前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的计算机在数学建模中的作用主题范文,仅供参考,欢迎阅读并收藏。
系计算机的独特性与数学建模的实际性特点,必然会使二者之间存在某种密切的联系,这种联系也正好促使双方都得到了快速的发展。计算机大规模的运用为数学建模提供了更方便、更快捷的服务,而数学建模的高速发展也为计算机在处理实际问题上提供了广阔的平台,也能够使得在计算机使用上有新的飞跃。因此,二者之间是一种相互影响,相互促进的关系。计算机为数学建模提供了重要的技术支持,这为数学建模思想意识的培养具有重要指导意义。首先,计算机具有庞大的存储能力,能够将很多基础资料存放其中,这使得数学建模在检索资料时更加方便和高效,节省了大量的时间、人力及物力。其次,计算机属于多媒体的一部分,它能够为数学建模提供更加逼真的模拟环境,以便更好的实验,数学建模本身就是一项复杂的工作,是对实际问题的分析。因此,所需要的数据量非常大,而且还很复杂,例如,三维激光扫描,三维打印等。这些都是需要计算机才能完成的,它为数学建模提供了更加快速,简便的方法。数学建模同时也为计算机的发展提供了基石,起先计算机都是因数学建模而产生的,这就得追溯到二十世纪八十年代了,当时美国为了研究导弹在飞行过程中的轨迹路线问题,因其计算量太大,急需一种工具来代替人工计算,于是计算机就在这样的背景下产生了。数学建模离不开计算机,在整个数学建模的过程中都少不了计算机的参与,可以说数学建模的快速发展也同时推动了计算机及相关软件的高速发展。在对人才的培养上,最好两者都能兼顾,研究数学的必须要要求对计算机要有一定的研究,而从事计算机相关研究的也要在数学上有一定的功底,这样两者才能得到质的飞跃。计算机及其软件的快速发展为建模提供了大量的存储空间,方便快捷的检索和逼真的模拟环境,为解决实际问题提供了重要的技术支持。同时,数学建模的快速发展也推动了计算机软件的开发运用和发展。可以说两者是相辅相成,形影不离的关系。
2计算机的发展对数学建模的影响
随着计算机的不断发展,其在数学建模中也被广泛运用。目前,数学建模比赛的水平也变得越来越高,要求解决实际问题的能力也越来越强。由于计算机的不断发展也使得数学建模中繁杂的问题得到简化,极大的提高了效率,节省了大量的人力、财力和物力。这也使得更多的高效学生能参与其中,扩大其影响力。计算机本身的发展对于数学建模意识的培养具有极大的推动作用,数学建模其实就是为了培养学生的创造性思维,这就要求学生们不仅要有一定的理论能力,更要有敢于实践的能力。同时,在建模的过程中本身就是培养学生去发现问题,解决问题的过程,让其在建模的过程中去挖掘其中最佳的解决方法和途径。也可以培养学生的想象能力、转换、构造等能力。而这些能力正好是创造性思维所必须的,对于创造性思维的培养还得要求会一定的计算机基础知识,因为数学建模的过程本身就是在不断处理数据的过程,在这过程中才能发现其中的内在规律,然后进行变化转换,进而制造出最优的模型。计算机的运用使得在查找资料上更加的方便快捷,能够很方便进行相关的数据处理和进行相应的数学分析及模型的建立。目前逐渐推出了很多与数学建模相关的软件,这其中有SPSS,Matlab,Waple等。其出现极大的解决了数学建模中遇到的问题,使数学建模变得更加便捷。
3结束语
进入21世纪,世界很多国家都在研制或修订新的数学课程标准,数学建模与数学教学的联系这一问题已受到普遍关注,实际上可以说是一种国际现象。数学建模的过程充满了思考、调研、试探、操作、实验,对学生和教师都有着非常大的挑战。经过数学建模的学习,学生对数学知识的理解能有显著的提高,这种作用是不容忽视的,但是如何实施与融入,仍然是中学数学教师需要解决的问题。
二、数学建模教学过程中存在的问题
高中《数学课程标准》提出,数学建模是运用数学思想、方法和知识解决实际问题的过程。我国目前的中学数学教育,在使学生深刻理解知识,牢固掌握数学基本技能,提高学生的运算能力、空间想象能力等方面,已取得十分可喜的成绩,特别是近几年来在提高学生的运用数学能力和解决实际问题能力方面也有长足的进步。但是应该看到,数学教育与时展的步伐还有诸多不协调的缺点,特别是在数学的应用意识的培养及其能力的培养方面,仍有许多值得探讨、研究的内容。
(一)教师方面的问题
当前我国数学教师教学大多采取的是传统教学模式,它是在一定的教学思想指导下所建立的比较典型的,稳定的教学程序或阶段,它是人们在长期教学中不断总结、改良而逐步形成的,它源于教学实践,又反过来指导教学实践,是影响教学的重要因素。
在数学教学的目标设置上,重视数学教育为学生进一步深造学习,进行科研或成为数学专家服务,忽视数学作为参加社会生产、日常生活的工具的方面的应用,即忽视数学的应用价值。结合实际问题编写的数学应用还十分牵强,素材有限。
另一个方面,教师在教学内容上强调“双基”教学,即强调基本知识的教学和基本技能的训练,严格按照分科传授科学文化知识,强调教材的逻辑系统,而忽视学科之间的联系。在理论与实践的关系上,重视理论知识,忽视应用过程的分析,忽视社会与生活实践,忽视“数学源于现实”的思想教育,而且应用的内容陈旧,范围过窄,离学生的现实较远。
最后,教师在教学形式上以课堂讲授为主,教学内容没有来龙去脉,重结果轻过程,重模仿轻创造,这些都不利于数学建模的发展。
(二)学生方面的问题
由于数学建模问题涉及的知识面太广(包括天文、地理、物理、生物等诸多方面),仅就数学这一学科而言,就有函数问题、数列问题、三角问题、立体几何问题、解析几何问题、排列组合问题等等。所以学生必须有一定的知识储备才能进行数学建模,这也是数学建模不在初中开展而在高中才开始开展的主要原因之一。
另一个方面,学生计算机知识能力有限,这也是制约学生数学建模水平的一个重要因素。据统计,北京市第七届高中数学应用竞赛一等奖的27篇论文中,有20篇是借助计算机或编写计算机程序完成的,有相当一部分同学使用了计算机,发挥了计算机在运算速度和数据处理等方面的优势。由于高中学生对计算机语言和编程不熟悉,没有掌握一些常用的应用软件,从而导致了学生在建模过程中难于入手、计算困难等实际问题。
三、将数学建模融入日常教学的思索
(一)提高教师能力水平
作为一个专业老师,教师知识必须能体现教学作为一种专门职业的独特性,这也说明教师知识在教师专业素养构成中的独特规定性与不可替代性。教师知识的丰富程度和运作情况也直接决定着教师专业水准的高低。尤其是从一些优秀的、有经验的教师身上我们可以发现,教师在从事专业活动时的确体现出一种独特的智慧技能,这种知识区别于一般大众的知识以及各学科领域的研究者的知识。教师知识是教师完成其专业活动所必须具备的知识,高中数学建模的教学对教师提出了更高的能力要求。
(二)立足于课本内容,在日常教学中“融入”数学建模
“融入”是指教师可以把一些较小的数学建模等应用问题,通过把数学建模过程分解后,放到正常教学的局部环节上去做,而且经常这样做,我们可以用“化整为零”、“细水长流”来描述这种做法。比如,在新知识的引入、复习课时,可以用一点时间穿插介绍一个数学应用或数学建模的问题,让学生在课堂上通过讨论仅仅完成“问题数学化”的过程(比如建立起相应的方程或不等式),而把问题的具体求解过程留给学生放到课外完成,较大或较难的问题可与假期作业和科技小论文的写作结合起来,放到假期或给学生一个较长的时间来完成。
(三)精心设计课程,让学生能够接受数学建模的学习
在日常教学中适当地加入数学建模等数学应用问题,可以使学生体会到数学的应用价值,提高数学的学习兴趣。然而,如何进行数学建模的学习,使学生了解数学建模的方法和过程,这便需要教师精心设计数学建模课程。这些课程能表现数学建模活动的一些特点,体现出教师和学生在数学建模活动中相互作用、相互促进的过程。
(四)渗透计算机教学
为此,教师必须首先掌握计算机方面的相应知识,这样才能对学生的数学建模进行全面的指导,增强学生的信息检索、收集、分析、处理等方面的能力和意识,提高学生的计算机水平,更好地利用计算机进行数学建模。
(五)数学建模坚持“循序渐进”原则
关键词:数学建模竞赛;高职学生;综合素质培养
中图分类号:G710 文献标志码:A 文章编号:1674-9324(2013)32-0214-02
高职教育的培养目标是培养面向生产和服务第一线的高级技术应用型人才,在高职教育中培养学生具有创新精神和实践能力,提升学生的综合素质。实践表明,数学建模是提高学生综合素质的有效途径,在教学过程中如果能将数学建模活动与高等数学教学有机融合,就能在教学中提高学生的综合素质。
一、数学建模的内涵及数学建模竞赛的发展
数学模型是把实际问题进行简化,并用数学语言和方法作出抽象或模仿而形成的一种数学结构。本德(E·A·Bender)认为,数学模型是关于部分现实世界为一定目的而作的抽象、简化的数学结构。数学模型定义为现实对象的数学表现形式,或用数学语言描述的实际现象,是实际现象的一种数学简化。
数学建模是建立数学模型的过程,是利用数学方法分析和解决实际问题的实践活动。
大学生数学建模竞赛最初是在美国举办的,我国大学生在1989年开始参加美国举办的数学建模竞赛。1992年在我国举办了十个城市的大学生数学建模联赛,是由中国工业与应用数学学会组织发起的,社会反响很好。因此,从1994年起我国每年举办一次全国大学生数学建模竞赛活动,由教育部高教司和中国工业与应用数学学会共同主办。竞赛宗旨为:创新意识、团队精神、重在参与、公平竞争。
纵观历届全国大学生数学建模竞赛,赛题大都来源于工程技术、经济管理、社会生活等领域中的实际问题。这些竞赛问题紧密结合社会热点,非常具有实用性和挑战性。赛题没有标准答案,这需要参赛学生可充分发挥自己的创造精神,结合实际问题灵活运用数学和计算机软件以及其他学科的知识,建立、求解、评估、改善数学模型。数学建模过程使学生的分析问题、解决问题的能力得到锻炼和提升。
二、数学建模竞赛对高职学生综合素质的培养作用
在高职院校开展数学建模竞赛活动是培养学生创新能力的载体,能培养学生观察力、创造力、联想力,培养学生使用数学语言的翻译能力、文字表达能力和综合分析能力,以及使用当代科技最新成果的能力。培养学生的协调组织能力和团队精神,数学建模竞赛的整个过程是这些能力的综合体现。
1.数学建模竞赛有利于培养学生的创新精神和创新意识。数学建模没有现成的模式,学生建模时要充分发挥自己的创造力去解决实际问题。要从各种不同的问题中发现其本质,做出合理的假设,使问题简化,建立数学模型。因此,数学建模竞赛是一项创造性的思维活动,是一个创造性工作的过程,在这个过程中学生的创新精神和创新意识能得到充分发挥和培养。
2.数学建模竞赛有助于培养学生自学能力和综合运用资料的能力。数学建模是众多学科知识、技能和能力的高度综合。在数学建模活动中,由于建模所需要的很多知识是学生原来没有学过和接触过的,围绕问题需要学生广泛查阅相关的资料,迅速找到自己所需要的材料,通过自学和讨论进一步掌握相关的数学知识和方法。因此,数学建模竞赛能培养学生的自学能力和运用资料的能力,这两种能力是学生今后学习和工作所必需的,为学生就业奠定坚实的基础。
3.数学建模竞赛有利于培养和提高学生的计算机应用能力。计算机技术和数学软件的迅速发展,为数学建模的应用提供了强有力的工具。在数学建模中计算机软件发挥着重要的作用,在建模前,利用计算机软件对于复杂的实际问题进行计算或图形分析来确定模型,在建模后,还要利用计算机软件进行编程或完成大量复杂的计算和图形处理。在建模中主要应用的软件有Mathenatica、Matlab、Lingo/Lndo和SPSS等,利用这些软件解决相关的数学问题。因此学生在建模的过程中使用计算机软件解决建模问题,是数学建模非常重要的环节,可以提高学生的计算机应用能力。
4.数学建模帮助学生增强写作技能,提高论文的写作能力。数学建模的最终结果是要求学生用论文的形式给出,论文主要包括问题分析、模型假设、变量说明、模型建立、公式推导或数学论证、计算方法设计和计算机实现、计算结果、结果分析和检验、优缺点和改进方向等方面的问题。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。这就要求学生要有一定的文字底蕴。如果学生的论文不能将独特的建模方法、出色的建模结果清晰地表达出来,这样写出来的论文结构不合理,条理不清晰,文字表达不确切,特色不鲜明,学生将很难获奖。因此,数学建模竞赛为学生提供了一个展示自我的平台,为学生创造了锻炼的机会,通过数学建模竞赛,学生的写作能力和水平将有大幅度的提高。
5.数学建模有利于培养学生的团队合作意识和团队合作精神。数学建模竞赛要求三个人组成一队,竞赛是否成功取决于团队协同作战的好坏。在组队时,优势互补;在数学建模的过程中,队员间将发挥各人所长,取长补短,相互配合、共同切磋、共同剖析、互相交流、互相质疑、互相探究、合理分工,培养学生建立良好的人际关系,相互合作的工作能力。团队精神和协调能力对于高职学生来说将终生受益,以至于对他们今后的发展都是非常重要的。
三、数学建模竞赛成绩
笔者所在的学院数学建模竞赛起步较晚,2009年首次参加全国大学生数学建模竞赛,至今取得了可喜的成绩。在四年间间累计参赛队22支,其中,2支队伍获得全国大学生数学建模竞赛(吉林赛区)二等奖,4支队伍分获三等奖,其他均获得成功参赛奖。在省数学建模竞赛中获得二、三等奖的好成绩。目前,笔者所在的学院已经形成一支默默耕耘的建模指导团队,这些教师对数学建模竞赛有了一定的指导经验。同时,学院已经出台对学生参加各种竞赛进行奖励的各种规章制度,这为顺利开展数学建模竞赛活动起到了很好的促进作用。学院的重视和各种奖励政策的保证,数学建模活动会逐渐得到普及,数学建模竞赛对高职学生综合素质的培养作用也会逐渐显现出来。
总之,学生通过参加数学建模竞赛,亲自参加了将数学应用于实践的尝试,亲自参加了发现和创造的过程,能取得在课堂里和书本上所无法获得的宝贵经验和亲身感受,这必能促使他们更好地应用数学、理解数学和热爱数学,在知识、能力及素质方面得到锻炼和提高,学生的综合素质得到提升。
参考文献:
[1]全国大学生数学建模竞赛章程[Z].
[2]刘建州.实用数学建模教程[M].武汉:武汉理工大学出版社,2004.
[3]李天然.《高等数学》[M].北京:高等教育出版社,2005.
关键词:数学建模;高等数学;数学教学
一、什么是数学建模
数学模型是指通过抽象和简化,使用数学语言对实际现象的一个近似的刻画,以便于人们更深刻地认识所研究的对象。下文用一道代数应用题求解过程来说明数学建模的过程。例题:甲乙两地相距750km,船从甲到乙顺水航行需30h,从乙到甲逆水航行需50h,问船速、水速各多少?用x、y分别代表船速和水速,可以列出如下方程:
(x+y)・30=750,(x-y)・50=750
实际上,这组方程就是上述航行问题的数学模型。列出方程,原问题转化为纯粹的数学问题。方程的解x=20km/h,y=5km/h,最终给出了航行问题的答案。
二、在高等数学教学中引入数学建模思想的必要性
自从1992年中国工业与应用数学学会开始组织全国大学生数学建模竞赛以来,数学建模越来越受到各大高校的重视,但是每个学校除了参加数学建模竞赛的很少一部分学生之外,大部分学生没有足够的时间和机会去了解数学建模的思想方法。这无形中阻碍了数学建模思想的传播,导致很多优秀的学生没能接触到数学建模的方法。值得一提的是,在现代大学课程设置中,大部分学生要学习高等数学这门课程,只是很多学生不知道学这门课程有什么用途,缺乏学习的动力和兴趣,最后逐渐认为数学是一门非常枯燥的学科。这就启发我们可以将高等数学的教学与数学建模结合起来,在高等数学教学中渗透建模的思想。这样不但能够激发学生学习数学的兴趣,而且还能提高学生将数学、计算机等方面的知识应用于实践的能力。
另外,在高等数学中引入数学建模,能够全面提高学生的素质。建立数学模型的过程也是培养学生各方面综合素质的一个良好机会。数学建模的过程可以培养学生多方面的能力:首先,培养学生综合应用数学知识及方法进行分析、推理、计算的能力。在数学建模过程中需要反复应用数学知识与数学思想方法对实际问题进行分析、推理和计算,才能得出解决实际问题的最佳数学模型,寻找出该模型的最优解。所以在建模过程中可使学生这方面的能力大大提高。其次,培养学生的创造能力、联想能力、洞察能力以及数学语言的表达能力。由于数学建模没有统一的标准答案,方法也是灵活多样的,学生针对同一问题可从不同的角度、利用不同的数学方法去解决,最终寻找一个最优的方法,得到一个相对来说最佳的模型,所以有利于发挥学生的创造能力。而对一个实际问题在建模过程中能否把握其本质,抽象概括出数学模型,将实际问题转变成数学问题,需要敏锐的洞察力和数学语言的表达能力。再次,培养了学生组织、协调、合作的能力。参赛使原本不同系不同专业相互陌生的学生聚在一起,相互学习,共同努力,培养了学生团结协作的精神和协调组织能力。最后,提高了学生快速查找文献资料、口头和书面表达、撰写论文以及计算机文字处理等方面的能力。
三、数学建模思想融入高等数学课程的思路与方法
(一)明确数学课程的目标定位
数学教学不应仅停留在数学知识的传授,还应加强学生用数学知识解决实际问题的能力的培养。数学教学既要为后继课程提供语言表达、逻辑推理、科学计算等基本要求,更要注重思维方法及思辩能力,以及学生利用逻辑关系研究和领会抽象事物、认识和利用数形关系的能力的培养。通过数学课程的学习,使学生具有科学的思维方式和思维习惯从数据的定性和定量分析中寻求与发现数学规律能力,从分析实际对象,建立数学模型到进行计算机数据处理的研究习惯从实际出发,不断学习数学,自学用数学解决问题的意识与能力。
(二)优化数学教学内容,增加现代数学知识
长期以来,我们的课程设置和教学内容都具有强烈的理科特点重基础理论、轻实践应用重传统的经典数学内容、轻离散的数值计算。然而,数学建模所要用到的主要数学方法和数学知识恰好正是被我们长期所忽视的那些内容。因此,我们必须调整课程体系和教学内容,增加一些应用型、实践类教学内容如“数学实验”、“数学软件介绍及应用”、“计算方法”等等在传统的微积的教学中,注重数学理论与应用相结合,增加实际应用方面的内容和例题,从而使教学内容更贴近生活,贴近社会,贴近现代科技发展。对具体教学内容的安排上注重学以致用,既考虑对学生思维能力培养方面的作用,又考虑培养学生运用数学知识分析、解决实际问题能力的培养。把数学建模思想融入到数学课程教学中去,增加数学在其他领域应用的案例。在教学中,根据各专业的不同,选出本专业典型数学概念的应用案例,然后按照数学建模过程规律修改加工之后作为课上的引例或者数学知识的实际应用例题。这样使学生既能亲切感受到数学在专业中的广泛应用,也能培养学生用数学解决问题的能力。通过教学内容的优化,使数学教学在培养学生素质和能力方面具有通过分析、计算、逻辑推理能求解数学问题用数学的语言和方法去抽象概括客观事物的内在规律,构造出等待解决的问题的数学模型。
(三)注重数学思想的渗透,加强数学方法的介绍
大量的实践表明,人们一旦掌握了数学思想方法,在今后的生活实践中将会终身受益。在介绍概念、原理、公式等时,注重数学思想的渗透以及数学方法的介绍。这样在传授数学知识的同时,使学生学会数学的思想方法,领会数学的精神实质,在通过实例介绍数学家是如何处理实际问题,将新问题转化成以前解决过的问题后引出定义时,突出转化思想强调微积分中“以不变代变、以静代动、以直代曲、从有限认识无限”等数学思想知道数学的来龙去脉,在数学文化的熏陶中茁壮成长。改革教学方法和教学手段,激发学生的学习积极性,我们认为要让学生从知识的被动接受者转变为主动参与者和积极探索者,在发挥教师主导作用的同时,充分发挥学生的主体作用,要为学生的积极参与创造条件,引导学生去思考、去探索、去发现,要鼓励学生大胆地提出问题,改变过去教师讲学生听的教学方法。在数学教学中贯彻“问题解决”的思想,以问题为教学起点,将要传授给学生的知识、结论、方法不是直接展示,而是通过创设问题情境,提出具有一定趣味性、启发性和挑战性的问题,使学生通过观察、分析、综合、类比、猜想、尝试和发现的探索过程,学会提出问题、分析问题和解决问题。通过问题的不断解决和不断提出,使学生掌握所学的知识,理解所学知识与其他相关知识间的内在联系,最终实现学生既学到了知识又培养了应用的意识和能力的教学目的。在教学中我们将传统的黑板、粉笔加教案的教学方法与多媒体教学结合使用,将传统的数学教学中不能直观表示的抽象的概念、定理等通过图表、图像、动画等多媒体生动地表现出来,从而加深了学生的印象,使学生易于理解和掌握,既激发学生的学习积极性,又解决了课堂信息量不大的问题,使教学过程灵活多样,提高了学生的学习兴趣,形成了数学教学的良性循环。“数学实验”是新的教学模式,它将数学知识、数学建模与计算机应用三者融为一体,在无锡工艺职业技术学院化工类相关专业中,开设了数学实验课程。学习数学软件的使用,使学生边学边用,着重培养学生运用所学理论解决实际问题的能力,把所学的知识直接应用于解决实际问题。实践表明这种教学方式对培养学生的动手能力和应用数学理论解决实际问题的能力起到了积极的作用。
(四)完善评价手段,促进学生学以致用
考试作为督促学生学习、检验学习情况的有效手段,是必不可少的。在教学实践中,我们在数学课程的考核中增加数学建模问题,在平常的作业中除了留一些巩固课堂数学知识的题目外,还增加了需用数学解决的实际应用题。这些应用题可以独立或自由组合成小组去完成,这种做法,鼓励了学生用数学,提高了逻辑思维能力,培养了认真细致、一丝不苟、精益求精的风格,提高了运用数学知识处理现实世界中各种复杂问题的意识、信念和能力,调动了学生的探索精神和创造力,团结协作精神,从而获得除数学知识本身以外的素质与能力。实践证明,在高等数学教学中突出数学建模思想,注重培养学生解决实际问题的能力,是数学教育改革的发展方向。“学数学”是为了“用数学”,教师应努力创造机会,把数学建模思想方法渗透到高等数学的教学环节中去,提高他们的数学应用意识和创新能力。作为新时期的数学教育工作者,不仅要有扎实的专业数学知识,还必须努力提高自身的数学模型意识、数学建模能力与使用计算机的能力。只有做到这一点,才能够在高等数学教学中突出数学建模思想,对学生进行数学建模能力的培养,为培养高素质的科技人才贡献自己的力量。
参考文献:
1、姜启源,谢金星,叶俊.数学模型[M].高等教育出版社,2007.
关键词:数学建模;独立学院;人才培养;创新能力
数学建模课程和数学建模竞赛作为数学教学的一个组成部分,在我院已经进行了四年。面对科学技术飞速发展的新形势,面对知识经济时代对人才的要求,怎样使数学建模在人才培养中发挥更大的作用,需要我们不断探索和实践。
一、数学建模和数学建模竞赛
模型是实物、过程的表示形式,是人们认识事物的概念框架。数学模型是对所研究对象的数学模拟,是进行科学研究的一个重要方法。数学建模就是通过对实际问题的分析,通过抽象和简化,明确实际问题中最重要的变量和参数,通过系统的变化机理或实验观测数据建立起这些变量和参数间的量化关系,再用精确或近似的数学方法求解,然后把数学的结果和实际问题进行比较,用实际数据验证模型的合理性,对模型进行修改和完善,最后将模型用于解决实际问题的过程中去。为了推动数学建模的进一步发展,吸引更多的学生参与数学活动,从1994年起,全国大学生数学建模竞赛成为国家教育部组织的全国性大学生四大竞赛之一。目前,大学生数学建模竞赛已经成为我国规模最大的大学生课外科技竞赛活动。数学建模竞赛与以往主要考察知识和技巧的数学竞赛不同,是一个完全开放式的竞赛。数学建模竞赛的主要目的在于“激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励学生踊跃参加课外科技活动,开拓知识面,培养创新精神和合作意识,推动大学数学教学体系、教学内容和方法的改革”。数学建模课程和竞赛的开展把学生学过的知识和周围的现实世界联系起来,通过教学与竞赛,可以培养和提高学生的洞察能力、数学语言翻译能力、综合应用分析能力、联想能力及各种当代科技最新成果的使用能力。数学建模具有联系实际、领域广泛、案例丰富的特点,在教学和竞赛中可以根据问题的需要引导学习和接受不断涌现的新概念、新思想和新方法,培养学生将实际问题抽象为数学模型的能力,培养学生快速反应能力和自我开拓能力。
二、烟台大学文经学院的数学建模工作
(一)现状与成绩
从小学到大学,数学课程伴随着一个理工科大学生走过了人生最珍贵的十几年,其时间之长,负担之重,是其他任何课程都不能相比的。然而,却有不少学生带着学数学到底有什么用的困惑,在沉重的学习负担下感到数学既难懂又枯燥,学习兴趣日下。于是,一方面是社会对与计算机技术有着密切联系的应用数学的需要日益增长,另一方面学了很多书本知识的大学生运用数学工具分析解决实际问题的能力远不能适应从事专业工作的需要。正是为了解决这个矛盾,根据国内外数学教学发展的动态,我们先后在烟台大学文经学院开设了数学建模实验课和全校数学建模选修课。自2008年起,我们开始独立组织学生参加全国大学生数学建模竞赛。数学建模竞赛是数学建模实验课和数学建模选修课的继续和深入,也是对我们数学建模课程质量和效果的直接检验。我们从参加数学建模课程学习的学生中或从参加学校数学建模竞赛的学生中选拔优秀的学生进行培训,组队参加竞赛。通过培训和竞赛,学生的自学能力、自我管理能力、创新能力、拼搏精神、合作精神大大提高。通过几年的努力,我们取得了以下成绩:
1.培养了一批优秀人才。
参加过数学建模实验课和选修课学习的学生,以及参加过数学建模培训和竞赛的学生,在自学能力、创新能力、分析和解决实际问题的能力、写作能力、拼搏精神、合作精神等诸方面都有了长足的进步,数学建模所培养的素质和能力将使他们受益终生。
2.在竞赛中取得了优异成绩。
自2008年起,烟台大学文经学院连续4年独立组队参加全国大学生数学建模竞赛,共荣获国家二等奖2项,省一等奖12项,省二等奖35项,省三等奖16项。每年均获得全国大学生数学建模竞赛、全国大学生电子设计竞赛山东赛区优秀组织工作奖。3.建立了数学建模实验室。我们在2010年建立了数学建模实验室,为我校数学建模实验课提供了良好的实验基地。每年的全国大学生数学建模竞赛,我校学生就在此实验室进行上机实验。为把实验引入数学教学、为更大范围的数学教学改革起到了良好的示范作用。④积累了许多资料。我们收集了国内外有关数学建模和数学实验的许多教材、实验指导书及软件,这些资料为进一步的工作提供了良好的基础。⑤造就了一批高水平、有奉献精神、勇于探索教学改革新思路的师资队伍。通过数学建模活动促进了教师水平的提高和知识面得扩大,也为数学专业人才培养和整个数学教学改革探索了一些新思路、新方法。
(二)思考与改革
在数学建模教学过程中,我们一直在反复探讨怎样更有效地提高学生的创新能力这一问题。我们认为,知识的获取是一个特殊的认识过程,本质上是一个创造性的过程。很多重要知识是通过“体悟”、“构建”、“再创造”等创造性认识过程而获得的。知识的学习不仅是目的,而且是手段,是认识科学本质、训练思维能力、掌握学习方法的手段,在教学中应该强调的是发现知识的过程,而不是简单的获取结果,强调的是创造性解决问题的方法和养成不断探索的精神。在数学建模教学的实践中,我们从强调学生的主体地位和培养学生的创造性学习能力出发,尝试了下面两种教学模式:
1.探索讨论。
按照人们探索未知世界、获取新知识的途径,通过发现问题、提出问题、分析问题、综合已有的知识去创造性地解决问题等步骤去获取和掌握新知识。这种方法突出学生自己探索新知识,注重学生的独立钻研。这种模式通过创造一种环境、提出一些问题、学生定向自学、师生共同研讨等步骤实现。在这一学习过程中,教师通过情景和问题引导,激发学生学习讨论。该方法成败的关键是要有合适的问题。
2.小组活动与大型作业。
这是根据知识经济时代人们只有通过合作和交流才能更多、更快、更好地获取知识这一特点进行学习的方式。教师将学生分成若干小组并指定一些问题,让学生阅读相应的参考文献,相互讨论,形成解决问题的方案,通过计算给出结果,并写出完整的报告。这样可以充分发挥每个学生的特长,如计算、分析、编程、写作等,使他们养成与别人合作工作的良好习惯。在具体的教学过程中,根据不同部分内容和学生的情况,可以采取不同的教学方式。在数学建模课程的教学中通过这些训练使学生将实际问题和数学联系起来,从一些观察到的现象中归纳数量规律,并运用数学的方法或计算机予以证明。这种创造性的学习方法在学生应用数学的意识和创新能力培养方面起到了积极的作用,参加过数学建模课程学习和参加过数学建模竞赛的同学的数学素质有了较大的提高,为进一步发展打好了基础。
(三)对今后工作的建议
通过几年来的教学实践和兄弟院校的经验可以看出,数学建模活动对教学改革和人才培养有着十分重要的作用,今后我们可以进行以下几发面的工作,以便使数学建模工作更上一层楼。
1.在数学建模中加强创新能力的培养。
创新能力主要是指利用已有的知识经验,在个性品质的支持下,新颖而独特地提出问题、解决问题,并由此产生出有价值的新思想、新方法、新成果。创新能力是人的各种能力的综合和最高形式。但创新能力不是一门课程,它无法通过讲授来培养。创新能力是通过教学活动来培养的,是可以通过各门数学知识的载体来开发的。数学建模实验和数学建模竞赛就是培养创新能力的一个极好的载体,我们应该充分发挥它们在创新能力培养中的作用。我们已经成立了数学建模协会,可以通过它们组织一些课外建模小组,引导学生了解一些研究领域的动向,从中找出合适的建模问题,作为一个长期的研究课题,让学生从事一些真正的科研工作。
2.扩大受益面,开设数学实验课。
由于数学建模对学生的基础知识和师资有一定的要求,目前还无法推广到全校,但数学实验课可与高等数学有机地结合,使学生大面积受益。我们可以在学校条件许可的情况下,对不同层次的学生开设认知、计算、建模三种类型的实验。认知就是让学生在计算机的帮助下加深对数学概念的理解,也可以猜测一些结论,通过计算机加以验证。计算就是引导学生利用计算机强大的计算功能去完成数值计算、数据处理、计算机模拟等任务,得到一些问题的近似解。建模就是引导学生解决一些简单的实际问题。
3.让数学建模的思想渗透到各门数学课程中。
在大学教育中最理想的数学建模教学就是把它渗透到各门数学课程中和专业课中。在每一门课中设计两三个较精彩的建模案例,四年下来,学生就有了很多典型的例子,其创新能力就会有较大的提高。
4.将数学建模竞赛作为日常教学工作对待。
全国大学生数学建模竞赛每年一次,为了提高我校的竞赛成绩,应该将其纳入正常的教学轨道,不应该是每年报名、选拔、竞赛,而应该提前准备,做到水到渠成。
三、结语
数学建模和数学教学改革是一项长期的艰苦工作,需要学校各方面有配套的措施,现在数学教师的教学负担又非常重,这使得我们的教学改革面临更大的困难,致力于数学建模的教师需要更大的毅力和勇气。我们的工作仅仅是一个开端,还处于探索阶段,对于这门课程的期望不宜太高,特别是对没有学过数学建模课的学生,只要通过一些实验让他们形成自觉学习和应用数学的意识和能力,以后能主动想到利用数学和计算机结合去解决实际问题,就是我们的成功。
参考文献:
[1]姜启源,谢金星,叶俊.数学模型第3版[M].北京:高等教育出版社,2004.
[2]齐小刚,刘三阳.数学建模教育与创新精神培养的研究探索[J].实验技术与管理,2009,(5).
关键词:数学建模技术本科创新能力
近几年来,越来越多的新建本科院校将自己的发展目标定位于开展应用型本科教育、培养应用型本科人才,我们称这类普通高校为应用型本科院校。在我国高教法中对本科教育的学业标准有明确的规定:“应当使学生比较系统地掌握本专业必需的基础理论、基础知识,掌握本专业必需的基本技能、方法及相关知识,具有从事本专业实际工作和研究工作的初步能力。”从这一规定看,我国工科专业培养的其实都是应用型人才,但从培养目标的内涵上说,可分为三类:
一为工程研究型人才。主要由研究型和教学研究型高校培养,其培养目标是:培养能够将发现的一般自然规律转换为应用成果的桥梁性人才。
二为技术应用型人才。主要由教学型地方本科院校培养,其培养目标是:能在生产第一线解决实际问题、保证产品质量和性能,属于使研究开发的成果转化为产品的人才。定位为技术工程师。
三为技能应用型人才。主要由高职类院校培养。其特点为:突出应用性、实践性,有较强的操作技能和解决实际问题的能力。
上海电机学院是2004年9月经上海市人民政府批准,在原上海电机技术高等专科学校的基础上建立的以实施本科教育为主的全日制普通高等院校。其定位在培养技术应用型本科人才的教学型院校。技术应用型本科人才学习数学的目的在于应用数学。这就要求他们在学习数学的同时,不断提高应用数学的意识、兴趣和能力。数学建模是数学知识和应用能力共同提高的最佳结合点;是启迪创新意识和创新思维、锻炼创新能力、培养技术应用型本科人才的一条重要途径。
1数学建模的发展历程
近几十年来,数学迅速向自然科学和社会科学的各个领域渗透,在工程技术、经济建设及金融管理等各方面发挥着越来越重要的作用,并在很多情况下起着举足轻重,甚至决定性的影响。数学与计算机技术相结合,已经形成了一种普遍的,可以实现的关键技术——数学技术,并已成为当代高新技术的一个重要组成部分。用数学方法解决各类问题或实施数学技术,首先要求将所考虑的问题数学化,即通过对复杂的实际问题进行分析,发现其中可以用数学语言来描述的关系或规律,将之构建成一个数学问题,再利用计算机进行解决,这就是数学建模。数学建模日益显示其关键的作用,并已成为现代应用数学的一个重要领域。
为培养大学生的数学建模能力,国外较早地经常举办大学生数学建模竞赛。1989年我国大学生开始参加美国大学生数学建模竞赛(MCM),从1992年开始,教育部高教司和中国工业与应用数学学会每年主办一次全国大学生数学建模竞赛,至今已经举办了16届,参赛队伍每年都不断增长,在竞赛过程中,大学生的聪明才智和创造得到了充分的发挥,提交了不少出色的答卷,涌现了一批优秀的参赛队伍,同时,有力地促进了高等院校的数学教学改革,充分显示了数学建模竞赛活动的强大生命力。举办大学数模竞赛,已造成一种氛围,推动了培养大学生数学建模能力的工作。
2数学建模在创新技术应用型本科人才培养中的意义
数学建模是对人的数学知识,实际知识的拥有量和灵活运用程度,逻辑推理能力,直觉、想象和洞察能力,计算机使用能力等的全面检验,最能反映出创新精神。“科学技术是第一生产力”。每年的工科大学毕业生是科技战线的生力军,他们要出科技成果,并且“千方百计促进科技成果在生产实践中得到广泛应用”,“加速科技成果转化”,数学建模能力对他们是必不可少的。
数学建模是对传统教育的一个挑战,它强调怎样利用先进的计算机工具来解决数学问题。学生参加数学模型的研究,参加全国大学生建模竞赛,是将以前的“做练习”改为现在的“做问题”,将生活变成数学,将问题实际解决。数学建模是对学生创新精神的培养,是学生时代的第一次科研训练,是一个向实际负责的任务书,是对学生适应社会、服务于社会的锻炼与挑战。基于以上的重要性,许多高校对学生的数学建模能力越来越重视,我校也不例外。
3提高我校学生数学建模能力的具体措施
为了提高我校学生的数学建模能力,我们可在高等数学的教学中溶入数学建模,并开设创新系列课程:数学建模系列课程。系列课程中除设置了数学建模理论课外,还设置数学建模实验课、数学建模集训和数学建模竞赛等任选课。
(1)在高等数学教学中,融入数学建模:高等数学是工科大学本科学生的一门必修课程,也是学习其它技术基础课和专业课的必要基础课程,无论学生和教师都非常重视这门课程的教学。从工科应用型本科人才培养的各专业教学序列上讲,高等数学处于龙头地位,它不但对后续课程产生影响,更对学生的思维习惯和学习方法产生深刻、持久的影响,因此,有着其它课程所不可替代的作用。但是现在的高等数学教材,多数只注重理论和计算,对应用性不够重视,即使有个别的应用也是限于较少的物理方面的简单应用。很多高年级大学生和已毕业的大学生都有这样的认识:高等数学很重要,但很枯燥,学了半天除了知道能在物理上应用外,不知道还能有什么用,但又不得不学。学生学习高等数学的目的不明确、缺少自觉学习的动力。归于一点,就是学生不知道学了高等数学有什么用。在今后的学习和工作中高等数学到底有什么作用呢?学生很茫然,但高等数学又是非常重要的课程。因此,很多学生都是怀着不得不学的态度来学习高等数学的,缺乏自觉学习的动力。这就要求我们数学教师进行课程内容和教学方法的大胆改革,让学生明白高等数学除了在物理上应用以外,还有很多用处,可以说我们的生活中、工作中无时无刻充满着数学,只是你没有认识它,不知道该怎样用它。由于数学建模中的例子来源于社会和生活中的实际问题,会使学生感到数学无处不在,数学思想无所不能。让学生切实领悟到高等数学课程与实际问题以及专业课学习的紧密联系。在额定课时内,在保证完成教学大纲内容讲授前提下,教师根据各专业的特点和需要,有目的的挑选、设计和重点细致的讲解与所学专业相关的数学模型,如电气专业的学生,对引力、流量、环流量、通量与散度、梯度场应是重点,机械类专业应偏重在变力沿直线作功、转动惯量、付里叶级数上。这样就会使学生既获得了数学建模的基本训练,又调动学生应用数学知识解决实际问题的热情,激发学生学习高等数学的兴趣。
(2)在全校开设数学建模公选课:继本科生高等数学、工程数学之后,为了进一步提高学生运用数学知识解决实际问题,培育和训练综合能力在全校开设数学建模公选课。通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。学会进行科学研究的一般过程,并能进入一个实际操作的状态。通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。
(3)在全校开设数学建模实验公选课,加强数学建模实验课教学,提高学生的建模能力和科学计算能力:数学建模实验是将数学方法和计算机知识结合起来,用于解决实际生活中存在问题的一门方法实验课;是继本科生在掌握了高等数学、工程数学、数学建模理论部分等基本数学理论和基本建模方法后,使用主流数学软件,通过较其它流行语言更为方便的计算机编程求解众多领域数学建模问题的计算机实践课。通过数学建模实验课的学习,可使学生将所学的数学知识和其它专业知识很好地应用到解决实际问题中去,强调利用计算机及各种资料解决实际问题动手能力的培养,增加受益面。为学生所学专业服务,给课程设计、毕业论文提供强有力的方法论指导,提高学生的综合素质。
(4)开设数学建模集训课:在数学建模理论、数学实验课结束后,开设数学建模集训课。针对数学建模竞赛从数学模型理论到计算机能力都有不同程度提高的要求,根据学生掌握的知识层次、深度,补充相关知识。通过数学模型有关知识、方法的学习和数学模型应用实例的介绍,培养学生应用数学解决实际问题的综合能力,参加一年一次的全国大学生数学建模竞赛。
近年来的研究表明提高大学生的数学建模能力是一个需要长期努力、集体参与的系统工程。作为高等学校的数学教育工作者,我们需要针对当前大学生数学建模能力的培养存在的问题进行认真研究、深入探析。随着上海电机学院技术应用型本科人才培养专业建设和教学改革而不断在实践中积累经验、深入发展、及时充实新内容,将进一步提高我校学生的数学建模能力。
参考文献
[1]夏建国.技术应用型本科院校办学定位思考[J].高等工程教育,2006,(06).
[2]李大潜.将数学思想融入到数学主干课程[J].中国大学教学,2006,(01).
关键词:数学建模;数学能力;数学素质
一、数学建模的过程
所谓数学建模是指对于现实世界的某一特定研究对象,为了某个特定的目的在作了一些必要的简化假设、运用适当的数学工具,并通过数学语言表述出来的一个数学结构。数学中的各种基本概念。都以各自相应的现实原型作为背景而抽象出来的数学概念。马克思曾说过:“一门科学只有成功地运用数学时。才算达到了完善的进步。”可以认为,数学在各门科学中被应用的水平标志着这门科学发展的水平。一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报等方面的结果时,往往都离不开数学。而建立数学模型则是这个过程的关键环节。那么,数学建模的一般步骤可以表示为
由此可见,数学建模是一个多次循环的验证过程。是应用数学语言和方法解决实际问题的过程,是一个创造性工作和培养创新能力的过程。
二、培养数学建模能力的基本途径
培养学生的数学建模能力,首先,应该培养学生的建模兴趣。数学建模的特点是有很多问题与生活息息相关,大部分来源于生活,应用于实践,这无疑能提高学生的学习兴趣。其次,要培养学生对其他学科知识的积累。数学建模中交叉渗透着多种学科的知识,具有多样性、复杂性、综合性。只有掌握了丰富的知识。在解题过程中根据客观条件的发展和变化才能灵活地找到解决问题的方法。
三、数学建模对培养学生数学能力的作用
1、数学建模有利于提高学生的创新能力
创新能力是人的各种能力的综合和最高形式,创新能力不仅仅是智力活动,他不仅表现为对知识的摄取、改组和应用,而且是一种追求创新意识,是一种发现问题、积极探索的心理取向,是一种善于把握机会的敏锐性,是一种积极改变自己并改变环境的应变能力。而“建模”实质上就是构造模型,但模型的构造并不是一件容易的事,需要有足够强的构造能力,而学生的构造能力的提高则是学生创造性思维和创新能力的基础:创造性地使用已知条件,创造性地应用数学知识。例如:讨论椅子能在不平的地面放稳吗?这样的一个问题来源于日常生活中一件普通的事实:把椅子往不平的地面上一放,通常只有三只脚着地放不稳。然而,只需稍微挪动几次,就可以使四只脚同时着地放稳。
分析:解决这个问题首先要做模型假设:椅子的四条腿一样长,椅脚与地面接触处可视为一个点,四脚的连线成正方形;地面高度是连续变化的,沿着任何方向都不会出现间断,即地面可以看作数学上的连续曲线;对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子的任何位置至少有三支脚同时着地。其次构造模型:这个问题的中心问题是用数学语言把椅子四只脚同时着地的条件和结论表示出来。先用变量表示椅子的位置,再把椅脚着地用数学符号表示出来,进而建立了这个实际问题的数学模型。
2、数学建模有利于培养学生应用计算机的能力
与数学建模有密切关系的数学模拟,主要是运用数字式计算机的计算机模拟。它根据实际系统或过程的特性,按照一定的数学规律,用计算机程序语言模拟实际运行状况,并根据大量模拟结果对系统和过程进行定量分析。在应用数学建模的方法解决实际问题时,往往需要较大的计算量。这就要用到计算机来处理。计算机模拟以其成本低、时间短、重复性高、灵活性强等特点,被人们称为是建立数学模型的重要手段之一,我们也从中看出数学建模对提高学生计算机的应用能力是不言而喻的。
3、数学建模过程有利于培养学生的实践能力
数学建模的重要特点是多次循环的验证过程。多次修改模型使之不断完善的过程。例如和人们的生活息息相关的一个事实:在十字路口设置了红绿灯,为了使那些正行驶在交叉口或离交叉口太近而无法停下的车辆通过,红绿灯转换中间还要亮一段时间的黄灯,那么黄灯要亮多长时间才算合理呢?我们在建立模型以后要验证模型是否合理,这就要求我们在实践中反复思考,反复检验,这样才能得出合理的结论。
4、数学建模有利于学生综合素质的培养
随着科学技术的迅速发展,数学建模已经越来越多地出现在人们的生产、工作和社会活动的各个领域中。在新课程改革中,增加了“数学建模、探究性问题、数学文化”这三个模块式的内容,这些内容的增设,其主要目的是培养学生的综合素质。对于数学专业的学生来说,数学知识比较熟悉,但对实际问题涉及的相关领域的知识及背景却不是很了解。当面对一个从未接触过的实际问题,要运用数学知识来分析、解决,就必须开拓思路,充分发挥想象力和创造力,这一过程正好培养了学生的综合素质。
四、数学建模教学过程中存在的问题和思考。
一、计算机多媒体在数学教学中的应用
(一)强化课前研究
课前研究是教学的准备。只有课前进行充分的研究,才能取得理想的教学效果。利用计算机强化课前研究,辅助备课是一个很好的途径。计算机备课便于随时修改教案,当然这并非计算机辅助备课的主要目的。我们应利用计算机收集整理数学教学内容和信息,譬如通过计算机网络系统查看国内外的数学教学信息,或者选用市场上出售的教学软件,从中选择或借鉴对教学有用的东西来充实数学教学。
(二)优化教学过程
学习新课,是教学中非常重要的部分。许多数学现象、数学概念、数学反应、数学规律都要求学生在学习新课时有一个正确的第一印象,这样可以避免学生在以后的学习中造成认识上、理解上的模糊或错误。在讲授新课时,利用计算机多媒体技术,运用文字、声音、图象来刺激学生和调动学生多种感官,以多种方式,不同的表现手法对新授课的内容进行加工,使之生动、有趣地展现于学生面前,让学生充分认识数学现象、数学模型及其规律。同时,计算机多媒体技术还可以加大传输的信息量和信息传输的质量,实现课堂的优化组合。实践证明,正确利用计算机多媒体辅助教学使课堂生动形象,学生普遍感兴趣,让学生在活泼轻松的气氛中学习,知识接受快,课堂效益好。
1.创设情景
美国教育家布鲁纳说:“学习的最好刺激,乃是对所学材料的兴趣”。利用多媒体计算机的特点,通过创设意境、渲染气氛,将与教学有关的知识运用图像、动画、声音、文字信息等,在课堂上展示出来,以大量的视听信息、高科技手段刺激学生,多种感官参与教学活动,激发学生的学习兴趣,使学生由被动学习变为主动学习。如:在讲述相似三角形的教学内容时,上课开始先播放一些相似物体的应用以及重要性,使学生对它们又有了新的认识,渴望知道它们是如何判定的,还有哪些性质,有自己想试一试的冲动,给新授知识创设了一个良好的心里氛围。再如:利用多媒体计算机强大的功能,巧妙地创设导入的情境,引起学生注意,激发学生的探究欲望,如讲述“对称性”前,将人体对称之谜、自然界对称现象制作成多媒体展示给学生,学生就会联系生活经验,去思考、分析,产生浓厚的学习兴趣。
2.模拟建模
数学建模是数学教学中的重要部分,通过建模即可培养学生的动手能力和科学态度,又能使学生更好地掌握所学知识。但初中数学中有些建模的难度较大,还有的建模无法实际操作。运用多媒体计算机技术,模拟建模就可以弥补这一不足。还可以使用VCD播放一些与教学有关的录像片,如几何知识及应用数学等等。通过演示模拟建模,使学生对所学知识有了进一步的了解,达到了教育教学目的,同时也培养了学生严谨的工作作风和一丝不苟的科学精神。
3.提高视度
注意是心理活动对一定事物的指向和集中。对于学生来说,注意是感知的基础,是良好学习质量的必要条件。数学教学中的演示和学生分组练习,都是为了给学生提供观察的对象,要求学生有目的地进行细致的观察。后排的学生很难看清,利用实物投影仪可大大提高演示实验的可视度,达到促进教学的目的。
(三)辅助学结
在初中总复习时,运用计算机将课堂教学中的板书、例题、练习制成一个CAI课件,即可增大课堂信息量、减少板书时间,又能达到较好的教学效果。如上行程问题及追逐问题及相关练习部分的复习中,用传统的方法若把情况图画在黑板上很浪费时间,用一些挂图,又没有动态效果,如果制成CAI课件,只需一按键即呈现出来,运行极为方便。也可制作数学模型常见的素材库,根据每节教学内容的需要进行组合实验,可以大大提高教学效率。这样在总复习时,教师就可以在课堂上充分一以导为主,启发学生思维,增加课堂练习容量,提高教学效果。
(四)深化反馈检测
快反馈、强矫正是提高学生学习质量的重要途径。利用计算机贮量大、速度快、交互性能好的特点,对学生进行有针对性的训练和检测,这样可把学生对问题的思维过程、方式、结果的正确与否给以立即判断,以矫正思维过程。调用计算机题库中的试题,学生可以直接在计算机上练习或考试。练习或考试完后,学生可以调出参考答案,及时找出问题的所在,起到教师面批的效果,而且还发挥了学生学习的主动性。教师也可以利用计算机来编拟试卷,可随时修改,随意排序、控制题目的难易程度。教师还可以利用计算机数据库软件,帮助分析试卷、分析成绩;通过各种成绩数据了解学生的学习状况,及时采取措施弥补不足,强化优势。
二、计算机多媒体教学中值得思考的问题
[关健词] 创新人才 经济数学 创新意识
一、数学建模及其发展
数学建模是用数学的语言方法去近似地刻划一个实际问题,这种刻画的数学表述就是数学模型。数学模型不仅可以用来描述自然科学中的许多现象,还可以用来探讨社会科学中的一些问题。在建立和完善社会主义市场经济体制的过程中会出现各种各样的新问题,每时每刻都对经济的发展产生着重大影响。通过建立数学模型,可以研究一个国家、地区或一个城市经济均衡增长的最佳速度及最佳经济结构等问题。因此,数学建模在国民经济中有着重要的应用。早在二千多年前,中国古人就开始使用数学模型方法,秦汉时期的数学名著《九章算术》是在总结前人经验的基础上著写的。它的每一章都是在大量的实际问题中选择具有典型性的现实原型然后再通过“术“(即算法)转化为数学模型。而有些章(如“勾股”、“方程”等)就是探讨某种数学模型的应用的。近代的意大利科学家伽利略于1604年建立著名的自由落体运动的数学模型,开创了数学建模的新时代,使数学模型方法成为各门学科中极其重要的方法,并成为和其他学科共同发展的连接点。从17世纪开始,经济学家就开始把数学模型方法应用于经济领域,用数学公式来表达经济理论(如著名的道格拉斯生产函数的形式在1896年威克赛尔的《财政理论的探索》一书中就已提及。当前许多获得诺贝尔经济学奖的经济学家就是因开创性地建立了经济数学模型而获此殊荣。当前,数学建模教育和竞赛已作为各院校数学教学改革和培养高层次人才的一个重要方面。尤其是随着计算机的普及和计算机技术的发展,以往只有数学家才能求解计算的一些问题,现在的一般科技人员也能完成,这将使得数学模型的应用得以普及。数学模型在经济领域中的应用也随之具有更广阔的前景。因此,对经济类院校培养的人才应用数学知识,解决实际问题的能力的要求也日益提高。
二、加强数学建模教学的意义
由于历史的原因,我国经济类院校以招收文科生为主,对数学学习持消极态度的现象较为普遍。因此,数学建模严重制约和影响着学生今后的发展。不仅如此,传统的教学方式也存在着很大的局限性:由于授课时的限制,教学内容较多。同时,由于学生数学基础薄弱,在经济数学的教学过程中往往为了赶进度,而被迫牺牲许多方面的应用和计算,致使学生缺乏数学建模的初步训练,导致学生对数学的学习提不起兴趣,进而丧失对数学学习的积极性和主动性;教学思维模式陈旧,片面强调数学的严格思维训练和逻辑思维培养,缺乏从具体现象到数学的一般抽象和将一般结论应用到具体情况的思维训练,容易使学生形成呆板的思维习惯。与现代化生产实践和科学技术的飞速发展相比,教师的教学手段多数仍停留在粉笔加黑板阶段,学生做题答案标准唯一,没有任何供学生发挥其聪明才智和创造精神的余地。
三、开展经济数学建模教学的对策
发展学生的创造性思维能力,必须要有计划、有目的地增设以数学解决问题为特征的数学建模教育模式。以数学建模为载体,可以全面激发学生的创造性思维,培养学生提出问题和解决问题的能力。在教学中,要积极创设“学”数学、“用”数学、“做”数学的环境,使学生在“做”数学中“学”数学,使创造性思维在数学建模中找到一个切入点,以吸引教师和学生进一步探索和研究。经济数学建模教学在人才培养的过程中,特别是在人才的创新意识、实践能力方面发挥着非常积极的作用。经济数学建模教学又是经济数学课程教学改革的突破口和切入点,通过数学建模,我们可以认识到深奥的数学知识与实际生活的紧密联系,认识到数学的思想方法、数学的概念、教学的公式等在解决实际问题中所发挥的巨大作用。
从某种意义上说数学建模就是科研活动的缩影,其价值在于经济数学是在已有的基础上有所创造。我们面对的需要建模的问题千差万别,因此,数学建模总是在不断的创新过程中发展。提高主动性,探索积极创新能力,便成为数学建模教育的一大特色。实践证明,通过数学建模教育后学生的素质都有不同程度的提高。
为了提高学生数学建模能力,培养学生创新意识,我国每年都要举办一次大学生建模竞赛活动,近年来,这项活动的规模逐年增大,目前已成为我国高等院校中规模最大的学生课外科技活动。数学建模竞赛的开展,促进了数学建模的教学。实践证明,数学建模教育培养学生的基本素质可归纳为如下几方面:能把实际问题用数学语言来描述,再把数学结果用生活语言来解释,实现生活语言与数学语言的相互“翻译”;进行综合分析和综合应用的能力;创新意识和创新的能力;再学习的意识和通过学习或查阅使用各种资料不断获取新知识的能力;使用计算机及应用数学软件包的能力;团结合作、交流表达的能力;撰写论文的能力。总之,这些能力的具备是作为高素质管理人才所必备的。因此,经济类高职院校开展数学建模教育,将有利于提高学生素质,也有利于培养高层次的经济管理人才。
数学教学过程融入模型化的思想,除了给学生直观的感受外,更重要的是让学生能自主思考,自行运用建模的方法解决实际问题,逐步培养用数学进行分析,推理和计算的能力,培养和发展学生的创造力、想像力和洞察力,培养和发展学生熟练运用计算机和各种数学软件的能力,使数学在手中真正变成一个有力的工具。数学建模教育在更为广泛的领域开展“教”和“学”,改变了旧的教育观念和教育模式,在培养学生创新意识、创新能力等方面,数学建模教育都能发挥其独特的作用。
参考文献:
[1]李 明:经济数学建模与市场经济体制下创新人才的培养[J]. 商场现代化,2008(11)
[2]黄伯棠:关于数学建模的创新问题[J]. 长江大学学报(自科版),2005(4)