公务员期刊网 精选范文 人工智能时代对教育的影响范文

人工智能时代对教育的影响精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能时代对教育的影响主题范文,仅供参考,欢迎阅读并收藏。

人工智能时代对教育的影响

第1篇:人工智能时代对教育的影响范文

关键词:高校;人工智能;伦理道德教育

中图分类号:G642.0文献标志码:A文章编号:1674-9324(2019)41-0144-02

一、人工智能课程伦理考虑的基本内涵

人工智能课程中进行伦理考虑,是在人工智能课程中有针对性地加入道德教育的元素。在方式上,可以借用西方的“隐形教育”方式。在内容上,必须符合中国的人工智能发展态势,更要受中国社会主义核心价值体系的引导。目前中国的人工智能课程,过度偏向于技术性。尤其是许多社会机构提供的课程,更是偏向于功利性,目的在于让学习课程的学习者快速获得工作。因此,必须从源头入手,对这些社会机构进行一定的约束和规范,对人工智能课程内容进行整体的架构。

二、高校人工智能课程中伦理考虑的必要性

(一)我国对于科技工作者职业道德建设的要求

首先,科技工作者的职业道德建设是促进社会治理体系现代化的必然要求。加强社会治理制度建设,一靠法治,二靠德治。中国正聚焦力量加强自主创新,科技是第一生产力。基于当代中国语境下,科技工作者的职业道德建设就至关重要。科技工作者对自己的社会责任与伦理责任应该有着充分的理解,在科研活动中既要着眼于为社会提供科学技术上的新成果,同时也要强调在伦理道德建设中起到应有的作用。

其次,从长期看,科技工作者的职业道德建设利于国家科技的发展,利于促进科技难题的解决。发展是连续和间断的同一,科技发展不能一蹴而就。在面临科技瓶颈问题时,就更要求科技工作者具有坚韧不拔的品质和无私奉献的精神。这些精神都是进行职业道德教育中的重要内容,也是科技工作者承担的社会角色中必不可少的特质。

最后,高尚的职业道德是科技工作者奋进的不竭动力。一个科技工作者只有站在最广大人民的立场上,奉献自我才能成就事业。随着全球化的发展,受西方“享乐主义”的负面影响,科技工作者只有更加坚守自我、承担社会责任,才能具有不断前进的精神支柱。

(二)对解决人工智能伦理困境的源头性作用

随着人工智能应用领域的广泛化,以及应用群体的普及化,难以避免的带来一些伦理问题上的困境。例如伦理学中经典的“电车难题”,在当代科技发展中也出现了在人工智能领域的“无人车难题”。无人车产生事故的责任归属与分配就是目前很多学者在关注的伦理问题。人工智能的发展对当前的法律规制,还有现存的人伦规范都产生了挑战。人工智能的未来发展方向,在操作性上要避免技术鸿沟,在设计过程中要坚持算法公开化、透明化,并且在出现数据漏洞时应尽快地进行自我修复。这对于科技工作者自身的素质提出了很高的要求,不但要求科技工作者自身的知识素质与知识能力过硬,而且要求科技工作者要严于律己,具有较高的思想道德素质。要求科技工作者对于人工智能的发展保持理性的态度,坚持为国为民。许多科幻电影和小说中都体现了未来人工智能发展到一定阶段时,人与机器产生的情感迷思。作为科技工作者,在设计与调整过程中都应保持情感中立,勇于承担社会责任。目前我国正处于人工智能发展的初级阶段,人工智能尚不能拥有自主意识,人工智能的行为责任必须要找到其背后的拥有自主意识的人。无论是现阶段还是未来,作为人工智能产品开发者与设计者的科技工作者树立正确的价值观和承担相应的社会责任是十分必要的。科技工作者的知识层次与道德品质在某种程度上说,是研发人工智能产品的起点。因此,对科技工作者的成长过程中进行持续的道德教育,使其树立高尚的道德观念,对于解决许多人工智能带来的伦理困境都具有源头性、基础性的作用。

三、高校人工智能课程与伦理道德教育的结合方式探索

(一)高校人工智能课程资源的充分运用与更新

从资源形态上看,实物化资源与虚拟化资源,线上资源与线下资源都应充分运用。随着智能校园的普及,有基础条件的地区与校园可以充分运用好身边的人工智能。人工智能课程是一门理论与实践相结合的课程,因此课程的内容也不能仅停留在理论层面。除了对于学术资源的运用,也应当结合实体的人工智能产品进行学习。但因为人工智能的发展程度还没有普及化,人工智能机器人也远没有达到触手可及的程度。因此运用新媒体技术,通过虚拟现实的手段进行在教学过程中的知行结合是可以尝试的路径。VR技术在网络设备硬件教学中可以节约成本,便于人工智能课堂的普及化。在理论教学中,可以通过与虚拟机器人的交互增强趣味性。VR技术有3个最突出的特点:交互性、沉浸性和构想性。课程设置者可以充分借助VR的沉浸性设置相应的场景,让课程学习者通过对特定道德场景的判断引出思考。这种新媒体手段既可以更新原有课堂知识的教学教法,更适合作为伦理教育走入人工智能课堂的重要媒介。

从资源时态上看,人工智能课程资源必须随着人工智能的发展而不断更新。从现实角度来看,最初开设人工智能课程时,其教学目标还是相对简单的——即培养学生的创造性与知识能力。但随着人工智能的普及应用,产生了许多人工智能语境下的道德困境。从指导思想来看,我国逐步走向世界舞台,随着实力增强指导思想也是不断变化的,新时代会提出新目标,为了实现中华民族的伟大复兴,课程内容的丰富也是十分必要的。因此,人工智能课程若要符合时代需要,就需要不断地更新课程资源。人工智能这一学科是具有学科交叉性的,与之相关各个领域的最新前沿问题都需要结合相应的道德教育,只有这样才能适应时代的发展。

(二)高校人工智能课程内容的合理架构

对于不同年龄层次的人工智能课程,必须考虑到不同群体的教育规律。提出合理的教育目标,用不同群体可以接受的方式方法才能达到最优的教学效果。我国人工智能课程目前的课程架构中,已经有学者进行了分年龄层次的研究。人工智能课程可以规划为专业性逐渐增强的、从边缘到中心的课程层级系统。对于高校本科生和研究生来说,人工智能课程设置内容必须具有专业性。在上文的课程体系建构中添加了艺术、文学、哲学等内容,其中包含对于人工智能伦理学的思考与认识。但在某种意义上这些青年的社会价值观就代表了未来科技工作者的社会价值观。因此在这一阶段,人工智能课程的架构与实施,国家应加以引导和监督。一方面需要建立统一标准的高校人工智能课程体系,另一方面在應对课程具体内容的落实方面给予一定程度的监督。

(三)在高校人工智能课程教学过程中充分运用案例

首先应充分运用学术案例,例如度量学习,在其基础上的迁移学习,以及发表在《机器学习》、《数据挖掘》等顶级期刊上的论文。使课堂具有含金量,可以说这也是国家发展与关注的重点。通过学术性经典案例的学习可以拥有不一样的视角,通过历史发展的角度去看人工智能技术的演变与发展。其次应充分运用具体案例。在人工智能课程中对于许多道德问题,不应抽象地去讨论,而应该具体地去讨论。也可以让学生与AI系统进行直接的问答,如:我们能保证它们稳定可靠吗?我们应该如何去测试人工智能?人工智能课堂中既要包容学生多元化的答案,不压抑创造性又要对于错误的思想进行思想转化,这就需要教育者具体问题进行具体分析了。

第2篇:人工智能时代对教育的影响范文

【关键词】大数据时代;人工智能;计算机网络技术

引言

科学技术的飞速发展,使计算机网络成为人们生活和工作的重要组成部分。在计算机应用领域,将人工智能与大数据进行融合,可有效解决计算机网络管理中安全性的问题。然而,在大数据时代背景下,由于人工智能技术的发展仍处在探索阶段,在计算机网络技术中的应用还存在许多问题。基于此,深度探讨人工智能应用优势,并针对人工智能在计算机网络技术中的应用提出几点建议,具有十分重要的意义。

1大数据时代人工智能技术的含义及应用优势

1.1大数据下的人工智能技术

人工智能作为计算机技术体系下的分支,是一门融合开发和研究为一体,主要作用于开发人类智慧所应用的科学技术。在人工智能不断发展的历程中,对于人工智能的探索逐渐延伸至管理学、语言学、社会学等学科,使人工智能能够更好地接近人类大脑,完成对社会中存在各类要素和信息的采集,并模拟出人脑对图像和声音出现的反应。在大数据时代背景下,人工智能可借助大数据内容多和规模大的特征,替代人们完成部分工作,为人们生活和生产提供便利,以进一步增强人们的幸福感。人工智能与大数据的配合,可将人类思考习惯进行数字化处理,并完成对数据的储存。在未来发展中,人工智能可实现对人类日常生活的复制,实现机械化的自动操作和控制。通过大数据和人工智能的相互配合,可为人类和技术的发展提供更广阔的空间。1.2大数据时代下人工智能在计算机网络技术中的应用优势在大数据时代背景下,人工智能在计算机网络技术中应用所体现的优势,主要体现在以下几方面:①完成对信息的预测,在计算机网络运行中,要想提升运转速度就要及时处理系统中存在的模糊数据,但对于这部分信息价值的辨别存在一定的难度。如依照传统处理方法会增加系统运行成本,对系统造成影响。在大数据时代人工智能的干预,可依据模糊分析理论更有效辨别信息价值,完成对信息的预见,进而实现计算机网络运行效率的提高。②增加网络监管能力,计算机系统的快速发展使得计算机网络结构日趋复杂,为网络监管带来难度。而人工智能的参与可实现对网络的分类管理,不但提升管理的效果和能力,还为网络营造更加安全的环境。③人工智能强化数据整合,在人工智能和大数据相互协作下,对于计算机网络空间中存在的信息进行快速整合,完成对各类资源的有效配置。还可加快资源整合的速度,减少资源的消耗,降低计算机网络的运行成本。

2大数据时代下人工智能在计算机网络技术中的应用对策

2.1计算机网络安全管理中人工智能的参与

①在计算机网络网络安全入侵检测中应用人工智能。在大数据时代下,计算机网络环境日趋复杂,各类病毒和木马的入侵可对网络造成不可逆的影响。而在计算机网络管理中应用人工智能,可通过对以往入侵情况的分析,建立数据集成的系统,通过数据编码将入侵特征进行编码转换,在系统中储存完整的信息。一旦计算机网络出现入侵系统的情况,对网络安全造成威胁,系统就可依据设定对入侵类型进行辨别,并完成安全处理,保障计算机系统和网络的安全。②数据挖掘技术在计算机网络安全管理中的应用。数据挖掘主要是指将网络从主机会话中分离出来,并通过对网络控制实现计算的规范化,并将其产生的数据储存到数据库中,在遇到网络风险时就能完成数据的辨别。③人工神经模拟。人工智能的模拟技术可模仿人类大脑的思考和处理逻辑,在网络运行中,可对噪声等要素进行识别,并通过检测,完成对网络的安全性检查,提升网络运行安全性,提升检测的质量。④危险信息拦截和垃圾处理。在计算机网络安全管理中,人工智能可在网络系统中建立智能防火墙,对部分危险信息进行识别,并完成拦截。还可在系统设置访问权限,提升安全防控的效果。同时,在垃圾处理方面,人工智能和大数据的相互配合,可实现对网络遗留数据痕迹和垃圾的检测,快速找到包含病毒的文件,并在人工智能处理模式下完成病毒的处理,消除网络中存在的安全隐患。另外,人工智能可完成对系统资源的扫描,通过对信息的分析和处理,将数字化数据反馈给用户,使用户更加直接地了解计算机网络的运行状况,为进一步保障计算机网络安全提供帮助。

2.2计算机网络管理系统中人工智能的导入

①系统数据库技术。在计算机网络系统中,利用人工智能技术将计算机系统运行的内容转化为数据,将简单内容在变为复杂的程序,在运行中对其进行不断的优化,找到有效的运行方式,实现对系统对有效的管理。这种人工智能和大数据的相互配合,可有效弥补传统数据加工在内容逻辑性方面的缺陷,并通过数据库的建立,使得计算机网络系统在运行速度和储存空间方面都得到提升。②智能问答技术。在计算机网络搜索功能中,人工智能技术的参与可使得用户利用部分有效信息就能获得海量的资源,提升网络资源的使用效率。这种智能问答方式主要以简单指令为核心,通过对关键词的识别在海量数据中快速筛选到相关的资料,获取到用户需要的内容。这种工作方式可减少搜索的时间,完成对资源的合理应用。比如,用户在搜索栏中输入“流行乐”,当下在音乐市场中流行的乐曲都能显示出来,并带出“流行乐”相关的搜索标签,找到更多相关的信息和数据,减少搜索的时间,并提升搜索的整体质量。③智能技术。计算机网络系统可完整记录用户的搜索数据,并从海量资源中挑选出相关内容,完成对用户的精准推送,这种服务的机制,可减低用户大量搜索的时间,并在短时间内找到更有效的相关信息,提升计算机网络系统的应用效果,带给人们更多的便利和帮助。

2.3计算机网络运营系统中人工智能的支持

目前,计算机网络与行业领域的深度融合,奠定了计算机网络的发展基础。同时计算机网络所支持的各类平台,可为整体网络管理工作的开展提供对接渠道,依托于信息传输机制,可有效提高数据传输的时效性,进一步为行业的发展提供保障。(1)在企业管理方面。大多数企业在运行过程中,将产生大量的数据信息,有价值与无价值的信息将呈现出同步传输的模式,计算机网络系统的应用,则是对此类数据信息进行有效整合与分类,为管理人员提供一定的信息决策支持。人工智能的融合,对于原有的计算机网络运营系统来讲,则可有效建立起一种基于人工智能实现的运算环境,通过大数据技术的价值信息挖掘、神经网络与模糊网络的精密算法等,可有效提高数据信息的统计能力,以此来节约企业资金成本的投入。此类人工之能的导入可为企业经济管理建立一种数据运营框架,在相关信息的输入下,可按照有序性的运算模式实现数据的分析,进而提高企业自身的运营质量。(2)在教育教学方面。计算机网络与教育领域的结合,是我国教育改革的一个重要实现载体,通过网络海量资源的支持,可为学生提供更为全面的信息。例如,以人工智能技术为载体的信息分配机制,其可有效建立起一智能化数据体系,学生通过网络进行作答时,计算机系统的分配机制可依据学生作答情况,将各类信息进行精准记录。同时,平台本身还可依据学生的作答信息进行学习行为方面的预期分析,然后针对某一时间点下数据信息呈现出的异常特性来分析出学生学习行为的发展方向,并将此类信息及时反馈到系统中。通过此类信息的正确界定,可对教师的教学行为以及学生的学习行为等进行有效规范。人工智能的支持下,可令计算机网络呈现出智能化运作的特性,对于当前信息时代的发展态势来讲,智能化、自动化的运营模式在行业领域中属于一种必然导向,为此,应针对行业本身的需求,界定出技术的应用形式,以此来发挥出技术应有的价值效果。

第3篇:人工智能时代对教育的影响范文

关键词:人工智能;Python程序设计教学;项目驱动混合教学模式

人工智能技术在教育领域的应用已经非常深入,它可呈现深度学习、跨学科融合、人机协同、群智开放、自主操控等诸多内容,并在教学中引发链式突破、推动教学内容的数字化、网络化与智能化跃升式快速发展。所以说在教育领域中,人工智能如鱼得水,它获得了更大的自我技术展现空间,也为学生学习新知识内容带来诸多福音。

一、高职院校Python程序设计教学引入人工智能技术的必要性

人工智能本身离不开算法,而算法的实现则需要语言做支撑,像目前高职院校的Python程序编程设计教学就可引入人工智能技术,Python作为AI时代的头牌语言其融合性教学也成为了培养AI人才的重要关键。目前国内许多高职院校都在全面推行人工智能技术背景下的Python教学,将其作为是数据分析、网络攻防的第一语言以及编程入门教学的第一语言。

换个角度讲,高职院校在Python程序设计教学中引入人工智能是非常必要的,因为它关系到高职生未来的就业生存、岗位专业能力创新与事业发展,考虑到人工智能领域的知识理论性偏强,且对学生的数学基础能力要求较高,整体学科学习难度较大,所以许多高职院校也在思考如何将人工智能技术内容合理融入到Python程序设计教学体系当中,为学校相关专业领域拓展教育新路,培养对路人才[1]。

二、高职院校人工智能背景下的Python程序设计教学方法应用研究

(一)教学应用概述与教学目标明确

Python语言作为高职院校守门程序设计课程教学语言,相比于其它传统计算机语言具有简单易学、程序可读性、可迁入性、可扩展性、逻辑结构缜密等特点。同时该编程语言采用了开放开源设计,拥有12万以上的第三方库,可有效避免编程重复问题,提高教学中的语言编程教学效率。另外Python是一种解释型语言,它的跨平台与可移植性相当之强,可在任何系统中拷贝运行,对环境配置要求不高。

为了确保某些没有编程基础知识能力的高职生也能学好Python语言程序设计课程,教师专门在教学中加入了人工智能技术内容,围绕该技术融合可开展的Python编程语言课程就包括了Python安装、Python输入输出、Python特性、人工智能编程等等知识内容。在教学中希望明确3点教学目标:

第一,要求学生初步具有利用Python初步编写基本程序的能力。

第二,要求学生掌握Python编程语言的基本特性。

第三,要求学生深入了解某些常用Python库,特别是了解人工智能的基本思想与编程方式,能够利用人工智能和Python编写出某些复杂的处理程序。

(二)创新教法设计应用

为切实达到Python程序设计教学目标,凸显学生在课堂教学中的主体地位,教师可采用任务驱动配合项目驱动的混合教学模式展开一系列的教学设计活动,引导学生循序渐进的完成各项教学任务内容,不断提升自身的Python语言程序设计水平。

具体到教学方案设计中,教师专门围绕学生中心、任务载体将教学内容相对巧妙的隐藏于具体的教学任务中,再通过Python编程语言新知识内容与新教学技能驱动学生深入学习展开基础章节任务,结合任务结果评价评价学生对知识点的掌握情况。这一教法的提出与运用希望解决传统程序设计教学中理论与实践相互分离的不利教学局面,希望将课堂中的所有理论内容全部转移到实践任务中,凸显教学中理论与实践过程的相互和谐统一。如下:

教师为学生设计教学任务,设计Python程序示例任务,将fileA和fileB两个文件各存放于不同的两行字母中,然后将两个文件中的信息数据内容完全合并,按照字母顺序排列并再次输出一个新文件fileC,以下给出该任务教学中的程序设计编写代码:

fp1=open(‘fileA.txt’)

data1=fp1.read()

fp1.close()

fp2=open(‘fileB.txt’)

data2=fp2.read()

fp2.close()

fp3=open(‘fileC.txt’,w)

data_all=list(data1+data2)

fp3.write(data_unite)

fp3.close()

采用上述项目任务驱动项目混合教学法可为学生构建一个相对完整的人工智能Python程序设计教学独立项目,将项目完全交由学生独立处理完成,教师负责设计教学方案,而由学生收集信息,实施项目并最后再由教师给出学生项目完成评价。它全面考验了学生对于Python基本库与第三方库的学习了解与运用程度,同时在融入大量人工智能编程思路后颠覆学生的语言编程学习认知思维,让学生了不但能够练习独立编程,也能共同学习协作编程,全面提高自己的的Python语言编程能力[2]。

总结:

综上所述,在高职院校中采用人工智能技术配合Python语言编程设计可有效拓展教学思路,而本文中所采用的的任务驱动项目混合教学模式则能有效激发学生的学习热情,促进他们合理运用所学习知识解决实际问题,彻底摆脱复杂语法及算法所带来的学习困扰,更好学习Python编程语言知识。

参考文献

第4篇:人工智能时代对教育的影响范文

[关键词]人工智能会计变革;应对策略;会计人才

数据和人工智能技术逐步应用于会计行业,德勤等四大会计师事务所相继推出财务机器人,RPA技术被越来越多的企业广泛运用。这一科技创新将帮助会计从业人员从许多重复性、标准化、流程化的核算工作中解放出来,与此同时也催生了新型会计岗位,给会计从业人员带来新的挑战。毋庸置疑,人工智能技术引发会计变革,究竟会带来何种变革,会计从业人员该如何应对会计变革是文章探讨的关键问题。

1人工智能概述

人工智能(ArtificialIntelligence)是计算机科学的分支,它试图通过研究、开发用于模拟和扩展人的智能的理论、方法、技术,以构建出一种新的能模拟人类意识和思维模式的一门新的技术科学。其研究内容包括知识表示与自动推理、机器学习与知识获取、自动编程与智能化机器人等。人工智能的发展经历了萌芽、诞生、发展到集成四个阶段。人工智能应用于财务领域始于1987年美国注册会计师协会发表的《人工智能与专家系统简介》,后来国外对此进行了深入的研究与探索,开发出相应技术与专家系统解决财会领域的分析决策工作,目前主要是运用模型化的财务管理理论,将匹配后的数据导入信息库,据以分析得出企业财务报告,形成战略经营建议。财务领域中的人工智能技术主要在于机器视觉和语音识别两个方向,着重模仿人类的财务操作和判断,多应用于业务收支预测、风险管控、税务优化等方面。

2人工智能技术对会计行业的影响

随着大数据、人工智能、移动互联网、云计算技术的发展和应用,为我国企业管理的模式注入新的理念,传统的基础会计核算工作会被财务机器人替代,会计数据的采集、挖掘、分析,会计核算流程的再造以及随之而来的对新型会计岗位人才的需求,都将推动企业会计模式的变革。

2.1人工智能实现会计数据质的飞跃

数据是会计核算的起点,为企业决策提供依据。在人工智能技术的支持下,海量的结构化和非结构化数据在数据处理系统中整合和分类;数据挖掘技术对数据进行深度挖掘,发现其潜在价值,数据的质量随之提升。会计人员通过人工智能辅助系统,利用信息自动集成技术,自动将各种会计信息记录到会计系统,避免了以往财务人员花费大量时间和精力于采集和录入数据信息。随后利用人工智能自动核算功能进行账务处理,智能分析系统进行一定的数据分析,避免了会计从业人员处理大量的基础核算工作,将工作重心转移到为企业创造更多价值的预测、分析与决策工作中去,提高企业决策的效率和准确性。

2.2人工智能促进会计信息互联

在会计核算方面,大量企业采用PRA,其被普遍认为是业务流程自动化软件,结构化、常规化会计流程均由自动化机器人来执行,不受时间和空间的限制,自动生成各项报表,及时快速,灵活准确。人工智能为企业管理者和财务信息使用者搭建起信息共享平台,使企业与其客户、银行、税务、会计师事务所等广泛互联,实现上下游企业沟通、银企对账、网上报税等。财务智能系统通过科学的决策程序,利用会计数据和模式,以不同角度、不同层次、不同时期进行分析,揭示隐藏在财务数据背后的价值,使得会计信息质量大幅提高,提高企业决策效率。

2.3人工智能催生新型会计岗位

核算和监督是会计的两个基本职能,财务人员日常主要完成建账、填制和审核原始凭证、填制记账凭证、登记账簿、编制财务报告等基础性工作。伴随人工智能的发展,这种日常的标准化、流程化的基础核算工作可由财务机器人完成。财务机器人高效低耗、精准可靠、快速反应的优势相较于会计工作人员日益明显。与此同时,机器人间无须回避职务职能的利害冲突,这些都降低了会计人员在单位内部运营管理的重要地位。未来财务领域对基础会计从业人员的需求大幅减少,会计人员岗位需求结构面临变革。管理会计人才是集财务会计、法律、财务管理、计算机等知识于一体的复合型人才,并具有数据分析思维和预测思维,国家倡导的未来的管理会计师应同时是价值分析师。利用大数据和云计算等信息技术,解析过去、控制现在、分析未来,是对未来会计岗位人才提出的新的要求。

3会计行业在人工智能时代下的应对策略

3.1提高思想认识

人工智能技术在财务领域的广泛应用已是必然趋势,利用数据挖掘技术、智能决策支持系统等将财务人员从烦琐复杂的工作中解脱出来,会计核算职能向管理决策职能转变,同时也对会计从业人员提出更高要求。面对人工智能技术带来的巨大变革,财务人员应在了解人工智能技术的基础上,努力学习新技能,加强计算机、信息技术知识的学习研究,以顺应时展的需要。与此同时也应认识到,不论是信息化系统,还是财务机器人,仅仅起到辅助决策作用,仍由人类进行开发、使用和维护。因此会计人应审时度势、转变观念,全面认识人工智能,努力使自己成为兼具财务知识和信息系统操作能力的驾驭财务机器人的复合型人才。

3.2实现管理会计转型

2014年10月财政部颁布了《关于全面推进管理会计体系建设的指导意见》,要求在5年之内提升管理会计人才的职业能力。中国总会计师协会会长刘红薇在2018年5月世界会计论坛上表示:管理会计已经在全球进入了一个大变革和大发展的历史时期。财务人工智能技术实现了会计信息的标准化流程化处理,会计核算职能逐渐被财务机器人取代,这种以技术手段革新形式带来的会计职能的变化,释放出大量基础会计核算人员,他们必须综合学习会计、财务管理、税务以及信息系统的相关知识,向管理会计人才转型。在企业发展战略的指导下,以管理会计的视角,将数据进行分析和提炼,编制预算计划,对企业经营业务进行控制,对业绩进行评价,为企业发展和治理提供指导,以适应时代变化,成为多元化人才。

第5篇:人工智能时代对教育的影响范文

这是以张国荣在影视、电台等留存下来的原声建模,通过情感语音合成技术实现与粉丝“隔空对话”。据了解,任何一个人只要用30分钟按照要求录制50句话,就可以用百度大脑的语音合成技术模拟出这个人的声音,这意味着,今后每个人都可以拥有自己的声音模型。这是百度大脑所具备的基础能力之一,从语音、图像到自然语言理解再到用户画像……百度在这些领域的应用已经深入到人们的日常生活中。当这些能力赋予全社会的每个人,就能变换出无穷无尽的可能性,让我们重塑对未来的想象。

人工智能的这种神奇魅力吸引了各大科技公司,谷歌、Facebook、IBM等国外科技巨头纷纷通过成立人工智能实验室、并购初创公司等方式,在人工智能领域进行多点布局。百度亦不例外,在人工智能方面的研发可谓不遗余力,更是第一个把人工智能提到核心技术创新地位的国内互联网公司。

2015年底,百度挖来NEC美国智能图像研究院的负责人林元庆担任百度深度实验室主任,由他带领深度学习实验室研发具有统治级别的人工智能技术。在本刊的专访中,林元庆表示,“我觉得中国的互联网节奏非常快,尤其是人工智能的发展。现在人工智能的刚需已经很明显了,可以说非常旺盛,关键是如何把刚需挖掘出来,做出来,这才是重要的。”

百度大脑是百度人工智能的核心

《网络传播》:百度大脑目前有哪些阶段性成果,其价值体现在哪里?

林元庆:百度大脑已建成超大规模的神经网络,拥有万亿级的参数、千亿样本、亿级特征训练,能模拟人脑的工作机制。通过深度学习、大规模计算和大数据三大部分,百度大脑目前已经具备了语音、图像、自然语言理解和用户画像四大前沿能力。以语音识别为例,目前百度语音识别的准确率能够达到97%。在人工智能时代,百度大脑将是百度向社会输出人工智能技术能力的核心,经过长期的投入与布局,未来百度大脑不仅将像百年以前的电力一样成为商业新能源,更将深入到生活中,将电影中的场景变为现实。

《网络传播》:百度大脑宣布对广大开发者、创业者及传统企业开放其核心能力和底层技术开放,是出于何N考虑?

林元庆:百度大脑开放共享的思路,实际上是希望在时代变革大幕开启之际,助力广大合作伙伴全面共享人工智能时代,完成下一幕的转型升级。百度大脑未来将与各行各业结合,衍生出不同领域的行业大脑,比如医疗大脑、交通大脑、金融大脑等。目前,百度大脑已经应用到教育、金融和娱乐等多个行业。

人工智能渗透百度所有产品线

《网络传播》:今年基本上全球各大互联网公司都把人工智能作为最核心突破的领域,在这一领域,百度和其他公司的战略方向有何不同?

林元庆:百度在人工智能领域起步早,布局领域广,并且已经有很深的积累,既实现了对内业务的支持,也进行了大量对外技术的输出。目前,百度的人工智能几乎已经渗透到百度所有的产品线当中,以此改进百度全线产品的用户体验并提升用户黏性。比如说手机百度的语音搜索、凤巢的推广系统以及百度外卖的调度系统、百度金融结合人工智能给用户的画像等等。接下来百度一方面将进一步提升各项人工智能技术,打造平台化的对外输出能力;另外一方面还将着力把这些人工智能技术和能力应用到具体行业和垂类中,提升行业的效率,促进行业变革。

《网络传播》:虽然业界普遍认可人工智能的巨大前景,但在目前来看,人工智能在短期内还很难看到盈利,那么,怎么看人工智能的普及和商业化?

林元庆:人工智能已经为百度的搜索业务提供了巨大帮助。人工智能的发展和普及有四大关键性的支柱――机器学习算法(特别是深度学习)、大数据、大规模计算,以及可供以上要素不断训练迭代的大应用。目前,人工智能在前三个领域都已经有了一定程度的突破,同样关键的是人工智能技术的大规模应用,只有在制造业、医疗、汽车驾驶、娱乐等各个领域各个场景的不断应用,才能形成“数据-技术-产品-用户-更多数据-更强技术”这样的一个正向循环。在这些不断扩展的应用中,商业化也就是自然伴随而来的事情了。

互联网的下一幕是人工智能

《网络传播》:如何看人工智能在2016年的“爆发”?

林元庆:1956年夏天,“人工智能”首次被提出,但在之后的半个世纪都没有能够解决人工智能的问题。上世纪70年代到90年代,美国一直有人工智能的课程,但却没有实际的应用,在当时,任何一个领域都看不到有价值的人工智能应用。上世纪90年代以后,数据量越来越大,计算的能力也越来越强,机器学习逐渐兴起;到2006年,深度学习的概念被提出,特别是在2010到2012年间,深度学习在语音识别和图像识别领域取得了突破性进展。深度学习的成功极大地推动了人工智能的商业化。实际上,在2013年,《MIT科技评论》就已经把深度学习列为当年的十大技术突破之首,但今年确实是人工智能大规模商业化落地的一年。

《网络传播》:人工智能将会如何影响各行各业?

林元庆:影响最大的是制造业。当人工智能时代到来,制造业会彻底被物联网改变。未来所有商品都能联网,将数据传回云端,通过人工智能技术进行分析,为消费者带来实实在在的价值。汽车工业也将被人工智能彻底改变,尽管安全问题的解决路径在传统汽车厂商与创新厂家间有所不同,然而我们基本上还比较自信,有一天会进入来自动驾驶时代。此外,娱乐业及健康产业同样也会被人工智能所改变。对于前者,虚拟现实与增强现实很可能会成为主流的内容形式,颠覆消费者对娱乐内容的消费方式;对于后者,通过基因分析、精准的医疗图像诊断,患者的疾病将得到更加精准和个性化的治疗。

第6篇:人工智能时代对教育的影响范文

文章编号:1004-4914(2017)05-148-02

一、引言

互联网金融经历了过去几年的高速发展后,带给了人们新的感受。随着2016年4月12日,国务院印发《互联网金融风险专项整治工作实施方案》以来,整个行业正在进行一次“价值回归”,P2P等平台类模式正在减少,靠着拼渠道、流量和高收益的红利时代已经过去,精细化、差异化、技术化的运营和创新将是互联网金融这个阶段的主题,人工智能将在互联网金融领域发挥越来越重要的作用。

一直以来,金融领域个性化的服务都是依赖于“人”的服务。但从2016年开始,机器正在尝试取代人在财富管理服务中的位置,随之而来的是智能投顾服务。举个例子,在美国,券商、资管纷纷开始设立互联网金融平台,以互联网财富管理类的服务为主,目的是捕获更多中小投资者,在现有的证券业务体系之外培育新的增长点。贝莱德收购Future Advisor、Fiidelity与Betterment展开战略合作、Vanguard推出自己的智能投顾服务、嘉维证券与宜信合作进入中国市场开展智能投顾服务。这样的例子还有很多,这背后是传统金融机构对技术所能产生的势能的认可。国内的智能投顾玩家也很多。其中,宜信和品钛这样的在新兴市场上已经相对成熟的公司已经推出了自己的智能投顾服务。此外,还有大量早期创业公司直接以此为方向,比如弥财、钱景财富、蓝海财富等。

二、人工智能在互联网金融领域的应用情况

(一)人工智能在互联网金融领域应用的必然性

2016年以来央行、其他部委以及最高法院都了关于互联网金融的指导意见,分别是《关于促进互联网金融健康发展的指导意见》、《非银行支付机构网络支付业务管理办法》以及《最高人民法院关于审理民间借贷案件适用法律若干问题的规定》。这些政策性文件的出台,预示着这个行业在政策红利和边界较为模糊的情况下实现的业务的快速发展模式已经走到了尽头。随着后期监管文件的逐步下发,门槛的设立,要求的标准化,很多后来者已经丧失了最好的入局机会,而现有的稳健平台,则迎来了最好的发展机遇。对于互联网金融企业而言,要适应政府的监管,获得客户的支持,要取得自身的发展,只能依托于人工智能。长时间以来,人工智能在互联网金融领域的应用及重要性被频繁提及。近日,《中国互联网金融发展报告(2016)》新书在京,该《报告》执行主编、中科金财董事长朱烨东表示,未来互联网金融行业发展将逐渐走向正规、规范,移动支付的不可逆转,大数据、云计算在互联网金融的核心地位进一步加强,金融科技将成为未来互联网金融发展的主要趋势。

(二)人工智能极大提高了互联网金融的效率

作为百业之母的金融行业,与整个社会存在巨大的交织网络,沉淀了大量有用或者无用数据,包括各类金融交易、客户信息、市场分析、风险控制、投资顾问等,数据级别都是海量单位。同时大量数据又是非结构化的形式存在,如客户的身份证扫描件信息,既占据宝贵的储存资源、存在重复存储浪费,又无法转成可分析数据以供分析。金融大数据的处理工作面临极大挑战。通过运用人工智能的深度学习系统,能够有足够多的数据供其进行学习,并不断完善甚至能够超过人类的知识回答能力,尤其在风险管理与交易这种对复杂数据的处理方面,人工智能的应用将大幅降低人力成本并提升金融风控及业务处理能力。

说到人工智能,不得不提的一定是AlphaGO,但是在互联网金融领域,有一个比AlphaGO更加强势的公司,这家公司的名字叫Kensho。这是以前高盛出来的分析师团队,把整个高盛的经验模拟,通过机器取代现在大量的人工,进行相应的投资、分析、决策。而且在信息,在互联网传播非常快的时候,他们去除掉了大量的噪声,回归到这个事情的本质。很快高盛发现了这家公司的发展速度和未来价值,直接把它私有化,直接变成第一大股东,因为发现这中间带来的差别是这个企业的核心竞争力。

Kensho公司的核心技术就是能在两分钟之内做出一份一份简明的概览,随后是13份基于以往类似就业报告对投资情况的预测。而你根本就不需要去检查这些数据分析,因为这些分析是基于来自十个数据库的成千上万条数据。如果没有这些人工智能,分析师们可能要花上几天的功夫收集梳理这些数据,而等他们分析完成后,市场的行情早瞬息万变。

可见,人工智能的引入对于互联网金融领域的效率提高是呈几何式的,你很难想象也不敢相信这么一个事实:未来的投资大师们可能是一堆机器。

(三)人工智能将互联网金融带入智能金融时代

互联网金融发展至今一共经历了两个阶段:第一个阶段是网络金融,把现有的金融产品搬到互联网上,互联网上面现在卖基金、卖理财、卖信托、卖保险。第二个阶段是大数据金融阶段,通过数据重新去定义相应的金融产品和相应的金融服务。第三个阶段正在萌芽,就是人工智能+互联网金融的阶段,网络上有人称之为智能金融时代。

从目前宁波当地的互联网金融企业发展来看,目前还停留在“互联网+金融”的模式:在传统金融服务上进行叠加,将互联网式思维、互联网式管理、互联网式数据融合进传统金融服务,而这正是现在大部分互联网金融服务提供商正在做的事情。“互联网+金融”的模式也正在让金融进入“普惠金融”的阶段,通过互联网金融对传统金融机构进行补充,让更多的人平等的享受到金融服务。但是,“互联网+金融”的模式下,信息安全、投资风控、资产调节等方面问题仍然存在,一定程度上说,互联网增加了信息风险,也正是如此,摸索期的互联网金融行业才会出现P2P跑路的现象,仅2015年,宁波当地的P2P公司跑路就多达9家之多。

人工智能是大趋势,从阿尔法狗的表现以及人工智能在互联网金融领域的运用来看,互联网金融在人工智能的改造下将不再局限于“互联网+金融”,而是逐渐向“互联网+金融+大数据+人工智能”转变。人工智能起到串联起互联网、金融、大数据,实现更加智能的精确计算的作用,实现大脑一般的思考,解决“互+金”模式下的诸多痛点。

从理财顾问、征信助手、智能风控系统、防范性金融系统这四个层面来看,整个互联网金融领域正在朝着越来越“技术范儿”的方向上前进,金融智能化成为大势所趋。智能金融的机器学习功能,让产品背后的逻辑系统可以快速适应场景数据,建立合适的评分规则、决策体系,真正给现在的互联网金融带来颠覆性的变化。无论是消费金融领域还是风控层面上,互联网金融在人工智能的配合下正在呈现出无与伦比的崭新打法。这也正是阿尔法狗打败李世石之后,给金融智能化带来的全新想象。

(四)人工智能将颠覆互联网金融时代的风控体系

汇总整个互联网金融本质,其实存在两个层次风险,一是道德风险,二是经营性风险。面对2016年不断有“跑路”等负面消息萦绕的互联网金融,去伪存真或成为首要任务。一些企业资金并没有进入到实体业务,而是进入庞氏骗局,而去年出台的监管意见征求稿,监管层管理方向还是较为清晰的,希望通过资金的有效监控,将企业资金与个人用户之间的资金进行分离,规避风险。然而人力毕竟有限,不可能时刻紧盯住所有互联网金融机构,这时引入人工智能监管就十分必要。

人工智能已经在无人驾驶、图像处理、语音识别方面取得了突破性的应用,那互联网金融领域呢?李开复老师曾谈及人工智能应用的三个要素:数据、处理数据的能力和商业变现的场景。人工智能解决金融界问题的过程,很好的对应了这三个要素。也许,金融领域是人工智能最合适不过的颠覆场景。

在金融业务的前端,已经有不少传统银行将人工智能用于为客户定制服务,开发理财产品的应用。例如巴克莱银行和花旗银行等。国内银行中走在科技前列的招商银行,也开始试用全新的人工智能业务模式。未来人工智能和机器学习技术在金融业前端会有更多的便捷精准服务提供给客户。

那么金融应用领域的后端呢?信息安全、投资风控、资产管理等方面的问题成了新问题,对于躲在触屏手机背后的客户,缺失了央行数据的客户,银行没有办法通过一双双眼睛去看到用户是谦谦君子还是骗子流氓。这个时候,金融后端,传统金融风控手段覆盖不到和难以触及的,那么“互联网+金融”业务就要结合更广泛的互联网数据和人工智能手段,来处理更广泛的金融客户问题。

(五)人工智能技术在金融领域应用案例

Google、IBM等国际巨头公司已经将人工智能技术渗透在各种产品的方方面面,总体上看,国内金融行业也逐步开始应用人工智能技术,随着国内双创政策的推动和对人工智能产业的投资拉动,预计广泛应用节点即将到来。

1.阿里巴巴旗下的蚂蚁金服下设一个特殊的科学家团队,专门从事机器学习与深度学习等人工智能领域的前沿研究,并在蚂蚁金服的业务场景下进行一系列的创新和应用,包括互联网小贷、保险、征信、智能投顾、客户服务等多个领域。根据蚂蚁金服公布数据,网商银行的花呗与微贷业务上,使用机器学习把虚假交易率降低了近10倍,为支付宝的证件审核系统开发的基于深度学习的OCR系统,使证件校核时间从1天缩小到1秒,同时提升了30%的通过率。以智能客服为例,2016年“双11”期间,蚂蚁金服95%的远程客户服务已经由大数据智能机器人完成,同时实现了100%的自动语音识别。当用户通过支付宝客户端进入“我的客服”后,人工智能开始发挥作用,“我的客服”会自动“猜”出用户可能会有疑问的几个点供选择,这里一部分是所有用户常见的问题,更精准的是基于用户使用的服务、时长、行为等变量抽取出的个性化疑问点;在交流中,则通过深度学习和语义分析等方式给出自动回答。问题识别模型的点击准确率在过去的时间里大幅提升,在花呗等业务上,机器人问答准确率从67%提升到超过80%。

2.2015年,交通银行推出智能网点机器人,并引发了金融银行界的广泛关注。它为实体机器人,采用语音识别和人脸识别技术,可以人机进行语音交流,还可以识别熟悉客户,在网点进行客户指引、介绍银行的各类业务等。在语言交流过程中,它能回答客户的各种问题,缓解等待办理业务的银行客户潜在情绪,分担大堂经理的工作,分流客户,节省客户办理时间。

3.百度教育信贷实现“秒批”。“人工智能对于金融也会产生变革性影响,可以真正做到让征信升级”。6月8日,在2016百度联盟峰会上,百度董事长兼首席执行官李彦宏特别提到人工智能正在重构包括金融在内的传统产业。他特别强调,“现在百度的教育贷款,基本上是以‘秒’的时间可以决定是不是给一个人贷款。”李彦宏讲到的百度教育信贷的“秒批”,其具体的操作程序非常简单,用户想要获取百度消费信贷服务,只需在百度钱包APP“教育贷款”板块上传身份证,系统就能自动比对、确认用户身份信息,并根据信用记录判定用户所需的服务类型或额度,不仅能实现远程审批,审批时间更可缩短至“秒批”级别。秒批依靠的是百度以大数据和人工智能为基础的严谨风控体系。借助“大数据+人工智能”技术,百度风控部门为有信贷需求的群体绘制用户画像,建立信用体系,加上图像识别等人工智能技术的实际应用,构成了秒批的技术基础。

4.宁波聚元集团旗下超人贷平台自2014年上线以来,发展迅速,以高效风控、低成本控制、低坏账率享誉业内,平台注册会员超过1万人,线上累计交易金额已突破2亿元,稳定健康的发展道路使得平台处于整个大市行业中领先地位,并受到CCTV2、CCTV7央视正面报道,成为浙江地区首批在央视上榜的互联网金融品牌。超人贷平台除了将资金交由第三方商业银行或有资质的资金托管机构进行托管,建立信息披露制度,充分披露融资项目、经营管理等信息外,最重要一个突出优势就是采用先进的人工智能对每一笔交易?M行实时监控,监控信息还可面向公众开放。自创立以来发展稳健,越来越受到客户青睐。

第7篇:人工智能时代对教育的影响范文

如今,类似性集体恐慌再度来袭。此番风暴中心锁定的是一种推测――“人工智能”和机器人或将超越人类能力。去年5月,物理学家史蒂芬・霍金曾撰文发出人工智能迅速发展的危险预警。同月,他联合其他合著者―美国麻省理工学院物理学家弗兰克・韦尔切克、麦克斯・泰格马克以及诺贝尔奖获得者、美国加州大学伯克利分校计算机科学家斯图尔特・罗素,在英国《独立报》发文警告道:“人工智能的成功创建堪称人类历史上最伟大的事件。糟糕的是,这可能成为最后一次。”

近年来,人工智能的发展令世人炫目,从“深度学习”可见一斑。作为一种利用成千上万个数值参数完成逼近复变函数的革命性新技术,它变机器执行看、听甚至思考等人类活动的梦想成真。伴随3D传感和3D投影技术日渐精进,机器人不时更新迭代。稍显遗憾的是,人工智能领域的前行进程难免跌宕起伏。

三本著作虽然从不同视角发表了个中观点,但作者不约而同地强调,机器人的优势处境正面临着的一个巨大现实障碍――人类心理学。

慈爱的机器人

眼见机器人越来越融入现代社会,战争、路建、商业、教育、医疗……,它们深刻地改变了人类的生活方式,谷歌发明无人驾驶汽车、苹果亮相个人助理等。众人心中的疑惑不禁愈发强烈,这些机器到底是在帮助人类,还是要取代人类?

在新书中,普利策获奖者、《纽约时报》记者约翰・马尔可夫回顾了1956年至今的时代进程,重点参比了人工智能与智能增强。他将读者设定在无人驾驶汽车的乘客座位上;他把读者放诸美国国防高级研究计划局(DARPA)的幕后,验看机器人操作;他邀请读者置身于一个完全自动化的制造设备,如一分钟内128个机械臂将组装完成30个电动剃须刀,每项程序均执行特定、精确的装备任务。

纵使早期人们积极乐观,然而事实上,创建人工智能历经了千险万阻。迄今,“莫拉维克悖论”仍旧未被攻破。这是由人工智能和机器人学者所发现的一个与常识相佐的现象:人类所独有的推理等高阶智慧能力只需要非常少量的计算能力,而无意识的技能、直觉等低层次感知运动技能却需要大量的运算能力。正如莫拉维克所写:“要让电脑如成人般地下棋是相对容易的,但是要让电脑有如一岁小孩般的感知和行动能力却相当困难,甚至是不可能的。”这主要归咎于摩擦、碰撞和接触力学的内在复杂性。

被誉为“鼠标之父”的美国发明家道格拉斯・恩格尔巴特则更倾心于“智能增强”。早在20世纪60年代,他已在发表题为《放大人类智力》的学术论文中提出,计算机是人类智力“放大器”的观点。此后,他陆续发明鼠标,开发超文本系统、网络计算机、人机交互和图形用户界面,并倡导运用计算机和网络解决世界上愈发紧张又复杂的问题。无独有偶,人工智能泰斗泰瑞・维诺格拉德和增强现实专家盖瑞・布拉德斯基在深刻意识到人工智能的局限性后,开始转投智能增强阵营。可以设想,马尔可夫所著此书或许成为人工智能成败与否将取决于智能增强进展的强有力范证。

机器人的兴起

未来工作将变成何等摸样?到底日趋丰富还是逐渐凋落?谁能够拥有它?软件企业家马丁・福特借助《机器人的兴起:技术和未来的失业威胁》一书警告说,人工智能和机器人必将挤兑绝大部分工作岗位,无论蓝领还是白领,均难逃厄运。如果你创意如泉涌,就不会被机器人取代吗?答案令人悲观,即便连新闻、音乐、研发等按常理不受影响的领域也无法幸免。同时,千万家庭将备受激增成本拖累,最为突出的两大代表领域是教育和医疗保健。

美国发明家、未来学家雷・库兹韦尔曾预言,到2029年,机译质量将堪比人工翻译水准。而福特一再断言,基于摩尔定律计算机的计算能力正在随时间呈指数级增长,这意味着人们业已处于迅猛的加速发展边缘。然而,有部分计算机科学家确信其为指数谬误,他们辩驳指出,集成电路的问世远远超出了技术史学家认为发展曲线中必然平台阶段已至的预期推断。

19世纪初期,英国纺织工人内德・勒德不仅亲手砸掉了自己的织布机,还领头发起破坏机器运动。经济学家借此把“科技将代替人类工作”这一广为流传的错误概念命名为“勒德分子谬论”(Luddite fallacy)。如是推理却严重疏漏了科技激发新工作岗位的补偿效应,以及劳动力全球化、民主化等无数新可能动向。

伴随机器人时代的来临,在福特的观念中,最理想的结果是人人挣得一份有保障的工资,而由机器完成所有工作。他解释,这种情况的出现多是源于身体构成的不平等。以往,人们应对技术破坏的主要策略是加强培训和教育,然现实收效甚微。现今,人们必须当机立断,未来的不平等和经济不安全状况是将演变为普天繁荣抑或灾难频发。

我们的机器人

遥控机器人专家戴维・曼德尔在新书中指出,自治制度并非新鲜事物。20世纪70年展至今,其在深海、太空探测以及几乎所有航空领域的日常应用程度非高即低。借鉴丰富的实战经验,尽管这些自治制度不断变革,但仍有为数不少的专家持质疑立场。例如,以持续学派的论点,海洋学家务须亲历黑暗的深海去直接洞悉潜伏在那里的神奇事物。如今,机器人潜艇、光纤电缆遥控操作身手日臻敏捷,实现更长时间探测的难题迎刃而解,更何况每次修缮升级成本亦无需支付昂贵代价。

曼德尔认为有绝对充分的理由相信,无论在历史、文化、政治、心理、哲学,还是公共关系领域,都必须坚定不移地确保人类的控制地位。离我们最近的相关事件发生在2015年7月,接近三千名人工智能研究人员联合签署了一份催促联合国禁止自主武器研发和使用的公开信,该封信件在阿根廷首都布宜诺斯艾利斯召开的2015年人工智能国际联合会议上进行展示。为了规避所研发无人驾驶汽车的最大人为隐患,谷歌的做法是拆掉方向盘。曼德尔认为此举大错特错,看似缔造了“完全自治神话”,然而别忘了,机器即使能够自控间隔时间,依旧无法独立完全工作却是不争的事实――人类的意图、假设和特征参数是所有机器赖以组建的必须要素。由此,曼德尔得出了与马尔可夫相近的论断:本质(或最艰难)的挑战在于涵盖人类环路的接口设计。

第8篇:人工智能时代对教育的影响范文

在刚刚过去的2016年,围棋领域的“人机大战”掀起一股人工智能的浪潮,以“阿尔法狗”为代表的人工智能战胜了韩国的围棋高手李世石,由此人工智能的发展引人深思。很多人会觉得人工智能是一个很遥远的事情,始终抱以一种怀疑的态度去看待人工智能。其实不然,人工智能从上世纪40年展至今,且不说现在家家都在使用,但是在我们的生活中至少是随处可见的,比如,计算机行业、银行业、会计业等都在使用的智能处理系统,而且范围越来越广,技术越来越具有深度。在传统的会计行业中,会计核算工作从凭证到报表都是由人工来完成的,但是现如今财务会计中的大部分工作都可以由财务软件来完成,大大的解放了会计中的人力。也是在去年的3月份,著名的会计师事务所德勤对外宣布将人工智能引入会计行业,这一宣布也是几家欢喜几家愁。虽然人工智能让会计实务变得更加便捷、精准,但是传统会计行业中那些被人工智能替代的手工记账人员将何去何从?笔者从一个会计人的角度对人工智能时代下的会计行业进行探讨,目的是明晰人工智能对会计行业的影响,以及传统的会计人员如何应对人工智能时代的到来。

二、我国人工智能在会计行业的应用现状和展望

(一)我国人工智能在会计行业的应用现状

会计行业主要涉及的是企事业单位、政府机构和会计师事务所,这三大类是有会计核算系统的主要主体。就我国来说,很多涉及会计工作主体对于人工智能的应用仅限于会计系统,而且在会计系统中一些类似于审核、判断等主观行为还是要财务人员手工进行操作。目前市场上已经存在各种可以满足不同类型组织结构会计主体业务需求的会计软件,可以说应用已经十分广泛了。但是就会计师事务所来说,作为主要业务之一的审计业务在人工智能方面应用的稍微较少,因为对于上市公司审计业务而言,需要填制大量的审计工作底稿,包括电子版和纸质版,这些数据的录入目前还是依赖于手工。

(二)对人工智能在会计行业中应用的展望

任何一位会计人都清楚地知道,会计行业是一种具有严瑾性、及时性的行业,并且会计工作程序多,处理起来比较繁杂。所以对于会计人员来说加班是家常便饭,从某种程度上来说,会计人员也希望有一天能有人工智能来替代这繁琐而枯燥的工作。目前已经应用的人工智能解决了一些基本的操作,比如凭证和报表的生成等等,但是还远远不能满足目前会计主体多样性的需求。比如人力资源会计,就需要一个适合企业特点的模型来对企业的人力资源进行计量和报告,此模型可以对企业的人力资源进行大数据的分析,从而可以合理的进行人力资源管理,这也是有效降低成本的途径之一。这样的需求在管理会计,环境会计等众多会计的分支中都是需要的,因为现在会计的职能越来越倾向于决策,决策过程中就需要会计提供相应的资料,这些资料通过会计的手工计算和分析往往难以获取,如果人工职能可以进一步运用科学知识来解决这个难题就再好不过了。

三、人工智能对会计行业的影响

(一)提高了会计信息的及时性和精准性

不管是企事业单位还是政府机构或者会计师事务所,在运用会计软件之后,一方面对于当日发生的各项经济业务都能及时的进行处理。因为会计人员的只需要登录系统进行相关事务的选择或者审核就可以了,期末系统会根据已经有的数据自动生成相关报表,相比较传统会计的手工填制凭证和编制报表要及时得多。另一方面,在传统的会计业务处理时,会计员手误记错账是常有的事,虽说现在的财务系统也需要手工录入一些数据,但是当录入出错时系统给予提示,所以这种情况下,大大降低了数据出错的概率,即提高了会计信息的准确性。

(二)一定程度上抑制了财务信息造假

在提高准确性和及时性的基?A上,人工智能在会计行业中的应用还可以相对防止财务信息造假。在特定的会计核算系统下,每一位登录系统的人员都会有唯一的账号和密码,以及自己的权限,可以说分工明确,相比较传统的会计核算中岗位相容现象十分严重,尤其是在中小企业里,人工智能的应用对于职能清晰划分有助于遏制信息的人为造假。但也不是说人工智能可以杜绝财务造假,因为尽管大部分工作在系统中完成,每个人只能进行自己职能范围内的操作,但是系统终归还是由人来控制的,还无法应对管理层凌驾于会计人员之上的内部操纵现象。

(三)会计行业中传统岗位需求减少

随着人工智能在会计行业的应用领域越来越广,传统会计岗位就不需要那么的职员了,这是显而易见的变化。会计电算化早在上世纪八十年代就在我国有所发展和普及,发展至今,已经商品化,为各种会计主体所使用,使得原本那些简单的会计记录和核算工作被人工智能所取代,相应的,这些岗位上的会计人员也就不再需要。

(四)会计信息安全性受到威胁

目前应用广泛的各种电算化核算系统,都是以电子形式对会计主体的各种财务数据进行保存,电子存储的数据保存形式有很多优点,比如保存方便,数据容量大,便于查找和使用等。另一方面,现在的系统如果防护措施不到位很容易被黑客攻击,同时目前网络的安全性也大大降低,信息在网络传输过程中可能会被拦截,所以企业的财务信息就会被泄露出去,严重的话,还会造成重大商业秘密的外泄,给企业带来损失。

四、会计人员如何应对人工智能的“入侵”

(一)学习会计电算化处理,跟上人工智能的步伐

作为一名会计人员,如果在智能时代还停留在传统会计处理方法上,那只能被时代所淘汰,这个社会本来就是优胜劣汰,新的技术方法已经产生,你没掌握那你就是被打败的那个,至少要跟上时代的步伐。国家目前对于会计人员有接受继续教育的要求,会计人员可以借助这一平台学习当前的人工智能在会计领域的应用,也可以自主的学习会计电算化的相关应用。

(二)由简单的财务会计向综合型会计人才转变

虽然人工智能时代减少传统会计岗位的需求,但是随着国家近几年来对于管理会计的发展的鼓励,各会计主体尤其是企业对于管理会计的需求增加,而目前管理会计的工作是人工智能无法完成的,因为这其中涉及大量的职业判断以及包括审计业务里也是含有很多的会计估计。所以会计人员应该在人工智能时代努力学习会计其他方面的知识,比如管理会计和审计业务的内容等,掌握多方面知识,使自己成为一名复合型会计人才。

(三)以积极的视角来看待人工智能

现实中有很多会计从业人员狭隘的认为人工智能可以取代他们,甚至完成他们完成不了的工作,于是乎就开始说会计行业没有前景,进行转行,而不去想着提升自己的执业能力。从以上的分析可以看出,这种消极的观点是不对的,不仅不利于会计人员自身的发展,也不利于整个会计行业的发展。

第9篇:人工智能时代对教育的影响范文

据统计,2017年中国人工智能核心产业规模超过700亿元,随着各地人工智能建设的逐步启动,预计到2020年,中国人工智能核心产业规模将超过1600亿元,年复合增长率将达31.7%。

随着人工智能技术的不断成熟,人工智能创业的难度逐步降低,越来越多的创业公司加入人工智能的阵营。

2018年被称为人工智能爆发的元年,人工智能技术应用所催生的商业价值逐步凸显。人工智能逐步切入到社会生活的方方面面,带来生产效率及生活品质的大幅提升。智能红利时代开启!资本、巨头和创业公司纷纷涌入,将人工智能拉到了信息产业革命的风口。

如何把握产业动向,抓住风口机会?创业邦研究中心凭借在人工智能等前言科技领域持续研究、洞察的能力,在对国内人工智能创业公司进行系统调研的基础上,推出《2018中国人工智能白皮书》,对人工智能的核心技术、主要应用领域、巨头和创业公司的布局、未来发展态势和投资机会进行了深度解析。

第一部分人工智能行业发展概述

1.人工智能概念及发展

人工智能(Artificial Intelligence, AI)又称机器智能,是指由人制造出来的机器所表现出来的智能,即通过普通计算机程序的手段实现的类人智能技术。

自1956年达特茅斯会议提出“人工智能”的概念以来,“人工智能”经历了寒冬与交替的起起伏伏60多年的发展历程。2010年以后,深度学习的发展推动语音识别、图像识别和自然语言处理等技术取得了惊人突破,前所未有的人工智能商业化和全球化浪潮席卷而来。

人工智能发展历程

2.人工智能产业链图谱

人工智能产业链可以分为基础设施层、应用技术层和行业应用层。

A基础层,主要有基础数据提供商、半导体芯片供应商、传感器供应商和云服务商。

B技术层,主要有语音识别、自然语言处理、计算机视觉、深度学习技术提供商。

C应用层,主要是把人工智能相关技术集成到自己的产品和服务中,然后切入特定场景。目前来看,自动驾驶、医疗、安防、金融、营销等领域是业内人士普遍比较看好方向。

人工智能产业链

资料来源:创业邦研究中心

第二部分人工智能行业巨头布局

巨头积极寻找人工智能落地场景,B、C 端全面发力。

资料来源:券商报告、互联网公开信息,创业邦研究中心整理

第三部分机器视觉技术解读及行业分析

1.机器视觉技术概念

机器视觉是指通过用计算机或图像处理器及相关设备来模拟人类视觉,以让机器获得相关的视觉信息并加以理解,它是将图像转换成数字信号进行分析处理的技术。

机器视觉的两个组成部分

资料来源:互联网公开信息,创业邦研究中心整理

2.发展关键要素:数据、算力和算法

数据、算力和算法是影响机器视觉行业发展的三要素。 人工智能正在像婴儿一样成长,机器不再只是通过特定的编程完成任务,而是通过不断学习来掌握本领,这主要依赖高效的模型算法进行大量数据训练,其背后需要具备高性能计算能力的软硬件作为支撑。

深度学习出现后,机器视觉的主要识别方式发生重大转变,自学习状态成为视觉识别主流,即机器从海量数据里自行归纳特征,然后按照该特征规律使图像识别的精准度也得到极大的提升,从70%+提升到95%。

3.商业模式分析

机器视觉包括软件平台开发和软硬件一体解决方案服务。整体用户更偏向于B端。软件服务提供商作为技术算法的驱动者,其商业模式应以“技术层+场景应用”作为突破口。软硬件一体化服务供应商作为生态构建者,适合以“全产业链生态+场景应用”作为突破口,加速商业化。

(1)软件服务:技术算法驱动者—“技术层+场景应用”作为突破口

这种商业模式主要是提供以工程师为主的企业级软件服务。有海量数据支撑,构建起功能和信息架构较为复杂的生态系统,推动最末端的消费者体验。

此类商业模式成功关键因素:深耕算法和通用技术,建立技术优势,同时以场景应用为入口,积累用户软件。视觉软件服务按处理方式和存储位置的不同可分为在线API、离线SDK、私有云等。

国内外基础算法应用对比

资料来源:互联网公开信息,创业邦研究中心整理

(2)软硬件一体化:生态构建者—“全产业链生态+场景应用”作为突破口

软硬一体化的商业模式是一种“终端+软件+服务”全产业链体系。成功的因素是大量算力投入,海量优质数据积累,建立算法平台、通用技术平台和应用平台,以场景为入口,积累用户。亮点是打造终端、操作系统、应用和服务一体化的生态系统,各部分相辅相承,锐化企业竞争力,在产业链中拥有更多话语权。

4.投资方向

(1)前端智能化,低成本的视觉解决模块或设备

从需求层面讲,一些场景对实时响应是有很高要求的。提供某些前端就本身有一定计算能力的低成本的视觉模块和设备将有很大市场需求。前置计算让前端设备成为数据采集设备和数据处理单元的合体,一方面提升了处理速度,另一方面可以处理云端难以解决的问题。

机器视觉在消费领域落地的一个障碍是支持高性能运算的低功耗、低价位芯片选择太少。从低功耗、高运算能力的芯片出发,结合先进的算法开发模块和产品,这类企业将在机器视觉领域拥有核心竞争力。

(2)深度学习解决视觉算法场景的专用芯片

以AI芯片方式作为视觉处理芯片有相当大的市场空间。以手势识别为例,传统的识别方案大都基于颜色空间,如 RGB,HSV ,YCrBr,无法排除类肤色物体及黑色皮肤对识别精度的干扰。借助深度学习,如通过 R-CNN 训练大量标注后的手势图像数据,得到的模型在处理带有复杂背景及暗光环境下的手势识别问题时,比传统方案的效果好很多。

(3)新兴服务领域的特殊应用

前沿技术带来的新领域(如无人车、服务机器人、谷歌眼镜等),对机器视觉提出了新要求。机器视觉可以让机器人在多种场合实现应用。服务机器人与工业机器人最大的区别就是多维空间的应用。目前国内的机器视觉,涉及三维空间、多维空间,其技术基本上处在初始阶段,未来存在较大市场增长空间。

(4)数据是争夺要点,应用场景是着力关键

机器视觉的研究虽然始于学术界,但作为商业应用,能解决实际问题才是核心的竞争力。当一家公司先天能够获得大量连续不断的优质场景数据,又有挖掘该数据价值的先进技术时,商业模式和数据模式上就能形成协同效应。创业公司要么通过自有平台获取数据,要么选择与拥有数据源的公司进行合作,同时选择一个商业落地的方向,实现快速的数据循环。

第四部分智能语言技术解读及行业分析

1.语音识别技术

(1)语音识别技术已趋成熟,全球应用持续升温

语音识别技术已趋成熟,全球应用持续升温。语音识别技术经历了长达60年的发展,近年来机器学习和深度神经网络的引入,使得语音识别的准确率提升到足以在实际场景中应用。深度神经网络逐步找到模型结构和调参算法来替代或结合高斯混合算法和HMM算法,在识别率上取得突破。根据Google Trends统计,自2008年iPhone及谷歌语音搜索推出以来语音搜索增长超35倍。百度人工智能专家吴恩达预测,2020年语音及图像搜索占比有望达到50%。Echo热销超过400万,带动智能音箱热潮。

(2)语音识别进入巨头崛起时代,开放平台扩大生态圈成主流

语音识别即将进入大规模产业化时代。随着亚马逊Echo的大卖,语音交互技术催生的新商机,吸引大大小小的公司构建自己主导的语音生态产业链。各大公司纷纷开放各自的智能语音平台和语音能力,欲吸引更多玩家进入他们的生态系统。

(3)语音识别技术发展瓶颈与趋势

低噪声语料下的高识别率在现实环境使用中会明显下降到70-80%,远场识别、复杂噪声环境和特异性口音的识别是下一个阶段需要解决的问题。

麦克风阵列类前端技术不仅是通过降噪和声源定位带来识别率的提高,带环境音的语料的搜集、标注可用于模型的训练,有助于打造更新一代的语音识别引擎技术。语音巨头已经在布局。

在IOT包括车载领域,云端识别并非通行的最优方案,把识别引擎结合场景进行裁剪后往芯片端迁徙是工程化发展的方向。

2.自然语言处理(NLP)发展现状

(1)多技术融合应用促进NLP技术及应用的发展

深度学习、算力和大数据的爆发极大促进了自然语言处理技术的发展。深度学习在某些语言问题上正在取得很大的突破,比如翻译和写作。2014年开始LSTM、Word2Vec以及Attention Model等技术研究的进展,使DL有了路径在语义理解领域取得突破,并且已经有了明显的进展。对话、翻译、写作新技术成果里都开始逐渐混合入DL的框架。2014-2015年,硅谷在语义理解领域的投资热度剧增。

深度学习能最大程度发挥对大数据和算力资源的利用,语义理解的发展还需要深度学习、搜索算法、知识图谱、记忆网络等知识的协同应用,应用场景越明确(如客服/助理),逻辑推理要求越浅(如翻译),知识图谱领域越成熟(如数据饱和度和标准性较强的行业),技术上实现可能性相对较低。在各种技术融合应用发展的情况下,具备获取一定优质数据资源能力并可结合行业Domain knowledge构建出技术、产品、用户反馈闭环的企业会有更好的发展机会。

(2)NLP主要应用场景

问答系统。问答系统能用准确、简洁的自然语言回答用户用自然语言提出的问题。基本工作原理是在线做匹配和排序。比如 IBM 的 Watson,典型的办法是把问答用FAQ索引起来,与搜索引擎相似。对每一个新问题进行检索,再将回答按匹配度进行排序,把最有可能的答案排在前面,往往就取第一个作为答案返回给用户。

图像检索。同样也是基于深度学习技术,跨模态地把文本和图片联系起来。

机器翻译。机器翻译的历史被认为与自然语言处理的历史是一样的。最近,深度学习被成功地运用到机器翻译里,使得机器翻译的准确率大幅度提升。

对话系统。对话系统的回复是完全开放的,要求机器能准确地理解问题,并且基于自身的知识系统和对于对话目标的理解,去生成一个回复。

(3)创业公司的机遇

1)机器翻译方面:经过多年的探索,机器翻译的水平已经得到大幅度提升,在很多垂直领域已经能够在相当大程度上替代一部分人工,机器翻译技术的商业化应用已经开始进入大规模爆发的前夜。

2)应用于垂直领域的自然语言处理技术

避开巨头们对语音交互入口的竞争,以某一细分行业为切入点,深耕垂直领域,对创业公司也是一个不错的选择。

第五部分人工智能在金融行业的应用分析

人工智能产业链包含基础层、技术层、应用层三个层面。基础层的大数据、云计算等细分技术被应用到金融征信、保险、理财管理、支付等金融细分领域;技术层的机器学习、神经网络与知识图谱应用于金融领域的征信与反欺诈、智能投顾、智能量化交易,计算机视觉与生物识别应用于金融领域的身份识别,语音识别及自然语言处理应用于金融领域的智能客服、智能投研;应用层的认知智能应用于金融领域的智能风控。

人工智能在金融行业的典型应用情况

资料来源:创业邦研究中心

第六部分人工智能在医疗行业的应用分析

1.人工智能在医疗行业的应用图谱

人工智能在医疗行业的应用潜力巨大,目前在健康管理、辅助诊疗、虚拟助理、医学影像、智能化器械、药物挖掘和医院管理等领域均有企业在布局,其中医学影像、药物挖掘、健康管理,辅助诊疗、虚拟助理的应用发展速度较快。

图 人工智能在医疗行业的应用图谱

资料来源:创业邦研究中心

2.人工智能在医疗行业的具体应用场景

医学影像。人工智能应用于医学影像,通过深度学习,实现机器对医学影像的分析判断,是协助医生完成诊断、治疗工作的一种辅助工具,帮助更快的获取影像信息,进行定性定量分析,提升医生看图/读图的效率,协助发现隐藏病灶。 人工智能通过影像分类、目标检测、图像分割、图像检索等方式,完成病灶识别与标注,三维重建,靶区自动勾画与自适应放疗等功能,应用在疾病的筛查、诊断和治疗阶段。目前较为火热的应用有肺部筛查、糖网筛查、肿瘤诊断和治疗等。

药物挖掘。人工智能在药物研发上的应用可总结为临床前和临床后两个阶段。临床前阶段:将深度学习技术应用于药物临床前研究,在计算机上模拟药物筛选的过程,包括靶点选择、药效和晶型分析等,预测化合物的活性、稳定性和副作用,快速 、准确地挖掘和筛选合适的化合物或生物,提高筛选效率,优化构效关系。临床后阶段:针对临床试验的不同阶段,利用人工智能技术对患者病历进行分析,迅速筛选符合条件的被试者,监测管理临床试验过程中的患者服药依从性和数据收集过程,提高临床试验的准确性。

虚拟助理。医疗虚拟助理是基于医疗领域的知识系统,通过人工智能技术实现人机交互,从而在就医过程中,承担诊前问询、诊中记录等工作,成为医务人员的合作伙伴,使医生有更多时间可以与患者互动。医疗虚拟助理根据参与就医过程的功能不同,主要有智能导诊分诊,智能问诊,用药咨询和语音电子病历等方向。

第七部分智能驾驶行业分析

1.智能驾驶行业产业链

智能驾驶行业的中心业务是以Google、百度为代表的智能驾驶操纵解决方案提供商和以特斯拉、蔚来为代表的成车厂商。该类厂商,上接上游软硬件提供商,下接公司和消费者,在整个业务链中扮演至关重要的一环。

产业链上游厂商多为细分技术提供商,如深度学习、人机交互、图像识别和新材料、新制造新能源等。

智能驾驶产业链图谱

资料来源:创业邦研究中心

2.智能驾驶市场分析

伴随着 ADAS 技术的不断更新,推断全球 L1-L5 智能驾驶市场的渗透率会在接下来 5年内处于高速渗透期,然 后伴随半无人驾驶的普及进入稳速增长期。在未来的 2025 年无人驾驶放量阶段后,依赖全产业链的配合而进入市场成熟期。预测到2030年,全球 L4/5 级别的自动驾驶车辆渗透率将达到 15%,单车应用成本的显着提升之 外,从 L1-L4 级别的智能驾驶功能全面渗透为汽车产业带来全面的市场机会。

按照 IHS Automotive 保守估计,全球 L4/L5 自动驾驶汽车产量在 2025 年将接近 60 万辆,并在 2025- 2035 年间获得高速发展,年复合增长率将达到43%,并在2035年达到2100万辆。另有接近 7600 万辆的汽车具备部分自动驾驶功能,同时会带动产业链衍生市场的大规模催化扩张。

根据独立市场调研机构 Strategy Engineers 的预测,L4 高度自动驾驶等级下,自动驾驶零部件成本约在 3100 美元/车,其中硬件占比 45%,软件占比 30%,系统整合占比 14%,车联网部分占比 11%。按照全球 1 亿辆量 产规模计算,理想假设所有车辆全部达到 L4 高度自动驾驶水平,那么全球自动驾驶零部件市场规模在 2020 年 将达到 3100 亿美元。

第八部分中国人工智能企业画像分析

随着人工智能技术的不断成熟,人工智能创业的难度逐步降低。创新的大门吸引众多创业企业进入。为了观察行业风向,助力创新企业发展,创业邦研究中心对国内200多家人工智能创业公司进行了系统调研,从发展能力、创新能力、融资能力等多维度指标,评选出“2018中国人工智能创新成长企业50强”。

地域分布

全国88%的人工智能企业聚集在北京、上海、广东和江苏。其中,北京人工智能企业最多,占比高达39.66%;其次是上海,人工智能企业占比达21.55%;位列第三的是广东,人工智能企业占达15.52%。北京以领先全国其他地区的政策环境、人才储备、产业基础、资本支持等,成为人工智能创业首要阵地;华东地区的上海、江苏、浙江均有良好的经济基础和科技实力,人工智能应用实力雄厚,也聚集了一批人工智能垂直产业园;广东互联网产业发达,企业对数据需求强烈,依靠大数据产业链推动人工智能产业发展。

行业分布

从行业大类分布来看,行业应用层的企业占比最大,为56.03%;其次是应用技术层的企业,占比达31.04%;基础技术层的企业占比最小,仅为12.93%。随着人工智能技术的发展,人工智能与场景深度融合,应用领域不断扩展,行业应用公司比重不断提升。在基础层技术方面,国际IT巨头占据行业领先地位, 国内与国际差距明显,中小初创企业很难进入。

从行业应用来看,智能金融企业占比最大,为16.92%;其次是机器人企业,占比达15.38%;位列第三的是智能驾驶和智能教育,占比均为12.31%。金融行业的强数据导向为人工智能的落地提供了产业基础,智慧金融被列入国家发展规划中,庞大的金融市场为人工智能落地带来了发展前景。机器人作为人工智能产业落地输出, 目前市场需求较大,商业机器人占据较大份额。中国智能驾驶市场在资本推动下进入者较多,企业积极推动应用落地,百度、北汽等大型企业尝试商业化落地智能驾驶汽车。人工智能推动教育个性化落地,相关初创企业涉入教育蓝海,推动智慧教育的发展。

收入情况

收入分布在500-10000万之间的企业最多,占比达49.14%;500万以下的企业位居其次,占比达 26.72%;位列第三的是10000-100000万之间的企业,占比为17.24%。

最新估值

企业最新估值均在亿元级别,且分布较为均衡。三成企业估值超过15亿元,还有企业估值达到百亿级别,如优必

选科技、达闼科技和商汤科技等,将来或将跻身人工智能独角兽企业。(备注:分析样本量剔除一半未披露企业)

第九部分典型企业案例分析

1.Atman

企业概述

Atman由来自微软的人工智能科学家和产业经验丰富的产品团队创办,提供专业领域机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品,致力于成为医学、新闻、法律等专业领域语言智能专家,为专业领域用户赋能,推动专业领域用户进入人工智能时代,助力专业领域文字智能水平实现跨越式提升。Atman已为强生、新华社参考消息、北大法宝、君合律师事务所等世界领先药企、新闻媒体、法律服务机构开发机器翻译、机器写作、知识图谱、大数据智能采集挖掘等语言智能产品。

目前Atman在北京和苏州两地运营,能快速响应全国各地客户需求。

企业团队

创始人&CEO:马磊

清华大学计算机系毕业,曾先后在微软研究院和工程院担任研究员和架构师,机器学习专家、多次创业者、曾主导多项人工智能重大项目,和申请国际专利共计15+项。

Atman公司核心团队由来自微软、百度、法电等领域高端人才和资深技术人才组成,公司员工40人,其中硕士以上学历占比60%,技术开发人员占比70%,一半以上来自微软亚洲研究院和工程院。

核心技术与产品

技术方面,擅长机器学习(深度学习、强化学习、群体智能)在复杂问题的应用,和国际专利15项,Atman神经网络机器翻译系统于2016年9月首秀,早于谷歌的GNMT,专业领域翻译效果在公测标准和行业客户测试中均持续领先。核心产品为垂直领域机器翻译、机器写作、知识图谱抽取构建、大数据智能挖掘等语言智能产品。

Atman的机器翻译产品可自动翻译编辑专业文献、报告、音视频和网页,支持私有部署和云端混合部署,提供包括数据隐私安全以及自学习的端到端解决方案。

机器写作可对海量数据进行快速搜索、过滤、聚类,根据行业需求自动生成专业文档,适用于所有专业写作场景,可大幅减少专业报告写作过程中的繁复工作,大幅提升专业领域写作效率。

知识图谱可实现海量数据的语义检索、长链推理、意图识别、因果分析,形成一个全局知识库。大数据智能采集挖掘系统为专业领域用户提供智能数据源管理、海量专业数据获取和非结构化数据自动解析并结合知识图谱提供auto-screening、知识重构、专业决策辅助,帮助用户建立强大的以专业大数据为基础的业务辅助能力。

2.黑芝麻

企业概述

黑芝麻智能科技有限公司是一家视觉感知核心技术与应用软件开发企业,2016年分别在美国硅谷和上海成立研发中心,主攻领域为嵌入式图像、计算机视觉,公司核心业务是提供基于图像处理、计算图像以及人工智能的嵌入式视觉感知平台,为ADAS及自动驾驶提供完整的视觉感知方案。

目前公司和博世、滴滴、蔚来、上汽、上汽大通、EVCARD、中科创达、车联天下和云乐新能源等展开深入合作,提供基于视觉的感知方案;除此之外,公司还在消费电子、智能家居等领域布局为智能终端提供视觉解决方案。目前公司已经完成A+轮融资。

企业团队

团队核心成员来自于OmniVision、博世、安霸、英伟达和高通等知名企业,平均拥有超过15年以上的产业经验,毕业于清华、交大、中科大和浙大等知名高校。

创始人&CEO:单记章此前在硅谷一家全球顶尖的图像传感器公司工作近20年,离职前担任该公司的技术副总裁一职,工作内容覆盖了图像传感器研发和设计、图像处理算法研发和图像处理芯片设计。

核心技术和产品

在汽车领域,黑芝麻可提供车内监控方案(DMS),自动泊车方案(AVP),ADAS/自动驾驶感知平台方案。黑芝麻智能科技提供的解决方案包括算法和芯片两个核心部分:黑芝麻感知算法从基础的控光技术,到面向AI的图像处理技术出发来提高成像质量,以及应用深度神经网络训练,结合视频处理和压缩技术,形成从传感器端到应用端的处理过程;黑芝麻芯片平台采用独有的神经网络架构,包括独有的图像处理,视频压缩和计算机视觉模块,与黑芝麻视觉算法结合,采用16nm制程,设计功耗2.5w,每秒浮点计算达20T。

3.乂学教育

企业概述

乂学教育,成立于2014年,是一家网络教育培训机构,采用人工智能和大数据技术,为学生提供量身定制学习解决方案和个性化学习内容。核心团队来自美国Knewton、Realizeit、ALEKS等人工智能教育公司,销售团队有全国40亿toC销售额的经验。

企业自主研发了针对中国K12领域的学生智适应学习产品,其核心部分是以高级算法为核心的智适应学习引擎“松鼠AI”,该产品拥有完整自主知识产权,能够模拟真实特级教师教学。企业发表的学术论文得到了全球国际学术会议AIED、CSEDU、UMAP认可,并在纽约设计了人工智能教育实验室,与斯坦福国际研究院(SRI)在硅谷成立了人工智能联合实验室。

主要产品

学生智适应学习是以学生为中心的智能化、个性化教育,在教、学、评、测、练等教学过程中应用人工智能技术,在模拟优秀教师的基础之上,达到超越真人教学的目的。该产品性价比高,以人工智能+真人教师的模式,做到因材施教,有效解决传统教育课时费用高,名师资源少,学习效率低等问题。

智适应学习人工智能系统

智适应学习人工智能系统模拟特级教师,采用图论、概率图模型,机器学习完成知识点拆分和个人学习画像,采用神经网络、逻辑斯蒂回归和遗传算法为学生实时动态推荐最佳学习路径,实现个性化教育。

业务模式

线上与线下,2B和2C相结合。以松鼠AI智适应系统教学为主,真人教师辅助,学生通过互联网在线上学习课程。开创教育新零售模式,授权线下合作学校,已在全国100多个城市开设500多家学校。

4.云从科技

企业概述

云从科技成立于2015年4月,是一家孵化于中国科学院重庆研究院的高科技企业,专注于计算机视觉与人工智 能。云从科技是人工智能行业国家队,是中科院战略先导项目人脸识别团队唯一代表,唯一一家同时受邀制定人 脸识别国家标准、行业标准的企业。2018年,云从科技成为祖国“一带一路”战略实行路上的人工智能先锋,与 非洲南部第二大经济体津巴布韦政府完成签约。

云从科技奠定了行业领导地位: 国家肯定,国家发改委2017、2018年人工智能重大工程承建单位;顶层设计,唯一同时制定国标、部标和行标的人工智能企业;模式创新,三大平台解决方案,科学家平台、核心技术平台和行业应用平台。

企业核心团队

创始人

周曦博士,师从四院院士、计算机视觉之父—ThomasS.Huan黄煦涛教授,专注于人工智能识别领域的计算机视觉 研究。入选中科院“百人计划”,曾任中国科学院重庆研究院信息所副所长、智能多媒体技术研究中心主任。

周曦博士带领团队曾在计算机视觉识别、图像识别、音频检测等国际挑战赛中7次夺冠;在国际顶级会议、杂志 上发表60余篇文章,被引用上千次。

核心技术团队

云从科技依托美国UIUC和硅谷两个前沿实验室,中科院、上海交大两个联合实验室上海、广州、重庆、成都四 个研发中心组成的三级研发架构。目前研发团队已经超过300人,80%以上拥有硕士学历。

技术优势

全方位多维智能学习模块适应不同场景要求;模块化设计为在工业视觉、医学影像、自动驾驶AR等领域扩展打下良好基础。

云从科技具有高技术壁垒:世界智能识别挑战赛成绩斐然,在CLEAR、 ASTAR、 PASCAL VOC、 IMAGENET、FERA以及微软全球图像识别挑战赛上共计夺得7次世界冠军;在银行、公安等行业智能识别技术 PK实战中,85次获得第一;2018年,云从科技入选MIT全球十大突破性技术代表企业。

在跨镜追踪(ReID)技术上取得重大突破。Market-1501,DukeMTMC-reID,CUHK03三个数据同时集体刷 新世界记录, Market-1501上的首位命中率达到96.6%,首次达到商用水平。

正式在国内“3D结构光人脸识别技术”,可全面应用于手机、电脑、机具、设备、家电。相较以往的2D人 脸识别及以红外活体检测技术,3D结构光人脸识别技术拥有不需要用户进行任何动作配合完成活体验证的功能, 分析时间压缩到了毫秒级以及不受环境光线强弱的影响等诸多优点,受到国际巨头公司的关注。

行业应用

目前国内有能力自建系统的银行约为148家。截止2018年3月15日,已经完成招标的银行约为121家,其中云从科 技中标了88家总行平台,市场占有率约为72.7%;在安防领域推动中科院与公安部全面合作,通过公安部重大课题研发火眼人脸大数据平台等智能化系统,在民航领域,已经与中科院重庆院合作覆盖80%的枢纽机场。

5.Yi+

企业概述

北京陌上花科技是领先的计算机视觉引擎服务商,为企业提供视觉内容智能化和商业化解决方案。致力于“发现视觉信息的价值”。

旗下品牌Yi+是世界一流的人工智能计算机视觉引擎,衣+是时尚商品搜索引擎。公司在图像视频中对场景、通用物体、商品、人脸的检测、识别、搜索及推荐均达到领先水平。

目前公司和阿里巴巴、爱奇艺、优酷土豆、中国有线、CIBN、中信国安、海信、华为、360等数十家顶级机构/产品深度合作,通过提供边看边买引擎、图像视频内容分析引擎、人脸识别引擎等基于视觉识别技术的数据结构化产品服务于海量用户,同时帮助政府机构、广电系统、内容媒体、零售商、电商、视听设备等行业实现智能分析、智能互动与场景营销。目前公司已经获得B轮融资。

企业团队

团队成员来自于斯坦福、耶鲁、帝国理工、新加坡国大、南洋理工、清华、北大、中科院等名校及谷歌、微软、IBM、英特尔、阿里巴巴、腾讯、百度、华为等名企。

创始人&CEO:张默

北京大学软件工程硕士, 南洋理工大学创业创新硕士。连续创业者, 曾任华为算法工程师、微软WindowsMobile工程师、 IBM SmarterCity 架构师,北方区合作伙伴经理,主机Linux中国区负责人,中国区开源联盟负责人,年销售额数亿。 2013年创业于美国硅谷和新加坡,2014年6月在中国设立北京陌上花科技有限公司。

核心技术与产品

技术方面,在国际顶级计算机视觉竞赛ImageNet中,成绩曾超过谷歌、斯坦福等,2015-2016年2年获得十项世界第一。2018年3月,人脸识别准确率位列LFW榜首。Yi+通过遵循无限制,标记的外部数据协议。 Yi+的系统由人脸检测,人脸对齐和人脸描述符提取组成。使用多重损失和训练数据集训练CNN模型,其中包含来自多个来源的约10M个图像,其中包含150,000个人(训练数据集与LFW没有交集)。在测试时, Yi+使用原始的LFW图像并应用简单的L2norm。图像对之间的相似性用欧氏距离来测量,最终取得优异成绩。

公司的核心产品主要包括视觉搜索引擎,图像视频分析引擎以及人脸识别和分析引擎:

行业解决方案

针对营销、安防、相机和电视的不同特点,推出相应解决方案。

营销+AI。场景化广告方案中,大屏AI助理信息流推荐、神字幕、物体/人脸AR动态贴图、video-out、场景化角标与广告滤镜等形式的广告内容推荐,适用于快消、汽车、电商、IT、金融、旅游服务等多个行业。

智慧城市+AI。使用计算及视觉助力智慧城市,在智慧安防、智慧交通、智慧园区等方面提供解决方案。在智慧安防实时识别上,实时处理直播摄像头信息,算法反应敏捷,相应迅速。建立智慧园区方案模型,考虑扩展性&灵活性、数据管理、松散耦合性、安全性、实时整合性以及功能性和非功能性需求等技术方案要素,从业务和技术两方面整合解决方案实现步骤。

电视+AI。电视+AI的解决方案赋予智能电视多样播放能力和营销能力。

相机+AI。相机更具交互能力。用户通过搜索关键字标签同步展示图片,打通相册和购物一站式体验。准确识别人物属性特征,动态适应表情变化,可以在视频以及图像中对人脸实时检测,基于深度学习技术,进行人脸相似度检测,实现面部关键点定位、妆容图像渲染,试用与粉底、唇彩以及眼影等多种虚拟试装方式。实时检测摄像头中出现的物品、场景和人脸等,添加AR效果,SDK支持本地检测、识别、追踪,平均检测帧率可达到25fps。

新零售+AI。Yi+新零售解决方案是基于公司自主研发的人脸识别、商品识别和其他图像识别算法技术为核心,建立一整套基于人脸、商品的智能零售门店管理方案。Yi+新零售解决方案主要包含数据采集、算法模型说明和部署方案三部分,其中数据采集包括人脸数据采集、商品数据采集;算法模型说明包括识别算法训练、商品识别、识别输出;部署方案包括本地部署、云端部署、本地部署与云端部署结合。

6.擎创科技

企业简介

擎创科技成立于2016年,专注于将人工智能和机器学习赋予传统IT运维/企业运营管理,为企业客户提供智能运维大数据分析解决方案,从而取代和改善对高技能运维人员严重依赖的现状。2017年,擎创科技已实现全年2000万营收,迅速成为国内AIOps领域的领跑者和中流砥柱。2018年初,擎创科技完成了数千万人民币的A轮融资,由火山石投资领投,晨晖创投、元璟资本及新加坡STTelemedia跟投。

核心团队

擎创团队的核心成员主要由BMC、微软等美国企业服务上市公司的运维老兵,与新浪、饿了么等知名互联网公司的大数据、算法专家组成,核心团队成员至少拥有10年以上的行业经验。其中CEO杨辰是国内最顶级的B端销售,曾带领团队获得10倍的业绩增长;CTO葛晓波拥有长达15年的企业级软件开发和运维经验;而产品总监屈中泠则来自甲方,创业前为浦发硅谷银行企业架构师,深知甲方对企业运维产品的需求。这个曾经深耕于运维企业服务市场的团队,如今在智能运维企业服务赛道继续领跑,让擎创科技成为最懂企业的客户,最值得企业客户信赖的软件厂商。

主要产品

“夏洛克AIOps” 作为擎创自主研发的大数据智能运维主打产品,自2016年上线以来,已从1.0版本升级至1.9版本,可应用在金融、大型制造业、铁路民航、能源电力等涉及国家发展和民生问题的多种行业。在2017全球运维大会上,夏洛克AIOps获得由中国信息通信研究院与高效运维社区联合颁发的“年度最具影响力AIOps产品”奖。

“夏洛克AIOps”充分利用自研算法辅助客户实现IT运维价值,结合客户的现有情况,规划从传统ITOM至AIOps智能运维的一站式路径,助其运营落地,由此打破数据孤岛,建立统一的大数据智能分析平台,实现以人工智能为核心,驱动传统IT运维监、管、控三个层面,并将相关运维数据及业务数据实时展现。

“夏洛克AIOps”拥有多项自研算法,犹如运维界的福尔摩斯,能迅速发现并定位运维问题的根因,实现秒级排障,最大程度避免企业产生重大损失。更有价值的是,“夏洛克AIOps”还能通过长期的数据积累和机器学习,运用新型深度神经网络算法对企业的业务数据进行预测,帮助企业提前规划IT资源,高效预防各类黑天鹅事件的发生。

商业模式

目前,擎创科技已与多家金融和制造行业标杆客户形成稳定的合作关系,包括浦发银行、浦发硅谷银行、国家开发银行、上海铁路局、银联、海尔、浙江能源等。针对不同客户,采用个性化的商业模式进行服务,目前主要有私有模式和SaaS模式两种,都具有较强的可复制性。

核心优势