前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的流体动力学基础主题范文,仅供参考,欢迎阅读并收藏。
摘 要 高能闪光照相是诊断致密物质内部几何结构和物理特性的最有效技术.高能质子照相在穿透能力、材料识别、空间分辨率等方面都优于X射线照相,已经成为美国先进流体动力学试验装置的优先发展对象.文章详细介绍了高能质子照相方案及其研究进展.
关键词 光电子学,质子照相,综述,质子加速器,磁透镜
AbstractHigh-energy flash radiography is the most effective technique to interrogate inner geometrical structure and physical characteristic of dense materials. It is shown that high-energy proton radiography is superior to high-energy x-ray radiography in penetrating power, material composition identification and spatial resolution. Proton radiography is taken as a leading candidate for the Advanced Hydrotest Facility by the United States. The project and current development in high-energy proton radiography is reviewed.
Keywordsoptoelectronics, proton radiography, review, proton accelerator, magnetic lens
1 引言
高能闪光照相始于美国的曼哈顿计划(Manhattan project),并持续到现在, 它一直用来获取爆轰压缩过程中材料内部的密度分布、整体压缩的效果以及冲击波穿过材料的传播过程、演变和压缩场的发展的静止“冻结”图像.这一过程非常类似于医学X射线对骨骼或牙齿的透射成像.高能闪光照相有两个显著特点:首先,照相客体是厚度很大的高密度物质,要求能量足够高;其次,客体内的流体动力学行为瞬时变化,要求曝光时间足够短.
目前,世界上最先进的闪光照相装置是美国洛斯阿拉莫斯国家实验室(LANL)的双轴闪光照相流体动力学试验装置(DARHT)[1].它是由两台相互垂直的直线感应加速器组成的双轴照相系统,一次实验能从两个垂直方向连续拍摄4幅图像,并且在光源焦斑和强度方面都有提高.但是,DARHT也仅有两个轴,这是获得三维数据的最小视轴数目,最多只能连续拍摄4幅图像,不能进行多角度多时刻的辐射照相,获得流体动力学试验的三维图像.而且DARHT的空间分辨率受电子束斑大小的制约.由于电子相互排斥,电子束不能无限压缩,束流打到转换靶上,产生等离子体,使材料熔化,这在一定程度上扩展了束斑直径,从而使X射线光斑增大.估计最小的电子束直径为1—2mm,制约了空间分辨率的提高.
研究人员希望实现对流体动力学试验进行多角度(轴)、每个角度多时刻(幅)的辐射照
相,从而获得流体动力学试验的三维动态过程图像.l995年,美国LANL的科学家Chris Morris提出用质子代替X射线进行流体动力学试验透射成像[2].首次质子照相得到的图像,其非凡的质量出乎发明者的预料.后续的研究和实验也确认了这项技术的潜在能力.据Morris回忆, 20世纪90年代初期武器研制计划资助了一项中子照相研究.其立项的主要思想就是利用高能质子、中子和其他强子的长平均自由程,使其成为闪光照相的理想束源.Steve Sterbenz从这个思路出发,研究了使用中子照相进行流体动力学试验诊断的可能性.然而即使使用质子储存环(PSR)的强脉冲产生中子,中子通量都不足以在流体动力学试验短时间尺度下获得清晰的图像.当时的洛斯阿拉莫斯介子物理装置(LAMPF)负责人Gerry Garvey听到这种意见的第一反应是“为什么不用质子?” Morris将这些思想统一起来,利用高能质子束实现流体动力学试验诊断的突破,就是水到渠成的事[3].Morris指出:质子照相的实施应归功于现代加速器具有产生高能质子和高强度质子的能力.促使发展质子照相技术最重要的一步是Tom Mottershead 和John Zumbro提出的质子照相所需的磁透镜系统[4],以及Nick King 在武器应用中发展改进的快速成像探测系统[5].
高能质子束为内爆物理研究提供了堪称完美的射线照相“探针”,因为其平均自由程与流体动力学试验模型的厚度相匹配.射线照相信息通过测量透过客体的射线投影图像来获取.如果辐射衰减长度过短,则只有客体外部边界能够测量;如果辐射衰减长度过长,则没有投影产生.质子照相为流体动力学试验提供了一种先进的诊断方法.
2 质子与物质相互作用机制
高能质子与物质相互作用的机制是质子照相原理的基础.首先,需要从质子与物质的相互作用出发,对质子在物质中的穿透性和散射过程进行分析研究.
所有质子都在被测物质内部并与其发生相互作用.质子与物质的相互作用分为强作用力和电磁作用力[6].强作用力是短程力,质子与核的强作用力分为弹性碰撞和非弹性碰撞两种:
如果是弹性碰撞,以某种角度散射的质子保持其特性和动量,质子因受核力的强大作用,会偏转很大角度, 这种现象叫做核弹性散射(如果采用角度准直器,这部分贡献可以忽略);
如果是非弹性碰撞,质子被吸收,也就是说,损失大部分能量分裂核,产生亚原子粒子——π介子.当质子能量达到GeV量级,质子与原子核的强相互作用占主导地位.质子与物质原子核中的质子和中子发生非弹性核相互作用,造成质子束指数衰减,其衰减规律可表示为
NN0=exp-∑ni=1liλi,(1)
其中N0,N分别为入射到被测物体上的质子通量和穿过被测物体的质子通量; λi和li分别为第i种材料的平均自由程和厚度.当质子能量达到GeV量级,核反应截面几乎不变,单就穿透能力而言, 质子能量达到GeV量级就足够了.核反应截面不变有利于质子照相的密度重建,因为质子在客体中的散射过程可能导致质子能量发生变化.
由于质子带电,它也通过长程电磁作用力与物质相互作用. 当质子能量达到GeV量级时,电磁作用只能产生很小的能量损失和方向变化:
质子与原子核的库仑力作用称为弹性散射,穿过原子核的每个质子,即使和核并不接近,也能导致质子方向发生小的变化,每个小散射效应可以累积,这种现象叫做多重库仑散射. 多重库仑散射的理论由Enrico Fermi在20世纪30年代建立.质子与原子核之间的库仑力作用发生多重库仑散射,多重散射可以近似用高斯分布表示:
dNdΩ=12πθ20exp-θ22θ20,(2)
式中θ0为多次散射角的均方根值,可用下式表示:
θ0≈14.1pβΣniliRi,(3)
式中p为束动量,β是以光速为单位的速度,Ri是材料的辐射长度,其值近似地表示为
Ri=716AZ(Z+1)ln(287/Z),(4)
其中A是原子量,Z是原子序数.多重库仑散射的结果很重要,特别是对重物质,最终导致图像模糊.另一方面,因为Ri与材料的原子序数有关,也正是这个特性使质子照相具有识别材料组分的独特能力[7].
质子和电子之间也会产生库仑力作用,通常是非弹性的.因为电子质量与质子相比很小,库仑力的作用使电子方向和速度产生跃变,而对质子的方向和能量只产生缓变. 也就是说,质子通过电离原子(把电子击出轨道),损失小部分能量.这种作用不会导致质子运动方向大的改变,但会导致质子能量的减少.20世纪30年代著名的贝特-布洛赫(Bethe-Bloch)公式很好地解释了这种机制.能量损失依赖于质子束能量,能量损失速率与它的动能成反比.质子束穿过厚度为l的材料时,能量损失为
ΔT=∫l0dTdldl≈dTdll.(5)
当质子能量达到GeV量级,dT/dl的值几乎与动能无关.如果E和T以m0c2为单位,p以m0c为单位,则
E=T+1,E2=P2+1.(6)
因此,能量损失引起的动量分散为
δ=Δpp=dpdTΔTp=T+1T+2ΔTT.(7)
质子通过物体后损失能量,发生能量分散.磁透镜对不同能量的质子聚焦位置不同,也将导致模糊,这就是所谓的色差[8].
3 质子照相原理
质子照相原理与X射线照相原理都是通过测量入射到被测物体上的粒子束衰减来确定被测物体的物理性质和几何结构.
由于多重库仑散射,穿过被照物体的质子束有不同的散射方向,形成一个相对于入射方向的锥形束,需要磁透镜系统才能成像.如果质子照相的模糊效应持续存在的话,质子照相的潜力可能永远不会被发掘出来.1995年,Morris发现磁透镜能使质子聚焦进而消除模糊效应,最初进行的实验证实了他的观点的正确性.后来, LANL的另一位物理学家John Zumbro改进了磁透镜系统的设计方案,称为Zumbro透镜[4].
Zumbro透镜的主要优点是它的消色差能力.加速器产生质子束并非是单一能量的束流,实验客体对质子的散射增加了质子能量的分散,不同能量的质子具有不同的焦距,导致图像模糊.基于这样的考虑,Zumbro采用在入射质子束的路径上增加一个匹配透镜(matching lens),匹配透镜的设计使得入射到被测物体上的质子束具有角度-位置关联,即质子与透镜光轴夹角与质子离轴的径向距离成正比.而且,角度-位置的关联系数与成像系统磁透镜的设计有关[9]. 这样,可以消除由能量分散引起图像模糊的主要色差项.
剩余的色差项为
x=-x0+Cxθ0δ,(8)
式中Cx为透镜的色差系数,θ0为多重库仑散射角,δ为动量的分散.由(3)式和(7)式可知, 多重库仑散射角和动量的分散都与入射质子的能量成反比.因此,为了尽可能减小色差对空间分辨率的影响,质子束的能量越高越好.高能量意味着大规模和高造价,根据空间分辨率随能量的变化趋势以及大尺度流体动力学试验的精度要求,LANL为先进流体动力学试验装置 (AHF)建议的质子能量为50GeV.
质子照相技术的关键之处在于其独特的磁透镜系统.图1给出了LANL质子照相磁透镜成像示意图[10].首先,质子束通过金属薄片扩散,再经过匹配透镜照射到客体(匹配透镜除了减小色差以外,还可以使质子束在击中物体前发散开来,以便覆盖整个物体,避免了使用很厚的金属作为扩束器),这部分称为照射(illuminator)部分;接着是三个负恒等透镜组,分别是监控(monitor)透镜组、两级成像透镜组.
Tom Mottershead 和John Zumbro论证了可以根据库仑散射角的不同,在透镜系统的某个位置(傅里叶平面),可以将不同的散射质子束区分开来.在傅里叶平面,散射角等于0的质子位于中心,散射角越大,半径越大.离开这个透镜后,质子就能在空间上聚焦.如果在这个位置平面放置角度准直器,可以将某些散射角度的质子束准直掉,对允许的角度范围进行积分,得到总质子通量为
NN0=exp-Σniliλiexp-θ2min2θ20-exp-θ2max2θ20.(9)
第一个角度准直器允许通过的角度范围为[0,θ1cut],则第一幅图像接收到的质子通量为
NN0=exp-Σniliλi1-exp-θ21cut2θ20.(10)
第二个角度准直器允许通过的角度范围为[0,θ2cut],且θ2cut
NN0=exp-Σniliλi1-exp-θ22cut2θ20.(11)
角度准直器的使用增加了图像的对比度.根据物体的光程调节角度范围,可获得最佳的图像对比度.通过分析两幅图像得到的数据,可以提供密度和材料组分的信息.
考虑到探测器记数服从泊松统计分布,面密度的测量精度要达到1%,则图像平面上每个像素需要的入射质子数应为104,每幅图像大约需要的质子数应为1011. 如果一次流体动力学试验需要获得12个角度,每个角度20幅图像,则每次加速的质子总数达3×1013个.
4 质子照相装置
质子照相技术自1995年首次在美国LANL被论证以来,LANL和布鲁克海文国家实验室(BNL)进行了大量的实验,其中很多次是和圣地亚(SNL)、劳伦斯利弗莫尔(LLNL)以及英国原子武器研究机构(AWE)合作完成的,直接针对流体动力学有关的关键科学问题[11].实验主要分为两部分:一是在LANL的洛斯阿拉莫斯中子散射中心(LANSCE)上进行的小型动态实验(质子能量800MeV),小型动态实验主要包括:高能炸药的爆轰特性实验、金属和材料对强冲击加载的复杂响应实验(包括失效、不稳定性和微喷射等)以及验证内爆过程后期的材料动力学和材料状态的实验;二是在BNL的交变同步加速器(AGS)上进行的用于诊断大尺度流体动力学试验的高能质子照相实验(质子能量12GeV或24GeV).进行高能质子照相的目的是:发展高能质子照相所需技术,验证采用质子照相进行大尺度流体动力学试验的能力,以及与DARHT进行某些直接的比较.对于厚的流体动力学试验客体而言,质子照相的质量远好于DARHT的照相结果.如果DARHT要获得同样的照相细节,需将其剂量提高100倍.而且比照片质量更重要的是,质子照相具有定量的特性.质子照相因其低剂量、定量的密度重建、亚毫米空间分辨率以及超过每秒500万幅的多幅照相频率等特性而成为新一代流体动力学试验闪光照相设施的必然选择.
LANL为AHF建议的质子照相装置包括质子束源、照相布局、磁透镜成像及探测器系统,图2给出了质子加速器和分束系统方案[12].质子束源是一台能量为50GeV的同步加速器和12条束线,包括一台H-直线加速器注入器,一台3GeV的增强器和一台50GeV的主加速器.采用快速踢束调制器将质子束从3GeV增强器注入50GeV主加速器,经过同步传输系统和使用分束器将质子平均分成多个子束.最后从多个方向同时照射到实验靶上.质子束穿过实验靶后,磁透镜系统对质子束信号进行分类,由探测系统记录数据.实验布局的复杂性都远远超出了闪光照相实验.
图2 LANL的质子加速器和分束方案
LANL提出的质子照相装置的主要指标:质子束能量达到50GeV,空间分辨率优于1mm,密度分辨率达到1%;每次加速的质子总数达3×1013个,每幅图像的质子数达到1×1011个;每个脉冲的间隔最小为 200ns,质子到达靶的前后误差不超过15ns;每个视轴可连续提供20个脉冲,视轴数12个,覆盖角度达165°.这样,一次流体动力学试验可获得12个角度,每个角度20幅图像.
2000年,LANL给出了发展质子照相的研究计划.整个装置预计投资20亿美元,其中质子加速器系统使用原有的部分设备,需要5678.8万美元.装置的建造时间需要10到15年,分几个阶段进行:2007年前,建造50GeV同步加速器、2个轴成像系统和靶室1;2008—2009年,建造3MeV增强器(booster)、4个轴成像系统和靶室2;2010—2011年,8—12个轴成像系统.从目前的调研情况来看,原计划2007年前完成的任务没能按期完成.因此,这个计划要推迟.最新的研究计划未见报道.
5 质子照相与X射线照相的比较
我们通过与现有最好的流体动力学试验装置——DARHT比较来说明质子照相的特点和优势[13].
(1) 三维动态照相. 由于质子加速器固有的多脉冲能力和质子束分离技术,因此,质子照相能够提供多个时刻、多个方向的三维动态过程图像.质子照相能够提供超过20幅的图像,这种多幅能力可得到内爆运动过程的动态图像. 而DARHT沿一个轴只能得到4幅图像,沿其垂直轴得到1幅图像.另外,质子照相不需要转换靶,保证了多次连续照相不受影响,而X射线照相由于需要转换靶,需要考虑束斑的影响.
(2) 精细结构分辨.高能质子穿透能力强,其穿透深度和流体动力学试验模型达到理想匹配.相比之下,X射线只有在4MeV能量时才能达到最大图像对比度,此时其穿透能力只有高能质子的1/10. 质子照相能测定密度细微变化的另一个理由是质子散射能得到控制. 散射质子可以被聚焦形成视觉上无背景、对比鲜明的图像.而实验客体对X射线形成的大角度散射无法控制,降低了照相的精度和灵敏度.
(3)质子对密度和材料都比较敏感,可以分辨密度差别不大的两种物质.实际上,质子散射的利大于弊,它能用于识别物质的化学组成.利用两个相同的磁透镜系统和不同孔径准直器串联组成的两级成像系统,通过对两种不同准直孔径得到的数据进行分析,可以提供材料的密度和组分信息.而X射线只对密度敏感,故分辨不出密度差别不大的两种物质.
(4) 曝光时间可调.质子加速器能够产生持续时间为100ps、间隔为5ns的“微小脉冲束”,每幅图像可用8—20个脉冲的时间进行曝光.因此,质子照相可任意选定曝光时间和间隔.内爆初期,研究人员可以选择较长的曝光时间和间隔,对较慢的运动进行连续式“冻结”照相.当内爆速度变快时,可以缩短曝光时间.DARHT的脉冲时间由电路决定,一旦脉冲的时间间隔和持续时间固定,只能以固定的时间间隔照相,研究人员只能指定第一幅图像的时间.
(5)探测效率高.质子是带电粒子,直接与探测介质中的电子相互作用产生信号,因此,很薄的探测器就能将质子探测出来.如此薄的探测介质接收不到被探测客体中产生的中子和 γ光子.
(6)空间分辨率高.X射线照相是X射线穿过样品打到闪烁体或底片成像,没有聚焦过程(事实上,对4MeV的X射线还没有聚焦办法),图像的空间分辨率由光源的尺寸(焦斑)决定.质子散射虽然也会引起图像模糊,但质子散射是可控的,可以通过磁透镜聚焦成像.磁透镜不仅能聚焦质子,而且能减小次级粒子的模糊效应.但不同能量质子的聚焦不同,也将导致模糊.Zumbro改进了透镜系统,消色差提高了图像品质.对于小尺寸物体的静态质子照相,空间分辨率可到100μm,最近的质子照相实验已达到15μm,并有达到1.2μm的潜力.
6 结束语
质子照相是美国国防研究与基础科学相结合而诞生的高度多用性的发明.质子照相若不是与国防基础研究共同立项,也绝不会有如今的发展.雄厚的武器实验基础能持续提供人员和创新技术.质子照相极大地提高了流体动力学试验的测量能力.它所具有的高分辨率能够精细辨别内爆压缩的细节,多角度照相有利于建立完整的流体动力学模型,多幅连续照相更加容易判断冲击波和混合物随时间变化的情况.近年来,科学家们加紧了对高能质子照相的研究.目前,X射线照相仍然是流体动力学试验的主要设备.总有一天,质子照相将代替X射线照相并对流体动力学试验进行充分解释.
参考文献
[1] Burns M J, Carlsten B E, Kwan T J T et al. DARHT Accelerators Update and Plans for Initial Operation. In: Proceedings of the 1999 Particle Accelerator Conference. New York, 1999.617
[2] Gavron A, Morris C L, Ziock H J et al. Proton Radiography. Los Alamos National Report, LA-UR-96-420, 1996
[3] Morris C L. Proton Radiography for an Advanced Hydrotest Facility. Los Alamos National Report, LA-UR-00-5716, 2000
[4] Mottershead C T, Zumbro J D. Magnetic Optics for Proton Radiography. In: Proceedings of the 1997 Particle Accelerator Conference. Vancouver B C, 1997. 1397
[5] King N S P, Ables E, Alrick K R et al.Nucl. Instrum Methods in physics research A, 1999, 424(1): 84
[6] Fishbine B. Proton Radiography Sharper “X-Ray Vision” for Hydrotests. In:The Winter 2003 Issue of Los Alamos Research Quarterly. Los Alamos National Laboratory, 2003
[7] Aufderheide III M B, Park HS, Hartouni E P et al. Proton Radiography as a Means of Material Characterization. Lawrence Livermore National Laboratory, UCRL-JC-134595, 1999
[8] Amann J F, Espinoza C J, Gomez J J et al. The Proton Radiography Concept. Los Alamos National Laboratory, LA-UR-98-1368, 1998
[9] Barbara B, Andrew J J. Chromatically Corrected Imaging Systems for Charged-Particle Radiography. In: Proceedings of the 2005 Particle Accelerator Conference. Knoxville, 2005. 225
[10] Andrew J J, David B B, Barbara B et al. Beam-Distribution System for Multi-Axis Imaging at the Advanced Hydrotest Facility. In: Proceedings of the 2001 Particle Accelerator Conference. Chicago, 2001. 3374
[11] Morris C L, Hopson J H, Goldstone P. Proton Radiography. Los Alamos National Laboratory, LA-UR-06-0331, 2006
关键词:材料科学与工程专业;流体力学教学;实验教学
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)48-0039-02
流体力学是一门研究流体的受力与运动规律的严密科学,是一门材料科学与工程专业中理论性和实践性都较强的专业基础课程。在流体力学的教学过程中,涉及到的数学公式很多,过程较为复杂。历年来,学生们普遍认为流体力学课程枯燥无味,难以学懂,兴趣不大,导致教学效果较差。分析材料科学与工程专业现状可知,目前,该课程体系教学中存在着较大弊端:一方面,太偏重于数学推导与公式的理解,忽视了课程理论的物理意义与工程应用的有效结合;另一方面,忽视了课程的基础作用,片面强调课程的专业性。为此,本文结合材料科学与工程专业的课程设置,对课程的教学环节进行了改革探索。课堂教学是提升学生认知的重要手段。笔者认为可以从以下几个方面来提高流体力学的教学质量。
一、优化教学内容
纵观材料科学与工程专业的流体力学课程体系,可将之分为基本理论知识、基本应用、实验部分、与其他学科的交叉内容、工程实际应用等方面。在教学过程中,笔者认为采用模块化教学方式能够达到较好的效果。所谓模块化教学是指根据学科或专业的不同需求选择学习内容,将每个内容或环节定义为模块。每个模块的目标明确,针对性强,而且学时数相对较少,容易提高学生的学习效率。当然,各个模块之间并不是孤立的,在教学实施过程中,模块是相对独立的,但从课程的整体架构上来说又是有机关联的,步步为营,内容丰富,难度螺旋式上升,使整个流体力学课程具有较强的系统性和完整性。目前,国内材料科学与工程专业的流体力学课程体系基本按照如下形式贯穿:流体静力学理想流体运动动力学实际流体运动:一元流体相似理论泵与风机。每部分的研究方法较为统一,所形成的体系由简到繁、由易到难,并且很容易实现模块化处理。例如在讲授流体运动学基础、动力学基础时,可以先从实际流体流动的基本方程入手,使学生在本门课程开始就接触到流体动力学的总的轮廓和最基本的理论方程,后面的理想流体动力学及一元流体动力学问题作为其特殊情况处理,将理想流体、一元流动的条件代入有关方程,即可得到理想流体、一元流动的动力学方程。建立的这种模块体系具有由一般到特殊的特点,条理清楚。这样一来,教师在讲完一般形式的方程组后再来讲具体一元流体动力学及理想流体动力学问题,就可略去大量的公式推导过程,节省了大量的课时,内容组织层次感较强,讲起来重点更突出,教学过程却相对简化。
二、更新教材结构
同时,考虑到材料科学与工程专业的特色与应用范畴,非常有必要对教材内容进行优化处理,根据材料科学与工程的课堂要求,淡化一些理论推导过程,以工程应用为根本。从学生的学习规律来看,一般学生刚学习课程的时候积极性和重视程度都比较高,在学习时花费时间较长,但随着课堂内容的推进,学生们的兴趣减弱,教学内容和教学方法的改革与优化势在必行。材料科学与工程专业的流体力学课程内容并不包括本领域的全部专业知识,主要讲授流体流动的基本原理与基本思路,并侧重于工程应用。因此,教材的选取要更具科学性,要根据专业特点和需要,结合学生兴趣与学习层次,有针对性地选取讲义,教材要更侧重于基本原理与基本公式的讲述与应用,做到简单易懂,实用性较强。
三、激发学习兴趣
在流体力学教学的开始,教师就应该紧紧抓住学生们的学习兴趣,在紧扣教学计划的基础上,以当前热点问题为引导,充分调动学生们的学习积极性。因此,在流体力学教学的过程中,如何将教学内容与工程实践相结合,与热点问题相结合,激发学生的学习兴趣是提升教学效果的重要措施之一。比如在给学生上绪论课的时候,可以通过一些生动的图片、视频、动画给学生形象地展示大自然与人类生活密切相关的流体力学现象,增强学生对流体力学的感性认识与兴趣,如汽车为什么要做成流线型的;高尔夫球为什么在表面有很多坑;火箭为什么能够上天;海岸为什么是弧形;战斗机为什么头部是尖的等。这些问题是日常生活中经常见到的,通过这些问题的设计与引导,可以让学生们知道本课程的主要学习目标是什么,能解决什么样的实际问题,让学生们带着疑问和兴趣去学习,效果将事半功倍。
四、改革教学手段
目前,流体力学教学过程中教学手段较为丰富,但仍以板书和多媒体教学两种方法为主。更多采用“多媒体为主,板书为辅”的方法。多媒体教学较为直观、形象,所传输的信息量巨大。同时,伴随着信息网络化大形势的进一步深化,网络电子资源更加丰富,这样大大缩短了教师们的备课时间。但这种方式也有不足之处,最主要表现在多媒体授课速度偏快,学生尚未形成知识结构体系就一带而过,课堂上考虑的时间不足,很难形成师生之间的互动。相对而言,板书备课时间较长,课堂上书写时间也较长,对于一些较难理解的内容,可以给学生们足够的思考空间,并在课堂上按照既定授课思路进行,这样能够涵盖较为琐碎的知识点,易于形成师生间的“一问一答”式的互动关系。因此,在流体力学授课过程中宜采用二者结合的方式,对于系统性较差的知识点来说采用多媒体方式,而对于重点、难点内容则主要采用板书的形式,真正做到对该知识点的侧重讲解,疏而不漏。只有这样才能使学生对课程既有充足的知识量,又有重点突出,进而提高学生的学习效率。
五、重视实验与工程教学
流体力学课是一门与工程实践结合紧密的学科。因此,在课程开展的过程中应该对实验课与工程教学进行重点关注。实验教学目前可以分为演示型和验证型,但教学方法单一,限制了学生分析问题、解决问题的能力;同时,由于长期以来实验教学从属于理论教学,实验教学与工程教学的课程建设与发展受到了严重制约。因此非常有必要对实验与工程教学进行改革来适应目前高校的培养模式。首先,实验与工程教学要注重同专业知识相结合。传统的实验教学较多适用于试验台环境下,是国家根据课程规划以及人才的知识结构需要设立的,这严重阻碍了学生们与工程实践的有效沟通,因此,可以针对学生所学专业逐步设立既符合本专业又具有工程背景的可操作性较强的实验项目,用以适应学生对专业领域知识的理解与创新需求。其次,有效利用高校科研优势,促进实验与工程教学的发展。以学科为依托,实现科研与教学互补,将科研成果引入实验教学,这样可以开阔学生视野,激发学生的创新思维。第三,实现基础实验与个性实验的互补。在基础实验训练的基础上,开展一些更具有研究性和综合性的实验,这样对理论知识的学习有一个较为有利的补充,同时也可以锻炼学生们实验设计、整体规划的能力,积极调动学生们的学习积极性。
参考文献:
[1]曾立云.流体力学课程教学方法研究[J].甘肃农业大学学报,2002,1(37):123-125.
【关键词】 冠状动脉旁路移植术,非体外循环;血压;心率
characteristic of hemodynamic changes and management during offpump coronary artery bypass graftingqi xingyi, hu qiangfu, huang weiqingdepartment of anesthesiology, wuhan asia heart hospital,wuhan, hubei,430022, chinaabstract:objective:to analyze the characteristic of hemodynamic changes in different anastomosis sites during offpump coronary artery bypass grafting(opcabg), and investigate the appropriate management for maintaining hemodynamic stability.methods:sixty patients were selected in the study from undergoing selective opcabg in hospital.hemodynamic measurements were recorded from the following five aspects : 15 min after induce(t1),anastomosis of the left anterior descending artery (lad t2), the left circumflex coronary (lcx t3), the right coronary artery(rca t4) and the last one before closing thoracic(t5).results:hemodynamics changed when lad were anastomosed with lower degree decrease of cardiac index (ci), lower degree increase of mpap and pvr(p<0.05 all).hemodynamics changed when rca were anastomosed with significantly decrease of ci, significantly increase of hr,cvp,mpap,pvr, lower degree increase of svr (p<0.05 all).hemodynamics changed when lcx were anastomosed with observably decrease of ci,right ventricular ejection fraction(rvef) and map, significantly increase of hr,cvp,mpap,pvr,pcwp,svr (p<0.05 all).hemodynamics tended to be stable and ci improved at the end of operation.conclusion:there are no or little hemodynamic changes during the lad be anastomosed in opcabg, while hemodynamic changed significantly during lcx, rca be anastomosed.hemodynamics become stable and ci improves after operation
key words:coronary artery bypass grafting,offpump;blood pressure;heart rate
近年来,随着冠状动脉旁路移植术的广泛开展,人们对其血流动力学及病理生理变化的认识更加深入。非体外循环冠状动脉旁路移植术(opcabg)与常规体外循环冠状动脉旁路移植术(cabg)比较有很多优点,如不激活补体和炎症系统,不消耗凝血因子和血小板,血细胞破坏减少,可降低围手术期用血量,降低住院费用等等[ 1~3]。但由于opcab术中为了更好地吻合冠状血管,需要有选择地暴露和固定需要吻合的目标冠状血管,因此血流动力学波动难以避免,有时会导致严重的后果,术中减少其变化是手术成功的关键。我们通过观察60例opcab患者血流动力学指标的变化,以期发现术中血流动力学变化特点, 探讨维持术中血流动力学稳定的管理措施。
1 资料与方法
1.1 一般资料
选择我院60例择期接受opcab的冠心病患者,男43例,女17例,年龄(65±7)岁,术前心功能ⅱ~ⅲ级,超声心动图:左室射血分数(lvef)0.42~0.52,平均0.47。排除:合并室壁瘤、中度及重度瓣膜病变、术前1个月内发生心肌梗塞、lvef≤0.4、非首次cabg的患者。其中2支血管病变7例, 3支血管病变53例,合并高血压病史52例, 心肌梗塞史32例, 糖尿病史35例, 脑梗塞2例。
1.2 麻醉方法
术前每日口服β-阻滞药或/和钙通道阻滞药至手术日晨,术前1 h口服地西泮10mg,术前30min肌注吗啡10mg、长托宁1mg充分镇静,入手术室后常规面罩吸氧,监测心电图(ecg)和脉搏血氧饱和度(spo2),持续监测心率(hr)、心律和st段变化,外周静脉和桡动脉穿刺置管。常规依托咪酯(0.3mg/kg)、咪唑安定(0.03~0.05mg/kg)、维库溴铵(0.15mg/kg)和芬太尼(5~10μg/kg)麻醉诱导。气管插管后麻醉维持采用静吸复合,吸入浓度2%的七氟醚,以芬太尼和丙泊酚持续静脉输注维持麻醉。麻醉后行右颈内静脉穿刺置入swan-ganz导管及三腔静脉导管,经口置入食道超声(tee)探头。术中使用变温毯,保持37℃恒温。术中自体血回收,维持血细胞压积(hct)>30%。在离断乳内动脉之前,静脉予肝素200u/kg,维持全血活化凝血时间(act)大于300秒。血管吻合结束后,用鱼精蛋白中和肝素(1∶1),使act恢复至术前水平。胸部正中切口, 取左乳内动脉和大隐静脉备用。吻合顺序: 先吻合心脏前壁血管, 再吻合侧壁血管, 最后吻合后壁血管。心脏固定器(octopus)为medtronic公司生产。辅以、液体治疗、血管活性药物、保持血流动力学的稳定,防止心肌缺血和心梗的发生,加强心肺脑肾和血液五大保护,促使病人早期拔管。
1.3 监测指标
于麻醉诱导后15min(t1)、前降支吻合时(t2)、左回旋支吻合时(t3)、右冠状动脉吻合时(t4)、术毕(t5)各时间点记录心率(hr)、平均动脉压(map)、中心静脉压(cvp)、平均肺动脉压(mpap) 、肺毛细血管楔压(pcwp) 、心脏指数(ci) 、体循环阻力(svr) 、肺循环阻力(pvr)和右室射血分数(rvef) 。
1.4 统计方法
计量资料以均数±标准差(±s)表示。统计分析采用spss11.5统计软件包,各个时间点的比较采用方差分析。p<0.05为差异有显著性,
2 结 果
本组60例病人均按术前计划在非体外循环下顺利完成了心脏的完全再血管化。手术时间为(210±27)min,输液量(1600±425)ml,尿量(680±260)ml,出血量(420±150)ml。所有病人术中体温均保持36.0℃以上。病人均未输异体血,整个术中所有病人的血红蛋白含量都大于9.0g/l。每个吻合口的手术时间大约需要10~15min。共记录了60个左前降支(lad), 58个右冠状动脉(rca), 55个左回旋支(lcx)的血流动力学数据。每例患者移植血管支数平均为(3.1±0.7)支。3例患者心电图记录到有意义的st段改变,所有患者均无围术期心肌梗塞。
行前降支冠状动脉远端吻合时, ci较基础值(诱导后15 min)轻度下降,mpap和pvr较基础值轻度升高,差异有显著性(p<0.05), 因无明显心脏搬动,其他血流动力学指标都没有明显改变。行右冠状动脉远端吻合时, ci较基础值明显下降, hr、cvp、mpap、pvr、svr明显升高(p均<0.05)。行左回旋支冠状动脉远端吻合时, ci、map、rvef较基础值显著下降,hr、cvp、mpap、pcwp、svr、pvr较基础值明显升高(p<0.05)。术毕各血流动力学指标趋于正常,hr明显升高, mpap和pvr稍升高,ci较术前升高,差异有显著性(p均<0.05)。表1 60例非体外循环冠状动脉旁路移植手术术中血流动力学变化(略)注:与诱导后15 min相比#p<0.05。
3 讨 论
opcabg由于不用体外循环,简化了手术操作,缩短了手术时间,避免了体外循环带来的损害,可获得与体外循环下cabg同样的效果,现在应用越来越普遍,而且适应证拓宽,尤其对于高危患者更有其优越性[4,5]。opcabg术中为充分显露靶血管对心脏的提升和翻转,固定器的放置,以及靶血管分流器的置入,都会影响心脏功能和血流动力学的稳定, 尤其是对于心功能较差者,可导致急剧的心排血量下降和血压降低,严重者可导致心律紊乱及心跳骤停。因此,术中维护血流动力学稳定对于opcabg手术的成功至关重要。
运用opcabg一般首先完成前降支的吻合,这是由于前降支分布区域的重要性及前降支显露良好,无需过多地搬动心脏, 各心腔几何结构无大幅度改变,对血流动力学影响较小。本组病人行前降支冠状动脉远端吻合时, ci较基础值轻度下降,mpap和pvr较基础值轻度升高,血流动力学变化不大。前降支吻合完后,左室血供增加,可视心脏状况予多巴胺3~5μg/kg·min 持续泵入以增加心肌收缩力,改善血流动力学。行右冠状动脉远端吻合时, ci较基础值明显下降, hr、cvp、mpap 、pvr明显升高,svr 轻度升高,但比吻合lcx 时的变化幅度要小。其原因主要是心脏左旋、心尖抬高, 造成三尖瓣的部分梗阻和固定器对右室后壁心肌的直接压迫, 心脏垂直位所致的右心室舒张性充盈障碍, 顺应性下降, 肺阻力增加,右心收缩功能较差, 肺血流量和心输出量(co)减少,为了维持co, hr代偿性增加。tredelenburg使血液重分布,增加回心血量,改善前负荷,同增加的hr一起,补偿心肌收缩力下降引起的co降低。mathison等[6]报道血流动力学衰减的主要原因是右心室舒张功能受损,导致co下降。行左回旋支冠状动脉远端吻合时, 血流动力学波动最明显,同基础值相比,rvef显著降低, ci、map显著下降,hr、cvp、mpap、pcwp、svr、pvr明显升高,可能由于在进行吻合时,左室受到压迫,但左室较厚,此时右室也受压,心室壁较薄,进而引起右室功能明显下降。说明在进行回旋支吻合时,右心功能受到较大影响。经食道超声(tee)监测显示,此时室间隔移向左侧,左室无扩张,右室小部分被挤压,这些改变都符合右室舒张功能受损的诊断。对于大心脏者,在搬动时尤其是进行回旋支吻合时,应打开右侧胸膜腔为右心提供足够的空间。另外,的变化对于维持右心功能也是非常重要的,在进行回旋支吻合时, trendenburg对于维持血压及暴露血管非常重要。我们同时观察到,如果固定器应用后,血压经反复药物调整后仍旧较低,可先心脏回位,等血流动力学指标稳定后再行固定,如此反复几次可使绝大多数病人得以耐受。对于严重的左心功能不全的患者,术前应提倡应用主动脉内气囊泵(iabp)以保证防止因为左心功能不全引起右心的衰竭。另外shane等[7]应用三维超声动图重建技术观察到opcabg术中,暴露各支冠脉时都发生了二尖瓣变形,引起功能性二尖瓣狭窄或加重原有二尖瓣返流,最终引起sv下降,所以,二尖瓣关闭不全也是可能原因之一。同心电图相比, tee观察心肌缺血更敏感,当冠状动脉被暂时阻断时, tee可以观察到局部心室壁的运动异常。这种运动异常在恢复灌注后30min基本消失。持续存在的新出现的室壁运动异常通常提示搭桥的冠状动脉的通畅度不佳[8]。
影响术中血流动力学变化的因素主要有冠状动脉病变部位及程度、心功能、心肌氧供耗平衡状态、心脏的变化等。冠心病病人的心肌氧供、氧耗平衡处于边缘状态,冠脉储备能力差,只有降低心肌氧耗,才能保持心肌氧供耗的平衡。控制心率、血压极其重要。术中心率一般小于70次/min,控制适当水平的血压,血压过低不能保证心肌的氧供,过高增加心脏的后负荷,增加心脏的氧耗。故应尽可能维持和改善其平衡状态。tee可随时观察心脏的形态学及血流动力学变化,配合持续心电图s-t段分析,可及时发现心脏缺血。对重症择期手术患者,充分的术前心功能调整,代偿性扩大的心脏常可明显缩小,而且大部分患者的心功能状态和射血分数都会有一定程度的改善。可见术中密切观察心脏状况,控制液体平衡,及时发现心肌缺血,正确应用药物辅助,opcabg是安全可行的。
【参考文献】
characteristic of hemodynamic changes and management during offpump coronary artery bypass grafting
qi xingyi, hu qiangfu, huang weiqing
department of anesthesiology, wuhan asia heart hospital,wuhan, hubei,430022, china
abstract:objective:to analyze the characteristic of hemodynamic changes in different anastomosis sites during offpump coronary artery bypass grafting(opcabg), and investigate the appropriate management for maintaining hemodynamic stability.methods:sixty patients were selected in the study from undergoing selective opcabg in hospital.hemodynamic measurements were recorded from the following five aspects : 15 min after induce(t1),anastomosis of the left anterior descending artery (lad t2), the left circumflex coronary (lcx t3), the right coronary artery(rca t4) and the last one before closing thoracic(t5).results:hemodynamics changed when lad were anastomosed with lower degree decrease of cardiac index (ci), lower degree increase of mpap and pvr(p<0.05 all).hemodynamics changed when rca were anastomosed with significantly decrease of ci, significantly increase of hr,cvp,mpap,pvr, lower degree increase of svr (p<0.05 all).hemodynamics changed when lcx were anastomosed with observably decrease of ci,right ventricular ejection fraction(rvef) and map, significantly increase of hr,cvp,mpap,pvr,pcwp,svr (p<0.05 all).hemodynamics tended to be stable and ci improved at the end of operation.conclusion:there are no or little hemodynamic changes during the lad be anastomosed in opcabg, while hemodynamic changed significantly during lcx, rca be anastomosed.hemodynamics become stable and ci improves after operation
key words:coronary artery bypass grafting,offpump;blood pressure;heart rate
近年来,随着冠状动脉旁路移植术的广泛开展,人们对其血流动力学及病理生理变化的认识更加深入。非体外循环冠状动脉旁路移植术(opcabg)与常规体外循环冠状动脉旁路移植术(cabg)比较有很多优点,如不激活补体和炎症系统,不消耗凝血因子和血小板,血细胞破坏减少,可降低围手术期用血量,降低住院费用等等[ 1~3]。但由于opcab术中为了更好地吻合冠状血管,需要有选择地暴露和固定需要吻合的目标冠状血管,因此血流动力学波动难以避免,有时会导致严重的后果,术中减少其变化是手术成功的关键。我们通过观察60例opcab患者血流动力学指标的变化,以期发现术中血流动力学变化特点, 探讨维持术中血流动力学稳定的管理措施。
1 资料与方法
1.1 一般资料
选择我院60例择期接受opcab的冠心病患者,男43例,女17例,年龄(65±7)岁,术前心功能ⅱ~ⅲ级,超声心动图:左室射血分数(lvef)0.42~0.52,平均0.47。排除:合并室壁瘤、中度及重度瓣膜病变、术前1个月内发生心肌梗塞、lvef≤0.4、非首次cabg的患者。其中2支血管病变7例, 3支血管病变53例,合并高血压病史52例, 心肌梗塞史32例, 糖尿病史35例, 脑梗塞2例。
1.2 麻醉方法
术前每日口服β-阻滞药或/和钙通道阻滞药至手术日晨,术前1 h口服地西泮10mg,术前30min肌注吗啡10mg、长托宁1mg充分镇静,入手术室后常规面罩吸氧,监测心电图(ecg)和脉搏血氧饱和度(spo2),持续监测心率(hr)、心律和st段变化,外周静脉和桡动脉穿刺置管。常规依托咪酯(0.3mg/kg)、咪唑安定(0.03~0.05mg/kg)、维库溴铵(0.15mg/kg)和芬太尼(5~10μg/kg)麻醉诱导。气管插管后麻醉维持采用静吸复合,吸入浓度2%的七氟醚,以芬太尼和丙泊酚持续静脉输注维持麻醉。麻醉后行右颈内静脉穿刺置入swan-ganz导管及三腔静脉导管,经口置入食道超声(tee)探头。术中使用变温毯,保持37℃恒温。术中自体血回收,维持血细胞压积(hct)>30%。在离断乳内动脉之前,静脉予肝素200u/kg,维持全血活化凝血时间(act)大于300秒。血管吻合结束后,用鱼精蛋白中和肝素(1∶1),使act恢复至术前水平。胸部正中切口, 取左乳内动脉和大隐静脉备用。吻合顺序: 先吻合心脏前壁血管, 再吻合侧壁血管, 最后吻合后壁血管。心脏固定器(octopus)为medtronic公司生产。辅以、液体治疗、血管活性药物、保持血流动力学的稳定,防止心肌缺血和心梗的发生,加强心肺脑肾和血液五大保护,促使病人早期拔管。
1.3 监测指标
于麻醉诱导后15min(t1)、前降支吻合时(t2)、左回旋支吻合时(t3)、右冠状动脉吻合时(t4)、术毕(t5)各时间点记录心率(hr)、平均动脉压(map)、中心静脉压(cvp)、平均肺动脉压(mpap) 、肺毛细血管楔压(pcwp) 、心脏指数(ci) 、体循环阻力(svr) 、肺循环阻力(pvr)和右室射血分数(rvef) 。
1.4 统计方法
计量资料以均数±标准差(±s)表示。统计分析采用spss11.5统计软件包,各个时间点的比较采用方差分析。p<0.05为差异有显著性,
2 结 果
本组60例病人均按术前计划在非体外循环下顺利完成了心脏的完全再血管化。手术时间为(210±27)min,输液量(1600±425)ml,尿量(680±260)ml,出血量(420±150)ml。所有病人术中体温均保持36.0℃以上。病人均未输异体血,整个术中所有病人的血红蛋白含量都大于9.0g/l。每个吻合口的手术时间大约需要10~15min。共记录了60个左前降支(lad), 58个右冠状动脉(rca), 55个左回旋支(lcx)的血流动力学数据。每例患者移植血管支数平均为(3.1±0.7)支。3例患者心电图记录到有意义的st段改变,所有患者均无围术期心肌梗塞。
行前降支冠状动脉远端吻合时, ci较基础值(诱导后15 min)轻度下降,mpap和pvr较基础值轻度升高,差异有显著性(p<0.05), 因无明显心脏搬动,其他血流动力学指标都没有明显改变。行右冠状动脉远端吻合时, ci较基础值明显下降, hr、cvp、mpap、pvr、svr明显升高(p均<0.05)。行左回旋支冠状动脉远端吻合时, ci、map、rvef较基础值显著下降,hr、cvp、mpap、pcwp、svr、pvr较基础值明显升高(p<0.05)。术毕各血流动力学指标趋于正常,hr明显升高, mpap和pvr稍升高,ci较术前升高,差异有显著性(p均<0.05)。表1 60例非体外循环冠状动脉旁路移植手术术中血流动力学变化(略)注:与诱导后15 min相比#p<0.05。
3 讨 论
opcabg由于不用体外循环,简化了手术操作,缩短了手术时间,避免了体外循环带来的损害,可获得与体外循环下cabg同样的效果,现在应用越来越普遍,而且适应证拓宽,尤其对于高危患者更有其优越性[4,5]。opcabg术中为充分显露靶血管对心脏的提升和翻转,固定器的放置,以及靶血管分流器的置入,都会影响心脏功能和血流动力学的稳定, 尤其是对于心功能较差者,可导致急剧的心排血量下降和血压降低,严重者可导致心律紊乱及心跳骤停。因此,术中维护血流动力学稳定对于opcabg手术的成功至关重要。
双J管在临床上使用广泛[1],特别是在输尿管结石的治疗中。但是与之相关的并发症仍旧相当频繁地出现[2],对患者产生各种各样的副作用。在这个方面来说,放置有支架的输尿管内的尿动力学,在结晶形成和生长、生物膜及细菌菌落形成等这些物理化学作用或者是生物作用中起到了至关重要的作用[3,4]。不论是从数学角度还是实验角度,一些研究者也尝试着去模拟置入支架后的输尿管中的尿液流动,但是对于量化支架性能上的流体动力学参数却的基础研究却几乎没有。因此,了解输尿管支架的置入对上泌尿道尿动力学的影响,以及其与一些临床相关因素的关系,变得十分有必要,这些因素包括因细菌感染引起的尿液浓度变化,或者是输尿管内腔的不同程度阻塞。所以,本课题的主要目标,是通过一个模仿输尿管结构制作的人工模型,研究置入输尿管支架后并且有结石阻塞的输尿管中的尿动力学。借助此模型,测得肾盂压强在尿液粘度、液体流速和输尿管阻塞率这些不同物理因素的变化下的定量数据。这项研究的结果会帮助我们理解这些参数是如何同时地或者独立地影响输尿管支架的性能,以及对整个上泌尿道起何作用。
2实验方法
2.1设计制作输尿管模型
使用ICEMCFD14.0制作家猪输尿管的CAD模型(输尿管尺寸数据取自当地屠宰场)。与此同时,使用一个直径2cm、高3.6cm的圆柱形空腔作为肾盂。使用3D打印机根据设计好的CAD图形打印出硬质阳模。然后准备好一个透明空心塑料圆筒(内直径3.8cm,长33cm),将阳模沿圆筒中轴线置入其中,接着缓慢向圆筒内灌入去除气体的聚二甲基硅氧烷(PDMS)前体和固化剂的混合物(10:1w/w)并加热固化,完成模型制作。由于PDMS材料高度透明,因此最终的输尿管模型就是可以从外部一览无余的一个中空圆柱体,内腔道尺寸和之前实验测得的尺寸一致。
2.2检测肾盂内液体压强
正常情况下,肾盂内的压强的生理值低于20cmH2O[5]。本实验模型中肾盂部分的压强是通过一只导管顶端压力传感器测得的,其中分别有三个独立的变化量:体积流速、流体动力学粘度和输尿管阻塞率。记录压强时使用一个在LabVIEW环境下编写的简易程序。严格按照临床操作步奏向输尿管模型中置入一根41cm长的双J管,恰使其末端卷曲部分分别处于模型的肾盂部分和膀胱部分。此支架内直径1.28mm,外直径2.08mm。为了研究尿液粘度变化对肾盂内压强的影响(例如尿液感染或者是肾功能障碍时),输尿管模型中的尿液是由蒸馏水和甘油以不同浓度混合的甘油溶液所替代。实验过程中,我们准备了六种浓度的甘油溶液,每种都具有不用的流体动力学粘度,其质量分数如下:0,10,20,30,40,50。粘度值见表1。将注射器泵连接至肾盂部分,来模拟尿液在肾脏的产生过程。在实验中采用四种不同的流速(Q)(表1),范围在猪体内尿液流速的生理范围内(0-20ml/min)。我们利用八只塑料小球体来充当阻塞物,通过给每个小球沿中轴线方向钻不同大小的圆孔,来控制阻塞率。
3实验结果
图2中列举了在两种阻塞率(图2a中OB%=98.84%;图2b中OB%=87.62%)之下,肾盂压强与流速和尿液粘度的关系,其中不同浓度的甘油溶液,代表了不同的粘度,在图中用符号区分开。通过图2,可以看出,肾盂压强与输尿管内流体流速和流体粘度分别成线性关系,并随着流速的增大、粘度的增加而增加。输尿管模型中,肾盂压力与液体流速Q和输尿管阻塞率OB%的关系如图2所示。图2a中显示,模型上段阻塞率100%,液体粘度μ=1cP(蒸馏水)时的情形。图中回归线的斜率表示了系统里的流体阻力(m=1.06cmH2O/(ml/min))。同时我们可以看到,此时肾盂内压强只有在一种试验情况下超过了临界值20cmH2O,即流速Q=20ml/min。肾盂压强和阻塞率的关系如图2所示,在μ=1cP,Q=20ml/min时,可以看到有三组数据肾盂压强超过了临界值,分别为阻塞率OB%=96,99,100。结合μ和OB%的整个变化范围,流体阻力(m)可以表示为P-Q插值函数的斜率,如图2a。m的值见表2。随着阻塞率OB%从0增至100(由下至上),或者随着粘度μ从1cP增加至6cP(由左至右),m的值也随之增长。大多数R2数值接近0.9,表示肾盂内压强P和阻塞率OB%存在线性关系,P和粘度μ也是线性关系。小一些的m和R2数值是由于处在输尿管无阻塞的情况(OB%=0,输尿管模型中无支架,也无塑料小球),这种情况下粘度μ的增加对压强P影响很小。图2a为阻塞率OB=100%,粘度为1cP时,肾盂压强随流速变化的情况(流速变化范围为0-20ml/min);图2b为流速为20ml/min,粘度为1cP时,肾盂压强随阻塞率变化的情况(阻塞率变化范围为80%-100%)。图中上部横线表示生理上肾盂可承受的最大压强的临界值(20cmH2O)。表2m为流体阻力(cmH2O*60s/ml),即回归线斜率(压强与流速之比),R2为线性回归分析中的一个参数,值越接近于1,说明数据的拟合度越高。此表展示了流体阻力与粘度和阻塞率之间的关系。图3中的A、B、C、D、E区域表示在流体力学粘度作用下的输尿管模型中的肾盂压强,其中X轴表示粘度(cP),Y轴表示流速(ml/min),数据来自对实验测得数据点的线性内插。图中字母代表不同数值的压强,依据对肾脏的不同影响,A部分表示生理上的“安全区域”(P<15cmH2O),B部分表示生理上的“警示区域”(15cmH2O<P<20cmH2O),C和D部分则表示“危险区域”(P>20cmH2O)。图3a所示为未阻塞的输尿管中的情况,即使当流体粘度和流速都最高时,肾盂内液体压强也始终低于临界值。这种情况下,最小压强(当Q=5ml/min,μ=1cP时)为0.4±0.08cmH2O,最大压强(当Q=20ml/min,μ=6cP时)为1.4±0.11cmH2O。图3b所示情况为置入支架、但并没有在模型内腔上段放置塑料小球的输尿管,流体阻力因输尿管支架的插入,而显著增大,在略高一些的流速Q和粘度μ值下,图片上出现了警示区域、甚至危险区域。在有塑料小球存在的情况下(意味着更高的阻塞率,图3c中OB%=88,图3d中OB%=100),当流速Q和度μ值都较低时,也会出现更大面积更严重的“警告区域”与“危险区域”。
4分析与讨论
尿液通过置入有支架的输尿管的排放,是一个受多种因素影响的复杂过程,它受控于肾盂内的压强、膀胱内压强、输尿管阻塞的严重程度、输尿管支架内径、外径的大小、支架长度支架上孔洞的多少以及尿液本身的物理性质(例如尿液粘度)。在有支架存在的输尿管内,尿液的流动范围既可以顺着腔外区域(支架外壁与输尿管内壁之间的间隙),也可以是支架的内部区域。一些研究尝试过从性质上对置有支架的输尿管内的流体动力学进行描述,然而,就我们所知,定量化的研究数据仍然是一片空白,定量的了解能够引起肾脏损害、尿液感染或者是输尿管支架结垢的种种因素才是学术研究更重要的主题。从这个角度来说,我们制作的仿生的透明模型可以作为非常接近地模拟阻塞并且有支架置入的输尿管内的流体力学环境的一次尝试。如图2和表2里所示的,我们证实了在绝大多数例子里,肾盂内液体压强与尿液浓度、流速以及输尿管内腔的阻塞程度之间成线性相关。在无阻塞的情况下,测得模型内的最小流体阻力为0.007cmH2O/(ml/min),并且它并不会随尿液浓度的改变而发生显著变化。关于输尿管支架能单方面造成有实质性意义的阻塞的其他证据,我们还可以对比表2中,比较完全无阻塞的输尿管中的流体阻力和仅放有支架(“仅支架”)时的输尿管中的阻力两者的大小,后者明显高于前者。另外,在图3b中出现的“警告区域”和“危险区域”同样印证输尿管支架的阻塞效果。此输尿管模型还能为临床医生提供一些帮助,使他们能够定量的了解,在一些具有临床意义的情况下,单个或者多个变化因素对肾盂内液体压强的影响。例如,图3中,我们可以很直观的看出,在一定的阻塞率下,不同尿液流速和粘度的组合会产生多大肾盂内的压强,其究竟是处于20cmH2O等高线以上还是以下。而20cmH2O等高线左下方的区域是安全区域,代表了肾脏功能正常,右上方区域为相对危险的区域,可能会对肾脏功能造成潜在损害。同时,表2清晰的表明了上尿路中尿液粘度的微小增长或者是阻塞程度的微增在对肾盂内压强大幅影响的同时,是如何显著影响系统中的流体阻力的。另外,比较图3c和图3d,图3d较图3c阻塞率有略微上升(从88%至100%),但是“安全区域”的范围却大大减小,若不想潜在地对肾脏造成损伤,尿液粘度和流速大小都需要加以限制。
5结束语
煤的气化是煤炭清洁高效利用的关键技术,是发展煤基大宗化学品和液体燃料合成、先进的整体煤气化联合循环发电系统、多联产系统、氢能、燃料电池等过程工业的基础,是这些行业发展的核心和龙头技术。煤的气化的过程实质是将煤中的碳、氢转化为清洁燃料气或合成气(CO+H2)的过程。
本书从全新的视角对工业煤的气化科学和技术进行了全面的论述,涉及煤的气化工艺过程的各项内容,既有工艺分析,又有理论研究。反映了煤的气化技术领域的最新进展,还包含了作者自己的相关研究成果,许多重要内容为同类专著中首次报道。
全书共有10章:1.引言。提出了全球范围内煤的气化原料的劣质化趋势;2.煤的气化的总论。简要介绍了煤气化技术的背景和行业地位、最新的应用、煤的气化的必要性、煤气化技术的沿革、历经三代的气化炉型、原料和产物、技术市场、对环境的影响和污染排放,以及煤的气化面临的挑战、潜在机会等;3.气化用煤的分析表征。为使读者意识到通过气化技术实现煤转化的复杂性,本章从实用观点从发,讨论了气化用原料煤样品的分析表征,并从这些信息来决定气化过程的适用性。必要的有关知识包括煤的标准分析(元素分析、工业分析和热值)以及更复杂的反应性和显微组分的分析,特别强调关注煤中的矿物质,因为这是所有气化过程的极限。最后对煤的物理和流体动力学性质做了总结;4.气化过程的基础。介绍了基本的煤的气化反应和化学、评价不同气化方法优劣的主要技术性能参数,并从多个技术层次探讨了不同气化工艺过程之间的差别:床型(移动床/流化床/气流床),温度范围(灰熔融/渣粘度),压力等级,进料方法(干粉/水煤浆),器壁类型(膜/耐火衬里/水夹套),合成气冷却(水/气/化学激冷/热回收),氧化剂(氧气/空气),排渣方式(灰渣/飞灰/团聚),催化剂添加与否;5.煤气化模拟。在介绍了气化系统衡算概念的基础上,列举气化模拟的热力学模型、动力学模型、计算流体动力学(CFD)模型方法,比较了各种方法的优缺点、主要应用领域和相关的实验研究。为便于读者理解这里仅涉及基本方程和科学背景;6.煤的气化技术。煤的气化技术是本书的中心内容,包括一些此前未公开报道的最新和最全面的煤的气化过程资讯。按气化炉型的不同,分别详述了壳牌、Uhde (即高温温克勒炉HTW, Prenflow)、GE、西门子、CB&I (即E-Gas)炉, Lurgi (即固定床固态排渣(FBDB)炉, 和Envirotherm/Zemag (即BGL)炉的历史沿革、详细工艺描述,改进强化措施和现在的工业实施项目。针对典型技术,基于统一边界条件,给出了通用计算模型和模拟结果,并与实际运行数据进行对照分析,着重对比高灰煤和常规煤原料对气化性能的影响。作者还特别介绍了有关中国开发的气化新炉型和新工艺;7.煤的气化过程热力学评价。本章主要论述本书作者研究出的创新方法:三元气化图。作者给出了该方法详细的实施步骤和应用方法,指导读者得出优化的用户气化图和关联式,以常规的匹茨堡8号煤和南非高灰煤为例进行了具体对比计算分析,其结果可用于解析灰份的影响规律和气化技术潜力的分析。此方法还可扩展用于二氧化碳气化和生物质气化;8.煤的气化过程的有效能分析。为了考虑气体冷却方法对整个过程的影响,对常规煤和高灰煤的气化过程进行了有效能分析和对比;9.内循环气化炉的概念研究。鉴于现在市场上还没有适应高灰煤的气化技术,作者针对高灰煤气化提出了创新性的新气化炉型:内循环气化炉。本章内容全面阐述内循环气化炉相关的气化过程基本原理、详细的工艺条件、反应室的布置、气化剂的注入、气体的冷却、除灰、过程控制;10.气化发展趋势。这是对全书的简要总结并展望了气化技术的发展趋势。
本书的读者对象包括能源、煤炭、化学工程相关专业从事煤转化和煤化工科研、设计生产的工程技术人员和高等院校相关专业的教师、高年级本科生和研究生。
力学可粗分为静力学、运动学和动力学三部分,静力学研究力的平衡或物体的静止问题;运动学只考虑物体怎样运动,不讨论它与所受力的关系;动力学讨论物体运动和所受力的关系。
力学也可按所研究对象区分为固体力学、流体力学和一般力学三个分支,流体包括液体和气体;固体力学和流体力学可统称为连续介质力学,它们通常都采用连续介质的模型。固体力学和流体力学从力学分出后,余下的部分组成一般力学。
一般力学通常是指以质点、质点系、刚体、刚体系为研究对象的力学,有时还把抽象的动力学系统也作为研究对象。一般力学除了研究离散系统的基本力学规律外,还研究某些与现代工程技术有关的新兴学科的理论。
一般力学、固体力学和流体力学这三个主要分支在发展过程中,又因对象或模型的不同出现了一些分支学科和研究领域。属于一般力学的有理论力学(狭义的)、分析力学、外弹道学、振动理论、刚体动力学、陀螺力学、运动稳定性等;属于固体力学的有材料力学、结构力学、弹性力学、塑性力学、断裂力学等;流体力学是由早期的水力学和水动力学这两个风格迥异的分支汇合而成,现在则有空气动力学、气体动力学、多相流体力学、渗流力学、非牛顿流体力学等分支。各分支学科间的交*结果又产生粘弹性理论、流变学、气动弹性力学等。
力学也可按研究时所采用的主要手段区分为三个方面:理论分析、实验研究和数值计算。实验力学包括实验应力分析、水动力学实验和空气动力实验等。着重用数值计算手段的计算力学,是广泛使用电子计算机后才出现的,其中有计算结构力学、计算流体力学等。对一个具体的力学课题或研究项目,往往需要理论、实验和计算这三方面的相互配合。
力学在工程技术方面的应用结果形成工程力学或应用力学的各种分支,诸如土力学、岩石力学、爆炸力学复合材料力学、工业空气动力学、环境空气动力学等。
力学和其他基础科学的结合也产生一些交又性的分支,最早的是和天文学结合产生的天体力学。在20世纪特别是60年代以来,出现更多的这类交*分支,其中有物理力学、化学流体动力学、等离子体动力学、电流体动力学、磁流体力学、热弹性力学、理性力学、生物力学、生物流变学、地质力学、地球动力学、地球构造动力学、地球流体力学等。
运动学发展简史
运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。
用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。
运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。
在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。
运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。
运动学的发展历史
运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。
伽利略发现了等加速直线运动中,距离与时间二次方成正比的规律,建立了加速度的概念。在对弹射体运动的研究中,他得出抛物线轨迹,并建立了运动(或速度)合成的平行四边形法则,伽利略为点的运动学奠定了基础。在此基础上,惠更斯在对摆的运动和牛顿在对天体运动的研究中,各自独立地提出了离心力的概念,从而发现了向心加速度与速度的二次方成正比、同半径成反比的规律。
18世纪后期,由于天文学、造船业和机械业的发展和需要,欧拉用几何方法系统地研究了刚体的定轴转动和刚体的定点运动问题,提出了后人用他的姓氏命名的欧拉角的概念,建立了欧拉运动学方程和刚体有限转动位移定理,并由此得到刚体瞬时转动轴和瞬时角速度矢量的概念,深刻地揭示了这种复杂运动形式的基本运动特征。所以欧拉可称为刚体运动学的奠基人。
此后,拉格朗日和汉密尔顿分别引入了广义坐标、广义速度和广义动量,为在多维位形空间和相空间中用几何方法描述多自由度质点系统的运动开辟了新的途径,促进了分析动力学的发展。
19世纪末以来,为了适应不同生产需要、完成不同动作的各种机器相继出现并广泛使用,于是,机构学应运而生。机构学的任务是分析机构的运动规律,根据需要实现的运动设计新的机构和进行机构的综合。现代仪器和自动化技术的发展又促进机构学的进一步发展,提出了各种平面和空间机构运动分析和综合的问题,作为机构学的理论基础,运动学已逐渐脱离动力学而成为经典力学中一个独立的分支。
固体力学发展简史
固体力学是力学中形成较早、理论性较强、应用较广的一个分支,它主要研究可变形固体在外界因素(如载荷、温度、湿度等)作用下,其内部各个质点所产生的位移、运动、应力、应变以及破坏等的规律。
固体力学研究的内容既有弹性问题,又有塑性问题;既有线性问题,又有非线性问题。在固体力学的早期研究中,一般多假设物体是均匀连续介质,但近年来发展起来的复合材料力学和断裂力学扩大了研究范围,它们分别研究非均匀连续体和含有裂纹的非连续体.
自然界中存在着大至天体,小至粒子的固态物体和各种固体力学问题。人所共知的山崩地裂、沧海桑田都与固体力学有关。现代工程中,无论是飞行器、船舶、坦克,还是房屋、桥梁、水坝、原子反应堆以及日用家具,其结构设计和计算都应用了固体力学的原理和计算方法。
由于工程范围的不断扩大和科学技术的迅速发展,固体力学也在发展,一方面要继承传统的有用的经典理论,另一方面为适应各们现代工程的特点而建立新的理论和方法。
固体力学的研究对象按照物体形状可分为杆件、板壳、空间体、薄壁杆件四类。薄壁杆件是指长宽厚尺寸都不是同量级的固体物件。在飞行器、船舶和建筑等工程结构中都广泛采用了薄壁杆件。
固体力学的发展历史
萌芽时期 远在公元前二千多年前,中国和世界其他文明古国就开始建造有力学思想的建筑物、简单的车船和狩猎工具等。中国在隋开皇中期(公元591~599年)建造的赵州石拱桥,已蕴含了近代杆、板、壳体设计的一些基本思想。
随着实践经验的积累和工艺精度的提高,人类在房屋建筑、桥梁和船舶建造方面都不断取得辉煌的成就,但早期的关于强度计算或经验估算等方面的许多资料并没有流传下来。尽管如此,这些成就还是为较早发展起来的固体力学理论,特别是为后来划归材料力学和结构力学那些理论奠定了基础。
发展时期 实践经验的积累和17世纪物理学的成就,为固体力学理论的发展准备了条件。在18世纪,制造大型机器、建造大型桥梁和大型厂房这些社会需要,成为固体力学发展的推动力。
这期间,固体力学理论的发展也经历了四个阶段:基本概念形成的阶段;解决特殊问题的阶段;建立一般理论、原理、方法、数学方程的阶段;探讨复杂问题的阶段。在这一时期,固体力学基本上是沿着研究弹性规律和研究塑性规律,这样两条平行的道路发展的,而弹性规律的研究开始较早。
弹性固体的力学理论是在实践的基础上于17世纪发展起来的。英国的胡克于1678年提出:物体的变形与所受外载荷成正比,后称为胡克定律;瑞士的雅各布第一·伯努利在17世纪末提出关于弹性杆的挠度曲线的概念;而丹尼尔第一·伯努利于18世纪中期,首先导出棱柱杆侧向振动的微分方程;瑞士的欧拉于1744年建立了受压柱体失稳临界值的公式,又于1757年建立了柱体受压的微分方程,从而成为第一个研究稳定性问题的学者;法国的库仑在1773年提出了材料强度理论,他还在1784年研究了扭转问题并提出剪切的概念。这些研究成果为深入研究弹性固体的力学理论奠定了基础。
法国的纳维于1820年研究了薄板弯曲问题,并于次年发表了弹性力学的基本方程;法国的柯西于1822年给出应力和应变的严格定义,并于次年导出矩形六面体微元的平衡微分方程。柯西提出的应力和应变概念,对后来数学弹性理论,乃至整个固体力学的发展产生了深远的影响。
法国的泊阿松于1829年得出了受横向载荷平板的挠度方程;1855年,法国的圣维南用半逆解法解出了柱体扭转和弯曲问题,并提出了有名的圣维南原理;随后,德国的诺伊曼建立了三维弹性理论,并建立了研究圆轴纵向振动的较完善的方法;德国的基尔霍夫提出粱的平截面假设和板壳的直法线假设,他还建立了板壳的准确边界条件并导出了平板弯曲方程;英国的麦克斯韦在19世纪50年代,发展了光测弹性的应力分析技术后,又于1864年对只有两个力的简单情况提出了功的互等定理,随后,意大利的贝蒂于1872年对该定理加以普遍证明;意大利的卡斯蒂利亚诺于1873年提出了卡氏第一和卡氏第二定理;德国的恩盖塞于1884年提出了余能的概念。
德国的普朗特于1903年提出了解扭转问题的薄膜比拟法;铁木辛柯在20世纪初,用能量原理解决了许多杆板、壳的稳定性问题;匈牙利的卡门首先建立了弹性平板非线性的基本微分方程,为以后研究非线性问题开辟了道路。
苏联的穆斯赫利什维利于1933年发表了弹性力学复变函数方法;美国的唐奈于同一年研究了圆柱形壳在扭力作用下的稳定性问题,并在后来建立了唐奈方程;弗吕格于1932年和1934年发表了圆柱形薄壳的稳定性和弯曲的研究成果;苏联的符拉索夫在1940年前后建立了薄壁杆、折板系、扁壳等二维结构的一般理论。
在飞行器、舰艇、原子反应堆和大型建筑等结构的高精度要求下,有很多学者参加了力学研究工作,并解决了大量复杂问题。此外,弹性固体的力学理论还不断渗透到其他领域,如用于纺织纤维、人体骨骼、心脏、血管等方面的研究。
1773年库仑提出土的屈服条件,这是人类定量研究塑性问题的开端。1864年特雷斯卡在对金属材料研究的基础上,提出了最大剪应力屈服条件,它和后来德国的光泽斯于1913年提出的最大形变比能屈服条件,是塑性理论中两个最重要的屈服条件。19世纪60年代末、70年代初,圣维南提出塑性理论的基本假设,并建立了它的基本方程,他还解决了一些简单的塑性变形问题。
现代固体力学时期 指的是第二次世界大战以后的时期,这个时期固体力学的发展有两个特征:一是有限元法和电子计算机在固体力学中得到广泛应用;二是出现了两个新的分支——断裂力学和复合材料力学。
特纳等人于1956年提出有限元法的概念后,有限元法发展很快,在固体力学中大量应用,解决了很多复杂的问题。
关键词:湿地水环境;演变机理;生态效应;新思路;研究
引言
湿地是地球上具有多种独特功能的生态系统,在为人类提供食物、原料和水资源、稳定环境、维持生态平衡、保持生物多样性等方面均起到重要作用,是人类赖以生存和持续发展的重要基础,享有“地球之肾”的美誉[1]。近一个世纪以来,由于受盲目围垦、过度开发和水质污染等人类活动及气候变化、天然水循环变化的影响,使得湿地水环境和生态空间格局发生变化,进而造成湿地的功能下降、生物多样性丧失、甚至湿地的消亡[2,3]。
我国自1992年加入《湿地公约》后,对保护湿地开展了一系列富有成效的工作,但湿地保护形势依然严峻,由于对湿地形成演变机理、水环境效应及生态系统结构方面缺乏全面而深刻的了解,往往给保护区的工作造成一定困难,湿地保护研究相对滞后[4]。开展变化环境下湿地水环境演变机理及生态效应研究,对更好的利用和保护湿地有重要意义。
1国内外研究现状及分析
1.1研究方法
湿地的定量模拟研究是当前生态学、水文学和湿地科学的一个热点研究领域[5]。湿地建模、情势重建是理解湿地形成演变机理、水环境效应、生态系统结构的重要途径。目前,国内外对湿地的模型与研究方法已经取得了较大的进展,现综述如下:
(1)图表分析法与经验统计法:传统湿地生态水文学采用图表分析法与经验统计法研究湿地生态水文问题。从研究手段上看,在水文水质调查、湿地生物调查的基础上,引入遥测信息。方法原理是通过宏观尺度上湿地水文、生态调查,从植被生态的水文适应性角度,根据收集的信息,通过统计分析或采用制图方式进行湿地水文景观分类、生物结构、生物量和生物多样性分析;在此基础上,根据经验方法估算生态环境需水总量[6]。由于这类方法未能充分表达湿地生态演替的阶段性、湿地的基本特征、形成机理和动态过程,缺乏深入的物理机制剖析,研究水平较低,研究的角度相对狭窄。
(2)湿地水文模型:水文过程是湿地中最重要的过程,是决定产生和维持湿地典型类型和湿地过程的重要因素,是湿地研究的核心内容,在湿地形成、发育、演替直至消亡全过程中起重要作用。湿地水文模型可用以定量地评价湿地开发活动及保护管理活动带来的环境影响和生态效应;可用作预测湿地水文及其它“动力”特征的变化规律;可用作检验湿地的概念、理论和湿地研究基本实测数据;也可用作辅助设计工具,在湿地的重新自然化和人工湿地的建造工程中用于辅助设计工程设施的结构、形式和参数等[7]。
近年来,湿地水文模拟技术得到了快速发展,特别是在水库或洪泛湿地方面,如加拿大Waterloo大学提出一个蓄水~出流函数模型用于模拟湿地径流响应[8];英国Birmingham大学改进MODFLOW模型,在British 洪泛平原湿地成功地模拟了以年或季为水文周期的湿地水位变化[9]。国际上已成功开发了适合湿地的分布水文模型, Zacharias等认为湿地是一个水文、水环境系统,强调要加强湿地水资源综合管理,结合GIS和RS发展了一个有物理基础的水文模型来管理湖泊湿地水资源[10];Da Paz等认为水循环对湿地生态系统起着重要作用,采用了二维平面水动力模型在Mangueira湖泊和Taim湿地中的应用[11]。我国湿地模拟研究起步不久,但模型研究仍然以概念性水文模型、地下水模型为主,湿地分布水文模型缺乏,有待加强。
(3)湿地监测和高新技术应用:美国从二十世纪70年代初就开始关注湿地监测和高新技术应用。Grapes, TR监测了chalk流域湿地的洪水和地下水,分析了湿地地下水流与河渠水位关系,以及壤中流和垂直水分通量变化规律[12]。国内王茜等人利用3S技术对洪湖湿地的结构类型进行监测,在分析研究洪湖湿地现状(水文、土壤、植被、地形地貌、土壤、经济发展、开发等内容)的基础上,根据国际湿地分类的原则和实际情况,考虑遥感上的可操作性,设计出研究区域的湿地遥感分类系统[13]。
(4)湿地水环境流体模型研究:国内外有关科学工作者从70 年代后期开始从环境科学的角度对湿地进行研究, 取得了大量研究成果,为湿地保护和合理开发提供了重要的科学依据。如国外60年代开始研究河流水量水质、水量泥沙耦合模型。70~80 年代,国内外研究者较多地研究应用了一维、二维水量水质模型(如Baca and Arnett,1977),90 年代国外三维水量水质模型研究比较成熟(如Simons, et al,1977)。例如美国国家环境保护局提出的多参数综合水质模型(WASP,1996)和环境流体动力学模型(EFDC,2001),丹麦水力学研究所Mike水质模型等。国外环境流体动力学模型在我国应用研究也取得了很大进展,目前已广泛应用在河流、水库、湖泊、河口、港湾以及湿地等水环境生态系统中[14]。我国的湖泊工作者和环境工作者从70 年代后期开始, 进行了大量湖泊环境保护方面的研究工作, 在湖泊、水库水质预测、污染物迁移转化规律、总量控制等方面取得了一批重要成果[15]。
(5)湿地生态环境需水研究:90年代后环境需水量和生态需水量开始成为人们关注的焦点[16]。到目前为止,国外有关生态环境需水量研究内容主要有:河道流量与鱼类生息环境关系研究[17];河流流量、水生生物与溶解氧三者关系研究[18~20];水生生物指示物与流量之间的关系研究;湿地调度考虑生态需水量的优化配置研究;环境用水与经济用水关系研究等[21,22]。研究方法有:流量增量法、蒙大拿法、7Q10法、流量历时曲线分析法、湿周法、栖息地排水法、BBM法、水利额定法等。对水库、湖泊、湿地的生态环境需水还没有成熟的理论、指标体系和计算方法[23]。从国内外对生态环境用水的研究来看,定性描述的多,理论推求的少,河流描述多,湿地研究少。总量估算多,过程计算少。另外,在确定生态环境需水时,时问尺度和空间尺度不明确,水量和水质耦合研究缺乏,各生态需水量重复计算,可操作性差,研究结果与实际应用还存在相当差距。所以,湿地生态环境需水估算仍然研究不足。
湿地水文生态模型与新兴交叉学科和地学信息技术耦合是未来发展的必然趋势。但至今我国湿地模型的研究才刚刚起步,研究进展缓慢原因是:有物理基础的分布水文模型建模因涉及多学科有较高的难度,另外我国湿地监测与实验资料缺乏,在今后的研究中,还有待进一步加强和完善。
我国目前湿地保护才刚刚起步,很多问题有待深入研究,如湿地的水文水环境效应研究不深入,有物理基础的湿地模型缺乏;湿地健康评价指标体系和生态需水过程估算方法还不完善;湿地生态环境流体动力学研究不足;湿地建设与湿地管理缺乏系统成熟的技术方案等。
1.2评价方法
国内外已经发展了较成熟的湿地评价方法。在众多湿地分类方法中有代表性的方法包括Cow ardin 等于1979 年提出的分类体系[24]和Brinson 于1993 年提出的水文地貌学分类方法[25]。美国农业部湿地研究所推荐一套湿地评价水文模型DRAINMOD和湿地水文识别准则[26]。国外Sutula, MA等应用一种湿地快速评估方法(RAMs)评价湿地系统,介绍了RAMs方法的发展[27]。国内贾忠华等人采用美国农业部推荐的湿地评价水文模型DRAINMOD,探讨西安干旱与半干旱地区不同来水量对湿地地下水位变化的影响,分析了该区形成临界湿地水文条件所需的临界水量[28]。袁军等运用多级模糊模式评价模型对黑龙江洪河国家级保护区不同年份的湿地水文功能进行评价[29]。
诊断湿地生态系统健康是水聚湿地保护的重要手段之一。开展湿地生态系统健康评价方法可分为:物种指示法和结构功能指标法[30,31]。Costanza等1997提出了基于系统层次的生态健康指数(Health Index,HI)[32]。此外,也有学者提出了基于河流水文学、物理构造特征、河岸区状况、水质及水生生物等5方面共计22项指标体系计分基础上的溪流状况指数(Index of Stream Condition,ISC) 。随着对湖泊生态系统研究的深入,最近几年物理指标、压力指标等也被考虑在内,使健康诊断指标不断完善。
2研究思路创新
分析理解湿地水文、水质与生态三者之间的相互作用关系,对变化环境下湿地水循环规律、水环境效应、污染物迁移转化机理和生态格局演变规律进行单独研究并做集成研究;构建一个变集水区尺度、基于RS和GIS、反映湿地特征的、有物理基础的、多尺度集成、多要素耦合的“变网格”技术支持下湿地分布式生态水文模型范式,以便于增加对湿地水循环、污染物迁移转化、湿地的消长与退化、湿地生态环境需水过程的理解和认识;对湿地消长过程、湿地生态需水变化过程、环境需水变化过程的模拟与预测,包括预测坡地、湿地、河流之界面水循环过程;开展湿地水流场、浓度场和生物量的情景预测等等,对于理解湿地水环境效应及生态修复功能有指导作用。
3结语及展望
我国湿地保护当前所面临的主要问题,以生态水文学、环境生态学、水动力学等理论为指导,以洪泛湿地为典型研究对象,以自然与人类相互作用为核心,强调流域坡地、湿地、河流、湖泊、大气、地表林冠层、包气带、地下饱和水带等不同空间尺度上和界面上的水循环、N-P物质循环等自然过程的相互作用研究;揭示变动水文情势下湿地水循环规律、水环境效应、水环境演变机理和生态格局演化规律;了解湿地水文、水质与生态三者之间的相互作用关系;基于对过程理解的模型研究,以生境湿度特征为核心,预测生态环境过程,诊断典型湿地生态环境健康,检测典型湿地可持续发展中人为作用与自然作用的关系,探讨实现湿地可持续发展的途径,提出湿地生态系统保护规划及水污染治理规划的生态、水利双重调控对策。丰富湿地生态水文学理论和方法,为湿地水资源、水环境生态保护提供参考借鉴。
参 考 文 献:
[1] 汪爱华,张树清,何艳芬;RS和GIS支持下的三江平原沼泽湿地动态变化研究(J);地理科学;2002,
[2] 陈建伟,袁 军;中国湿地环境问题研究的现状及展望;林业资源管理;1999
[3] 汪 达,汪明娜,汪 丹;中国湿地面面观;水资源保护;2003
[4] 余国营;湿地研究进展与展望;21世纪青年学者论坛;22卷3期
[5] 周德民,宫辉力,胡金明,赵魁义;湿地水文生态学模型的理论与方法;生态学杂志 2007
[6] 张正栋,珠江河口地区可持续发展评价研究,地理科学,2005,2,Vol.25 No.1
[7] 殷康前,倪晋仁;湿地研究综述;生态学报;1998
[8] McKillop, R. (Univ of Waterloo); Kouwen, N.; Soulis, E.D. Source: International Water Resources Engineering Conference - Proceedings, v 1, 1998, p 514-519
[9] Bradley, C. (Univ of Birmingham) Source: Journal of Hydrology, v 185, n 1-4, Nov 1, 1996, p 87-114
[10] Zacharias, I. ;Dimitriou, E.; Koussouris, Th. Source:Integrated water management scenarios for wetland protection Application in Trichonis Lake ; Environmental Modelling and Software; v 20, n 2, February, 2005, p 177-185
[11] Da Paz, Adriano Rolim,Villanueva, Adolfo Nicolas; Schettini; The influence of spatial vegetation distribution on Taim Wetland hydrodynamics ;IAHS-AISH Publication;2005.
[12] Grapes, TR; Bradley, C; Petts, GE; Hydrodynamics of floodplain wetlands in a chalk catchment;JOURNAL OF HYDROLOGY; 2006.
[13] 王茜,任宪友, 肖飞;RS和GIS支持下的洪湖湿地景观格局分析;认识地理过程 关注人类家园――中国地理学会2003年学术年会文集 ;2003
[14] 陈祖军,陈美发,河口水域水环境状况模型研究进展,海洋环境科学,2005,24:59-64
[15] 陈建伟,袁军;中国湿地环境问题研究的现状及展望;林业资源管理;1999 年第4 期
[16] 杨志峰等著,《生态环境需水量理论、方法与实践》,北京科学出版社,2003
[17] Armentrout,G.W,Wilson,J.F. Assessment of low flows in streams in northeastern Wyoming.USGS Water resources Investigations Report,1987,4(5):533-538
[18] Geoffrey,E.P.,Water allocation to protect river ecosystem: Regulated rivers .research&management,1996
[19] Hughes,R.M..Whittier.T.T.,Thiele,J.E.,et al.1992.Lake and stream indicators for the United States environmental protection agency’s environmenta monitoring and assessment program.In:Daninel H,Mckenzie D,Hyatt E,et al.Ecological indicators,Barking:Elsevier Science Publishers Ltd,305-335
[20] Henry,C.P.,Amoros, C. Restoration Ecology of Riverine Wetland: 1,A scientific Base. Environmental Mangement,1995,19(6):891-902
[21] Naiman,R.J.Magnuson,J.J,Mcknight,Diane,M..The freshwater imperative.Island Press,1993
[22] Sheail,J.1984a.Constrains on water-resources development in England and Wales,concept and management of compensation flows.J.Environ Manager.19:351-361
[23] 杨志峰等著,《生态环境需水量理论、方法与实践》,北京科学出版社,2003
[24] W ilen B O et al. Wetlands of the U. S. . in:W h igham (ed) :W etland s of the w orld I. Kluver A cadem ic Publishers,N etherlands, 1993
[25] BrinsonM M. A hydrogeomo rph ic classification fo r wetlands. W etland s research p rog ram technical rep ortW R P 2D E 2R ,U. S. A rmy EnginersW aterways Experiment Station,V ick sburg,M S. 1993
[26] 贾忠华,罗纨,莫放,程慧艳;用DRAINMOD模型预测不同气候条件下排水及来水量对湿地水文的影响;水土保持学报 2003 05
[27] Sutula, MA; Stein, ED; Collins, JN; Fetscher, AE; Clark, R;A practical guide for the development of a wetland assessment method; JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION ; 2006.
[28] 贾忠华,罗纨,周晓夏,刘晓宁;干旱与半干旱地区湿地水文及临界条件的模拟研究;水利学报2004
[29] 袁军;吕宪国湿地水文功能评价的多级模糊模式识别模型林业科学 2006 04
[30] 孔红梅,赵景柱,马克明,等. 生态系统健康评价方法初探[J],应用生态学报,2002 ,13 (4);486~490
关键词 VRF空调系统 数值模拟
中图分类号:TB657 文献标识码: A
0 引言
近年来,随着科技的进步和经济的高速发展,超高层建筑在我国迅猛发展。超高层建筑高度高、规模大、功能多,使得空调系统的设计更为复杂。空调系统形式进行选择时,需对设计方案的可行性、可靠性、安全性、投资、能耗、运行费用、调节性、操作管理的方便性、环境影响、舒适性和美观性等技术经济评价因素进行客观准确的计算和综合对比分析。
VRF空调系统具有良好的性能、自由的组合、简单的系统、简便的安装等技术特点,被广泛应用于中央空调系统的设计,并逐渐成为中央空调市场的重要组成部分。随着自身的不断完善和发展,VRF空调系统已广泛应用于大型建筑设计中,并在超高层建筑设计中具有一席之地。
1 工程概况
该超高层建筑坐落于天津市河北区,地下四层,建筑高度20.5m,建筑面积约6.15万O,主要功能为地下汽车库及设备用房。地上由裙房将办公、公寓两座塔楼连为一体。裙房4层,建筑高度20.4m,建筑面积约4.95万O,主要功能为店铺、餐饮。办公塔楼5至30层(其中5、21层为避难层),建筑高度129.0m,建筑面积约4.42万O,主要功能为办公。公寓塔楼5至46层(其中5、21、37层为避难层),建筑高度172.6m,建筑面积约5.22万O,主要功能为酒店式公寓。本文针对酒店式公寓的空调系统进行了介绍及分析。
2 公寓空调系统设计
公寓标准层各层的房间分隔、功能等是一致的,每层共8套公寓。每套公寓均单独设置一套VRF空调系统,室内机采用天花板内藏风管式,结合装修吊顶样式采用双层百叶侧送风,室外机设置在各户对应的露台上。
公寓共39层,各层室外机均设置在同样位置。各层室外机受热压的相互作用,可能会造成室外机热气流短路,使得上层的室外机散热效果很差。随着室外机设置位置的增高,吸入环境空气温度不断升高,冷凝压力随之增大,最终导致了整个系统性能系数(COP)的下降,甚至可能出现室外机因热保护而停机的情况【1】。为确保公寓部分采用VRF空调系统的合理和可靠,运用Airpak 流体动力学数值模拟软件进行空调外机与环境的温度场模拟。
选取南侧某套公寓进行模拟分析,室外机布置如图1所示。
图1 室外机布置平面图
在模型中,设置流动为紊流,粘性模型采用双方程模型,空气比重满足BOUSSINESQ 假设,开启换热和流动模型,考虑重力影响和自然对流【2】。在物理模型的边界条件设置中,室外机几何尺寸宽×高×深:1120×1558×400mm,制冷量:20KW,风量:10000m3/h 。外机设定为内热源,其散热量按照下述方法求取:制冷量20kW,制冷额定功率6.63kW,根据逆卡诺循环,室外机的冷凝热为26.63kW。
模拟过程中选取环境风速为0m/s,室外气温为33.4℃。模拟分析结果如图2、3所示。
图2 6-46 层1-1 剖面温度场分布图
图3 6-46 层2-2 剖面温度场分布图
根据模拟分析结果可以得出:由于建筑较高大,通风换热条件较好,室外机随层高的增加回风温度变化不大,机组排出的热气流对上层的影响在可控范围内,室外机的平均回风温度未超过厂家给出的极限温度(厂家限定室外机进风极限温度为46℃),室外机能够正常运行。
3 结论和建议
VRF空调使用灵活,易于安装,管理维修简便,空调系统运行成本核算精确,更能满足用户个性化的使用要求,且空调设备占用的建筑空间比较小,更能符合节能要求。
VRF空调系统应用于超高层建筑公寓部分是可行的,但考虑到上层的室外机可能受到下层上升热气流的影响,需进行数值模拟以确保系统设计的合理性及可靠性。
参考文献:
关键词:流体力学;教学方法;应用型本科院校
中图分类号:G642.0 文献标识码:A 文章编号:1002-4107(2013)12-0033-02
流体力学是宿迁学院土木工程专业的一门重要的专业基础课。流体力学具有基本概念多、公式复杂、内容抽象等特点,是一门既有较强理论性又有较强工程实际意义的课程,因此,该课程既可以培养学生良好的逻辑思维能力和分析推理能力,又可以培养学生分析问题和解决问题的能力。然而学生的实际情况是由于在大学前两年接触最多的是固体力学,已形成一定的思维定式,而且由于精简学时的原因很多流体力学课程中需要的高等数学知识没有讲解,到了大三一旦遇上流体力学这个新鲜事物,可能接受起来会碰到许多困难[1]。学生普遍感觉该课程枯燥乏味、难学,存在畏难、厌学情绪,期末考试不及格率较高。在学校提倡培养应用型人才的大背景下,有必要根据课程性质从提高教师教学水平和提高学生学习效果进行探讨。
一、引导学生重视,激发学生的学习兴趣
(一)强调课程的地位和重要性
教师除了说明流体力学在整个专业教学中的地位和作用外,还可补充说明它是注册结构工程师基础考试中公共基础考试科目。此外,还可说明往年期末考试通过率的情况,以给学生适当加压。当然,更重要的是还要说明该课程的学习方法,以帮助学生树立信心。
(二)通过人物、工程实例及专业应用调动学生的学习兴趣
“兴趣是最好的教师,而教师则是点燃学生学习兴趣的火炬”。如何调动学生的学习兴趣是教师考虑的首要问题。在教学过程中可以穿插举出古今中外的科学家、工程师生平事迹和工程实例以调动学生的学习兴趣。如大禹采取疏壅导滞的方法治水三过家门而不入;理想流体力学奠基人欧拉16岁就获得硕士学位,双目失明后仍然从事科学研究直至去世当天还在进行科学研究等[2]。如两千多年前李冰利用“深淘滩,低作堰”建造的都江堰;大约在同时期,古罗马人建成了大规模的供水管道系统等。除此之外,还可以介绍流体力学在土木专业及其他专业的应用,如美国华盛顿州塔科马大桥被大风摧毁、汽车“风阻”和飞机“音障”等事例。
(三)将CFD技术引入课堂调动学生兴趣
计算流体动力学(简称CFD)技术日趋成熟,已经成为研究流体力学的一种重要方法。在流体力学教学过程中引入CFD技术,不但可以将理论性较强的内容形象化,加深学生对基础理论的理解,而且可以开阔学生的眼界,激发学生的学习兴趣和探索精神。如对欧拉法中流线的模拟、圆管中层流和湍流流速的分布、局部阻力损失的流场分析[3]。
二、教学内容的取舍和教学环节设计
(一)教学内容的取舍
流体力学知识面广,内容繁多,在学时限制的条件下要结合专业教学要求合理取舍。对土木工程专业而言需要掌握的内容有:(1)流体物理性质;(2)流体静力学;(3)流体运动学和流体动力学;(4)阻力损失;(5)管道流、明渠流及渗流。
1.重要问题的处理。首先,要从力学角度分析流体的流动性。流体与固体的主要区别在于流体的流动性,其根本原因是流体和固体对承受剪切力的表现。为了形象说明,可以引用“抽刀断水水更流”的诗句[4]。当然,还需说明无论流体静止还是运动均不能承受拉力。
其次,要理解连续介质假设的概念。微观上,流体是由大量分子构成的,是离散的,不连续的,这给我们研究流体力学问题带来了困难。连续介质假设认为流体是由内部无间隙的连续流体质点构成。这里要理解流体质点微观上“充分大”、宏观上“充分小”的含义。如此流体在空间上就变为连续的,可以借助高等数学的方法来研究。
2.公式推导的处理。流体力学学习过程中会遇到大量复杂的公式,特别是实际流体伯努力方程的推导让人很难掌握。笔者在处理公式推导问题时强调公式推导的目的是让学生学习一种思想,学习一种处理问题的方法,将精力集中在公式建立的基本原理和适用条件上,从思路上进行分析整理,淡化烦琐的数学推导过程。这样学生有了独立思考的空间,教师也有了更多的时间来讲解基本概念和基本方法。需要强调的是,流体力学中很多公式都是在一定条件下推导出的,因此其应用也是具有一定范围的,公式的应用往往也有一定的技巧,如伯努力方程的“三选一列”。
(二)教学环节的设计
1.调整习题或考题构成,重视习题课。这里有两个问题需要注意。一方面,流体力学习题历来存在重计算、轻概念的现象,特别是考题如果全是计算题,就会形成无形的指挥棒。这就不利于学生从整体上掌握该课程的重点,习题或考题的题型应丰富,除了计算题之外,还应有填空、选择、判断、作图、名词解释等考查基本概念的题目。另一方面,在精选题目时,要注意将理论教学和实际应用结合起来,如查找资料的技能培养。在流体力学的牛顿内摩擦定律、能量损失计算和管道流等部分很多数据都是要查有关工程手册和图表的[5]。
习题课是流体力学教学的重要环节,为了能够在学时紧张的前提下开展习题课,教师必须重视习题选择和习题评讲两个方面。一方面,教师应选择具有代表性的题目,另一方面,习题讲评应使学生从解题过程中获得解决问题的思路、方法和技巧,达到触类旁通的效果。
2.重视实验教学,强化实践环节。实验教学是流体力学教学中的重要组成部分,通过实验,不但可以加深学生对流体力学基本原理的理解,而且有助于培养学生的动手能力、独立工作能力和创新能力。如通过水静压强试验,学生明确了测压管水头的含义;通过雷诺实验,学生加深了层流、湍流及临界雷诺数的理解。当然,由于实验室条件的限制,目前的实验主要以验证性居多,在条件许可的情况下应进行设计性实验。
此外,每学期笔者都会布置一个任务,让学生留意身边感兴趣的流体力学现象,然后根据课堂所学知识和个人理解撰写论文,以此增强学生的实践应用能力和培养其创新能力。
三、教学方法和手段的改进
(一)注重讨论法与案例教学法的运用
1.讨论式教学方法。教学活动应该是双向的师生互动过程,不应是教师的一言堂。教师应创造和谐、轻松的课堂气氛,鼓励学生积极发言,表达自己的疑问、见解,激发学生的学习积极性和创造性。如在课堂上通过提问的方式回顾上次课的主要内容,通过“自学―提问―讨论―总结”的方法学习新内容,在考虑学生接受能力的前提下,甚至可以让学生来讲一次课。如通过反证法证明流体静压强的方向,通过隔离体分析法证明流体静压强的大小。通过讨论式的教学方法不但可以调动学生的学习积极性,树立信心,而且还可以培养学生勤于思考、善于发现问题、分析问题、解决问题的能力。
2.案例式教学方法。通过将生活和工程案例引入课堂,不但可以增强学生的学习兴趣,而且可以加深学生对理论知识的理解,提高学生运用所学理论知识解决实际问题的能力。生活案例有马利奥特容器原理应用于点滴吊瓶和家用饮水机[6]、洗衣机为什么老翻衣服兜[7]、捞面条的学问等。工程案例如1993年青海省沟后水库在低于设计水位0.75m的情况下突然垮坝的事故;三峡工程如何在最大流量10×104m3/s、水头高达100m、最高流速高达45m/s的情况下不会产生巨大的破坏力等[8]。
(二)综合运用各种教学手段
流体力学概念抽象、繁多,仅靠传统的一块黑板、一支粉笔不能激发学生的学习兴趣。借助于多媒体技术,利用其形象、生动、直观、易于理解并可加强记忆的优点,通过动画、视频资料、数值模拟等手段将复杂的流动现象展示给学生,可取得事半功倍的效果。但是,考虑到多媒体技术授课和传统的授课方法各自的优缺点,结合流体力学课程特点,采用取其长而避其短、两者兼顾而又两者不弃的原则。
“教学有法,但无定法,贵在得法”。我们要不断更新教学理念,努力提升自身的综合素质,及时总结教学过程中出现的问题并加以改进,注重教学过程中的每一个环节,多管齐下,才能保证学生取得良好的教学效果。
参考文献:
[1]王伟.土木专业工程流体力学课程教学研究[J].山西建
筑,2008,(21).
[2]张志宏,顾建农,王家楣.“流体力学”课程教学改革的实
践与探索[J].高等理科教育,2006,(5).
[3]赵琴,杨小林,严敬.CFD技术在工程流体力学教学中的
应用[J].高等教育研究,2008,(1).
[4]刘建龙,王汉青,寇广孝.激发学习兴趣提高流体力学教
学效果[J].中国电力教育,2008,(20).
[5]徐艳萍.《工程流体力学》教学探讨[J].江西电力职业学
院学报,2003,(2).
[6]毛根海.应用流体力学实验[M].北京:高等教育出版社,
2008:8-10.
[7]武际可.拉家常・说力学[M].北京:高等教育出版社,
2008:1-7,25-30.