前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的量子计算含义主题范文,仅供参考,欢迎阅读并收藏。
【关键词】超弦/M理论/圈量子引力/哲学反思
【正文】
本文分四部分。首先明确什么是量子引力?其次给出当代量子引力发展简史,更次概述当代量子引力研究主要成果,最后探讨量子引力的一些哲学反思。
一、什么是量子引力?
当代基础物理学中最大的挑战性课题,就是把广义相对论与量子力学协调起来[1]。这个问题的研究,将会引起我们关于空间、时间、相互作用(运动)和物质结构诸观念的深刻变革,从而实现20世纪基础物理学所提出的空间时间观念的量子革命。
广义相对论是经典的相对论性引力场理论,量子力学是量子物理学的核心。凡是研究广义相对论和量子力学相互结合的理论,就称为量子引力理论,简称量子引力。探讨量子引力卓有成效的理论,主要有两种形式。第一,是把广义相对论进行量子化,正则量子引力属于此种。第二,是对一个不同于广义相对论的经典理论进行量子化,而广义相对论则作为它的低能极限,超弦/M理论则属于这种。
圈(Loop)量子引力[2]是当前正则量子引力的流行形式。正则量子引力是只有引力作用时的量子引力,和超弦/M理论相比,它不包括其它不同作用。它的基本概念是应用标准量子化手续于广义相对论,而广义相对论则写成正则的即Hamiltonian形式。正则量子引力根据历史发展大体上可分为朴素量子引力和圈量子引力。粗略来说,前者发生于1986年前,后者发生于1986年后。朴素量子引力由于存在着紫外发散的重正化困难,从而圈量子引力发展成为当前正则量子引力的代表。
超弦/M理论的目的,在于提供己知四种作用即引力和强、弱、电作用统一的量子理论。理论的基本实体不是点粒子,而是1维弦、2维简单膜和多维brane(广义膜)的延展性物质客体。超弦是具有超对称性的弦,它不意味着表示单个粒子或单种作用,而是通过弦的不同振动模式表示整个粒子谱系列。
圈量子引力和超弦/M理论之外,当代量子引力还有其它不同方案。例如,Euclidean量子引力、拓扑场论、扭量理论、非对易几何等。
二、当代量子引力研究进展
我们主要给出超弦/M理论和圈量子引力研究的重大进展。
1.超弦/M理论方面[3]
弦理论简称弦论,虽然在20纪70年代中期,已经知道其中自动包含引力现象,但因存在一些困难,只是到80年代中期才取得突破性进展。
1)80年代超弦理论
弦论发展可粗略分为早期弦理论(70年代)、超弦理论(80年代)和M理论(90年代)三个时期。我们从80年代超弦理论开始,简述其研究进展。
1981年,M·Green和J.Schwarz提出一种崭新的超对称弦理论,简称超弦理论,认为弦具有超对称性质,弦的特征长度已不再是强子的尺度(~10[-13]厘米),而是Planck尺度(~10[-33]厘米)。
1984年,Green和Schwarz证明[4],当规范群取为SO(32)时,超弦I型的杨-Mills反常消失,4粒子开弦圈图是有限的。
1985年,D.Gross,J.Harvey[5]等4人提出10维杂化弦概念,这种弦是由D=26的玻色弦和D=10超弦混合而成。杂化弦有E[,8]×E[,8]和SO(32)两种。
同年,P.Candlas,G.Horowitz,A.Strominger和E.Witten[6]对10维杂化弦E[,8]×E[,8]的额外空间6维进行紧致化,最重要的一类为Calabi-丘流形。但是这类流形总数多到数百万个,应该根据什么原则来选取作为我们世界的C-丘流形,至今还不清楚,虽然近10多年来,这方面的努力从来未中断过。
1986年,提出建立超弦协变场论问题,促进了对非微扰超弦理论的探讨。在诸种探讨方案中,以E.Witten的非对易几何最为突出[7]。
同年,人们详细地研究了超弦唯象学,例如E[,6]以下如何破缺及相应的物理学,对紧致空间已不限于C-丘流形,还包括轨形(Orbifold)、倍集空间等。
人们常把1984-86年期间对超弦研究的突破,称为第一次超弦革命。在此期间建立了超弦的五种相互独立的10维理论,而且是微扰的。它们是I型、IIA型、IIB型、杂化E[,8]×E[,8]型和SO(32)型。
2)90年代M理论
经过80年代末期和90年代初期,对超弦理论的对偶性、镜对称及拓扑改变等的研究,到1995年五种超弦微扰理论的统一性问题获得重大突破,从此第二次超弦革命开始出现。
1995年,Witten在南加州大学举行的95年度弦会议上发表演讲,点燃起第二次超弦革命。Witten根据诸种超弦间的对偶性及其在不同弦真空中的关联,猜测存在某一个根本理论能够把它们统一起来,这个根本理论Witten取名为M理论。这一年内Witten、P.Horava、A.Dabhulkar等人,给出ⅡA型弦和M理论间的关系[8]、I型弦和杂化SO(32)型弦间的关系、杂化弦E[,8]×E[,8]型和M理论间的关系等。
1996年,J.Polchinski、P.Townscend、C.Baches等人认识到D-branes的重要性。积极进行D-branes动力学研究[9],取得一定成果。同年,A.Strominger、C.Vafe应用D-brane思想,计算了黑洞这种极端情形的熵和面积关系[10],得到了和Bekenstein-Hawking的熵-面积的相同表示式。G.Callon、J.Maldacena对具有不同角动量与电荷的黑洞所计算的结果指出,黑洞遵从量子力学的一般原理。G.Collins探讨了量子黑洞信息损失问题。
1997年,T.Banks、J.Susskind等人提出矩阵弦理论,研究了M理论和矩阵模型间的联系和区别。
同年,Maldacena提出AdS/CFT对偶性[11],即一种Anti-de Sitter空间中的IIB型超弦及其边界上的共形场论之间的对偶性假设,人们称为Maldacena猜测。这个猜测对于我们世界的Randall-Sundrum膜模型的提出及Hawking确立果壳中宇宙的思想,都有不少的启示。
2.圈量子引力方面[12]
1)二十世纪80年代
1982年,印度物理学家A.Sen在Phys.Rev.和Phys.Lett.上相继发表两篇文章,把广义相对论引力场方程表述成简单而精致的形式。
1986年,A.Ashtekar研究了Sen提出的方程,认为该方程已经表述了广义相对论的核心内容。一年后,他给出了广义相对论新的流行形式,从而对于在Planck标度的空间时间几何量,可以进行具体计算,并作出精确的数量性预言。这种表述是此后正则量子引力进一步发展的关键。
同年,T.Jacobson和L.Smolin求出Wilson圈解。在引进经典Ashtekar变量后,他们在圈为光滑且非自相交情形下,求出了正则量子引力的WDW方程解。此后,他们又找到了即使在圈相交情况下的更多解。
1987年,由于Hamiltonian约束的Wilson圈解的发现,C.Revolli和Smolin引进观测量的经典Possion代数的圈表示,并使微分同胚约束用纽结(knot)态完全解出。
1988年,V.Husain等人用纽结理论(knot theory),研究了量子约束方程的精确解及诸解间的关系,从而认为纽结理论支配引力场的物理量子态。同年,Witten引进拓朴量子场论(TQFT)的概念。
2)二十世纪90年代
1990年,Rovelli和Smolin指出,对于在大尺度几何近似变为平直时态的研究,可以预言Planck尺度空间具有几何断续性。对于编织的这些态,在微观很小尺度上具有“聚合物”的类似结构,可以看作为J.Wheeler时空泡沫的形式化。
1993年,J.Iwasaki和Rovelli探讨了量子引力中引力子的表示,引力子显示为时空编织纤维的拓朴修正。
1994年,Rovelli和Smolin第一次计算了面积算子和体积算子的本征值[13],得出它们的本征谱为断续的重大结论。此后不久,物理学者曾用多种不同方法证明和推广这个结论,指出在Planck标度,空间面积和体积的本征谱,确实具有分立性。
1995年,Rovelli和Smolin利用自旋网络基[14],解决了关于用圈基所长期存在的不完备性困难。此后不久,自旋网络形式体系,便由J.Baez彻底阐明。
1996年,Rovelli应用K.Krasnov观念,从圈量子引力基本上导出了黑洞熵的Bekenstein-Hawking公式[15]。
1998年,Smolin研究圈和弦间的相似性,开始探讨圈量子引力和弦论的统一问题。
三、当代量子引力理论主要成就
1.超弦/M理论方面
1)弦及brane概念的提出
广义相对论中的奇性困难、量子场论中的紫外发散本质、朴素量子引力中的重正化问题,看来都起源于理论的纯粹几何的点模型。超弦理论提出轻子、夸克、规范粒子等微观粒子都是延伸在空间的一个区域中,它们都是1维的广延性物质,类似于弦状,其特征长度为Planck长度。M理论更推广了弦的概念,认为粒子类似于多维的brane,其线度大小为Planck长度。为简单起见,我们把brane也称作膜。超弦/M理论中,用有限大小的微观粒子替代粒子物理标准模型中纯粹几何的点粒子,这是极为重要且富有成效的革命性观念。
2)五种微扰超弦理论
这五种超弦的不同在于未破缺的超对称荷的数目和所具有的规范群。I型有N=1超对称性,含有开弦和闭弦,开弦零模描述杨-Mills场,闭弦零模描述超引力。ⅡA型有N=2超对称性,旋量为Majorana-Weyl旋量,不具有手征性,自动无反常,只含有闭弦,零模描述N=2超引力。IIB型同样有N=2超对称性,具有手征性。杂化弦是由左旋D=10超弦和左旋D=26玻色弦杂化而成,只包含可定向闭弦,有手征性和N=1超对称性,可以描述引力及杨-Mills作用。
3)超弦唯象学
从唯象学角度来看,杂化弦型是重要的,E[,8]×E[,8]是由紧致16维右旋坐标场(26-10=16)而产生的,即由16维内部空间紧致化而得到,也就是说在紧致化后得到D=10,N=1,E[,8]×E[,8]的超弦理论。
但是迄今为止,物理学根据实验认定我们的现实空间是三维的,时间是一维的,把四维时空(D=4)作为我们的现实时空。因此我们必须把10维时空紧致化得到低能有效四维理论,为此人们认为从D=10维理论出发,通过紧致化有
M[10]M[4]×K
此中K为C-丘流形,此内部紧致空间维数为10-4=6,M[4]为Minkowski空间,从而得到4维Minkowski空间低能有效理论。其重要结论有:
(1)由D=10,E[,8]×E[,8]超弦理论(M[10]中规范群为E[,8]×E[,8])紧致化为D=4,E[,6]×E[,8]、N=1超对称理论。
(2)夸克和轻子的代数Ng完全由K流形的拓朴性质决定:为Euler示性数χ,系拓朴不变量。
(3)对称破缺问题。已知超弦四维有效理论为N=1,规范群为E[,6]×E[,8]的超对称杨—Mills理论,现实模型要求破缺。首先由第二个E[,8]进行超对称破缺,然后对大统一群E[,6]已进行破缺,从而引力作用在E[,8]中,弱、电、强作用在E[,6]中,实现了四种作用的统一。
4)T和S′对偶性
尽管五种超弦理论在广义相对论和量子力学统合上,取得了不少进展,但是五种超弦理论则是相互独立的,理论却是微扰的。尽管在超弦唯象学中,原则上-丘流形K一旦固定下来,在D=4时空中所有零质量费米子和玻色子(包括Higgs粒子)就会被确定下来,但是-丘真空态总数则可多到数百万个,应该根据什么原则来选取-丘真空态,目前还不清楚。T对偶性和S对偶性的提出,正是五种超弦理论融通的主要桥梁。
在M理论的孕育过程中,对偶性起了重要作用。弦论中存在着一种在大小紧致空间之间的对偶性。例如ⅡA型弦在某一半径为R[,A]的圆周上紧致化和ⅡB型在另一半径为R[,8]的圆周上紧致化,两者是等效的,则有关系R[,B]=(m[2,s]R[,A])[-1]。于是当R[,A]从无穷大变到零时,R[,B]从零变到无穷大。这给出了ⅡA弦和ⅡB弦之间的联系。两种杂化弦E[,8]×E[,8]和SO(32)也存在类似联系,尽管在技术性细节上有些差别,但本质上却是同样的。
A.Sen证明,在超对称理论中,必然存在着既带电荷又带磁荷的粒子。当这一猜测推广到弦论后,它被称作为S对偶性。S对偶性是强耦合与弱耦合间的对称性,由于耦合强度对应于膨胀子场,杂化弦SO(32)和I型弦可通过各自的膨胀子连系起来。
5)M理论和五种超弦、11维超引力间的联系
M理论作为10维超弦理论的11维扩展,包含了各种各样维数的brane,弦和二维膜只是它的两种特殊情况。M理论的最终目标,是用一个单一理论来描述已知的四种作用。M理论成功的标志,在于把量子力学和广义相对论的新理论框架中相容起来。
附图
上面给出五种超弦理论、11维超引力和M理论相容的一个框架示意图[16],即M理论网络。此网络揭示了五种超弦理论、11维超引力都是单一M理论的特殊情形。当然至今M理论的具体形式仍未给出,它还处于初级阶段。
6)推导量子黑洞的熵-面积公式。
在某些情形下,D-branes可以解释成黑洞,或者说是黑branes,其经典意义是任何物质(包括光在内)都不能从中逃逸出的客体。于是开弦可以看成是具有一部分隐藏在黑branes之内的闭弦。Hawking认为黑洞并不完全是黑的,它可以辐射出能量。黑洞有熵,熵是用量子态来衡量一个系统的无序程度。在M理论之前,如何计算黑洞量子态数目是没有能力的。Strominger和Vafa利用D-brane方法,计算了黑-branes中的量子态数目,发现计算所得的的熵-面积公式,和Hawking预言的精确一致,即Bekenstein-Hawking公式,这无疑是M理论的一个卓越成就。
对于具有不同角动量和电荷的黑洞所计算结果指出,黑洞遵从量子力学的一般原理,这说明黑洞和量子力学是十分融洽的。
2.圈量子引力方面
1)Hamiltonian约束的精确解。
圈量子引力惊人结果之一,是可以求出Hamiltonian约束的精确解。其关键在于Hamiltonian约束的作用量,只是在s-纽结的结点处不等于零。所以不具有结点的s-纽结,才是量子Einstein动力学求出的物理态。但是这些解的物理诠释,至今还是模糊不清的。
其它的多种解也已求得,特别是联系连络表示的陈-Simons项和圈表示中的Jones多项式解,J.Pullin已经详细研究过。Witten用圈变换把这两种解联系起来。
2)时间演化问题
人们试图通过求解Hamiltonian约束,获得在概念上是很好定义的、并排除冻结时间形式来描述量子引力场的时间演化。一种选择是研究和某些物质变量相耦合的引力自由度随时间演化,这种探讨会导致物理Hamiltonian的试探性定义的建立,并在强耦合微扰展开中,对S纽结态间的跃迁振幅逐级进行考查。
3)杨-Mills理论的重正化问题
T.Thiemann把含有费米子圈的量子引力,探索性地推广到杨-Mills理论进行研究。他指出在量子Hamiltonian约束中,杨-Mills项可以严格形式给出定义。在这个探索中,紫外发散看来不再出现,从而强烈支持在量子引力中引进自然切割,即可摆脱传统量子场论的紫外发散困难。
4)面积和体积量度的断续性
圈量子引力最著名的物理成果,是给出了在Planck标度的空间几何量具有分立性的论断。例如面积
此中lp是Planck长度,j[,i]是第i个半整数。体积也有类似的量子化公式。
这个结论表明对应于测量的几何量算子,特别是面积算子和体积算子具有分立的本征值谱。根据量子力学,这意味着理论所预言的面积和体积的物理测量必定产生量子化的结果。由于最小的本征值数量级是Planck标度,这说明没有任何途径可以观测到比Planck标度更小的面积(~10[-66]厘米[2])和体积(~10[-99]厘米[3])。从此可见,空间由类似于谐振子振动能量的量子所构成,其几何量本征谱具有复杂结构。
5)推导量子黑洞的熵-面积公式
已知Schwarzchild黑洞熵S和面积A的关系,是Bekenstein和Hawking所给出,其公式为:
附图
这里k是Boltzman常量,是Planck常量,G[,N]为牛顿引力常量,c为光速。对这个关系式的深层理解和由物理本质上加以推导,M理论已经作过,现在我们看下圈量子引力的结果。
应用圈量子引力,通过统计力学加以计算,Krasnov和Rovelli导出
附图
此处γ为任意常数,β是实数(~1/4π),显然如果取γ=β,则由式(3)即可得到式(2)。这就是说,从圈量子引力所得出的黑洞熵-面积关系式,在相差一个常数值因子上和Bekenstein-Hawking熵-面积公式是相容的。
Bekenstein-Hawking熵公式的推导,对圈量子引力理论是一个重大成功,尽管这个事实的精确含义目前还在议论,而且γ的意义也还不够清楚。
四、量子引力理论的哲学反思
我们从空间和时间的断续性、运动(相互作用)基本规律的统一性、物质结构基本单元的存在性三个方面进行哲学探讨。
1.空间和时间的断续性
当代基础物理学的核心问题,是在Planck标度破除空间时间连续性的经典观念,而代之以断续性的量子绘景。量子引力理论对空间分立性的揭示和论证,看来是最为成功的。
超弦/M理论认为,我们世界是由弦和brane构成的。根据弦论中给出的新的不确定性关系,弦必然有位置的模糊性,其线度存在一有限小值,弦、膜、或brane的线度是Planck长度,从而一维空间是量子化的。由此推知,面积和体积也应该是量子化的。二维面积量子的数量级为10[-66]厘米[2],三维体积量子的数量级为10[-99]厘米[3]等。
对于圈量子引力,其最突出的物理成果是具体导出了计算面积和体积的量子化公式。粗略说来,面积的数量级是Planck长度lp的二次方,体积的数量级是lp的三次方。这就令人信服地论证了在Planck标度,面积和体积具有断续性或分立性,从而根本上否定了空间在微观上为连续性的经典观念。
依据空间和时间量度的量子性,芝诺悖论就是不成立的,阿基里斯在理论上也完全可以追上在他前面的乌龟。类似的,《庄子·天下》篇中的“一尺之捶,日取其半,万世不竭”这个论断在很小尺度上显然也是不成立的。古代哲学中这两个难题的困人之处,从空间时间断续性来看,是由于预先设定了空间和时间的度量,始终是连续变化的经典性质。实际上在微观领域,空间和时间存在着不可分的基本单元。
2.运动(相互作用)基本规律的统一性
20世纪基础物理学巨大成功之一,就是建立了粒子物理学的标准模型,理论上它是筑基于量子规范场论的。这个模型给出了夸克、轻子层次强、弱、电作用的SU(3)×SU(2)×U(1)规范群结构,在一定程度上统一了强、弱、电三种相互作用的规律。但是它不含有引力作用。
超弦/M理论的探讨,在于构建包含引力在内的四种作用统一的物理理论。传递不同相互作用的粒子如光子(电磁作用)、弱玻色子(弱作用)、胶子(强作用)和引力子(引力作用),对应于弦的各种不同振动模式,夸克、轻子层次粒子间的作用,就是弦间的相互作用。在Planck标度,超弦/M理论是四种基本作用统一理论的最佳侯选者,也就是所说的万物理论(Theory of everything)的最佳侯选者。
在Planck时期,物质运动或四种作用基本规律的统一性,正是反映了我们宇宙在众多复杂性中所显现的一种基本简单性。
3.物质微观结构的基本单元的存在性[17]
世界是由物质构成的,物质通常是有结构的,但是物质结构在层次上是否具有基本单元,即德谟克利特式的“原子”是否存在?这是一个长期反复争论而又常新的课题。当代几种不同的量子引力,尽管对某些问题存在着不同的见解,但是关于这个问题从实质上来看,却给出了一致肯定的回答。
超弦/M理论认为,构成我们世界的物质微观基本单元是具有广延性的弦和brane,并非所谓的只有位置没有大小的数学抽象点粒子。粒子物理学标准模型中的粒子,都是弦或brane的激发。弦和brane的线度是有限短的Planck长度,它们正是构成我们世界的物质基本单元,即德谟克利特式的“原子”,这是超弦/M理论为现今所有粒子提供的本体性统一。
圈量子引力给出了在Planck标度面积和体积的量子化性质,即断续的本征值谱,面积和体积分别存在着最小值。由于在圈量子引力中,脱离引力场的背景空间是不存在的,而引子场是物质的一种形态,因此脱离物质的纯粹空间也就是不存在的。空间体积和面积的不连续性和基本单元的存在,正是物质微观结构的断续性和基本单元的存在性的最有力论据。
总之,超弦/M理论和圈量子引力从不同的侧面,对量子引力的本质和规律作出了一定的揭示,它们在Planck标度领域一致地得出了空间量子化和物质微观结构基本单元存在的结论。这无疑是人们在20世纪末期对我们世界空间时间经典观念的重大突破,也是广义相对论和量子力学统合的成果;同时更是哲学上关于空间和时间是物质存在的客观形式,没有无物质的空间和时间,也没有无空间和时间的物质学说的一曲凯歌!
【参考文献】
[1] G.Horowitz.Quantum gravity at the turn of the millennium.gr-qc/0011089.22.
[2] C.Rovelli.Loop quantum gravity.gr-qc/9710008 10.Oct.1997.
[3] M.Kaku.Introduction to superstring and M-theory.Second Editon.Springer.New York,1999.
[4] M.Green,J.Schwarz.Anomally cancellations in supersymmetric D=10 gauge theory and superstring theory.Phys.Lett.149B(1984)11.
[5] D.Gross,J.Horvey,E.Martine and R.Rohm.Heterotic string.Phys.Rev.Lett 54(1985)502.
[6] P.Candelas,G.Horowitz A.Strominger and E.Witten.Vacuum configurations for superstrings.Nucl.Phys.B258(1985)46.
[7] E.Witten.Non-commutative geometry and string field theory.Nucl.Phys.B276(1986)291.
[8] E.Witten.String-string duality conjecture in various.dimensions.Nucl.Phys.B443(1995)307.
[9] C.Baches.D-brane dynamics.Phys.Lett.B374(1996)37.
[10] A.Strominger,C.Vafa.Microscopic origin of the Bekenstein-Hawking entropy.Phys.Lett.B379(1996)99.
[11] J.Maldacena.The large-Nlimit of superconformal field theories and supergravity.hep-th/9711200.
[12] C.Rovelli.Notes for a brief history of quantum gravity.gr-qc/0006061.23Jan,2001.
[13] C.Rovelli,L.Smolin.Descreteness of area and volume in quantum gravity.gr-qc/9411005.
[14] C.Rovelli,L.Smolin.Spin networks and quantum gravity.Phys.Rev.D52(1995)5743.
[15] C.Rovlli,Black hole entropy from loop quantum gravity.Phys.Rev.Lett.74(1996)3288.
科学技术发展的总体目标(到2020年):
・ 自主创新能力显著增强,科技促进经济社会发展和保障国家安全的能力显著增强,为全面建设小康社会提供强有力的支撑。
・ 基础科学和前沿技术研究综合实力显著增强,取得一批在世界具有重大影响的科学技术成果,进入创新型国家行列,为在本世纪中叶成为世界科技强国奠定基础。
科技工作的指导方针:
・ 自主创新,重点跨越,支撑发展,引领未来。
关键数字(到2020年):
・ 全社会研究开发投入占GDP比重提高到 2.5%以上
・ 科技进步贡献率达到 60%以上
・ 对外技术依存度降低到 30%以下
・ 本国人发明专利年度授权量 进入世界前5位
・ 国际科学论文被引用数 进入世界前5位
关键数字:15
纲要涉及的时间段,从2006年到2020年
解读:科技部研究中心创业投资研究所所长 房汉廷
这个时间段是从“十一五”规划的开始到“十三五”规划的结束。其一,未来15年,人均GDP处于1000~3000美元区间,是社会各种矛盾的多发期、凸显期,同时也是机遇期。如果顺利通过这个时期,我国就能顺利成为中等发达国家;如果不顺利,就可能呈现出拉丁美洲国家的形态。其二,十六大报告中提到,到2020年实现人均GDP翻两番,实现小康社会。科学技术的发展,能为全面建设小康社会提供强有力的支撑。其三,中国有望在2020年实现和平崛起。我国传统的经济增长方式已经走到尽头,环境、资源等方面的压力,人民对幸福生活的追求,这些都要求我们转变经济增长方式。要解决未来的可持续性发展问题,中国的经济增长方式必须实现从要素驱动到技术/创新驱动的转变。
关键数字:2.5%
纲要提到,“到2020年,全社会研究开发投入占国内生产总值的比重提高到2.5%以上。”
解读:科技部研究中心创业投资研究所所长 房汉廷
研究开发投入是一个国家的战略投资,具有超前性。从国际上来看,按照统计规律,一个创新型国家的研究开发投入增长速度高于国民生产总值的增长速度。另外,当一个国家的全社会研究开发投入占国民生产总值的比重达到2%时,这个国家才具备基本的创新能力。2%是个临界点。芬兰的这个比重是3.5%,韩国是3%。低于2%,则这个国家基本处于老系统的维持状态,基本不具备创新能力。
在我国,这个比重目前是1.23%,有望在2006年实现一个跳跃式增长,然后进入稳定增长的状态。2020年时,中国的资源将更紧张,对创新的要求也会更高。如果预期目标实现,中国将在2020年年基本成为创新型国家。2.5%是一个并不难实现的目标。我们看到,南方的很多民营企业已经在主动地加大企业的研发投入。
关键数字:60%
纲要提到,到2020年,“力争科技进步贡献率达到60%以上”。
解读:科学技术部部长 徐冠华
我们现在要建设创新型国家,要自主创新,是由我们全面建设小康社会的目标所决定的。我们现在提出来到2020年要全面建设成小康社会,意味着从改革开放开始到2020年的40年里,中国的GDP平均增长率都要超过7%。经济增长率有两个很重要的决定性因素,一个是科技进步的贡献率,还有一个是投资率。我们现在如果要达到全面建设小康社会的目标,就意味着从现在起,如果保持目前的科技进步贡献率,也就是39%左右的水平,我们的投资率必须有大幅度的增加,至少要达到52%的高水平,而这几乎是完全不可能做到的。即使我们的投资率保持在目前40%的水平,都已经算是很高的了。那么,我们只有把科技进步贡献率从目前的40%左右提高到60%,才能够达到2020年的发展目标。
关键数字:30%
纲要提到,到2020年,“对外技术依存度降低到30%以下”。
解读:科学技术部高新技术和产业化司司长 廖小罕
科技竞争力排在我国前面的国家,他们的一个特点就是科技上的对外依存度都在30%以下,而我们国家目前的对外依存度是60%左右。
60%数字背后显现出的是我国科技自主创新的不足,这样的后果便是我国在经济上、国家安全上、国际贸易上都要受制于那些科技实力高于我们的国家。所以,我国首先要自主创新战略,力争在国际竞争中掌握自动权。自主创新也分为原始性创新、集成创新和引进消化吸收后创新三种不同的方式,而不是一定要完全从头开始研究。我们应该在全球范围内主动利用科技资源,形成国际化研发体系,提升国际科技合作的层次和规模。只有对外依存度数值降低,我们才可以掌握核心技术和产业链上重要环节的制控权,并最终落实到推动我国的经济发展和提高我国的国际竞争力上。
关键数字: 5
纲要指出,到2020年,本国人发明专利年度授权量进入世界前5位。
解读:
创新产出高是创新型国家的基本特征之一。世界公认的20个创新型国家拥有的发明专利总数占到全世界的99%。和一些具有较强创新能力的国家相比,中国虽然已具备一些基本条件,但离创新型国家还有一定距离。据了解,2005年国家知识产权局一共受理了17.3万项专利申请,其中本国人的申请达到53%左右。单就信息产业而言,本国人的专利授权量占总量的22%~30%。过去的三、四年是信息产业专利申请数猛增的一个阶段。
国务委员陈至立曾经在中国科协2005年学术年会上指出,我们要抓住信息技术更新换代和新材料技术迅猛发展的难得机遇,掌握装备制造业和信息产业核心技术的自主知识产权。充分表达了对自主知识产权的关注。
据业内人士分析,随着时间发展,达到本国人专利授权量世界第五的目标是很有希望的,情况理想的话还可能达到第三或第四。到2020年,我国将成为创新型国家,成为世界最重要的知识和技术产出国之一。
关键数字:5
纲要指出,到2020年,国际科学论文被引用数进入世界前5位
解读:中国科学技术信息研究所副所长 赵新力
目前,我国国际科技论文数量连续3年保持世界第5位,但论文的被引用数在世界排名刚刚从第18位上升到第14位。论文是展示科研成果的最快捷方式,也是国际上了解同行进展的主要渠道。“被引用数”则是最直接、最简洁地体现国际学术界认可程度的指标。
十五期间,我国在国际上能够被检索收录的论文总篇数(包括EI、SCI、STP、ISTP等)在整体上不断向前推移。目前在科技论文发展的道路上,主要的问题是受语言的限制。学术界应该共同创造更好的英文发展环境,培养国际上认可的精品期刊,在国内更多地举办国际性学术会议,提高科研人员用英文发表文章的能力和驱动力。
说这个目标没有挑战是不对的,但是按照目前我国科技人员的努力程度、国家对科学技术的支持程度和目前工作的加速度,我们对实现这个目标还是充满信心的。
信息产业作为国民经济的基础产业、先导产业和支柱产业,其在中国未来15年的科技发展中将扮演怎样的重要角色?透过纲要的总体部署中的关键数字,我们看到信息产业的重要作用和位置凸显出来:
重要性1:
11个重点领域中,信息产业及现代服务业为其中之一
重点领域的含义:是指在国民经济、社会发展和国防安全中重点发展、亟待科技提供支撑的产业和行业。
重要性2:
68项优先主题中有7项属于信息产业及现代服务业
优先主题含义:是指在重点领域中急需发展、任务明确、技术基础较好、近期能够突破的技术群。
确定优先主题的原则:一是有利于突破瓶颈制约,提高经济持续发展能力;二是有利于掌握关键技术和共性技术,提高产业的核心竞争力;三是有利于解决重大公益性科技问题,提高公共服务能力;四是有利于发展军民两用技术,提高国家安全保障能力。
信息产业及现代服务业领域的7个优先主题:
1. 现代服务业信息支撑技术及大型应用软件;
2. 下一代网络关键技术与服务;
3. 高效能可信计算机;
4. 传感器网络及智能信息处理;
5. 数字媒体内容平台;
6. 高清晰度大屏幕平板显示;
7. 面向核心应用的信息安全。
图1 信息产业在优先主题中的比重
重要性3:
16个重大专项中,4个与信息产业直接相关
重大专项含义:是为了实现国家目标,通过核心技术突破和资源集成,在一定时限内完成的重大战略产品、关键共性技术和重大工程,是我国科技发展的重中之重。
与信息产业直接相关的4个重大专项:
1. 核心电子器件;
2. 高端通用芯片及基础软件;
3. 极大规模集成电路制造技术及成套工艺;
4. 新一代宽带无线移动通信。
图2 信息产业在重大专项中的比重
重要性4:
27项前沿技术中,有3项属于信息技术
前沿技术的含义:是指高技术领域中具有前瞻性、先导性和探索性的重大技术,是未来高技术更新换代和新兴产业发展的重要基础,是国家高技术创新能力的综合体现。
信息技术领域的前沿技术:
1. 智能感知技术
重点研究基于生物特征、以自然语言和动态图像的理解为基础的“以人为中心”的智能信息处理和控制技术,中文信息处理;研究生物特征识别、智能交通等相关领域的系统技术。
2. 自组织网络技术
重点研究自组织移动网、自组织计算网、自组织存储网、自组织传感器网等技术,低成本的实时信息处理系统、多传感信息融合技术、个性化人机交互界面技术,以及高柔性免受攻击的数据网络和先进的信息安全系统;研究自组织智能系统和个人智能系统。
3. 虚拟现实技术
重点研究电子学、心理学、控制学、计算机图形学、数据库设计、实时分布系统和多媒体技术等多学科融合的技术,研究医学、娱乐、艺术与教育、军事及工业制造管理等多个相关领域的虚拟现实技术和系统。
图3 信息技术在前沿技术中的比重
重要性5:
4个重大科学研究计划中,其中之一与信息产业密切相关
重大科学研究计划的含义:根据世界科学发展趋势和我国重大战略需求,选择能引领未来发展,对科学和技术发展有很强带动作用,可促进我国持续创新能力迅速提高,同时具有优秀创新团队的研究方向,这些方向的突破,可显著提升我国的国际竞争力,大力促进可持续发展,实现重点跨越。
4个重大科学研究计划:其中的量子调控研究与信息产业密切相关
1. 蛋白质研究
2. 量子调控研究:以微电子为基础的信息技术将达到物理极限,对信息科技发展提出了严峻的挑战,人类必须寻求新出路,而以量子效应为基础的新的信息手段初露端倪,并正在成为发达国家激烈竞争的焦点。量子调控就是探索新的量子现象,发展量子信息学、关联电子学、量子通信、受限小量子体系及人工带隙系统,构建未来信息技术理论基础,具有明显的前瞻性,有可能在20~30年后对人类社会经济发展产生难以估量的影响。
3. 纳米研究
4. 发育与生殖研究
图4 信息产业在重大科学研究机会中的比重
网友评论
网友一:首先我要说,我本人也是干机械的,看了这个帖我快要流泪了,看着工厂中一个个外国名牌我心痛啊。每当我看到外国车时,我的心里是愧疚,对不起大家的感觉,因为我是搞制造的,可我知道咱们祖国连汽车外壳的曲面精加工都困难,更甭提发动机了。快点懂事吧,醒醒吧,别再沉迷于GDP又增长了,你看看咱们制造的产品的质量,心痛啊!
网友二:愿望是好的,实现目标靠的是人才和管理技术,的方式已经不现实了。
网友三:请创造一个以创新为荣、抄袭盗版为耻的文化,一个奖励创新、保护创新者权益的制度,一个公平透明的核查机制。
网友四:这是提高全民素质和综合国力的最佳手段!扩大基础设施投资拉动经济的时代已过去,要为15年后劳动力资源下降提前做准备。
网友五:好!不过要有税收政策的支持,要让创新的企业有钱赚。
网友六:切不可花拳秀腿哦,要以实际为主,现在的大学生工程师数量那么多,可真正能派上用场的却寥寥无几,先思考一下这个问题再说吧,中国人什么时候能打破靠关系成功,就有希望了。
网友七:观念很好,但应当出台好的政策避免高级人才的外流,科技创新需要更多的人才。
网友八:方向是不错,但怎么执行是问题,而且如何加强保密,保证成果不被他人窃取更成问题,国人的保密意识和措施一直都不怎么样。
网友九:良好的制度比大力倡导更起作用,现在内外资不公平的待遇是一个方面,我想肯定还有其它对国民创造力的限制,我们当前要做的是去掉那些不公平的制度,否则无论如何倡导也白搭!
网友十:目标诚可贵,实干价更高;若要得实现,两者须配合!
“挑战者”号事故调查
1986年1月28日上午11时39分,在美国佛罗里达州肯尼迪航天中心腾空而起的“挑战者”号航天飞机升空73秒后,突然发生爆炸,机上7名宇航员全部遇难。事发之后,美国航空航天局(NASA)成立了一个事故调查委员会,当时在加州理工学院任教的费曼被邀成为调查委员会的一员。在调查过程中,费曼发现助推火箭上的一个O形环有烧焦痕迹,因此怀疑火箭燃料燃烧时从那里发生了燃料泄漏,从而引发了整个事故。同时,费曼了解到,航天飞机发射当天,地面温度是-3℃~-4℃,远低于通常的12℃。费曼认为事故的罪魁祸首就是这个O形环。
随后,在一次面向公众的电视直播会议上,费曼以他一贯简洁、清晰展示科学原理的风格说明了O形环的问题所在。他在现场只用了3件简单的道具:同样的O形橡胶密封环,一把尖嘴钳,一杯冰水。他用尖嘴钳把O形环夹变形了一些,之后置于冰水杯中,一会儿他又取出来向公众展示,O形环没有恢复变形。科学家都崇尚简单,厌恶繁文缛节,但是像费曼这样身体力行,一生致力于简洁化的科学思想、方法,并倾注大量心血于科学教育的,绝无仅有。他卓越的科学成就,独特的科学教育方式以及迷人的个性使得他成为家喻户晓的明星科学家。
爱唱反调的青年科学家
费曼1918年出生于美国纽约市皇后区的小镇法洛克卫,1939年毕业于麻省理工学院,进入普林斯顿大学念研究生,成为著名物理学家约翰・惠勒的学生。
1943年,在洛斯阿拉莫斯,刚刚研究生毕业的费曼获得了一个难得的机会,同一批最伟大的物理学家和数学家一起工作,他们包括:奥本海默、汉斯・贝特、恩里科・费米、爱德华・泰勒,还有约翰・冯・诺伊曼,而这个机会就是制造出世界上第一颗原子弹的“曼哈顿计划”,这也是费曼研究生涯的起点。在这个团体中,年轻的费曼得到了众多科学前辈的认同。他能运用逻辑来分析一切复杂问题,找出主要因素,并简单明了地说明需要解答的关键问题。令前辈们同样满意的是这位年轻的科学家对物理学全身心投入的热情。当时,年轻的费曼常常与已经小有名气物理学家贝特唱反调,但贝特一点也不生气,相反,费曼深入的思考给他留下了很好的印象,因此他对费曼产生了一种尊敬。贝特还将费曼收入麾下,让他做了计算组的组长。贝特后来还自豪地宣称:“费曼能做任何事情,所有的事情。”“曼哈顿计划”的领导者奥本海默也称他为“这里最才华横溢的年轻物理学家”。
最善于抓住本质的大脑
要善于抓住事物的本质,这是费曼小时候从父亲那里得到的教诲。一次,在林中散步,父子一起观察鸟雀,父亲告诉他,如果你知道了这种鸟雀的名字,哪怕是许多种语言的名字,都无助于加深对鸟的理解,只有通过观察鸟的行为才能去认识它。这些话影响了费曼一生,他对哲学家在概念上的纠缠很不屑,认为自然界不会满足哲学家那些先入为主的见解。有人问他,如何用一句话概括出现代科学最基本的观点,费曼回答说:“一切物质都是由原子构成的。”
费曼由于在量子电动力学上的贡献和施温格、朝永振一郎分享了1965年诺贝尔物理学奖。他们三人其实是用不同的方法创建了量子电动力学。这种现象在科学史上倒不罕见,17世纪时牛顿和莱布尼茨就各自独立发明了微积分;20世纪20年代海森堡和薛定谔也各自创建了量子力学。但是在他们三人中,费曼的方法最直观、最形象,这也是他一贯简洁风格的体现。
其中用到的费曼图,就是一种符号化的物理语言,比如反映物理学中康普顿效应(光子和电子相互作用)的费曼图。
费曼图中的实线代表电子,波纹线代表光子,费曼图不仅有鲜明的物理含义,而且具有严格的数学含义,可以说每一幅费曼图就是一个数学表达式。上述费曼图表示的物理含义是,光子与原子中的电子发生弹性碰撞,碰撞后光子损失能量,改变其运动方向,而电子获得能量从原子中飞出。
费曼的好友、物理学家戴森回忆说:“当费曼看不懂正统教科书中的量子力学时,他只好从头开始发明了一套自己能看得懂的量子力学……我用正统方法所做的计算,花了我几个月的时间,写了几百张纸;费曼却可以在黑板上,花半个小时就得到几乎相同的答案。”这从侧面也反映了费曼创造简洁科学理论的天赋。
送给教育界的宝贵礼物
费曼对科学教育界产生了难以估量的影响,其中最宝贵的礼物应当是著名的三卷本《费曼物理学讲义》,有人认为它是迄今为止最好的大学物理学教材。费曼早年参加了制造原子弹的“曼哈顿计划”,第二次世界大战结束后,他前往康奈尔大学任教。1949年到1951年,他应邀到巴西给大学生讲授了10个月(非连续的)的物理课。费曼发现,那里的学生都喜欢背诵,却不知道自己在背什么。返回美国后,费曼开始在加州理工学院任教,但他一直没有给低年级的大学生讲过物理课。直到1961年秋季,学校有一项物理教育改革项目,他在同事的推荐下答应给低年级大学生讲授两年物理课。《费曼物理学讲义》就是根据那些授课笔记整理的。在这本讲义中,费曼还结合了他对巴西教学生涯的反思,认为大学物理课讲授的目的不应该是为考试做准备,甚至不是为学生服务于工业或者军事做准备。他说:“我最想做的是与你们分享我对于这个奇妙世界的一些欣赏,以及物理学家们看待这个世界的方式,我相信,这是现今时代里真正文化的主要部分(或许有其他学科的许多教授会反对这一点,但我相信他们是完全错误的)。”半个世纪前费曼的教育思想,现在听来依然振聋发聩。
除了他的讲义之外,以他的演讲或访谈为基础整理出版的《物理定律的本性》《发现的乐趣》《费曼讲演录:一个平民科学家的思想》等都是绝好的科学文化读物,从中能体会到作为一名物理学家的费曼是如何阐释科学定律、如何看待科学与社会之间的关系,等等。
真性情的魅力人生
当然,费曼之所以成为费曼,很大程度上归于他独特的个人魅力。不错,他是20世纪一流的物理学家,但若论物理学成就,他要逊色于英国的狄拉克,不过他又是邦戈鼓手、绘画爱好者、开保险柜专家、科学教育专家……而狄拉克仅是一个“标准”、正统的科学家,因此就知名度而言,狄拉克显然逊色费曼。
费曼是卓尔不群的“反叛者”,他曾直接致信美国科学院请辞院士的称号,而且他不止一次请辞,结果每一次都惊扰到科学院院长亲自过问。请看一封1969年6月费曼给当时科学院院长塞兹的回信,你就能清楚了解费曼的个性。
亲爱的塞兹院长:
……我想离开国家科学院这个团体,完全是私人原因,与国家科学院或政府的作为无关,也不是你个人行政风格的问题。多年以来,我就一直很想安安静静地、不惊动任何人而退出这个团体,也不要引发任何的政治联想。这纯粹是我个人的因素,有点孩子气,就是喜欢什么、不喜欢什么而已。请接收我的辞职。
诚挚的祝福
费曼
1.前言
文体包含文学文体和科技文体两种,其中的差别于,文学文体具有美学的特点,辞藻华丽、语言多变,容易引起读者的共鸣。而科技文体的使用的目的是以传递信息,文学风格不明显,语言平淡,容易使人感到枯燥。所以许多翻译家的作品比较倾向于文学,在翻译时检查加入美学语言。随着国际交流的不断深入,其美学的范围也在不断扩展。进而延伸出将美学和翻译结合体[1]。在对科技英语进行翻译时,以美学原理为辅助,不仅可以保存原文的精髓,也可以语言更加优美,更加打动人心,具有一定的审美情趣和价值。
2.翻译的严谨美
科技文章进行翻译时用词必须要精确、严谨。所以要在提高翻译的准确性的基础性上,保留原文的内容和精华,并且保存翻译的严谨美。翻译美学指出翻译者在翻译时不但要表现出原文的内容,也要表现译文的严谨性,同时也将科技英语的内部结构展现出来,尽量不要改变作者的写作风格[2]。在组织语言时,不能模棱两可,特别要注意一词多义的使用方法。比如 profile在英语中的本意是"弯曲的",而"曲线"不是用" profile line"表示," profile line"的实际意义是"半面线"。因此在进行翻译时要对英文单词的各种意思进行了解要充分,确定最合适的语言,保证文章表述的简洁、精确以及严谨。科技英语表述的语言要进行谨慎使用,使用在对科学英语表达时,穿插一些科技术语,提高科技文章的严谨性,同时使表达形式更加简洁。
3.翻译的逻辑美
逻辑美是使科技英语为人们所理解的重要因素,科学英语的关键点在于清楚地表达出客观事物的起因与发展规律。这对逻辑思维来说是一个挑战,明显具有逻辑美。因此要分清在原理概念上的差别,以简洁的语言和严谨的逻辑来表达产生事物的原因、发展以及结果。虽然科学英语的语言不优美,但具体前因后果连接地比较清晰的特性。使用翻译者在对科学英语进行翻译时要把握文章的基本逻辑,并了解文章的侧重点,就可以文章中因果关系、发展联系、程度大小等逻辑特点,对原文的内容进行准确翻译,表达出作者的思想。
原文:The Key Of Optimizing Quantum Reversible Logic Lies In Automatically Constructing Quantum Reversible Logic Circuits With The Minimal Quantum Cost。
意思为:最优化量子可逆逻辑的关键在于用最小的量子代价自动构造量子可逆逻辑。这个句子包括多层次的逻辑关系,所以在进行翻译不仅要把原文准确的表述出来,也要将其中的规律清楚地展现在人们面前[3]。翻译者只有将多层次的逻辑关系与文学语言结合起来,才能使人们明白其中的具体,充分表现翻译作品的的逻辑美。
4.翻译的简洁美
语言精练才能达到科技英语符合表达简洁的目的,而科技英语为了使人们对文章更明了,就表现以比较少的语言表现最多的内容。这种简洁美不仅应用于词汇层,也应用于句法层。现在科技英语中经常使用名词化结构,将过长句子翻译为一个词语或者短语。其优点在于可以降低人称主语先入为主的几率,增加客观的科技概念的使用效果,同时也可以使得文章内容更加明了,句子结构更加简洁。比如:因为格力空调与其他同类型产品相比,更方便实用,耗能少,更智能,更易操作。其翻译为: Gree air conditioning compared with other products of the same type, more convenient and practical, low energy consumption, more intelligent, more easy to operate.
这段语言由四个表达因果关系的短语组成一个复句,但是在进行科技英语的翻译的过程中,为了保证句子的内容更明了,使用名词化形式来表述文章的内容,使得科技英语的译文不仅简单明了而且更具有美感,同时表现了翻译者文化素养。
另外,为了使得文章内容更具简洁美,使用各类其他名词作主语在科技英语文章也比较常见,人称名词和物质名词是名词的构成部分。所以一般使用人称名词表明主观意愿,优先选择使用物质名词进行表述。使用以非人称做主语的优势在于:首先是简化句子的结构,可以清楚地表达出因果关系;其次就是使语言更加优美,具有感染力。所以在进行科技英语翻译时可以适当运用人称代词,保持翻译的简洁美。
5.翻译的转义美
转义是指原有意义转化借代出新的含义。在科技术语在不断出现,特别是计算机和其他机械类领域科技专业术语不断爆发的情况下,对转义也越来越受到人们的关注。现在科技领域的发展与日常生活处于相辅相成的关系,因此科技术语的也更加生活化,更加优美。当人们的常用语与科技术语进行融合促进科技翻译的发展,使得语言更多元化,变化更加丰富,同时也表现着隐语的形象。比如英文中的"表兄妹"用"cousin这一词表示,但而"cousin"这个词,在日常生活中常常用作"同类型作物"的表达[4]。从另一方面来说,转义词的使用量的增加等一系列的变化表现出日常用语转化为科技名词的现象,不仅提高科技名词的适用范围,也增加了转义的美感。
6.翻译的修辞美
在翻译时使用修辞手法可以让语言更生动优美,随着科技名词的适用范围的扩大,修辞手法在科技英语领域的使用量也越来越多。其中比喻在科技英语翻译中比较常见,其通过不同事物的发展与结果来表述某种道理或者表现另一种事物。使用比喻手法可以使得逻辑与形象思维可以进行更好的融合,表达更加准确。而另一种比较常见的修辞手法是拟人,将无思想的事物进行人格化,给予事物人的心理活动,可以让科技文章亲近人们的感情,更具有打动人心的力量,同时也可以使人们更容易了解其含义和掌握其文章的关键点[5]。但是在进行对科技英语翻译时,要充分发挥想象力,不要过于生硬。
例如:In the spring on the occasion, the North Chinese swallows begin decided to enter the counter trend, came to life in the south.翻译为"在春暖花开之际,中国北方的燕子开始决定进入反潮流,来到南方生活。"在这个句子中使用了拟人的手法,给予燕子人的思维,不仅清楚地表达了燕子的迁徙活动,也表现了翻译的修辞美。
政策驱动也是重要动力,科技巨头抢先布局引发示范效应。智能化时代,各国从国家战略层面加紧人工智能布局,美国的大脑研究计划(BRAIN)、欧盟的人脑工程项目(HBP)、日本大脑研究计划(Brain/MINDS),而我国也在“十三五”规划中把脑科学和类脑研究列入国家重大科技项目。企业布局方面,谷歌、Facebook、微软、IBM等均投入巨资,其示范效应是产业进步的先兆;国内百度、阿里、讯飞、360、华为、滴滴等也加紧布局。15年行业投资金额增长76%,投资机构数量增长71%,计算机视觉和自然语言处理占比居前。
产业链格局已现,上游技术成型、下游需求倒逼,计算机视觉产业应用最成熟。产业链初步格局已现,从基础层和底层技术,再到应用技术,最后再到行业应用,除了近年来底层核心技术的突破,下游行业需求倒逼也是人工智能应用技术发展的重要动力,诸如人机互动多元化倒逼自然语义处理、人口老龄化倒逼智能服务机器人、大数据精准营销倒逼推荐引擎及协同过滤,等等。其中计算机视觉应用技术的发展可能是最先发力的,国内不乏世界一流水平公司。
2B应用首先爆发,“人工智能+金融、安防”应用前景广阔。“人工智能+”将代替之前的“互联网+”,在各行业深化应用,安防、金融、大数据安全、无人驾驶等等。生物识别和大数据分析在安防和金融领域的应用则是目前技术最为成熟、产业化进程较快,如智能视频分析、反恐与情报分析、地铁等大流量区域的监控比对;金融领域的远程开户、刷脸支付、金融大数据采集、处理、人工智能自动交易、资产管理等。相关推荐标的:东方网力、佳都科技、川大智胜,建议关注大智慧、远方光电。
逐渐向2C端应用扩展,看好“人工智能+无人驾驶、教育”。人工智能在无人驾驶领域的应用体现在三方面:(1)环境感知环节的图像识别;(2)基于高精度地图和环境大数据的路径规划、复杂环境决策;(3)车车交互、车与环境交互下的车联网,智能交通管理。教育领域应用方面,人机交互重构更互动性的教学;大数据和深度学习的结合使得个性化教学成为现实,这也是在线教育最重要的突破点;此外包括VR在内的多载体应用和多屏互动也是发展趋势。相关推荐标的:四维图新、千方科技、东软集团、科大讯飞、长高集团、新开普。
关键词:化工专业;无机化学;教学改革
无机化学是化工专业的一门主干专业基础课[ 1]。我们的授课对象是刚刚进入大学的朝气蓬勃的大学新生。本课程立足于学生有着深刻印象的中学化学知识基础,教学时间涵盖两学期[ 2] ,64学时涉及广泛的内容,既有基础理论部分,又有涵盖重要化合物组成,结构,代表性规律的元素部分[ 3] 。因此,课程的教学质量和教学效果显得尤为重要,它直接影响大学生对专业的看法及学习兴趣,学习方法和能力的培养,还为后续相关课程打下良好的基础。
近年来,随着高校教育改革的深化,我们结合学生的情况和化工专业的特点在教学理念和教学形式上进行了一系列探索和改进,有效提升了教学质量,建立了和谐的师生关系。现从以下几个方面来简要阐述。
一、精选基本教学内容
如上所述,无机化学的内容包含基本原理和元素化学两部分。本课程是新生接触到的第一门专业基础课,要充分考虑到学生对新知识的渴求和已有的基础知识,避免内容庞杂。所以,我们对教材内容进行了归纳和充实,对于中学化学里讲述过的知识,例如化学平衡的特征、溶液的酸碱性的表征、氧化还原反应等基本化学原理的定性部分只做大概回顾,在本课程里着重讨论他们的定量计算;而对于配合物的分步解离平衡、化学热力学和动力学等内容在后续分析化学和物理化学课程中会详述,在无机化学中则以定性讲述为主。我们将教学基本内容概括为以溶液(电解质溶液,缓冲溶液)为基础,结构(原子结构、分子结构、晶体结构)为主线,平衡(酸碱平衡、化学平衡、沉淀―溶解平衡、氧化还原平衡)为重点,分区(s区,p区,d区,ds区)讲述,重点分明,条理清楚。特别是元素无机化学部分,具有“内容丰富、体系繁杂、历史悠久”的特点[ 4] ,讲好和学好元素化学对培养学生分析问题、解决问题和独立创新的能力至关重要。
在备课的过程中,教师也在反复研究教材、查阅资料、精选内容,这样才能做到高屋建瓴,视野开阔。如果讲课过程中始终局限于课本,只会把课上得枯燥乏味,不能激发学生的兴趣,因此,在授课内容中要注意引进补充内容,增加例题,使教学内容以课本为主又高于课本,体现教师的水平和特色。同时,某些知识点也应该根据学生的专业特点和学生实际适当进行调整。例如,在讲述碳族元素的时候可以给化工专业的学生增加煤化工的基本知识为他们的后续课程做铺垫,主族元素的性质递变可以要求学生通过查阅资料自己总结。
二、有针对性地强化教学重难点 无机化学课程内容多,学时少,不可能使学生牢记所有物质的性质和代表性反应。因此,教学中我们尽量突出重点即基本原理的阐述,培养学生分析问题的能力。这样即使到高年级,学生遗忘了本课程的具体内容,解决问题的方法和能力也能受用终身。教学的难点包括抽象难懂的内容和容易出错的地方。
例如,核外电子的运动状态是历届学生公认的难点。我们在教学中从回顾电子的波粒二象性开始引进薛定谔方程,结合传统的轨道含义和学生在高中了解的电子云引进量子力学中电子的运动状态。对相关的4个量子数的取值和应用增加大量示例,并形象地和学生所在寝室结合分析,层层深入,使学生建立核外电子运动状态的正确概念。而配位化合物的计算这样容易出错的地方,我们会预先给出错误的实例,加深学生印象,有助于内容的强化记忆。实践证明:有针对性地攻破难点、突出重点取得了很好的教学效果。
三、因材施教,适当引申,注重激发学生兴趣 不可否认,学生的基础、能力和知识的掌握程度有着很大的差异。所以我们也注重了教学过程中的针对性特点。对优生、学困生、中等生做到心中有数,充分考虑到他们在接受知识和技能时方式和速度的不同,在教学过程中因材施教,激发学生的兴趣和自信心,达到理想的教学效果。
同时,在元素无机化学的教学过程中,要充分考虑到学生对知识的渴求,采取适当变革的态度在教学内容上创新,适当地加入现代化学的重大发现或教师的科研项目,开阔学生的眼界,启迪思维,避免死记硬背。通过改进教学方法,学生对自然界存在的元素及主要化合物的性质及反应规律有了一个总体了解,也了解了一些在当今环境、能源、生命、材料等领域中采用的新技术,新方法和新材料。
例如,在讲配合物的应用时从人体血红蛋白结构入手,衍生出与配合物密切相关的生物无机化学的发展、人造血液、人体微量元素、抗癌药物及机理;在碳族元素中加入温室效应、全球气候变暖及钻石的相关知识;在硼族元素中加入各种宝石的图片及铊元素的中毒示例等。从学生渴望求知的眼神中可以看出他们很接受这些新的“窗口”,通过这些知识与公式原理的相互渗透,使课堂教学变得生机勃勃、面目一新,并为学生在今后专业知识的学习和工作中的“临窗远眺”乃至“破窗而出”打了一个很好的基础。
关键词:科学;诗性;创造;自由
中图分类号:G640文献标识码:A文章编号:1671-1610(2012)04-0000-0
一、科学理论也是一种“风、雅、颂”
长沙爱晚亭旁,有一方柱形石碑,名“放鹤”。除刻“放鹤”二字外,碑之四周还刻有“二南”诗:南宋岳麓书院山长张南轩之《清风峡》,和乾隆湖南学政钱南园之《九日岳麓》。
“二南”之思绪,均贯往古来今,通四方上下,因而出言成诗。这印证王国维所说:“诗人对宇宙人生,须入乎其内,又须出乎其外。入乎其内,故能写之。出乎其外,故能观之。入乎其内,故有生气。出乎其外,故有高致。”[1]14
杨振宁将诗和方程式相提并论:“诗是什么? 诗是思想的浓缩。你把非常复杂的思想用几行文字来表达,你写的就变成了一首非常美丽的诗,一首有强大感染力的诗。我们寻求的方程式其实就是自然的诗篇。”[2] 156也就是,若说诗人“对景生天机,随心发匠巧”[3],科学家则“情至不能己,氤氲化作诗。”[4]798
在徐光启眼中,几何像诗:“有三至、三能:似至晦,实至明,故能以其明明他物之至晦;似至繁,实至简,故能以其简简他物之至繁;似至难,实至易,故能以其易易他物之至难。易生于简,简生于明,综其妙在明而已。”[5]几何竟然有如此之妙!几何是诗还是诗化几何? 抑或造化是诗还是诗化造化?
从物理学理论中,杨振宁看到诗:“牛顿的运动方程、麦克斯韦方程、爱因斯坦的狭义与广义相对论方程、狄拉克方程、海森伯方程和其他五六个方程是物理学理论架构的骨干。……它们以极度浓缩的数学语言写出了物理世界的基本结构,可以说它们是造物者的诗篇。”[2]259
看一例,麦克斯韦的电磁理论,何诗性之有?当相对论出现时,发现它具有洛伦兹不变性;当量子力学出现时,发现它是相对论性的量子力学方程。当广义相对论出现时,只需加上一维麦氏理论就是广义相对论性理论;当自然界的基本相互作用出现统一的思想时,它又是最早和弱相互作用统为一体的理论。当几何概念运用到物理时,发现它居然是几何方程;当共形不变性进入物理学时,发现麦氏方程具有共形不变性。
杨振宁总结说:“这些方程还有一方面与诗有共同点:它们的内涵往往随着物理学的发展而产生新的、当初所完全没有想到的意义。”[2]259 物理学理论如诗,而诗无达诂。钟嵘论诗词之“赋、比、兴”:“文已尽而意有余,兴也;因物喻志,比也;直书其事,寓言写物,赋也。”[6] 19故而科学理论特别具有诗“三义”[6]19中的“兴”义。这就是诗性在科学中的主要体现。
科学家和诗人一样,认为物含诗性。在科学家眼中,描述造化规律的方程式就是同“风、雅、颂”一般的诗章。
二、科学理论具有实用性和诗性
“凡诗之传者,都是性灵、无关堆垛”[4]146。杨振宁这样看“性灵”:“若直觉地把‘性情’、‘本性’、‘心灵’、‘灵魂’、‘灵感’、‘灵犀’、‘圣灵’(Ghost)等加起来,(性灵)似乎是指直接的、原始的、未加琢磨的思路。”[2]250“学物理的人了解了这些像诗一样的方程的意义以后,对它们的美的感受既直接而又十分复杂的。”[2]260
可是,科学理论必须具有实用性,实用性不但指能精确应用到解决已知体系中的问题,还指能精确预言到未知系统中的问题。既然如此精确,为什么还说科学理论还具有无法定量计算的“性灵”?
首先看无穷小和无穷大这两个概念。它们是数学分析的基础,也是现代物理的基础。宇宙之大,终归有限;物质之微,止于夸克。其小无内之无穷小和其大无外之无穷大,其实整体在经验之外。或者说只能局部地、近似地存在于现实世界。片面地强调实用性,其实是对人类理性设立的藩篱。只要逻辑自洽,无穷小和无穷大,是一个充满了想象力、探险精神的世界,是人类和自然交流的自由世界,而且远远还没有探索完毕。而每一项新的探索之后获得的结果,又无不具有极其广泛的实用性。
再看牛顿第二定律,是中学物理知识的必学内容。惯性系是牛顿第二定律的基础。何谓惯性系?物体在没有受到力的作用时,将保持匀速直线运动状态或静止状态的一个系统。可是,茫茫宇宙中,何处有惯性系?没有!或者说只能局部地、近似地存在。说惯性系是物质世界经验知识的总结是远远不够的。此“总结”,似乎机械抽取提炼可达,其实大谬,非性灵而不可达也! 因为惯性系整体在经验之外,仅仅存在理性和诗织的世界中。不过,惯性系的深刻性表现在它的终极性,也就是不存在比惯性系更“惯性系”的参照系,它是所有可能参考系的一个刚性边界。
实用性是科学理论的重要属性,但是把实用性当成科学理论的全部属性,则是对科学的扼杀。这一点和技术不同。科学的目的应当在于激发和满足人类的好奇心。科学理论是科学家缘物起意,乘物以游心的结果,居虚与实、抽象和具体、性灵和实用之间。
三、诗性自由是科学创造力的核心
爱因斯坦论理论物理方法的自由:自由创造(free invention)、自由创造、还是自由创造。[7] 所以“一种理论可以用经验来检验,但是不存在从经验通往理论建立的任何通道。”[8]
诗,诗思与诗创造,都出于自由。王国维这样看诗人的自由:“诗人必有轻视外物之意,故能以奴仆命风月。又能重视外物之意,故能与花鸟共忧乐。”[1] 14
杨振宁将科学创造的自由与诗创造的自由相提并论:“清朝陈廷焯曾于《云韶集》中说写诗达极高境界时有‘独来独往之趣’,做研究也如此。”[9] 由此可说,科学创造的自由是一种诗性自由。
对科学知识的诗化理解的极致,在于创造出新的知识。而创造新的知识,又在于诗性自由。诗性自由能使科学家无视最开始时理论的“缺陷”,就是“轻视外物”的自由。任何伟大的思想的最初出现,一定朦胧、灵动,科学家的伟大在于他们依然直觉科学原理于千里之外,而终能“与花鸟共忧乐”。
爱因斯坦谈自己最伟大的发现时说:“我关于引力的一系列论文,是一连串的错误的步骤,不过,还是这些错误将我一步一步地引导了目的地。”[10] 海森堡“真正让人震惊的能力,就是能模糊而不确定地,以直觉而不以逻辑的方式,觉察出控制宇宙的基本定律的本质性线索。”[2]320
1928年狄拉克最初发明一个电子运动的相对论性方程,发现其中有一个正电子的解。正电子是从何而来? 狄拉克假设存在一个负能级被填满了的电子海――狄拉克海,当其中的一个电子离开负能级的海后,会出现一个空穴,而这个负能级的空穴就是正电子!这个电子海不出现在实空间,而是能量空间。
自然界具有反粒子这是一个终极真理。但是,如何给出一个机制来说明存在性呢?狄拉克不惜发明出一个明显具有瑕疵的概念:无限深负能级狄拉克海及其空穴。这个瑕疵表现在,如何填满无限深的海?然后在这个海中的有限深度处还要激发出电子来?因此,可以想见这些概念后来很快就被量子场论中的反粒子概念所替代。但是“负电子的海洋”这样一个“虚无”的概念都是人类智力创造的巅峰之作,造化灵性的神来之笔,“照烛三才,晖丽万有,……;动天地,感鬼神,莫近于诗。”[6] 15
1954年杨振宁创造规范场理论的时候,物理学界并没有一个特别大的困难或者迷惑等待一个革命性的理论去解决。而物理学史上,杨振宁之所以能列于爱因斯坦、狄拉克之后,也是因为这个规范场理论。“在1950年代,我们只觉得这篇文章很美妙。到了60年代,才觉察到它的重要性,及至70年代始晓得它对物理学是极为重要的。”[11]
这个理论最初的形式,只能描述无质量的场。对任何物理学家而言,这都是一个巨大的缺陷。杨振宁说:“我们发现我们不能对规范粒子的质量下结论,我们用量纲分析做了一些简单的论证,对于一个纯规范场、理论中没有一个量带有质量量纲。因此规范粒子必须是无质量的,但是我们拒绝了这种推理方式。”[12]“非阿贝尔情形比电磁学错综复杂得多。……带电规范粒子不可能没有质量。”[12]
科学创造的诗性自由,指引狄拉克、杨振宁等大家在已知理论的边缘处,跃身而起。尽管不知道所落何处,但是天空的浩淼,已经令心灵悸动。这也是物理学大发现的通则,举凡牛顿引入惯性系、爱因斯坦创造广义相对论、普朗克引入量子化假说、薛定谔写下薛定谔方程等,概莫能外。
四、科学教育应该以诗性自由为出发点和落脚点
诗性不唯文学艺术所独有,也不应唯文学艺术所独有。伟大的科学理论,大多具有诗性。这一等同性,可以追索到古希腊人对造化和诗词的理解,他们有一词 poiein 就同时兼有制造、创造性、诗词、甚至造物主(creator)等多方面的含义。
大学教育的灵魂在于培养创造性[13] ;大学科学教育的灵魂更在于培养创新性。科学教育,作为专业教育,主要目标是培养科学工作者照观、探索、领悟世界的能力,发现、描述、解释世界本质规律的能力,以及呈示、传播其发现、描述与解释的能力;科学理论史已经表明,这些能力的高下与诗性自由的多少之间存在密切关联。作为通识教育,不论设定目标是什么,根本目标应该拓展创新意识与提升创新能力;无论在什么领域,创新意识的强弱与创新能力的高下和诗性自由的多少之间,也都存在紧密联系。
实用性或功利性是科学理论的重要属性,但是,如果教育片面强调科学理论的实用性与功利性目标而忽视其诗性自由,就如抽取锦缎经纬线中之经或纬线,科学理论将形存而神失。只有理解了科学知识的诗性,才能实现从经验真实到理性真实的飞跃;只有理解了科学创造的诗性自由,才能从理性真实到诗化真实的飞跃,然后回到经验真实。科学教育应该以诗性自由为出发点和落脚点。
参考文献
[1]王国维.人间词话[M].上海:上海世纪出版集团,2009.
[2]杨振宁,翁帆.曙光集[M].北京:三联书店,2008.
[3]袁枚.小仓山房文集(一)[M].周本淳,标校.上海:古籍出版社,1988:115.
[4]袁枚.随园诗话[M].顾学颉,校点.北京:人民文学出版社,1982.
[5]徐光启.徐光启集(上册)[M].王重民,辑校.北京:中华书局,1963:77.
[6]钟嵘.诗品[M].周振甫,译注.北京:中华书局,1998.
[7]Einstein, A. On the Method of Theoretical Physics [J]. Philosophy of Science, 1934,1(2): 163-169.
[8]Einstein, A. Geometry and Experience [G] // Einstein, A. Sidelights on Relativity. New York: Dover Publications, 1983: 25.
[9]杨振宁.陈省身教授小传 //徐胜蓝,孟东明.杨振宁传.上海:复旦大学出版社,1997:215.
[10]Pais,A.上帝难以捉摸,……――爱因斯坦的科学与生平[M].方在庆,李勇,等,译.广州:广东教育出版社,1998:313.
[11]张奠宇.杨振宁和当代数学[M]// 杨振宁.杨振宁文集(下).张奠宇,编.上海:华东师范出版社,1998:728.
【关键词】 Chem3D;有机化学;教学
Chem3D是英国剑桥软件公司(CambridgeSoft Corporation)所编写的Chemoffice 化学办公软件的一个组成部分,其界面友好,便于操作,可以显示分子的立体结构、键长、键角、分子轨道形状等,同时还具有简单的量子化学计算功能,可以对有机分子进行能量、电荷分布、红外和拉曼光谱、核磁性质、反应动力学等的计算与模拟。作为一款专业的化学图形软件,Chem3D可以为化学教育工作者[1],特别是有机化学教师在教学工作中带来很多便利。下面简单介绍笔者在有机化学[2-3]教学过程中利用Chem3D软件的实践和体会。
1 在构象教学中的应用
环己烷的构象是有机化学教学中的一个难点,在传统的教学过程中总是占用大量的时间,但是教学效果也并不理想。利用Chem3D可以简单形象的把环己烷的两种经典的构象椅式和船式[图1(a), (b)]展现出来,为教学提供很多便利。
在授课时,可以事先在制作的PPT中插入超级链接,然后就可以方便地把已经制作好的图形文件打开。如图1(e)所示,点击鼠标左键,可以使模型任意地旋转,让学生从不同的角度观察分子模型,从而可以清楚地辨认出e键和a键的位置以及它们的特点。还可以用鼠标选定任意的两个氢原子,软件则自动测出两者之间的距离,从而很方便地说明椅式构象没有空间张力,而船式构象存在较大的空间张力。并且通过软件的Model Display选项,可以控制图形显示或不显示氢原子,便于学生分辨出船式和椅式构象。
一般学生通过教材中的图1(c)、1(d)很难想象的出它们就是图1(a)、(b)所表示的分子构象,但是通过Chem3D的图像旋转功能可以很清楚地把图1(e)旋转为1(g),图1(f)旋转为1(h)。通过观察图1(g)和1(h)中的分子构象特征,很容易发现前者的氢处于对位交叉式,而后者的氢处于重叠式。这也说明了椅式构象的扭转张力小,能量低,船式构象的扭转张力大,能量高。这样的授课方式对于一些空间想象能力不够好的学生起到一个很好的辅助理解作用。
在讲取代环己烷的构象分析时,同样可以利用Chem3D来建立模型,观察分子的立体结构以及空间张力。另外,还可以利用Chem3D自带的量子化学计算程序,快速地计算出取代基分别位于e键和a键时分子的能量,比较分子能量的大小就可以很容易地判断出当取代基位于e键时的构象是优势构象。这样通过3D模型和理论计算两种方法证明了教材中给出的结论。
2 在立体化学教学中的应用
立体化学是有机化学的重要组成部分,在有机化学中占有非常重要的地位。立体化学也是有机化学教学中的重点和难点,它需要学生有很强的空间想象能力。由于学生缺乏对分子结构的直观认识,难于在头脑中产生分子结构的立体几何形象,所以有相当一部分学生感到立体化学的学习较难,并产生畏惧情绪,从而影响了对整个有机化学的学习[4]。立体化学教学中有两个难点:Fisher投影式和构型的标记(R/S构型标记法)。由立体结构投影到Fisher投影式,学生一般都可以理解,但是由Fisher投影式转换为立体结构式就显得比较困难。利用Chem3D可以很好地解决这一难题,并使教学过程简单、形象化。
如图2(a)、(b)所示D, L乳酸的立体结构。在教学的过程中首先打开制作好的模型文件,然后用鼠标拖动D乳酸或L乳酸,使其任意的旋转,并使两者尽量重合,但是不管怎样转动或平移两者均无法重合,从而生动形象地演示了手性现象,加深学生对手性概念的理解。旋转分子的立体模型,使其碳链位于竖直方向,即COOH基团位于碳链的上方,CH3位于下方,并使其向投影屏的后方伸展,如图2(a)、(b)所示,这样从学生的视线方向来看,其投影式即为图2(c)、(d),也就是该分子的Fisher投影式。通过这样一种教学方式,使学生直观地掌握了Fisher投影式的概念,投影方法及还原方法。同样在后续章节中讲授比较复杂的Fisher投影式时,如酒石酸分子、葡萄糖分子,也可以用该方法,使其投影式的立体结构清晰地展现在学生面前。在讲授另外一难点R/S构型判断时,可以首先建立3D模型,然后旋转,使H原子远离学生的视线,再让学生判断其他原子或基团大小,从而较为容易的判断分子是R还是S构型。这样利用Chem3D中分子模型可以任意旋转来帮助初学者,使其学习变得相对容易,并增加其学习兴趣。
另外在讲授无手性碳原子的手性分子时,也可以把Chem3D引入教学。如图3(a)所示,学生一般难以通过教材中的两个结构式想象出这两个分子是实物与镜像的关系且不能相互重合。但是通过Chem3D,构建出两个分子的3D模型[图3(b)],并任意地旋转、平移,学生就可以很直观地判断出它们之间是不可能重合的,从而可以在更深层次上理解“手性”及手性分子的含义。
3 在反应机理教学中的应用
有机化学的反应机理一般较为复杂,步骤多,涉及到电子效应、立体效应等诸多因素,初学者往往难以准确的理解和掌握。如在乙烯与Br2的亲电加成反应机理中,反应首先生成溴钅翁离子[图4(a)所示],然后Br-离子再从反面进攻C原子,最终生成反式的加成产物。针对这种机理,很多学生容易产生疑问: Br-离子为什么从反面而不从正面进攻?实际上,这种机理是由空间位阻所决定的,但是从教材中的结构式很难看到空间位阻的影响,所以就给教师的讲解造成了较大的困难。如果利用Chem3D 的Display Model 功能中Space Filling选项,将结构式[图4(b)]转换为比例模型[图4(c)]就可以清楚地给学生展示空间位阻的概念,上面的问题也就迎刃而解。
从图4(c)中可以直观的看出,由于Br原子的体积较大,几乎占据了C原子上方所有的空间,所以Br-离子不可能从同一侧来接近C原子,只可能沿空间位阻较小的反方向进攻,所以最终形成反式的加成产物。
4 总结
Chem3D 在有机化学教学中的应用远不止本文所讲,例如还可以利用该软件显示共轭体系中的离域大兀键;在讲述波谱分析时利用其计算功能可以显示红外光谱、一维核磁共振谱以及对应的谱图解析;在讲反应机制时,可以通过Calculation菜单计算反应历程,然后可以将整个反应过程动态地显示出来。在以往的教学过程中,教师是利用实物模型(如球棍模型)进行授课。但是现在随着高校地扩招,学生人数地增多,大多高校采用大班授课,如果还用模型教学,一是制作携带不方便,二是坐在后排的学生很难观察清楚,势必严重影响教学效果。所以教师适当地学习一些计算机知识和专业软件操作技巧,并成功应用在教学中,则可以达到事半功倍的效果,从而促进有机化学的教学。同时,还可以使学生较早接触到专业的科研工具,培养其科研兴趣。
参考文献
[1] 顾云兰. CS Chem3D 和Gaussian 98 在结构化学教学中的应用[J]. 临沂师范学院学报,2005,27 (6):102 104.
[2] 吕以仙,陆阳. 有机化学[M]. 第7版. 北京:人民卫生出版社, 2008: 1881.
用微分方程定性理论结合数值模拟方法研究了窄脉冲方程的广义扭结波。关于词语烧灼的那些可以摘抄的呢?这里给大家分享一些关于烧灼的词语近义词,供大家参考。
一、扭结含义扭结是数学中一类重要且有趣的几何直观对象。 从数学上说, 它就是三维空间中的一条闭合曲线, 并且可以看作单位圆 到三维空间中拓扑嵌入的像。单位圆是平凡的扭结。
二、扭结近义词1、扭搜:硬挤。
2、扭打:扭打,指相互揪住殴打。
3、扭搭:扭搭,[口]指走路时肩膀随着腰一前一后地扭动。
三、扭结造句1、借着火光,我发现医师和另一个人有着共同的非洲人种特征—深褐色皮肤、扭结的头发和宽阔的鼻子。
2、压力引起视网膜内的微血管扭结弯曲,如图中的一个箭头所示,图中的其它箭头所指为视网膜静脉内的“凹陷”,称作动静脉局部缩窄病症。
3、当蛋白质在细胞中被组装起来时,它们的骨架会自行扭结缠绕起来,折叠成麻花那样的形状。
4、就我看来,这就像用数学的扭结理论或者拓扑学来论证你许愿时交叉手指一样困难。
5、侧裙与曲折扭结在中间添加一些视觉吸引力的形象和领先优势扩大到了AMG的后方筋膜和扩散是一个综合的两侧四排气提示。
6、照片显示土星环上物质团块、扭结、螺旋纹路和波浪状的边缘,这是由于周围的卫星,以及环缝间某些不明物质的重力拉扯所造成。
7、漂泊与宿命在王安忆的文本世界和心灵世界中扭结纠缠在一起。
8、斑块状扭结的数量与胶原原纤维的退变程度成正比。
9、胶原原纤维发生不同程度的变性、融合、扭结或钙化,胶原纤维束间裂隙增大。
10、从一开始,会谈的主要目标就是将农业贸易上的一些扭结拉直过来。
11、罗斯的达尔帕资助研究可能会派上用场,因为他作出扭结在这新程序中。
12、计算机朋克,谋杀秘密和政治上的阴谋扭结在这一本书中,它讲述了一只猫的故事,一个心理意义上的半人,被强给他最憎恨的人做保镖。
13、看看我们如何把线轻微扭结给一个页面上略有曲线的印象。
14、在地核中由于科氏力效应,流体中的涡流将磁力线扭结成团,看起来就像一团团的义大利面条。
15、通过脑硬膜的孔,将微传感器的探头至于脑实质中,直到单孔顶端的扭结处。
16、再次收缩单孔处,在指定段将微传感器完全弯曲并留下一个扭结。
17、纱线单位长度上的湿扭结个数是评价和衡量纱线残余扭矩的一项重要间接指标。
18、用微分方程定性理论结合数值模拟方法研究了一类具有四次多项式势的非线性波方程的扭结波。
19、讨论了扭结-反扭结对的平衡分布,推导出一条分子链所输运的超导电流。
20、从那时开始,人们发现量子群在很多领域都有着深刻的应用,范围遍及理论物理、辛几何、扭结理论与约化代数群的模表示理论等。
21、高强度的纱线要求有相当大的捻度,但是超过最佳捻度后,附加的捻度会使纱线扭结,最终降低纱线的强力。
22、在积分常数为零的条件下,证明了该方程存在光滑孤立波解、不可数无穷多光滑周期波解、扭结波和反扭结波解。
23、分析两大类名动量扭结形式,并在语义、认知、信息焦点等各方面得出名动量的平行对应关系。
24、研究了在外场和阻尼存在情况下氢键分子链中质子转移的二分量扭结动力学。
25、结合数字图像和信号处理技术,提出了一种基于纱线图像的扭结分布特征的自动识别方法。
26、求出了扭结的迁移率、共振频率和扩散常数的表示式。