公务员期刊网 精选范文 量子力学与量子纠缠的关系范文

量子力学与量子纠缠的关系精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的量子力学与量子纠缠的关系主题范文,仅供参考,欢迎阅读并收藏。

量子力学与量子纠缠的关系

第1篇:量子力学与量子纠缠的关系范文

立足大背景 寻求新发展

量子信息物理,顾名思义,这是一个由信息科学与量子力学学科交叉产生的、全新的研究方向。

“这门学科的出现有其重要的意义。”崔海涛介绍,“根据摩尔(Moore)定律,每18个月,计算机微处理器的速度就会增长一倍,其中单位面积(或体积)上集成的元件数目也会相应地增加。可以预见,在不久的将来,芯片元件就会达到它能以经典方式工作的极限尺度。因此,如何突破这种尺度极限是当代信息科学所面临的一个重大科学问题。量子信息的研究就是充分利用量子物理基本原理的研究成果,发挥量子相干特性的强大作用,探索以全新的方式进行计算、编码和信息传输的可能性,为突破芯片极限提供新概念、新思路和新途径。”“量子力学与信息科学结合,不仅充分显示了学科交叉的重要性,而且量子信息的最终物理实现,会导致信息科学观念和模式的重大变革。”崔海涛说。

时至今日,量子信息技术的发展不仅引起了学术界的关注,各发达国家也针对其制定了本国的研究发展规划,以期抢占未来信息科技的制高点,并投入大量人力、物力用于支撑该领域的基础性、前瞻性的研究。我国也于2006年9月了国家中长期科学和技术发展规划纲要(2006-2020年),将以量子调控技术为代表的量子信息技术的研究纳入到基础研究重大科学研究计划当中。正如《纲要》中所描述的那样:“以微电子为基础的信息技术将达到物理极限,对信息科技发展提出了严峻的挑战,人类必须寻求新出路,而以量子效应为基础的新的信息手段初露端倪,并正在成为发达国家激烈竞争的焦点。量子调控就是探索新的量子现象,发展量子信息学、关联电子学、量子通信、受限小量子体系及人工带隙系统,构建未来信息技术理论基础,具有明显的前瞻性,有可能在20~30年后对人类社会经济发展产生难以估量的影响。”崔海涛团队的研究项目就是在这一大背景下展开,致力于解决量子信息技术中关键的、基础性的问题,并对相关实验技术的发展产生重要的理论指导作用。

紧扣量子纠缠 顺通量子信息

细看崔海涛的研究履历,其关键词便是“量子纠缠”。

“如果说量子信息主要是基于量子力学的相干特征、重构密码、计算和通讯的基本原理,那么,量子纠缠在其中发挥的是非常重要而且非常基本的作用。”在多年的学习和研究过程中,崔海涛认识到,一方面,许多重要的量子信息技术都需要量子纠缠的参与才能实现,例如,量子远程传态、量子保密通讯、量子密钥分发等;另一方面,由于量子体系与其他自由度的相互作用,这种作用最终导致体系的自由度与其他自由度的量子纠缠,由于环境选择的结果,量子体系的相干性质会逐渐消失,此即所谓退相干过程。退相干是实现量子信息过程所面临的最大障碍,如何有效克服退相干,延长量子体系的相干时间是当前量子信息技术研究的前沿课题。“就是这样奇特的物理性质,物理学家们对它的理解至今也非常有限,这严重制约了量子信息技术的发展,因此,建立对量子纠缠普遍的物理理解已经成为当今量子信息领域最为急迫需要解决的问题之一。”

如何建立对多体量子态纠缠的普遍理解?如何在具体的物理系统中制备纠缠的量子多体态?看上去,只要解决了这两个问题,量子纠缠就不再是瓶颈,然而,真的如此简单么?“最直观的做法是将两体纠缠的理解推广到多体。但经事实证明,这种推广具有很大的局限,因为量子多体态的纠缠具有远比两体纠缠更为丰富的内容。”接着,崔海涛进行了举例说明,“在3量子比特中,存在两个随机定域操作与经典通讯操作下不等价的三体纠缠态;GHZ态和W态。它们都是真正的三体纠缠态,却表现出完全不同的纠缠性质。对于GHZ态,任意一个或两个量子比特的约化密度矩阵都是单位阵;而W态,通过对任一量子比特的测量,可以得到其他两个量子比特的最大纠缠态。4个量子比特情况就更为复杂,迄今为止也没有一个完整的分类。”

直观推广不成,崔海涛又开始考虑换角度钻研。他认为,多体纠缠的度量应该包括两方面的内容:纠缠模式(pattern)和纠缠强度(intensity)。纠缠强度即纠缠的大小,现已有一些比较好的度量方式,如几何纠缠;纠缠模式则是指对应多体纠缠的分类。而伴随着纠缠模式,又出现了一个新的问题――多体态不同纠缠模式表示什么样的物理意义?“因为这涉及到如何在实验室中制备不同的多体纠缠。不同的纠缠模式必然对应完全不同的物理性质,SLOCC不等价关系的存在也限制了从‘最大纠缠态’得到其他任意纠缠态的可能。对于不同的纠缠模式,我们需要不同的物理系统(Hamilton量)来制备。这些系统之间又是怎样的关系呢?”

为了解惑,在国家自然科学基金项目“几何相与量子纠缠的理论研究”和“多体系统中的量子纠缠及其几何分类的理论研究”的支持下,崔海涛带领研究团队在此研究方向上刻苦钻研多年,并取得了一些深刻的认识。通过附加对称性的要求,例如,量子态的平移不变性质,他们发现完全可以普遍地建立这些多体纠缠态间的等价关系。而且,经进一步研究发现,这些等价关系可以通过态的几何性质很好地区分。也就是说,不等价的多体纠缠对应体系的不同几何结构。更为重要的是,这些几何结构可以通过几何相物理地加以描述。多体纠缠中的非平庸几何结构的发现并不是孤立的,联系最近凝聚态体系中相关几何效应的发现,有理由相信他们之间存在某种形式的联系。相关的研究工作正在进行中。

事实上,围绕多体系统中的几何相与量子纠缠的理论问题,崔海涛自攻读博士期间就产生了浓厚的兴趣。特别是近5年来,陆续发表了一些高水平的学术成果,并主持承担了一些科研项目。迄今为止共发表学术论文22篇,均为SCI收录,论文总引用次数137次,他引超过80次。其中,有7篇文章发表在国际权威物理学期刊“Physical Review A”上。2007年发表在“Physics Letter A”上的论文“A Study on the suddendeath of entanglement”已被引用60次(他引57次),其他论文亦有不同程度的引用。

对于热爱这项研究的崔海涛来说,这种对未知科学世界的探索是他甘之如饴的兴趣和追求,也是他情愿脚踏实地“做一辈子的职业”。

第2篇:量子力学与量子纠缠的关系范文

1.量子通信的基本原理及发展

量子是对原子、电子、光子等物质基本单元的统称。量子通信(Quantum Teleportation)是指利用量子纠缠效应进行信息传递的一种新型的通信方式,是量子论和信息论相结合的新研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等。

1.1量子通信的起源

量子通信起源于19世纪20年代的“量子纠缠”。在量子力学中,有共同来源的两个微观粒子之间存在着某种纠缠关系,不管它们被分开多远,只要一个粒子发生变化,就能立即影响到另外一个粒子,即两个处于纠缠态的粒子无论相距多远,都能“感知”和影响对方的状态,类似于人类的“心灵感应”。值得一提的是,尽管爱因斯坦最早注意到微观世界中这一现象的存在,却不愿意接受它,并把它斥之为“幽灵般的超距作用(spooky action at a distance)”,认为在量子力学的诠释背后一定有着更根本的规律,它们才能正确、全面地解释量子现象。

1.2量子通信的雏形

量子通信的概念是美国科学家贝内特(C.H.Bennett)于1993年提出,即是由量子态携带信息的通信方式,利用光子等基本粒子的量子纠缠原理实现保密通信过程。量子通信的概念提出后,有6位来自不同国家的科学家基于量子纠缠理论,提出了利用卫星网络、光纤网络等传统信道与量子纠缠技术相结合的方法,实现量子隐形传送的方案,即将某个粒子的未知量子态传送到另一个地方,把另一个粒子制备到该量子态上,而原来的粒子仍留在原处,这就是量子通信最初的基本方案。量子隐形传态不仅在物理学领域对人们认识与揭示自然界的神秘规律具有重要意义,而且可以用量子态作为信息载体,通过量子态的传送完成大容量信息的传输,实现原则上不可破译的量子保密通信。

1.3量子通信的现状

目前对量子通信的理论方案和实验研究,主要集中于利用光纤信道和点对点的陆地无线光信道。在标准光纤信道中,2007年6月,一个由奥地利、英国、德国研究人员组成的小组,在量子通信研究中创造了通信距离144公里的纪录。在点对点通信上,2008年,在《新物理学》(New Journal of Physics)杂志上,一支意大利和奥地利科学家小组宣布,他们首次识别出从地球上空1500公里处的人造卫星上反弹回地球的单批光子,实现了太空绝密传输量子信息的重大突破。在多点通信上,2009年9月,中国科学技术大学潘建伟教授领衔的科研团队,建成了3节点链状16公里的自由空间量子信道,并在此基础上建成了世界上首个全通型量子通信网络,首次实现了实时语音量子保密通信,在23km的自由空间信道中,实现了基于单光子的量子密钥分配;在600m的自由空间中实现了基于纠缠光子对的量子密钥分配实验。如果按照这种速度发展下去,量子通信预计在2020年之前就可以进入实用。

2.量子通信的主要特点

量子通信与成熟的传统通信技术相比,具有以下主要特点:一是保密性强。量子密码通信其实不在于密码通信本身,量子密码技术不是用于传输密文,而是用于建立传输密码本。根据海森伯不确定性原理和量子不可克隆的特点,信息的量子比特或量子位一经检测,就会产生不可还原的改变,用量子位传递加密信息,若在到达预定接收者途中被窃取,预定接收者肯定能够发现。再加上量子通信采用的是“一次一密”的加密方式,且绝对不会重复使用,确保了通信的保密安全。

二是隐蔽性高。量子通信利用单量子纠缠现象,使光子、电子甚至是原子之间能相互影响(制约),从而传递信息。当其中的一个量子发送信息时,它本身并不移动,也不用借助其他媒介,另一个相关量子自然会接收到这个信息,空间距离和中间介质将不再成为通信的障碍。由于量子通信过程不存在任何电磁辐射,无论现有的无线电探测系统性能如何先进,对量子通信这种完全无“电磁”的通信目标,也是无能为力的。

三是应用性广。由于量子通信过程与传播媒质无关,传递的过程不会被任何障碍阻隔,甚至量子隐形传态过程中可穿越大气层,所以说量子通信的应用非常广泛,它既可以在太空中进行通信,又可以在海底等恶劣条件下通信,还可以在光纤等介质中进行信息“传递”。应用到卫星通信、深海通信、太空通信和光纤通信等领域的前景广阔。

四是时效性高。由于量子通信时延为零,可以实现超光速通信,将极大地提高通信速度;量子通信具有空间远距离、大容量、易组网等特点,可以用来构筑高速、大容量的通信网络,用于高清晰度图像、大容量、超高速数据的传输,便于建立量子因特网。

3.量子通信的应用前景

3.1建立全新卫星通信网

由于单光子在现在的硅光纤和陆上自由空间中的传输距离受到了限制,使量子通信的距离目前只有百余公里,无法实现全球范围意义上的量子通信。现在已经得到广泛应用的卫星通信和空间技术,给全球范围的量子通信提供了一种新的解决方案。即可以通过量子存储技术与量子纠缠交换和纯化技术的结合,做成量子中继器,突破光纤和陆上自由空间链路通信距离短的限制,延伸量子通信距离,实现真正意义上的全球量子通信。

3.2构建超光速信息网络

随着量子通信技术的研究突破和日趋成熟,可以利用量子隐形传态以及超大信道容量、超高通信速率和信息高效率等特点,建立有特殊需求的超光速量子通信网络。利用量子通信网络可实现大容量、高速率信息传输处理及按需共享,满足信息综合分析及辅助决策的需求。

3.3用于深海通信

目前岸基与深海之间的通信是采用长波通信方式,不仅系统庞大、设备造价高、抗毁性差,而且仅能实现海水下百米左右的通信。量子通信不同于传统的“波”通信,在同等条件下,量子通信获得可靠通信所需的信噪比,要比其他现有通信手段低30~40dB,加之量子通信的光量子隐形传态与传播媒质无关,这为深海通信开辟了一条崭新的途径。

3.4用于隐蔽保密通信网

通信隐身的关键之一是要降低电磁辐射,而目前的无线电通信都要依靠电磁波传输信号,特别是远程无线电通信需要辐射很强的电磁波,即使是激光通信,也要辐射很强的光波,而量子通信既无电磁波辐射,也无强光波辐射,且采用“一次一密”的加密方式,密码具有“不可破特性”和“窃听可知性”,从而确保了信息传输的安全,提高了信息保护和信息对抗能力。

第3篇:量子力学与量子纠缠的关系范文

关键词 PPKTP晶体;飞秒激光;倍频

中图分类号 O437文献标识码 A文章编号 10002537(2014)03005805

“量子纠缠”被称为“量子力学的精髓”[1],它“反映了量子力学的本质——相干性、或然性和空间非定域性”[2],这些性质深刻影响着人们对物理世界的认知和理解,同时也为人们探索物理世界提供了全新的方法、手段和资源.在量子计算和量子通信等领域,量子纠缠已经得到了广泛应用[34],而这些应用得益于人们不断制备出新型高效率的量子纠缠源.在多光子纠缠研究领域,研究者常利用780 nm的飞秒激光脉冲经过LBO等非线性晶体,倍频产生390 nm激光脉冲,再利用参量下转换过程产生纠缠光子对[5]和多光子纠缠态[6].但是,LBO晶体二阶非线性系数较低,需要较高的基频激光能量,而且制备的390 nm激光模式较差.作者在本研究中,利用单脉冲能量仅为0.66 nJ、功率165 mW的 780 nm飞秒激光,倍频得到单脉冲能量0.09 nJ、功率23 mW的390 nm的紫外脉冲激光,转换效率为 13.9%,且激光模式极优、线宽很窄.这为利用PPKTP等新型高效率的非线性晶体,研制低功耗、小体积、高效率的新型多光子纠缠源,提供了一种有价值的紫外激光光源.

1 周期极化晶体倍频的理论

2 倍频实验装置

采用准相位匹配技术实现飞秒激光脉冲PPKTP晶体倍频实验.实验中,使用Menlosystem公司MFiber A 780的飞秒激光作为基频光,输出激光的中心波长为780 nm、脉宽为100 fs、重复频率为250 MHz、功率为165 mW、脉冲的峰值能量为0.66 nJ.该激光光束为高斯型光束,M2因子为1.02.用光束分析仪测量得到的光束亮斑(如图1所示),光束直径约为1 mm.用高分辨率光谱仪测量得到了激光脉冲的光谱图(如图2所示),频谱宽约为15 nm.

图1 基频光光斑

Fig.1 The light spot of fundamental frequency light

图2 基频光光谱

Fig.2 The spectrum of fundamental frequency light

利用PPKTP晶体进行飞秒激光脉冲倍频实验的装置如图3所示.基频光从激光器出射,经两个反射镜M(780 nm反射镜)准直,通过聚焦透镜L耦合到I型PPKTP晶体中.基频光的偏振方向为竖直方向(Vertical),与PPKTP晶体的本征偏振方向(Vertical)相同,保证了倍频实验的最优实现.PPKTP晶体的尺寸为10 mm×2 mm×1 mm(长×宽×高),极化周期为2.95 μm,两端面均镀有780 nm和390 nm激光增透膜.将PPKTP晶体置于晶体温控炉中,温控炉被固定在三维平移台上.温控炉的温度调节范围为25 ℃到200 ℃,精度为0.1 ℃.选择合适的聚焦透镜L,并精确调节PPKTP晶体的位置,使光束束腰位于晶体中心.

图3 实验装置图

Fig.3 Experimantal setup

光束经PPKTP晶体,获得390 nm倍频紫外光(但其中混杂780 nm基频光及其他杂散光).随后,光束经过6个光学器件,包括4个45°双色分光镜(M1、M2、M5、M6)和2个滤波片(M3、M4),其中M1、M2、M5、M6为高反390 nm(反射率99.9%)高透780 nm(透过率98%)的双色分光镜,M3为785 nm帯阻滤波片(Tavg>80% 350~400 nm;Tavg > 93% 400~742.1 nm;Tavg>93% 827.9~1 600 nm;ODabs>6 785 nm),M4为390 nm带通滤波片(Tavg>90% 381~399 nm;ODavg>5 200~340 nm;ODavg>3.3 340~345 nm;ODavg > 3.3 423~428 nm;ODavg > 5 428~1 000 nm).按照图3摆放PPKTP晶体后的光学器件,其一是为了较好地滤掉780 nm泵浦光及其他杂散光,得到纯净单一的390 nm倍频光;其二是为了给接下来利用Ⅱ型参量下转换过程制备量子纠缠源的实验提供方便.最后,对倍频光进行功率测量和光谱分析.

3 倍频实验过程与结果

实验中将中心波长为780 nm、频谱宽为15 nm、脉宽为100 fs、重复频率为250 MHz、输出功率为165 mW的飞秒激光脉冲作为基频光.

参考Boyd和Kleinman对倍频实验中高斯光束聚焦问题的研究[10],根据高斯光束传播规律[11],可计算得到倍频实验中聚焦在PPKTP晶体中心的光束的最佳束腰半径为22 μm. 实验中选择不同焦距的聚焦透镜,使光束束腰位于PPKTP晶体的中心位置,经PPKTP晶体倍频后,分别测量倍频光的光功率,并计算倍频效率(倍频效率=倍频光功率/泵浦光功率×100%),具体结果见表1.

由表1可知,用F=50 mm的聚焦透镜比用F=100 mm的聚焦透镜进行倍频实验得到的倍频效率要高,但用F=50 mm的聚焦透镜进行实验时,观察到390 nm倍频光模式不断变化,且功率不断下降,倍频光如图4所示.这是光致折射效应(激光脉冲与介质相互作用时会引起介质折射率的改变)所导致的光束发散或畸变的现象.若入射激光的强度超过晶体介质的强度损伤阈值,还会引起晶体介质的结构和性质的改变,使晶体受到损害.

经过综合考虑,作者最后选择了焦距F=100 mm的聚焦透镜,PPKTP晶体中心光束的腰斑半径约为42 μm.

在选择聚焦透镜焦距F=100 mm的情况下,缓慢改变晶体温度(间隔0.1 ℃)测量得到倍频光功率随晶体温度变化的关系曲线(如图5所示).从图中可以确定晶体的最佳倍频温度为55 ℃左右,但是,不同于连续激光倍频实验[1213],利用飞秒激光脉冲进行PPKTP晶体倍频实验时,倍频光功率对晶体温度并不敏感,倍频效率的变化很小.这是由秒激光的光谱较宽,实验中不仅有二倍频效应还有和频效应,因此在较宽的温度范围内,不同波长的和频效应依次发生,而输出功率基本保持恒定.

倍频实验中获得的390 nm紫外倍频光满足利用Ⅱ型参量下转换过程制备纠缠光子实验对于泵浦光的要求.

4 结束语

对脉宽为100 fs超短激光脉冲在PPKTP晶体中的倍频进行了实验研究,并分析了倍频实验结果,发现倍频转换效率对温度匹配并不敏感,倍频光谱宽大幅变窄.在单次通过PPKTP晶体的情况下,获得了光功率约为23 mW、中心波长为390 nm、谱宽为0.6 nm的倍频光.实验装置简单,便于调节,为 利用PPKTP等新型高效率的非线性晶体,研制低功耗、小体积、高效率的新型多光子纠缠源,提供了一种有价值的紫外激光光源.

参考文献:

. New York: Cambridge University Press, 1995.

[2] 张永德.信息科学物理原理[M].北京:科学出版社, 2005.

[3] BODIYA T P, DUAN L M. Scalable generation of graphstate entanglement through realistic linear optics[J].Phys Rev Lett, 2006,97(14):143601.

.Phys Rev Lett, 2005,94(15):150501.

.Phys Rev A, 2006,73(1):012316.

. Nature Photonics, 2012,6(4):225228.

[7] 李淳飞.非线性光学[M].北京:电子工业出版社, 2009.

.Phys Rev Lett, 1961,7(4):118119.

.Phys Rev, 1962,127(6):19181939.

[10] BOYD G D, KLEINMAN D A. Parametric interaction of focused gaussian light beams[J]. J Appl Phys, 1968,39(8):35973639.

[11] 周炳琨.激光原理[M].北京:国防工业出版社,2009.

第4篇:量子力学与量子纠缠的关系范文

[关键词]物理学理论 计算机技术 量子计算机

中图分类号:O4-39 文献标识码:A 文章编号:1009-914X(2016)27-0198-01

一、近代物理学理论的发展与现代物理学理论

现代物理学的发展即为19世纪至今,是现代物理学理论发展不断壮大的时期。

当力学,热力学,统计学,电磁学都发展的很完善时,有“两个不稳定因素”打破了物理界的当时的境况,推动了物理学的变革。第一个是迈克尔逊-莫雷实验,即在实验中没测到“以太风”,也就是说不存在真正的参考系,光速与光源运动无关,光速各向同性。第二个是黑体辐射实验,用经典物理学理论无法解释实验结果。

20世纪初,爱因斯坦打破了传统的物理学理论,提出了侠义相对论,彻底了之前牛顿提出的绝对时空观的理论。十年后又创立了广义相对论,阐述了万有引力的实质。

物理学界的第二个稳定因素――黑体辐射实验,通过普朗克,爱因斯坦,玻尔等一大批物理学家的努力下,量子力学应时诞生了。随着薛定谔波动方程解释物质与波的关系,量子力学愈来愈趋于完善。

量子力学与相对论力学在现代物理学理论发展中是不可忽略的伟大成就。这两个的研究的对象也发生了改变,由低速到高速,宏观到微观等,物理学理论也日趋成熟。

二物理学理论是计算机诞生的基础

物理学作为理论基础:随着微积分、力学三大定律、万有引力定律,经典光学理论的建立,总所周知的一位伟大的物理学家――牛顿的整个力学的体系也完美的呈现于人们眼中。一对天才数学家布尔和德莫根历经无数次的推演证明,挖掘出了数理逻辑中那闪耀着最亮的光辉――布尔代数:电磁理论则是伟大的物理学家法拉第和麦克斯文创立的!而微观领域上的量子力学经由多位物理学家――德布罗意、玻尔、爱因斯坦、海森伯、薛定谔建立;还有电子三极管经过无数次实验也被德弗雷斯发明出来了。

上世纪40年代,200多位的专家研制小组由美国国防部任命的莫奇利和埃克特领导着并且克服了无数困难,两年中坚持的开发创新,人类第一台计算机――ENIAC(1946)在宾夕法尼亚大学研制成功!这不仅是第一台电子管数字积分计算机更是人类文明进步的一大步。

随着第一台计算机的成功研制的第二年,一种不仅小而且安全可靠,又不会变热,结构也什么简单的晶体管在美国的科学家巴丁等人研制出来。德克萨斯一器和仙童公司也紧跟着飞速发展的科技的步伐,在1953年成功的生产出了首个集成电路。次年,得克萨斯仪器公司首先的宣布他们拥有了集成电路的生产线,这意味着集成电路可以大量的投入生产和使用,然后TRADIC――首台晶体管计算机诞生了,这个在体积上要小很多的计算机就诞生了。

伴随着集成电路的出现,第三代计算机则是诞生在60年代中期。同样是由IBM公司生产出的IBN600系列计算机成为了第三代计算机的代表产品。早一些的INTEL8080CPU的晶体管集成度超过5000管/片,1977年在一个小小的硅片上就可包含几万个管子。

随着时间的推移,以大比例的集成电路当作逻辑元件和存储器的第四代计算机也向着微型或巨型改。计算机的处理器也由8086不停地在转化,到了我们熟知的奔腾系列。

不管是计算机的理论基础还是硬件设施,其实都是以物理学理论为根本的。物理学理论与计算机技术在未来的日子里互相补益,会不断的推动科学向前飞速发展的。

三、计算机零件应用的物理学理论

液晶屏,一听名字就可以想象得到它是以液晶材料为基本组件的。实际上液晶屏就是把液晶材料填充于两块平行板之间,并且利用电压来改变其材料内部的分子排列情况,控制遮光与透光以显示明暗不同,鳞次栉比的图案。如果想要显示彩色的图案时,只要把带着三元色的滤光层加入到两块平行板之间就可以了。液晶屏的广泛应用还因为其功耗十分的低,应用电池的电子产品都可以配置液晶屏。由于液晶介于固态与液态之间,那么就可以既体现固态晶体所有的光学特性,还可以表现出液态的流动特性。总结液晶的物理特性可归纳为:粘性、弹性和其极化性。

目前的CPU一般就是包括三个部分:基板、核心、针脚。大家都知道有一种电脑的硬件的组成的基本单位十分的重要,就是晶体管,而CPU的主要的组成也是晶体管。AMD主流CPU内核在早期的Palomino核心和Thoroughbred-B核心的配备,通常采用3750万个晶体管,而Barton核心使用了5400万个晶体管,核心Opteron处理器使用多达1.06亿个晶体管;。因此,实际上说的CPU核心构成的最基本单位就是晶体管的的芯数,针脚。所说的基板通常是印刷电路板,它承载着核心与针脚。然后该晶体管通过电路连接,成为一个不可或缺的整体,然后可以去分成不同的执行单元,每个单元又可以去处理不同的数据,这样有秩序的完成每个任务,才会准确而快速,这也是CPU为何拥有如此强大的处理能力的原因。

其实还有很多的零件都运用了大量的物理学理论。下面向大家介绍一下比较先进的计算机――量子计算机。

四、简介量子计算机

从物理观点看,计算机是一个物理系统.计算过程是一个物理过程。量子计算机是一个量子力学系统,量子计算过程就是这个量子力学系统内量子态的演化过程。

量子计算机以量子力学建立逻辑体系,与量子计算机有关的量子力学的原理,即量子状态的主要性质包括:状态叠加、干涉性、状态变化、纠缠、不可复制性与不确定性。

量子计算机具有学术价值和产业价值不可估量。对人类的文明,它实际上是一个很大的进步,我认为最主要的方面则是它的工业价值。最直接的应用各种各样的量子算法,他就可以用于商用化。

可以回想机器在20年前的悲惨境况和现在的春分得意,利用机器学习是很难在工业部门查找数值,因为计算能力的时候真的很烂。然后还要测试几个月,谁还有时间来调整参数啊。而这两十年间,计算机体系结构不断的优化下,机器学习强大了好多倍。想想看,如果我们比今天的计算能力更强大,我们无法想象一个强大的AI强量子任务不是指日可待?而当每家每户都有一个量子计算机,互联网将演变成什么形式?总之,商业量子计算机将是未来科技的发动机,就像蒸汽机是工业文明的象征,量子计算机的前景值得我们期待!

我国科技飞速发展的今天,我们不难发现现代生活已经步入了一个电子的天堂,计算机将会发挥它不可估量的价值,而作文计算机技术的支架――物理学理论也在不断的发展着,这就要求我们在紧跟着的脚步,努力研究,发现问题、认识问题、解决问题,逐渐的将我们国力壮大,2020年全面建成小康社会。

参考文献

[1] 王炳根.百年物理学发展的回顾与未来的展望[J].南平师专学报. 1997,04:11-14.

第5篇:量子力学与量子纠缠的关系范文

【关键词】量子场论 还原性 问题

物理中的突现主要是指很多因素,对于系统组成要素具有性质问题,不是在于任何单个要素,因素系统的低层次形成时期才会出现,所以说才成为涌现。系统功能之所以表现是整体会大于部分,是因为系统会涌现出新质因素。人们对于这一个现象的研究是从生物学开始的,后来应用于人工智能和复杂物理理论中,随着社会现代科学即使发展,出现了很多问题,在整体性为主题中,量子场论的建立都针对很多问题进行发展和研究,也引发了很多原论和反原论问题深入研究。从重整化操作参数中选取任意性理论问题都是没相关性,场论知识具有自主性理论体系,各个理论之间没有关系,所以说量子场论涉及当今物理学和哲学领域很多问题。

1 有效场论思想的提出分析

一般意义的有效场论指的是某一个研究领域事物内在机制理论问题,也就是用粒子物理学家话来说就是有效理论对于物理参数空间物理实体描述,从物理学看,很多物理学理论都是随着不断变化而形成了多样性,也就是同一物理实体中的粗放型和精致形理论,这就构成了物理学参数空间唯像学理论研究。不需要费心去寻找一个物理终极理论,只要能够恰当的描述一切现象就可以了,从本质上讲也就是说对于物理具有本身局限性,是反映物理世界信息模型问题。

为了能够很好协调量子力学和相对论之间量子场论,就应该考虑到二次量子化,也就是一种包含粒子生产的基本粒子问题,在数学中量子场论系统拥有无穷自由度,数学中对于理论有很多新的要求,对于重整化问题解释争论也是突出表现了场论思想提出,从历史发展来看,重整化理论是具有一定场论理论依据的。对于有效场论思想提出都有一定追溯作用。

从重整化方法发展历史看,有效思想在建立量子场论中是非常富有启发作用的,量子场论语言的作用是非常恰当描述依赖作用的,本质就是能够超级力量。有效理论思想可以很好推动量子场论深入发展,也就是说基础物理学家说的基础物理学问题,本质上就是高能物理学和低能物理学之间相互隔离和各个击破研究问题。如何划分物理现象标准能否跨度,形式随着精度分化不断变化,也就是在重整化基础上能够实现对于理论重整。能够就会出现很多处理重整化物理学理论发展的初始阶段是处理量子电动力学发散引进方法,对于物理学家首先应该引起截至作用,将发散部分吸收,然后再进行重新定义理论参数问题,在这个过程就会出现很多处理方法问题,重整方法从此就会成功开始。随着测试现象尺度变化物理学作用和结构也会发生变化,接着人们就会缓慢减小截至思想指导,运用重整化参数变化情况进行更深度分析和研究,有效的将参数和分数关系用数学方式描述出来。能够在群方程参数变化中,降低重整化的有限维子丛。有效的低能理论有别于高能的情形,不同的高能日量可能 会产生相同低能日量,事实上在数众多不同质量粒子共存体系中,系统能量远会小于粒子质量,这时质量扮演截至就可以近似重整化有效场论,质量的影响也会相互作用不可重整化,一种新的可重整化量子场论理论广泛应用自然会导致人们对于基础物理学看法,这种观点的转变结果是量子场论的标准模型问题。

2有效场论引发的争论问题

人们认为基础物理学研究宇宙物质基础结构和物质运动规律的学科,所以说近代自然科学追求的确定性和必然性,根据这个观点对于高能物理学享有的基础地位和粒子物理学的终极理论都是有一定领地的。从弱点理论到量子色动力学发展起来的标准模型,在基础物理研究中都具有里程碑意义和作用,根据标准模型可以看出,物质有夸克和轻子组成,他们之间相互作用可以用一个统一规场论来完成,量子场论这种进展就是重整化方法更加深入人心。

重整化概念对于标准模型哲学基础构成需要更加深入分析和研究,在理论早起时候,重整化的概念在处理微饶问题时,物理学家对于突现驾驶主要是纠缠于两种备选方案,就是前面提及到的还原论和反还原论述,分别指的是高能物理学和凝聚态物理学问题。粒子高能物理学的科学家以高能物理学基础来辩护,就是粒子物理学提升了人们对于物理世界的认识,引领人们一步步走到宇宙绝对性结构面前,在还原论中也有很多关键性词语,所以说凝聚物理学家工作和粒子物理学家工作是一样的基础性。

还原重整化概念建立的历史进行实证分析,确实是可以提供理论之间相关性依据问题,但是这种论证本身没有坚实基础。理论之间联系建立只是局限于特定语境,另外理论之间是否存在基础性问题,也只是局限于各种文化层次之间,理论是否具有一定基础性争论,将是未来人类文明发展的重要问题。也就是理论之间存在内在很多联系,反还原阶段基于突现事实理论之间联系,量子场确实恰当又方面的描述了特定精度物理现象问题。根本上依赖于特定语境中和物理相对应的世界,其中包括主观意向、理论背景和实验测量问题等,所以要不断结合各种综合要素进行分析和科学解释人类现象。

3结语

粒子物理中物理场论等多个理论之间相互竞争并存在很多现象,有效的微观世界信息,可以反映客观理论语境,这样就会避免工具主义无法解释参量问题,和实在主义经验数据问题,总之就是客观事物本身是非常丰富多彩和复杂多变的,一种语言描述复杂事物行不通,对于还原论和反还原论争论,问题不是一方压倒另一方,而是要相互之间能够互补,全面客观的把两者进行相互结合起来,做到最大限度的兼收并蓄、取长补短和综合统一。

参考文献:

[1] 王博涛,舒华英.基于自组织理论的信息系统演化研究[J];北京邮电大学学报(社会科学版),2006年01期.

[2] 林祯祺.从量子论到玻色-爱因斯坦统计[J];重庆师范大学学报(自然科学版),2006年04期.

[3] 聂耀东,彭新武.复杂性思维・中国传统哲学・深层生态学[J];思想理论教育导刊;2005年04期.

第6篇:量子力学与量子纠缠的关系范文

马克思曾明确指出:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”这是对数学作用的深刻理解,也是对科学化趋势的深刻预见。事实上,数学的应用越来越广泛,连一些过去认为与数学无缘的学科,如考古学、语言学、心理学等现在也都成为数学能够大显身手的领域。数学方法也在深刻地影响着历史学研究,能帮助历史学家做出更可靠、更令人信服的结论。这些情况使人们认为,人类智力活动中未受到数学的影响而大为改观的领域已寥寥无几了。

二、数学:科学的语言有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。例如,著名物理学家玻尔(N.H.D.Bohr)就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。”(注:《原子物理学和人类知识论文续编》,商务印书馆1978年版。)狄拉克(P.A.M.Dirac)也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。”(注:狄拉克《量子力学原理》,科学出版社1979年版。)另外,爱因斯坦(A.Einstein)则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。……理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。”(注:《爱因斯坦文集》第1卷,商务印书馆1976年版。)

一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。

数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。如著名物理学家、数学家麦克斯韦(J.C.Maxwell)的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。还有黎曼(Riemann)几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。矩阵理论为本世纪20年代海森堡(W.K.Heisenberg)和狄拉克引起的物理学革命奠定了基础。

随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。

三、数学:思维的工具数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。这就是运用抽象思维去把握现实的力量所在。

其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。

第三,数学也是辩证的辅助工具和表现方式。这是恩格斯(F.Engels)对数学的认识功能的一个重要论断。在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。如牛顿(I.Newton)—莱布尼兹(G.W.Leibniz)公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等(注:孙小礼《数学:人类文化的重要力量》,《北京大学学报》(哲学社会科学版),1993年第1期。)。最后,值得指出的是,数学还是思维的体操。这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力。

四、数学:一种思想方法数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。

任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。同志曾指出:“对情况和问题一定要注意到它们

的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第行星——海王星的发现,就是由亚当斯(J.C.Adams)和勒维烈(U.J.Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。

数学作为推理工具的作用是巨大的。特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。

值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A.N.Whitehead)认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(L.E.Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。

数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。

五、数学:理性的艺术通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。

数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。

艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。

艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。(3)简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。(4)象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。

艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。

在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材(注:黄秦安《论艺术与数学的普遍意义及基本关系》,《陕西师大学报》(哲学社会科学版),1994年第2期。)。

第7篇:量子力学与量子纠缠的关系范文

【关键词】自主论/还原论/生命现象/解释/遗传信息

【正文】

1.目的性解释或功能解释的方式是概念自主性的逻辑延伸

如果承认生物学理论具有自主性,那么理论自主性的根本在于概念的自主性,即存在所谓不能用物理——化学术语进行描述和定义的概念。生物学理论自主性的另一表现——理论体系的目的性解释或功能解释方式,是概念自主性的逻辑延伸。另一方面,生物学理论中仅存在自主性概念并不必然导致目的性解释或功能解释,例如,孟德尔遗传学、公里化处理后的群体遗传学和进化论的演绎体系(1),其中所有的概念都没有与物理——化学发生关联,都是自主的,只有在一个体系中,例如,以分子生物学为主体的现代生物学,存在自主性概念的同时,又存在物理——化学的术语和概念,并且,二者都处于解释起点的位置,才必然导致目的性解释或功能解释的理论结构,这种结构成为融合自主性概念与物理——化学概念为一体的方案。就现代分子生物学来说,其中的物理——化学概念所描述的是生命现象中的分子及其行为,而自主性概念所描述和推演的是我们宏观经验的生命现象本身,这二者之间,从概念的构造和体系的建立的过程来说,分属两套逻辑体系,因而它们之间没有逻辑演绎的导出关系(2),同时,由于生命现象的复杂性(即使假定把它描述成所谓的因果反馈网络是可行的方案),难于形成一个由前者到后者的历史演化的因果决定性的理论描述,剩下来将二者结合在一个理论中的唯一方案就是目的性解释或功能性解释的方式。由此形成的体系中,自主性概念(如遗传信息)处于核心地位,物理——化学的术语和概念(如DNA,蛋白质)是附属的。现代还原论(或称分支论,企图将生物学作为物理科学的一个分支)对生物学理论的目的性解释或功能解释方式的一切责难,以及将其变换为演绎解释方式的企图,如果不首先化解概念的自主性问题,将是徒劳的。

从生物学理论的客观构建过程来说,这些“自主性概念”是直接从生命现象中认定的,因而也是无机世界所没有的。在自主论看来,无论站在什么角度或立场上,“自主性概念”是理论中不可再分解的最基本,最原始的元素,是解说其它现象的起点;而在还原论看来,从物理——化学的立场或从无机界与生命界的关系的角度来看,“自主性概念”是复合的,应由物理——化学的术语和概念复合而成,因而它们就不应是理论中最基本的元素。我们顺着还原论的思路思考下去,还原,就是最终由物理学中的概念逻辑地演绎“自主性概念”的内涵。物理学中所有概念都终究归结为可感知、可操作的三个量纲:质量、空间、时间。物理科学内部的还原都是这种归结:对热质的否定并把热现象归结为能、温度归结为分子的平均动能,从化学到量子力学等等,著名的“熵”,则以热量与温度的关系来表示,在申农创立了信息论之后,人们便千方百计地寻找“信息”与物理学的关系,勉强将其与“熵”联系起来。从有限的意义上说,分子生物学还原了经典遗传学,将基因还原为DNA和“遗传信息”,而“遗传信息”如何进一步归结为物理学的量纲呢?“遗传信息”是一系列生命过程的整体赋予DNA等生物大分子行为以生物学意义的概念,也就是说在解释的逻辑次序上整体在先,元素在后,这是“遗传信息”这一概念的自主性的来源。因此,分子生物学的还原仅是有限意义上的还原,甚至不能说是还原,因为它仅仅是以一个自主性概念(遗传信息)解说了另一个自主性概念(基因),而“遗传信息”已成为现代生物学的研究范式或纲领的核心。因此,现代分子生物学并没有给还原论以支持,而且具有反作用,因为,如果说经典遗传学是一个演绎体系因而在这一点符合还原论的要求,那么分子生物学由于“自主性概念”与物理——化学概念的混合而具有了目的性解释和功能解释框架的特征,这成为生物学理论自主性的表现特征之一。

现代自主论正是从分子生物学的这些自主性特征出发,声明了自己的原则和立场。

2.现代自主论的原则及其本体论基础

从活生生的生命现象中直接认定一些概念,从而它们独立于无机界,有别于物理——化学语言,使建立在这样的概念之上的理论具有自主性,最极端的例子是本世纪初的生理学家杜里舒(H·Driesch)将“活力”概念科学化和理论化,使它成为逻辑解释的起点;孟德尔到摩尔根所构造的经典遗传学中的“基因”,也是直接以生命现象以及从中所获得的数据为根据认定的有别于物理——化学的概念。本世纪六十年代,分子遗传学将“基因”用DNA分子片段代替,使人们一度认为生物学的自主性是一种虚幻的认识,迟早会消失的。但是,并非DNA分子片段唯一地代替了基因,而是DNA分子与“遗传信息”二者一起来解释基因。“遗传信息”又是直接来源于生命现象的概念,仅就这一点来说,分子生物学仍然具有自主性。这是现代生物学自主论的根据。

现代自主论的主要论点是生物学完全有根据形成自主的概念,“自主”意味着不能由物理——化学术语来分解或描述或定义。为了区别于分子生物学诞生之前的生机论或活力论,现代自主论提出以下原则:将生物学能否还原为物理科学与能否用物质原因阐释生命现象严格区分为两个问题。(3)这个原则所要强调的是,物理——化学并不是对物质世界的唯一表述方式,关于生命有机体自身的物质原因的表述(生物学理论)则是另一种关于物质世界的理论表述方式,二者之间不存在逻辑蕴涵或逻辑导出关系。生物学还原为物理科学,其严格意义是以物理——化学的概念和定律来解释生命现象,从而推演生物学理论。仅从概念的层次来说,完全用物理——化学的术语描述或定义生物学概念,已经非常苛刻而至今远未做到。现代自主论“用物质的原因阐释生命现象”则宽松得多,实际上,分子生物学就是这样,以生命大分子组成,再加上遗传信息、复制、转录、翻译以及选择、稳定等诸多生物学独有的自主性概念,成功地阐释了从功能到进化的许多生命现象和活动。这是一个非常实际的原则,既可以摆脱科学史上令人厌恶的“活力”纠缠,又没有象还原论那样自套枷锁。

虽然如此,如果深究这一原则,则存在以下问题:

第一,现代自主论所称的具有自主性的生物学概念的认知来源无疑仍是对生命现象的直接认定,因此,在还原论或分支论那里应该是纯粹的解释对象的生命现象,在此成为认知和解释的起点。至少在这一点上与“活力”概念是相同的;

第二,现代自主论的本意是,生命现象中的物质运动方式为无机界所没有,因而对这些运动方式、关系等可形成独立于或自主于描述无机界物质运动方式的物理——化学的术语、概念乃至规律、理论,作为解说生命现象的前提。这种主张或可与当下的生命现象或“功能生物学”(4)相谐调,但与科学界的一个基本承诺(也是一个从未被证实过的预设)相抵触:生命来自于无机界。这意味着生命现象中的运动方式与无机界的运动方式有—个逻辑与历史相统一的关系,描述它们的理论也应有一个统一的逻辑关系,因而自主性不应该是必然的。

第三,在解释上,“物质的原因”中的“物质”是指生命体组成,主要是生物大分子,因此在现代自主论看来,分子生物学在具有了自主性的同时,又具有了物质性。而具体体现这种主张的分子生物学必然是自主性概念与物理——化学的术语和概念相“混合”的理论,其中,直接以生命现象作为实在性基础的自主性概念占有主导地位,是理论的核心。“遗传信息”规定了未来的蓝图,成为生物大分子所有行为的目的性基础与源泉,(5)它以生物大分子自身的逻辑内涵所没有包容的、因而是外在的东西,来赋予生物大分子行为以生物学意义。这就使得DNA等生物大分子成为遗传信息等概念的附庸,导致了目的性解释或功能解释方式(2)。这实际上仅仅一半是物质的,而另一半却仍旧是“生机”的。这样,与其说是解释生命现象,不如说是在阐释生命形式下的分子及行为。这样的理论之所以被人们接受,其原因之一是人们接受了“生命来自于无机界”这个科学界中最基本的承诺之一,它已成为一种指导思想,给人们带来了希望:迟早有一天我们可以使理论上的从无机到生命的逻辑与历史上的从无机到生命的演化过程统一起来。因此,现代自主论的原则尽管与现代生物学相一致,但是,它却与这样一个重大的承诺不谐调。

第四,由此,我们可以做这样的一个回顾:生机论以从生命现象中认定的概念作为解释的起点,可简略称为“以‘生命’解释生命”;还原论则基于近现代科学精神的要求,以描述无机界的概念为起点来解释生命现象(即“以‘物质’解释生命”);而现代自主论的原则和主张,在分子生物学的具体体现中,却付出了这样的代价:以自主性概念为核心规范了物理——化学的术语和概念,以此为解释起点,但所解释的并非是生命现象本身,而是分子的行为(尽管是生命形式之下的)——自主性的那部分所解释的是生物大分子的(物质的)行为(即“以‘生命’解释物质”),“物质原因”那部分所解释的也仍是物质,而非生命。

以上几点,既是现代分子生物学理论体系中存在的哲学疑难,又是现代自主论的主张所存在的问题。现代自主论的原则是以现代生物学为其合理性依据的,它之所以坚持这一原则,一方面是由于现代分子生物学的内容的确如此,另一方面又企图把这一原则固定为今后理论生物学构建的指导性原则。这不由得使人想起了二千多年前亚里士多德的技巧,他不满意柏拉图在灵魂(生命)与肉体(物质)之间设置的鸿沟,企图找出生命过程与物理过程的密切联系,同时又要界说生命过程以表明与物理过程的区别,他构造了“形式因”和“目的因”的概念来解决这一问题:一件东西赖以构成的原料或物质并没有告诉我们它是什么,但赋予它以形式或目的,我们就可以根据它能做什么来说明它。

进一步的问题是本体论问题。现代自主论的优势在于现代生物学理论的形态和内容确以一些自主的概念作为理论根基的,但它的本体论基础却不令人信服:“生物学自主性的本体论根据在于生命有机体这种体系中的因果关系是复杂的,其中,生命整体行为对部分的制约是无机界所没有的。”(3)在此,存在着这样的悖论:因果关系是对现代生物学自主性的否定,而这里却以因果关系(尽管是复杂的,但仍是因果关系)作为自主性的本体论基础——前文分析了“一个理论体系中自主性概念与物理——化学概念同存并列作为解释的最基本元素,必然导致目的性解释或功能解释的方式”,它的逆否命题便是“非目的性解释(演绎的或因果关系的)体系不允许两种概念混合并列为解释的起点”,只能由一方还原另一方。那么,理论出现了“自主性”,到底是由于生命现象太复杂、纯粹以无机界为起点因果地或演绎地解释生命现象太困难而采取的权宜之计;还是由于存在着无机界所没有的“制约”,因而生命现象在本体上具有“自主性”(自主于无机界、确切地说自主于物理——化学的运动机制),使生物学也具有了“自主性”?接下来就发生这样的重大问题:本体上的自主性是什么?它与“活力”“生命力”的本质区别是什么?现代自主论可以争辩:生物学理论的自主性并不等同于生命现象具有自主性。但是,“整体对部分的制约”等诸如此类的现象如果在本体上不是自主的,而是与无机界有演化机制的因果关联,又为何不能为物理——化学(包括未来的物理科学)所描述?除非承认“科学的认识方法是有限的和不完备的”以及进一步承认“人的认知能力是极为有限的”这样令人气馁的命题,这又回到了“太困难而采取的权宜之计”上来。

因此,现代还原论固执地坚持以下两点与现代自主论的原则以及生物学理论现实作对:第一,生命必须纯粹地作为解释对象,而不能在解释之先从生命现象中预设某些概念作为解释的起点,如果生物学理论中有这样的概念,则它应被分解为物理——化学的语言;由此,第二,用演绎的解释方式转换由于存在自主性概念而采用的目的性解释或功能解释方式。坚持以上两点,也即将生命现象作为纯粹的解释对象而从无机界来演绎,就意味着用“物质的原因解释生命”与“生物学还原”是同一个问题。由于这种理想主义的固执,还原论所遭遇的困境甚于现代自主论。

3.现代还原论的困境

还原论的致命之处,主要不在于它反对现代自主论的原则,而在于反对现实的生物学理论的形式和内容去追求一种不太切合实际的理想。对生物学理论中的目的性解释和功能解释的诸多责难及演绎还原的要求所依赖的合理性依据——解释预言的检验是经验上可操作的,已随着现代生物学的成功而烟消云散,因为目的性解释或功能解释方式同样在试验上可检验。面对现代生物学的成功,以及还原所难以克服的诸多困难,再加上现代自主论强有力的批判和否定,现代还原论发现,剩下来可依赖的唯一合理性是哲学意义上的依据,即“生命来自于无机界”这一预设性和承诺性命题,我们不应“以‘生命’解释生命”,也不应“以‘生命’解释物质”,合理的“解释矢量”的方向应是“以‘物质’解释生命现象”。在这里,“生命现象”是一个很不具体的抽象概念,实际上可具体为被“约束”或“规范”的物质行为表现和“约束”或“规范”机制本身,这是真正的解释对象,也是理论自主性的实在性基础。因而,对于还原论来说,追究“基因”或“遗传信息”的起源和分子进化机制已成为其最后的坚守阵地,并且,当代自组织理论和超循环理论的盛行,似乎为还原论带来了令人振奋的希望。

迈尔曾将生物学理论划分为功能生物学与进化生物学,(4)在功能生物学中,基因所携带的遗传信息是生物学一切功能和目的的基础和源泉,只要突破这一点,即能够用物理——化学的语言演绎地描述形成遗传信息的分子进化机制,那么,还原论至少在原则上取得了胜利。但是,通过以下分析,这种希望似乎又是水中之月。

前面说过,“自主性概念”之所以“自主”,是由于它直接对应于生命现象或认定“生命的实在”,它反映了生命特有的本质,因此,它作为理论的起点,不必给予也不可能进行物理——化学的描述。还原论否认存在生命的特质,把所谓“自主性概念”或直接来自生命现象的概念看成是“复合性”的,可分解为诸多物理——化学的术语和概念,与此相应的试验上可操作性依据是生物化学对生命有机体的组成还原。但是,组成上的还原虽然可作为生命与无机界密切联系的依据,但也没有否定现代自主论的“用物质的原因解释生命不等于还原”的命题及所坚持的原则。否定“自主性概念”的充分条件不仅仅是把它看成“复合性”的,而且要以物理——化学的术语和概念逻辑地导出它的内涵。如果只满足于组成上的还原,结果只能是以“自主性概念”为核心来赋予生物大分子及其行为以生命意义(2)。与逻辑导出相对应的试验依据不是组成上的分解还原,而是与逻辑导出同向的试验可操作性,说白了,就是由无机要素合成生命,哪怕是最简单的生命现象。例如,对于超循环论来说,就是生物大分子超循环耦合能否在试验条件下发生,这涉及到“生命来自无机界”这一命题由哲学化向具体的科学化的过渡,关系到还原论在科学上能否真正站稳。但是:

第一,由无机到生命,经历了漫长时间,并且,生命的产生和演化是在十分优越的条件下选择了唯一快捷的途径而发生的。以人类的有限生命和历史是否有能力进行这种操作呢?这就象大海里的沙子,原则上是有限的,如果想数清楚有多少粒,则在实践上是一个无限的问题。退一步说,仅理论上的操作,即以物理——化学诸要素,通过在无机背景下取得的参数,进行自组织理论的非线性过程计算,来描述无机与生命之间的逻辑关系,这种非线性理论的计算操作也同样是事实上的无限复杂。这种原则上的有限而实践上的无限,直接冲击还原论的哲学基础:决定论。只有决定论成立,由无机到生命的逻辑演绎方式才是理论上可操作的,才具有进行预测和试验上可操作的价值和意义;决定论的前提又是自然有限论,而无限性就意味着不确定性,也就意味着逻辑演绎的理论之路是不通畅的、实践之路是不可操作的。

第二,自组织理论本身的结论——非线性过程的不可逆性,使这种操作不可能。从无机到生命的历史过程,其中有许多偶然性或随机因素起了决定作用并已作为“信息”储存于生物大分子的结构中。由于偶然性或随机因素的不可重复,使时间不可反演,因而整个过程无法进行重复操作。

第三,自组织理论和超循环论的非线性动力学过程的不确定性,使从无机到生命的演绎过程不可能。在此,应对“因果决定论”与“演绎解释方式”作出区分,一般来说,这二者被合二为一地用来与目的性解释或功能解释方式相对立,但它们之间是有区别的。因果决定论是用来表述定律或原理的方式,而演绎解释的方式是解释体系乃至理论体系的构成框架,即因果决定论形式的定律或原理是作为演绎框架的解释前提而出现的。这就可以提出这样的问题:否定了因果决定论的自组织理论的非线性过程的定律、原理是否可以作为从无机到生命演绎解释框架的解释前提呢?按照还原论解释的要求,如果中间环节有不确定因素,将阻碍这种演绎解释的逻辑通道的畅通。只有解释前提的因果决定论形式才与整体的演绎解释框架相谐调。尽管自组织理论及超循环论这一新物理科学曾经被讨论的热火朝天,由于它在分子自组织领域内就已经在逻辑上不确定了,因而,至今为止它对生物学的影响只限于描述性地说说而已,至多提供一个框架式的思想启示。

4.结语

还原论所遭遇的困境,是由于坚守着理想主义的科学信仰而不顾生物学现实。但是,无论是同情还原论而提出的带有折衷性的整体还原,还是反对还原论的自主论,在其构建生物学理论的建议中,只要还主张保存直接来自于生命现象的术语和概念,并且不可被物理——化学的术语和概念、也即描述无机世界的术语和概念所代替,都是在认识论上允许预先设定生命现象作为解释的起点,从而在本体论上承诺了存在着一种生命特质,也就有违于“从无机到生命的历史走向和逻辑走向相一致”这一基本的科学承诺。

在现代生物学面前,还原论成为固执地坚守理想和信仰的牺牲者而在所不惜,自主论由于切合生物学理论的现实而取得了优势,并以能够指导未来生物学理论的构建为最大的价值所在。但是,笔者认为,一门学科,特别是具有哲学色彩的学科,其意义和价值不应仅仅依赖于其他学科,更不能以其可否“指导”自然科学的发展为其价值标准。逻辑实证主义起始的现代科学哲学的历史已证明这种“指导”是虚妄和徒劳的,科学往往自我发展而不听命于哲学家的“指导”。在这方面,还原论也并不是无可厚非。无论是还原论还是自主论,它们的目的都是企图指导生物学理论按照它们指定的框架来运行,结果使我们处于这样一个悖论之中:如果信守“生命来自无机界”这一命题,则应否定“不能用描述无机界物质运动的概念、规律即物理科学进行还原”;而坚持还原论,则遇到操作上包括不确定性对演绎过程的否定的阻碍。这是否值得我们反思一下过于功利主义倾向的行为,以修正我们对科学的哲学探讨的目的?科学哲学的真正意义和价值在于自身,在于对科学及其与自然的关系的理解,在于它自身体系的建立,这个体系体现了人类的心智对完美的追求和向往。这一点,特别是在一个人欲横流的社会里,是极为可贵和重要的。

【参考文献】

(1)Rosenberg.A.(1985).The Structure of Biological Science.(Cambridge:cambridge University Press).

(2)郭垒:“生物学自主性与物理科学的理论构建”,《自然辩证法研究》,1995年第3期。

(3)董国安、吕国辉:“生物学自主性与广义还原”,《自然辩证法研究》,1996年第3期。

相关热门标签