受知识,发挥其独立思考与创造才能,培养学生的创造性思维能力。

        2.2.2 构建以课堂-实验室-社会实践多元化的立体教育教学体系。在传授和学习已经形成的知识的同时,加强实践能力锻炼,提高学生的动手能力和创新能力。只有将统计学的方法结合实际进行应用,才能展现统计学的生命力。

        2.3 统计学与 计算 机教学相结合  教材要与统计软件的应用相结合。现在许多教材都是内容与软件分家,现在计算机已非常普及,无论是高校、高职和中专,培养出来的学生都会要用统计软件分析数据。再者,统计学是一门应用的方法型学科,统计学应当从数据技巧教学转向数据分析的训练。统计学与计算机教学有机地合为一体,除了要培养学生搜集数据、分析数据的能力外,还要培养学生处理大量数据的能力,即数据挖掘的能力。

        2.4 教学与实际的数据分析相结合  统计的教学不能只停留在课本上,案例教学与情景教学应成为统计课程的重要内容。通过计算机对大量实际数据进行处理,可以在试验室进行,亦可在课堂上进行讨论,这样学生不仅理解了统计思想和方法,而且也锻炼和培养了学生研究和解决问题的能力。

        2.5 要有一批能用电脑、 网络 来教学的新型教师  电脑、网络的出现,不仅改变了教学的手段,还影响着教学的内容。语言、数学、计算机、专业知识是一个统计人才必备的素质,它们之间是不可分离的,而是要尽可能结合在一起来进行教学,单一化人才已不适应现代化教育教学的需要,现代教育更注重教育信息技术中的多媒体、网络化、社会化和国际化、多样化和多层次的综合人才。