网站首页
教育杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
医学杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
经济杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
金融杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
管理杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
科技杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
工业杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
SCI杂志
中科院1区 中科院2区 中科院3区 中科院4区
全部期刊
公务员期刊网 精选范文 高分子材料的取向范文

高分子材料的取向精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高分子材料的取向主题范文,仅供参考,欢迎阅读并收藏。

第1篇:高分子材料的取向范文

关键词:形状记忆高分子; 记忆机理; 材料特性; 医疗;纺织

文章编号:1005-6629(2009)02-0053-04中图分类号:O63 文献标识码:E

材料、能源、信息分别是现代文明的三大支柱,而材料是人类社会文明发展历史上里程碑式的阶段性标志。所谓的形状记忆材料听上去似乎有点玄乎,给人一种具有生物智能特性的错觉。那么,它究竟是不是真的如此神奇呢?它的神奇之处在哪?

自1981年,有人发现高分子材料聚乙烯具有独特形状记忆功能,至1984年,形状记忆高分子材料(Shape memory polymers,简称SMP)的概念在日本提出。可以说,SMP是当代材料化学发展的产物。时至今日,其功能已经得到了人们的广泛关注。

1形状记忆高分子的“记忆”机理

形状记忆是指具有初始形状的制品,经形变固定之后,通过加热等外部条件刺激手段的处理,又可使其恢复初始形状的现象。研究最早也最为广泛的是热致形状记忆高分子(简称TSMP)。以此为例来阐述。

1.1 橡胶弹性理论对SMP形状记忆特性的解释[1]

图1 线形高分子材料的温度与形变的关系图

如图,Tg为玻璃化温度(材料达到玻璃态与橡胶态时的临界温度),Tt是粘流温度。橡胶在室温下处于高弹态,而塑料是玻璃态。这是由两者分子结构和相对分子质量等因素的不同造成的。如果材料的玻璃化温度高于室温,则材料在室温下处于玻璃态。如果材料的玻璃化温度低于室温,在室温下它就处于高弹态。

橡胶在室温下就处于高弹态,一根橡胶管在适当的外力作用下可伸长数倍而当外力解除之后便可回复到原长。但是,如果把一个橡胶管放在液氮里,它便会失去弹性,拿出来以后进行敲打,它也会像玻璃一样极易被打碎。把它放到室温下,使其温度慢慢升到室温,它仍会恢复为具有弹性的橡胶管。这便是所发现的橡胶的形状记忆功能:橡胶的交联网络起到记忆其原来形状的作用,而其玻璃态具有固定其形变的作用。

一般塑料的加工要先升温到粘流态,吹塑后冷却为一定形状的制品,也是一样的道理。

1.2 SMP的形状记忆机理

从分子结构及其相互作用的机理方面加以解释,形状记忆高分子可看作是两相结构, 即由记忆起始形状的固定相和随温度变化能可逆的固化和软化的可逆相组成。

固定相的作用在于成形制品原始形状的记忆与回复, 而可逆相的作用则是形变的发生与固定。固定相可为聚合物的交联结构、部分结晶结构、超高分子链的缠绕等结构。可逆相可以是产生结晶与结晶熔融可逆变化的部分结晶相,或发生玻璃态与橡胶态可逆转变的相结构。在高分子形状记忆材料中,由于聚合物分子链间的交联作用,即材料中固定相的作用束缚了大分子的运动,表现出材料形状记忆的特性。并且,由于可逆相在转变温度Tg会发生软化-硬化可逆变化,材料才可能在Tg以上变为软化状态, 当施加外力时分子链段取向改变, 使材料变形。当材料被冷却至Tg以下,材料硬化、分子链段的微布朗运动被冻结、改变取向的分子链段被固定,使得材料定型。当成形的材料再次被加热时,可逆相结晶熔融,材料发生软化,分子链段取向逐渐消除,材料又恢复到了原始形状。

图2 图为形状记忆高分子在60℃下, 45秒内回复原状[2]

由高分子材料形状记忆原理可知,可逆相对形变特性影响较大,而固定相对于其形状恢复特性影响较大。从这个理论出发,就可以解释为什么凡是既具有固定相又具有可逆相结构的聚合高分子材料, 都可显示出一定的形状记忆特性。

2形状记忆高分子的“记忆”分类

形状记忆材料除了形状记忆高分子之外,还包括形状记忆合金(SMA)和形状记忆陶瓷(SMC)。相比较而言,前两者的应用更为广泛。

表1热致形状记忆高分子的类型

而与SMA相比,形状记忆高分子不仅形变量大、赋形容易、形状响应温度便于调整,而且具有保温、绝缘性能好、不锈蚀、易着色、可印刷、质轻价廉等特点。以前的研究着重于对热致形状记忆高分子的研究,笔者按具体的组成物质将其分类,见表1。

随着研究发展的深入,除了热致形状记忆高分子,人们还发现了其他类型的形状记忆高分子。根据回复机理来定义的形状记忆高分子材料类型。具体见表2。

表2 形状记忆高分子的分类[4]

3 形状记忆高分子的具体应用解析

尽管只有短短27年的发展史,SMP的应用已涉及社会的很多领域。

3.1SMP在医疗装备中的应用[5]

首先,可以利用形状记忆聚合物的记忆特性,制作外科医疗器械或介入诊疗(介入诊断及治疗)器材。比如, 美国利弗莫尔国家实验室将聚合物聚氨酯、聚降冰片烯或聚异戊二烯等注射成为螺旋形,加热后拉直再冷却定型,即制得血栓治疗仪中的关键部件――微驱动器。装配到治疗系统上后,利用光电控制系统加热,使其恢复到螺旋形可拉出血栓。这种方法快捷、彻底,没有毒副作用,是治疗血栓的有效途径之一。

其次,利用低温形状记忆特性的聚合物聚氨酯、聚异戊二烯、聚降冰片烯等可以制备用作矫形外科器械或用作创伤部位的固定材料,比如代替传统的石膏绷带。利用聚氨酯塑料的生物降解性能,通过内窥镜可将由形状记忆聚合物制成的器件, 如断骨的外套管、血管的内扩管、血液的过滤网等精确地定位植入人体。此类材料在体温的作用下能回复形状,达到治疗目的。这种治疗方法, 不仅可以减小放置器件时所需的外切口, 而且由于器件本身在人体中可以逐步地通过降解而消失,不需要为取出器件而进行第二次手术,大大降低了危险性。

美国麻省理工学院报道了用形状记忆材料来固定骨折部位的方法。将二次成型后的聚乳酸制件放入带有裂纹的骨髓腔内。利用消毒后的盐水对其进行加热,使骨髓腔内的形状记忆材料恢复到最初的形状,变得较厚,从而和骨髓腔的内表面紧密接触而不会滑移,固定作用良好。

另外,形状记忆高分子材料还在手术缝合,止血、药物释放体系、人工组织及器官以及抗原响应等许多新兴的高技术领域得到应用。

3.2SMP在纺织工业中的应用

形状记忆聚氨酯在纺织品中的应用形式既可以进行纺丝以赋予纱线记忆功能,也可以作为织物涂层剂,或作为整理剂对织物进行功能性整理。利用它的透气性可受温度控制的特性,在室温下就可以改善织物的穿着舒适度。具有良好的防水透气、抗褶皱、耐磨性能。

3.2.1在防水透气织物中的应用[2]

形状记忆聚氨酯的透气性可受温度控制,在响应温度范围附近其透气性有明显的改变:将响应温度设定在室温,则涂层织物能在低温(低于响应温度) 时因低透气性起到保暖作用;在高温(高于响应温度) 时, 因高透气性起到散热作用。聚氨酯的分子间隔随体温的升高或降低而扩张或收缩,正如人体皮肤根据体温张开或闭合毛孔一样,起到调温保暖的作用。薄膜的孔径远远小于水滴平均直径,因此还可起到防水效果,使织物在各种温度条件下都能保持良好的穿着舒适性。日本三菱重工公司已有相关聚氨酯涂层织物“Azekura”的报道。

3.2.2在防皱整理中的应用[6]

利用聚合物的形状记忆恢复功能,以此类织物纱线或经形状记忆整理的织物制成的服装,具有不同于传统意义上的防皱功能。当此类服装具有足够强的形状记忆功能时,服装在常温下形成的折皱可以通过升温来消除折痕,回复至原来的形状。我们甚至可以设计高分子并将响应温度调在室温或人体温度范围内,从而可即刻消除形成的折皱。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

3.3在数码通讯产品中的应用

图3 概念手机

如图,这款手机的材料是具有形状记忆功能的聚乳酸复合物(PLA)。聚乳酸(PLA)可称为是一种生物塑料,无毒、无刺激,具有良好的生物相容性,可生物分解吸收,强度高,不污染环境,可塑性好,易于加工成型。应用聚乳酸材料制成的手机等设备不怕摔、挤、压,但是毕竟属于塑料制品,抗腐蚀性会受到一定局限,进一步研究后有待推出市场。

3.4 其他应用

3.4.1 “光驱动分子阀”

作为光能转变为力能的转换器,光致感应形状记忆高分子凝胶不能产生很大的感应力。但是如果在多孔质的聚乙烯醇薄膜上接枝光致变色分子的凝胶,经此处理过的聚乙烯醇薄膜固定后,根据水的透过速度测定光照效果后我们可以发现:光照前,由于凝胶的小孔堵塞,水的透过速度很小;光照时,由于凝胶膨胀,水的透过速度增大6O倍;光照停止后,水的透过速度又减小。这就表明利用SMP材料的光照效应可制造可控启闭阀。

3.4.2 “光缓释剂”

高分子凝胶放入含有药物的水溶液内,药物则浸入凝胶中,然后取出凝胶。依据药物从凝胶向水溶液的释放速度受光照的影响情况来研究光照效果。结果表明,光的存在与否对药物的释放有显著的影响。利用此效应,药物以合适的速率和剂量放到人体病灶位置,可达到更好的医疗效果。

4应用展望

随着SMP技术的愈加成熟,人们开始研制通过加温处理使汽车外壳、机壳和建筑物某些部件自动除去凹痕的制品;同时还萌生了用形状记忆聚合物制造机器人四肢的想法, 设想用跳跃来代替机器人现在那种步履蹒跚的行走方式。环保方面,将热致感应形状记忆高分子材料应用于环保,利用其形状记忆特性回收电子产品的新思路也很有意义。设计用SMP材料替代电子产品的紧固件如螺钉、螺纹套管、夹子回收时通过加热的方法自行脱落。解决电子废弃物因体积较小、构造复杂而产生的处理困难的问题,同时实现回收利用, 节约成本, 减少电子废弃物的环境污染。

参考文献:

[1]杨青,郑百林等.形状记忆高分子材料记忆行为机理的理论分析[J].材料工程,2006年增刊1:492-494.

[2]胡金莲,杨卓鸿.形状记忆高分子材料的研究及应用[J].印染,2004,No. 3,44-47.

[3]朱光明.形状记忆聚合物及其在生物医学工程中的应用[J].生物医学工程学杂志,2005,22(5):1082-1084.

[4]徐祖耀等.形状记忆高分子材料[M].上海.上海交通大学出版社,2002年:314-340.

[5]李志宏等.形状记忆高分子材料及其在医疗装备中的应用[J].医疗卫生装备,2007年9月第28卷第9期,26-28.

[6]韩永良等.热致感应型形状记忆高分子材料与纤维[J].合成纤维工业,2005,28.(1).

第2篇:高分子材料的取向范文

[关键词]分形 自相似 分维 高分子

分形理论与耗散结构理论、混沌理论被认为是70年代科学上的三大发现。1967年曼德布罗特(b.b.mandelbort)在美国权威的《科学》杂志上发表了题为《英国的海岸线有多长?》的著名论文。指出海岸线在形貌上是自相似的,也就是局部形态和整体形态的相似。实际上,具有自相似性的形态广泛存在于自然界及社会生活中,曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(fractal)。并在此基础上,形成了研究分形性质及其应用的科学,也就是现在的分形理论(fractaltheory),自相似原则和迭代生成原则是分形理论的重要原则。

由于分形理论研究的特殊性,以及他在自然界应用的广泛性,目前分形理论已迅速成为描述、处理自然界和工程中非平衡和非线性作用后的不规则图形的强有力工具。自分形理论发展以来,国内外对分形理论在各方面的应用进行了大量的理论和实践,材料学中也一样,分型理论目前已渗透到了材料学的各个领域,尤其是高分子材料,下面就分形理论在高分子材料学中的应用做一浅议。

一、分形维数的测定方法

根据研究对象的不同,大致可以分为以下五类:改变观测尺度求维数;根据观测度关系求维数;根据相关函数求维数;根据分布函数求维数;根据频谱求维数,分形在材料科学中应用时,一般应用的测定分维方法是:盒维数法、码尺法和小岛法。

二、分形理论在高分子结构中的研究

(一)高分子链结构中的分形

由于高分子尺寸随链结构象而不断变化,对这类问题的处理属于统计数学中的“无规飞行”。但若从分形的角度来看,则高分子具有明显的分形特征并可以跟踪监测。对高分子中普遍存在的自回避行走也是如此,只是表现出不同的分形行为。又因为这类问题与临界现象很相似,故我们亦能采用重整化群等有力工具。并且分数维的另一独特功能是可灵敏地反映单个高分子的单个构象[4]。

(二)高分子溶液中的分形

由于高分子溶液中的大分子链使得其和普通液体在很多方面存在差异性,如普通液体所不具备的流变行为、应力传输等。在实际研究中。分形结构主要存在于高分子溶液中的凝胶化反应中,高分子溶液的凝胶化反应主要是指聚合物的凝胶化过程,是一种临界现象,是介于晶态与非晶态之间的一种半凝聚态,这个过程中高分子链之间会形成的网络结构,该结构是一类形状无规、无序且不规整的错综复杂的体系。但该体系是可以用分形的方法研究的凝胶化反应,在亚微观水平上存在自相似性。例如左榘等研究的苯乙烯一二乙烯的凝胶化反应。

(三)固体高分子中的分形

对于高分子材料,当固体高分子材料断裂时,不同力学性质的材料将形成不同的断面形貌,而断面形貌一般为不规则形态,是一种近似的或统计意义的分形结构,可用分形理论进行分析表征,从而根据断面的形状定量评价材料的力学性能。而微孔材料中由于分布着大量微小的孔洞,这些微孔具有不规则的微观结构,使得微孔材料无论在总体还是在局部都呈现出较复杂的形态,无法用传统的几何学理论进行描述,但可用分形几何理论对微孔形态的复杂程度作量化的表征[5]。

(四)结晶高聚物中的分形

第3篇:高分子材料的取向范文

关键词强磁场技术与应用产业化

六十年现了实用超导材料,八十年代出现了性质优良的钕铁硼永磁材料,使人们可以不耗费很大的电功率获得大体积持续的强磁场,发展超导与永磁强磁场技术是20世纪下半叶电工新技术发展的一个重要方面。在各国高能物理、核物理、核聚变,磁流体发电等大型科技计划推动下,整个技术得到了良好的发展。低温铌钛合金及铌三锡复合超导线与钕铁硼永磁材料已形成产业,可进行批量生产。人们已研制成功了15特斯拉以下各种场强,各种磁场形态,大体积的可长期可靠运行的强磁场装置,积极推进着强磁场在各方面的应用。

1998年3月投入运行的日本名古屋核融合科学研究所的核聚变研究用的大型螺旋装置(LHD)是当今超导磁体技术水平的典型代表。装置本体外径13.5m,高8.8m,总重约1600t,其中4.2K冷重约850t。它有两个主半径3.9m,平均小半径0.975m,绕环10圈的螺旋线圈,三对内径分别为3.2、5.4和10.8m的极向场螺管线圈,中心磁场前期为3特斯拉(4.2K),后期为4特斯拉(1.8K),磁场总储能将达16亿J。超导强磁场装置需在液氦温度下运行,从使用出发,努力减少漏热以降低液氦消耗和研制配备方便可靠的低温制冷系统有着重要的意义。经不断努力改进,一些零液氦消耗和无液氦的超导磁体系统已在可靠的使用,它们只需配有小型的制冷装置即可持续运行,不需专人维护,使应用范围大大扩大。

我国在超导与永磁磁体技术方面也进行了长期持续的努力,奠立了良好基础,研制成多台实用磁体系统,有些已在使用,具备了按照需求设计建造所需强磁场装置的能力。中国科学院电工研究所研制成功的磁流体发电用鞍形二极超导磁体系统(中心磁场4特斯拉,室温孔径0.44m,磁场长1m,磁场储能8.8兆焦耳)和空间反物质探测谱仪用大型钕铁硼永久磁体(中心磁场0.13特斯拉,孔径1.lm,高0.8m)代表着我国当今的技术水平,无液氦磁体系统的研制工作也在积极进行中。

随着超导与永磁强磁场技术的成熟,强磁场的多方面应用也得到了蓬勃发展,与各种科学仪器配套的小型强磁场装置已形成了一定规模的产品,做为磁场应用技术的核磁共振技术,磁分离技术与磁悬浮技术继续开拓着多方面的新型应用,形成了一些新型产品与样机,磁拉硅单晶生长炉也成为产品得到了实际应用。

医疗用磁成像装置已真正成为一定规模的产业,全世界已有几千台超导与永磁磁成像装置在医院使用,我国也有永磁装置在小批量生产,研制成功了几台0.6—1.0特斯拉的超导装置。除继续扩大医疗应用外,正在努力开拓应用磁成像装置于工业生产过程监测与食品选择,最近,日本进行了用于检测西瓜糖含量与空穴及用于辨别Salmon鱼雌雄性的实验,取得了有意义的结果。用于高岭土提纯的超导高梯度磁选机已有十余台在生产运行,磁拉硅单晶生长炉也已开始使用,但尚未形成规模,中国科学院电工研究所与低温工程中心曾在九十年代初研制成功超导磁分离工业样机,试制成功了两套单晶炉用超导磁体系统,为产品的形成奠定了基础。

总起来说,超导与永磁磁体技术已经成熟到可以提供不同场强,形态的大体积强磁场装置,开始形成了相应的高技术产业,但大规模产业的形成与发展还有赖于积极地进一步开拓强磁场应用,特别是可能形成大规模市场产品的开拓,根据不完全的了解,目前主要进行的工作有:

1在材料科学方面

(1)热固性高分子液晶材料强磁场下的性能及应用。国际上在0~15特斯拉磁场范围内对高分子液晶材料的取向行为、热效应、磁响应特性、固化成型过程等方面进行了研究,并作其力学性能和磁场的关系的定量分析,应用前景十分看好。

(2)功能高分子材料在强磁场作用下的研究。国际上高电导率的高分子材料、防静电及防电磁辐射高分子材料的研究和应用取得了很大进展,某些材料纤维的电导率经强磁场处理后,可达铜电导率的1/10,是极具潜力的二次电池材料。在防静电服和隐形技术方面电磁波吸收材料已用于军工领域。

(3)强磁场下金属凝固理论与技术研究。

(4)NdFeB永磁材料的强磁场取向。在NdFeB永磁材料加压成型过程中,采用4~5特斯拉强磁场取向,可大大提高性能,国外已开始实际应用。

2在生物工程与医疗应用方面

(1)血液在强磁场下性能的改变及对生物体的影响。国际上研究了人体及动物的全血的强磁场下的取向行为及其作用的主体——血红细胞的作用机制;血液在强磁场下流变性能的变化;血纤维蛋白质在强磁场下的活性变化及对生物代谢作用的影响;人血在强磁场中所受磁力、磁悬浮特性和光吸收特性。

(2)蛋白质高分子在强磁场下的特性及其应用。国际上研究了磷脂中缩氨酸在强磁场下的取向作用;肌肉细胞蛋白质在磁场中的磷代谢过程;神经肽胺酸在强磁场下的结构改变及蛋白质酰胺与氢的交换等。

(3)医疗应用。除继续发展人体成像系统外,近年来国际上还研究了在4—8特斯拉强磁场下血纤维蛋白质的活性以及对血管中血栓溶解的影响;强磁场及磁场梯度对血纤维蛋白的溶解过程的影响;强磁场对动物血细胞的活性及其对心肌保护特性的影响;外加磁场对血小板流动性能的影响及其在医疗上的应用等。

3在工业应用方面

除继续积极进行强场磁分离技术、磁悬浮技术的发展与应用外,近年来,国际上还研究了磁场对石油滞粘性能的影响及对原油的脱蜡作用;研究了磁场对水的软化作用及改善水质的作用;研究了外加磁场对改善燃油燃烧性能及提高燃值的作用;通过在强磁场中的取向提高金属材料的强度和韧性;通过表面吸出排除杂质、提高金属质量等。

4在农业应用方面

第4篇:高分子材料的取向范文

摘要:材料是当今社会三大支柱产业之一,也是人类赖以生存和发展的物质基础,是人类进步的一个重要里程碑。新教材在高一教材中介绍了高温结构陶瓷、光导纤维、C60等新型无机非金属材料;在高二教材中介绍了金属陶瓷、超导材料等金属材料,功能高分子材料、复合高分子材料等新型有机高分子材料;高三教材中氯碱工业里新型的离子交换膜等。材料是科学技术的先导,没有新材料的发展,不可能使新的科学技术成为现实生产力。

展望世界未来的发展,经济学家认为:以知识为主要劳动生产资料的产业,将成为未来商品生产的主流。在知识经济的新时期里,为增强国力,化学课程需要用什么内容教育学生,应当实现什么价值,是规划二十一世纪中学化学教育蓝图必须回答的首要问题。本文结合高中化学新教材(试验本),从哲学价值论的观点,来研究高中化学教育里的价值定位问题。

1 非科学角度的化学教育价值观

按照教育价值的定义,化学教育价值有两种含义:(1)化学教育中的内蕴价值,它讨论社会对化学教育的需要或蓝图规划问题,化学教育应该在学生身上实现哪些价值,即化学教育的目标是什么,“教什么”。全日制高级中学化学教学大纲(供试验用)明确指出,全日制高级中学化学教学的目的是:“……。使学生进一步学习一些化学基础知识和基本技能,了解化学与社会、生活、生产、科学技术的密切联系以及重要应用,教育学生关心环境、能源、卫生、健康等与现代社会有关的化学问题;……培养他们的科学态度和训练他们的科学方法;培养和发展学生的能力以及创新精神……;进行思想品德和辩证唯物主义教育。”(2)化学教育的功能价值,它讨论怎样的教学活动才具有教育上的价值,即教师“怎么教”、学生“怎么学”才能使学生有效地获得化学教育中的内蕴价值。从化学教育的整体过程看,化学教育实践有活动目标和活动手段需要研究,所以必然包括化学教育的价值目标和价值目标实现的基本策略这两个价值子系统。

以上的化学教育价值分类只具有相对性,不应该绝对化。因为价值是客观的,是从主体和客体之间的供需关系中产生的,因而价值应是主观需要和客观可能的辩证统一。如在化学教育活动中,应根据化学教育的总体目标和学生的认知规律和知识水平,因人施教,因时施教,形成一定的目标递进层次结构。无论是在课程规划、教材编写、教法研究,还是具体的课堂教学活动中,都必须应用辩证统一的价值观,指导化学教育的价值活动。

2 高中化学新教材的价值取向分析

化学教育目标的确定,决定于化学教育的价值取向。而被教育者又是教育形式、方法所服侍的价值主体。所以,化学教育价值研究,成了化学教育理论与实践的必备基础。从八十年代以来,国际化学教育会议的研究主题就是强调化学教育的价值:(1)化学是未来世纪的中心学科;(2)化学教育要向公众普及,化学教育既包括未来化学家的教育,也包括非化学家的教育;(3)化学教育要联系社会;(4)化学教育要在能源、环境、材料以及生命科学中发挥重要作用。

就高中化学而言,我国传统的化学教育观认为:化学教育是培养具有化学专长的人才,仅关心提高课程内容的理论水平,和化学学科知识技能的传授,而不考虑大多数人提高化学素质的需要及创新能力的培养,致使大多数人学了化学用不上或不会用。他们缺乏化学的综合素质和创新意识,不了解化学与社会、化学与材料、化学与能源、化学与环境、化学与生命科学等的密切关系。《全日制普通高级中学教科书(试验本)化学》(以下简称新教材)在改革化学学术性课程的同时,更强调了社会、生活、生产、科学技术的创新对化学的需要,体现了由纯化学学科走向应用技术与化学相结合的现代化学教育价值观。因此,新教材的化学教育目标,不仅限于培养继承传统化学知识技能的人,更包括了提高全体公民的素质,培养学生的创新精神和实践能力,最终达到提高综合国力的目的。为此,高中化学新教材在价值定位上做了几项重要改革:

1 化学与新材料、新技术

材料是当今社会三大支柱产业之一,也是人类赖以生存和发展的物质基础,是人类进步的一个重要里程碑。新教材在高一教材中介绍了高温结构陶瓷、光导纤维、C60等新型无机非金属材料;在高二教材中介绍了金属陶瓷、超导材料等金属材料,功能高分子材料、复合高分子材料等新型有机高分子材料;高三教材中氯碱工业里新型的离子交换膜等。材料是科学技术的先导,没有新材料的发展,不可能使新的科学技术成为现实生产力。通过对新材料的学习,使学生明确学习化学的目的,提高学习兴趣。

2化学与能源

能源也是现代社会三大支柱产业之一。随着人类经济活动的日益增大,人们对能源的需求急剧增加。化学反应所释放的能量是现代能量的主要来源之一,研究化学反应中能量变化具有非常现实的意义。高中化学新教材首次在化学教学中渗透了能量观点,如,在高一化学第一章里提出如何提高燃料的利用率,开发新能源等与社会相关的问题。在卤素中新增了“海水资源及其综合利用”,在几种重要金属中增加了“金属的回收和资源保护”,在原电池一节介绍了化学电源和新型电池等。化学与能量、能源观点的建立,不仅仅是为了教育学生节约能源,树立环境保护意识,更侧重培养学生创新意识和创新能力,增强社会进步责任感。尤其是在第二轮新教材改革中增加了一些开放性问题的研究,有利于培养学生的创新能力、实践能力、团结协作能力等。

综上所述,面对知识经济的挑战,联系当前社会发展的实际,对于化学教育价值的研究投以探索的目光,是组建化学教育价值体系的一种科学方法,对研究化学教学的观念、模式以及改革有着重要的指导意义。学校里的化学教育,无论是从理论还是从实践的角度来看,都是一个大型的人文系统工程。按照系统论的观点,它应该包括价值目标、时空环境、价值手段、过程监控和评估反馈等结构环节。以上仅是从高中化学新教材的价值目标和价值手段上进行的一些粗浅的探讨,不足之处,敬请斧正。

参考文献:

第5篇:高分子材料的取向范文

1111总体上,逐次拉伸法是将挤出的pp片材先经过纵向拉伸、后横向拉伸来完成二次取向过程。生产过程中主要控制的工艺参数有生产线速度、温度、拉伸比等。   1111bopp薄膜质量控制指标包括弹性模量,纵、横向的抗张强度、断裂伸长率、热收缩率,摩擦系数,浊度,光泽度等,这些指标主要体现薄膜的力学性能和光学性能,它们与pp高分子链的聚集状态如取向、结晶等有密不可分的联系。   2 取向 1111由于聚合物分子具有长链的结构特点,聚合物成型加工过程中,在外力场的作用下,高分子链、链段或微晶会沿着外力方向有序排列,产生不同程度的取向,形成一种新的聚集态结构-取向态结构,致使材料在不同方向上的机械力学、光学和热力学性能发生显著变化。   1111bopp薄膜生产中的取向主要包括流动取向和拉伸取向。   2.1 流动取向[3]   1111流动取向发生在挤出口模中,bopp薄膜生产通常使用衣架型模头,pp熔体在口模中成型段的流动近似为狭缝流道中的流动,在靠近流道壁面处熔体流动速度梯度大,特别是模唇处温度较低,在拉伸力、剪切应力的作用下,高分子链沿流动方向伸展取向;熔体挤出时,由于温度很高,分子热运动剧烈,也存在强烈解取向作用。因此流动取向对bopp薄膜性能的影响相对较小。   2.2拉伸取向   1111bopp薄膜生产过程中的取向主要发生纵向拉伸和横向拉伸过程,在经过纵向拉伸后,高分子链单轴纵向取向,大大提高了片材的纵向机械性能,而横向性能恶化;进一步横拉之后,高分子链呈双轴取向状态如图2所示,因此可以综合改善bopp薄膜的性能,并且随分子链取向度提高,薄膜中伸直链段数目增多,折叠链段数目减少,晶片之间的连接链段增加,材料的密度和强度都相应提高,而伸长率降低[4]。但在横拉伸预热及横拉伸时,由于温度升高,分子链松弛时间缩短,利于解取向,加上横向拉伸力的作用,会在一定程度上损害分子链的纵向取向度,导致薄膜的纵向热收缩率减小。    

1111为了制得理想的强化薄膜,拉伸取向过程中,温度、拉伸比、拉伸速度等工艺参数的控制非常重要[5]。bopp双向拉伸通常在玻璃化转变温度tg至熔融温度tm之间进行,如纵向拉伸温度一般为80-110℃,横向拉伸温度为120-150℃,在给定的拉伸比和拉伸速度下,适当降低拉伸温度,分子伸展形变会增大,粘性变形就会减小,有助于提高取向度;但过低的温度会降低了分子链段的活动能力,不利于取向;在热拉伸取向的同时,也存在着解取向的趋势,因此拉伸之后应迅速降低温度,以保持高分子链的定向程度。一般来说,在正常的生产温度下,取向程度随拉伸比的增大而增加,而随拉伸速度的增加,拉伸应力作用的时间缩短,从而影响取向的效果。   3 结晶   1111晶态结构是高聚物中三维有序的最规整的聚集态结构,结晶是bopp生产加工过程中不可回避的问题,pp结晶的速度、结晶的完善程度、结晶的形态、晶体的大小等对生产工艺、薄膜性能都有非常重要的影响。   3.1结晶对生产工艺调整的影响   1111均聚pp有α、β、γ、δ和拟六方共五种晶系,其中α晶系属单斜晶系,是最常见、最稳定的结晶。pp结晶贯穿着从熔体挤出到时效处理等bopp生产的整个过程。为了提高成膜性,pp挤出时采用骤冷铸片,以控制结晶的生成,降低结晶度;在双向拉伸时要求结晶速度较慢,以利于拉伸取向,较早、较快的结晶和较大的结晶颗粒都有可能导致破膜[6];在横拉后热处理定型阶段,为了提高刚性和强度,要求产生并加速结晶。   1111pp的最大结晶速率的温度大约为0.85tm(也可以根据dsc测定的结果确定),温度越高或越低如在tm或tg附近,越难结晶,在拉伸过程中要防止预热、拉伸时结晶度急剧增加,因此不要在pp最大结晶速度的温度区域内选择拉伸温度,最好在结晶开始熔融、分子链能够运动的温度下进行拉伸,即最大结晶速度的温度到熔点之间。实际生产时应根据pp的热力学特性来相应地调整生产工艺。   3.2结晶对bopp性能的影响   1111薄膜中pp的结晶度和晶体尺寸对bopp薄膜的机械力学性能和光学性能有重要影响。结晶度高则强度高,韧性差;晶体尺寸小而均匀,有利于提高薄膜的力学强度,耐磨性、耐热性,提高薄膜的透明度和表面光泽度。   1111双向拉伸过程中的结晶有着高聚物聚集态结构特殊性的一面,存在取向与结晶互生现象,即取向导致结晶,结晶中有取向。拉伸取向引起晶片倾斜、滑移延展,原有的晶片被拉伸细化,重排为取向态,形成取向的折叠链晶片、伸直链晶或球晶转变为微纤晶状结构等。因此薄膜的综合性能进一步得到强化。   1111如研究表明,拉伸取向导致分子链规则排列,产生均相晶核,诱导拉伸结晶,形成串晶互锁结构,可以大大提高取向方向pp的力学性能[7];双向拉伸也可以使pp中可能产生的较大颗粒晶体破碎,从而减小晶体尺寸,提高透光率,降低雾度。如pp经双向拉伸后,雾度下降50%[8]。   1111从结晶的角度来看,要生产高质量的bopp薄膜,应尽量减小pp晶体的尺寸,一般可以从两个方面考虑,其一,工艺调整,如各段的冷却速度、温度、拉伸比、拉伸速度等;其二是配方,如主料pp的选择、成核剂的使用等。   1111在pp高性能工程化和透明改性方面,如何使pp结晶微细化、均质化也是重要改性途径之一。   参考文献 [1] 朱新远,我国bopp薄膜现状及专用料的开发,广州化工,2000,28(1):28

[2] 中国包装技术协会塑料包装委员会第六届委员会年会暨塑料包装新技术研讨会论文集2002年3月,苏州

[3] 尹燕平,双向拉伸塑料薄膜,北京:化学工业出版社,1999

[4] 金日光,华幼卿,高分子物理,北京:化学工业出版社,1991

[5] 吴耀根,郑少华,王云等,专利,cn1169911a

[6] 汤明,王亚辉,秦学军,bopp专用料结构表征及性能研究,塑料加工应用,1999,(2):1

[7] 申开智,胡文江,向子上等,聚丙烯在单向拉伸力场中形成双向自增强片材及其结构与性能的研究,高分子材料科学与工程,2002,18(1):145

[8] 李军,王文广,高雯,塑料透明改性,塑料科技,1999,129(1):21

  吴增青,男,1958年3月出生,高级工程师,长期从事塑料成型加工研究。

第6篇:高分子材料的取向范文

    【论文摘要】针对高分子物理课程的特点,作者在高分子物理课堂教学中,从高分子物理历史背景、基本概念公式、理论联系实际并结合典型案例以及充分利用多媒体四个方面阐述了如何提高高分子物理课堂教学效果,并培养学生的专业学习兴趣和专业思维能力。

    高分子物理是研究高分子的结构、性能及其相互关系的学科,它与高分子材料的合成、加工、应用等都有非常密切的内在联系,是高分子专业的一门非常重要的专业基础课程。本课程的学习对学生深入掌握专业基础知识和基本技能有着深远的影响。然而高分子物理具有概念多而抽象、结构纷繁而复杂、性能多变等特点被公认为高分子专业最难讲和最难学的专业课。不少学生认为高分子物理理论性强、数学推导多等,因而课堂上缺乏足够学习兴趣。另外一些学生反应平时课堂上能够听懂老师授课内容,但是在实际中遇到高分子物理具体问题,感觉不知如何解决等问题。针对以上存在的典型问题,高分子物理老师对该课程教学进行改革研究,探索各种教学方法如案例教学、启发式、问答式互动教学等。作者所在学校将此课程安排在大学三年级的第一学期进行,此阶段的学生对于该专业的认识还比较局限,笔者在高分子物理课堂教学中采取了一些适合本专业特点的方法和措施,以提高教学效果,培养学生的专业学习兴趣、积极性和专业思维能力。在此过程中,作者有以下一些体会和感受。

    1注重高分子物理史的讲解

    高分子物理的每个概念、公式,都有其出现的时间和年代,都是为解决一定的问题而提出的。适当讲授高分子物理史,帮助学生通过高分子物理历史讯号和高分子物理科学家认识高分子物理,有助于学生了解本学科的发展,积累一定的感性认识。比如在讲解高分子的链结构高分子链的交联时,引入橡胶硫化的发明史:两千五百年前亚马逊河流域的印地安人将橡胶树汁徐在脚上,发明了橡胶靴子,不过一天后靴子会逐渐解体,直到1839年,Goodyear将橡胶原汁加入硫,使橡胶分子发生交联制造出稳定的橡胶,开启了橡胶工业的时代。另外,结合本系涂料专业特色,给学生介绍目前涂料的发展前沿自愈合涂料,其基本原理是高分子之间通过氢键作用产生物理交联.通过以上讲解使学生认识到交联的重要性及对材料性能的影响,体会高分子物理的魅力,同时也扩大了学生的知识面,加深学生对高分子物理知识的理解。

    2深入浅出地讲授基本概念、基本公式

    基本概念多是高分子物理课程的一个突出特点,一些概念高度抽象、不好理解,这对于刚刚接触高分子物理的学生们来说,理解起来有相当的难度。如果在讲解过程中,照本宣科,学生不仅印象不深,还会出现前学后忘,而且容易把概念相互混淆。那么,如何达到“多而不乱”、“多而不忘”的学习效果呢?以“高分子链无规线团”概念为例,课本上的定义比较抽象,难理解,在讲课时可以将其具体化,并以Staudinger当时认为高分子链是硬梆梆的竿子,但这并不能显示橡胶的弹性特性,Kuhn提出高分子链象意大利面条一样有弹性、柔韧性的长链分子,以上高分子链形象生动的比喻加深了学生对高分子链构象的理解。再以“玻璃态和橡胶态”概念为例,把高分子链段比作蛇,因为蛇是冷血动物,其体内热量主要来自周围的环境,在温度低的时候被冻僵保持不动以节省能量,这种状态这有点类似高分子的玻璃态,在温度高的时候从外界获得能量可以运动,这点与聚合物的橡胶态类似,以上比喻使学生很容易理解玻璃态和橡胶态聚合物的链段运动情况,而且印象深刻不容易忘记。又如交联橡胶弹性的统计力学应力一应变状态方程非常重要,它将聚合物微观结构与其宏观力学性能联系起来,课本上推导比较复杂,步骤多、公式多,不好理解而且容易忘。事实上只要抓住内能对橡胶弹性的贡献为零,橡胶弹性的本质是嫡弹性,按照以下思路推导,思路比较清晰而且好理解,学生也就很容易理解公式中各参数的物理意义。

    3理论联系实际并结合典型案例教学

    高分子物理理论性强,应用性也很强,高分子物理教材限于篇幅主要阐述基本原理、基本理论、等方面的内容,应用方面讲得比较少。对于教师在讲授这些基本知识的时候,不能只是简单的以课本上高度概括的语言来描述,应注意理论联系实际,并穿插丰富的,不断更新的例子来说明,这样可以使学生能够更好的理解和掌握高分子物理。如在聚合物的液晶态一节中课本上对着名的芳纶纤维聚对苯二甲酞对苯二胺(杜邦公司的商品名为Kevlar)介绍较少,在讲解中可以详细分析该聚合物结构与性能的关系,其由刚性长分子构成而且其分子链沿长度方向高度取向,并且分子间有很强的氢键作用,其强度是钢丝的5-6倍,因此由该纤维组成的织物能防止子弹的穿过,因此可用来做防弹背心。此外,该液晶态聚合物熔点在500℃以上,很难熔融加工,结晶性很强也很难溶解,杜邦公司Stephanie Kwolek选用复合溶剂N一甲基毗咯烷酮和少量无机盐氯化钙使其溶解,而氯化钙的作用主要是破坏分子间的氢键,从而解决了溶解问题,以上案例使学生深刻的理解了液晶聚合物的结构与性能,而且还了解了其溶解的原理和加工的方法。作者主要从事有机无机纳米复合材料的研究,积累了一些有关纳米复合材料结构与性能的照片、数据与样品。在“高分子玻璃化转变、结晶、高分子的力学行为、粘弹性”等章节中列举了较多的本课题组的研究成果和体会,不仅使学生加深了对多组分体系结构与性能的了解,还引发了同学对科研的兴趣,使学生认识到学习理论的重要性,提高了学习的主动性。

    4充分运用多媒体教学

第7篇:高分子材料的取向范文

我国在住宅建筑节能设计方面虽有所进展,但住宅建筑节能设计方面还存在很多问题。比如:建筑节能的设计方式落后单一,对于住宅建筑节能设计只涉及到对房屋护进行保温设计,对于住宅房屋的热工参数,只能依靠供货厂家提供的说明,对于可再生能源利用缺乏成果和经验等等。对于节能设计的问题我们应该理性的面对,积极的研讨解决。

2住宅建筑节能设计实现的成本

目前我国住宅建筑节能设计主要重视保温和采光材料的选择,而达到节能要求的材料很多时候价格比较高,在使用过程中因成本控制选择低廉的材料,往往会使得节能设计的理念和效果不能完全的实现。另外住宅建筑节能设计忽视了建筑施工的成本,虽然达到了节能的效果,但房屋建筑施工成本过高也不能完全符合节能住宅的要求。我国还处在住宅建筑节能发展的初期,随着住宅建筑节能市场竞争,要想在建筑行业中抢占先机,就要大力推进住宅建筑产业的发展,完善相关的节能法规和标准,国家给予相应的支持与扶持,保证节能设计得以实现。

3策略性优化住宅建筑节能的设计要点

3.1改变住宅建筑屋面的结构

住宅建筑屋面在热量传导中占有较大的比重,是造成住宅建筑内外热交换的主要结构,在住宅建筑节能设计中要策略性地提高屋面结构的保温效果,通过改变住宅建筑屋面结构,如倒置式屋面,推行屋面绿化的方式来改造屋面结构形式,建立保温层和阻断层,提高住宅建筑屋面的节能效果。此外住宅建筑屋面结构的调整还可以通过屋面角度设计、表面材料替换的方式来实现能源消耗的控制,进而实现住宅建筑节能设计的目标。

3.2创新住宅建筑围护结构的节能设计

围护结构是住宅建筑的外部结构,其能耗占比整个住宅建筑能耗的四分之一,在住宅建筑节能设计里应该控制围护结构的尺寸和面积,降低住宅建筑的周长,缩小住宅建筑围护结构的外部空间,进而控制住宅建筑的能源损失。在住宅建筑围护结构中采用新型结构,将高分子材料一填充物的形式加注于围护结构之中,降低住宅建筑的能要损失;也可以多选用轻质保温材料作为围护结构的主要材料,起到隔音、隔热、保持室内环境的效果,同时减轻对建筑物的附着和压力,控制住宅建筑的形变和裂缝,控制住宅建筑能耗过高的可能;还可以通过住宅建筑围护结构的内外设置调整实现节能,在温度低的区域可以将围护结构的保温层设计于外侧,降低墙体内产生返霜、冷凝的现象;在温度高的区域可以将围护结构的保护层设计于内侧,控制建筑物室内的温度上升。

3.3优化住宅建筑门窗的节能设计

门窗是住宅建筑重要的建筑元素,是住宅建筑的功能结构和组成部分,同时也是住宅建筑能耗发生的重要部位。门窗导热、渗透都会造成住宅建筑能耗上升。住宅建筑节能设计中应该做好:一,控制住宅建筑门窗面积,实现节能设计的效果,将门窗与墙面的比例控制在科学的范围内,降低住宅建筑室内外温度交换的面积,减少住宅建筑室内热能的损失。二,提高住宅建筑门窗的密闭设计,可以在设计中采用新材料进行门窗的密闭,例如:选用高性质泡沫材料,利用高分子材料的挤密性和密封性来降低门窗与墙体之间的缝隙,堵塞外部空气渗透的孔道;门窗材料选择中,可以选用松软、弹性大的密封胶条和泡沫封条,实现门窗材料上预防热能损失;门窗制作中采用弹压的方式,密闭玻璃和门窗之间的缝隙,起到对门窗的良好封闭效果

3.4利用太阳能实现住宅建筑节能设计目标

太阳能对于住宅建筑来讲是取之不尽的清洁能源,只要在设计中通过必要的设计就可以起到利用太阳能,达到住宅建筑节能的效果,特别在广袤的华北、西北和东北地区,促进太阳能产品达到住宅建筑节能设计的理念已经深入到住宅建筑节能设计工作的实际。新时期,在住宅建筑节能设计的细节和关键环节要突出对太阳能的深度理念,要讲求太阳能的利用效率,同时做到太阳能设施与住宅建筑能够做到和谐、统一、美观。倡导住宅建筑与太阳能设施的一体化,有机地整合建筑节能和用能目标,突破住宅建筑设计在传统形式上的结构和功能阻碍,坚定住宅建筑节能取向,在降低住宅建筑能耗,控制住宅建筑成本的同时,为节能提供新的空间、系统和结构。

4结语

第8篇:高分子材料的取向范文

关键词:磁化学;无机合成;有机化学;环境保护

文章编号:1005-6629(2007)11-0053-04中图分类号:O441 文献标识码:E

磁现象普遍存在于物质世界。20世纪初,电磁学奠基者法拉第就发现磁场与化学之间有着密切的联系,并首先提出了磁化学的概念。经过数十年的努力,磁化学在实验技术上有了很大进步,灵敏度高、分辨率强,大型仪器(核磁、顺磁、磁天平等)的广泛应用,直流、交流、脉动磁场的实施,超高磁场(40T以上)的建立,开辟了控制化学过程的新途径,促进了磁化学的基础理论研究和在化工领域的应用研究。

1磁场的特性及其对化学反应影响机理

1.1 磁场的特性

(1)磁场的能量较低。在化学化工中应用的场强一般都在1T以内,其能量一般只是粒子热运动能量的万分之一到百万分之一,与化学键的键能相比,也差2~3个数量级。

(2)磁场能对任何置于其中的磁极或电流施加作用力。物质的本质是电性的,无论原子、分子,都是由带负电的电子在某种原子核的正的库仑场中运动,所以从微观机理上看,磁场必然要对置于其中的运动的带电微观粒子(电子、质子、各种离子等)产生不同程度的影响,产生影响的作用力是洛仑兹力。洛仑兹力的计算公式见式(1):

F的大小与磁感应强度B成正比,但方向总是与带电粒子运动方向垂直,说明它不能改变带电粒子的运动速率和动能。

1.2 磁场影响化学反应的机理

洛仑兹力本身的特性决定不能赋予体系能量,因而不能直接以能量因素影响化学反应,但它可以改变粒子的运动方向。化学反应是伴随着电子运动状态的改变而发生的化学键的断裂和形成过程,每一旧键的断裂和新键的形成都是轨道间的分裂和叠加的结果,轨道状态及变化趋势直接关系着键交换的可能性和形成的键的稳定性,若变形发生在有利于轨道叠加的方向,则可以加强对反应体系至关重要的离域效果,加速化学反应或降低活化能,若变形不利于反应需要的叠加方向,也可能对化学反应起负作用。磁场除了对前线轨道伸展状态施加影响外,还可能由于变形产生极化效应,影响其解离的快慢和程度,从而影响化学反应速度。

参加化学反应的物质,根据组成物质分子在分子轨道中的电子配对或未配对,它在磁场中产生的效应不同,可把物质分为顺磁性、反磁性和铁磁性三类物质。

具有磁矩的分子表现为顺磁性,外磁场会影响磁性分子的取向,亦即影响反应体系的熵。对于磁矩为零的分子或原子,其反磁性总是存在的,磁场亦可在一定程度上影响其取向;另一方面,类似于非极性分子的“瞬时偶极矩”一样,磁矩为零的分子也有可能存在“瞬时磁矩”,从而使磁场对其取向施加影响。根据化学反应的过渡状态理论,反应速率常数k的大小见式(2):

可见,除了浓度、温度影响反应速率外,还有两个结构因素:活化焓(在液、固态反应时,约等于活化能)和活化熵能影响化学反应,即一个能量因素、一个熵因素。由于磁场对反应体系能量的影响一般较小,主要是影响分子、原子及电子的自旋方式和自旋取向,即影响反应体系的熵,从而影响反应速率。

除了上述基于量子化学基础上的影响反应速率的过渡态机理外,磁场影响化学反应的机理还有多种,如自由基对机理,三重态-三重态机理,三重态-偶极子对机理和三重态机理等。

2 磁场在化学化工中的应用

磁化学分为无机磁化学、有机磁化学、生物磁化学和医疗磁化学等。本文仅介绍应用磁效应较多的一些具体的化工过程。

2.1无机磁化学合成

2.1.1合成氨

朱传征等进行了常压下磁场对合成氨催化反应的影响研究,结果发现,当控制N2与H2流速比为1∶3,预还原合成氨催化剂A体积为3.538mL,磁场能提高合成氨反应的反应速率和转化率,这种关系并非线性,在低磁场下有一个最佳的磁场强度范围(150~300mT),最大转化率可达0.356%。上述效应的产生,主要是在磁场影响下,还原态的α-Fe晶体Weiss磁畴最小,导致顺磁性的FeO超饱和,磁滞损失增大,饱和磁化减小,致使催化剂活性增加,从而提高转化率。

2.1.2 合成无机功能材料

人工晶体是非常重要的电子、光子材料,而生长大尺寸及高质量的晶体材料一直是各类晶体材料制备的关键技术。1966年Chedzey 和Vecch各自独立地通过磁场阻抑湍流实验表明,外加磁场可提高晶体的微观均匀性。上世纪70年代末,人们发现磁场对Si单晶生长中引入晶体的氧浓度影响很大。1982年,Hoshikawa在0.1T的磁场下,从熔体中生长的硅单晶的溶质条纹减少,同时Suzuk与其合作者也报道了在侧向磁场下生长出无位错5cm直径的掺硼Si单晶。梁歆桉、金蔚青等通过实时观察的方法研究了磁场对KNbO3晶体的生长边界层及形貌的影响,发现磁场可部分抑制KNbO3熔体中的浮力与运动对流效应,使得随磁场强度的增大熔体中温度梯度减小,有利于氧化物晶体的生长。

2.1.3 合成性能优异的金属材料

磁场能显著影响铁基合金的相变过程,冯光宏等进行的磁场处理对微合金钢的相变过程研究表明,磁场处理对微合金钢由奥氏体向铁素体的转变过程产生影响,一是增加了铁素体的形核率,二是提高了晶粒的长大速度。由于磁场对铁素体形核率的影响效果显著,缩短了相变时间,最终得到细晶组织。稳恒磁场还可使低碳钢的晶粒细化,使材料组织的均匀度提高。脉冲磁场处理则是一种新的非热处理型降低焊接结构中残余应力的方法。低频磁处理能大大提高各种刀具和汽车轮机的使用寿命,这也是由于磁处理降低了工具中残余应力所带来的结果。

2.2 有机磁化学

2.2.1 酯化反应

外磁场对乙酸乙酯的合成有催化作用:

CH3COOH+CH3CH2OHCH3COOCH2CH3+H2O (3)

酯化反应③经0.35T的磁场处理后,乙醇的NMR化学位移发生了变化,乙酸的电导率增加了0.201μs・cm-1,酯净增率超过50%,反应速度加快。

根据此原理,可用磁场催化白酒的老熟。酒在磁场作用下,酒中的极性分子键受磁场影响,加速了极性分子的定向排列,使得各成分之间的化学反应容易进行,促进了酒中的酯化、氧化和缔合,使酒中的高级醇、醛类的含量降低,酸、酯的含量增加,减少了自由乙醇分子数,使酒迅速达到稳定状态,变得醇和香且杂味减小,从而达到催陈老熟的效果。经过一次磁化处理的酒,其自然老熟期可缩短3~4个月,使酿酒费用大为降低。当然,磁化老熟与自然老熟效果还是有一定的区别。

2.2.2 蔗糖转化

蔗糖转化为D-葡萄糖和D-果糖的反应一般需要在酸或酶的催化下进行。金增瑗等研究了磁场对蔗糖转化的影响。结果发现,不同浓度HCl催化,未经磁化与经过磁化(B=0.30T)的蔗糖在转化反应中旋光度到达零的时间不同,其中以2mol・L-1的HCl效果最好,磁化后到达旋光度为零的时间比未经磁化时间缩短18.25%。B=0.30T以下,随场强增加,反应速率常数增加,说明磁场从动力学上影响了反应的进程,但高于0.30T以后反应速率常数趋于一定值。

蔗糖分子的构象见图1:

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

图1 蔗糖分子的构象

蔗糖转化反应的速率常数在适当的磁感应强度下有所增加,原因是1个半缩醛氧原子在磁场的作用下接受H+的能力变强,变强的原因应归结于洛沦兹力改变了电子的运动状态,促使分子磁矩发生旋进,造成1个半缩醛醚氧的轨道伸展状态发生了有利于接受H+变形,促进过渡态半椅式糖苷阳离子的形成,从而加快了反应的进行。

2.2.3基本有机合成

磁场主要用来控制反应的路径,从而有选择地获取所需的产物。如丁基锂与苄基氯在溶液中进行的热化学反应,可按式(4)进行:

式(4)中, A,B分别代表丁基和苄基;M为碱金属原子;X为卤素原子;A・、B・为两个自由基,两个自由基上方的横线代表笼,表示两个自由基处于笼中。此反应进一步进行有两种可能:若发生笼内的重合,则产生化学结构不对称的产物AB,若从笼中逸出,进行笼外反应,则会生成对称产物AA,BB并按一定比例生成AB,在上述反应中施加磁场,就可用磁场来控制笼内与笼外产物的比例。

2.2.4 合成有机高分子材料

磁场对聚合反应的作用主要表现在影响聚合物的平均分子量、聚合产率、反应速率和立体构型等方面。黄骏廉等研究了磁场作用下异戊二烯在四氟乙烯-丙烯共聚物表面的光引发接枝反应。四丙共聚物是一种具有良好的化学稳定性和热稳定性的含氟聚合物。将异戊二烯接枝于四丙共聚物表面,可将四丙共聚物的优良性能与含双键聚合物的可反应性结合起来,开发出具有特殊功能的含氟高分子材料,但常规方法接枝,接枝率低,当相同体系的反应在外磁场中进行时,异戊二烯的接枝率提高得很快,且接枝链中3,4-聚合的产物大大增加。

蔡林涛等研究了外加磁场对苯胺电聚合过程的影响,发现当磁场方向垂直电极表面时,在0.58T处聚合速度约为无磁场时的2倍,当磁场方向平行电极表面时,随磁场强度增大至0.7T时,聚合速度约为无磁场影响下的2.4倍。此外一些液晶型聚合物通过磁场取向拉伸法能使一种聚合物在某一方向上的电导率增加约100倍,且能改变聚合物的光学和机械性能。

2.3 环境磁化学

2.3.1 防垢与除垢

磁场对水的表面张力和活性、对水溶液中阳离子和阴离子、对水溶液体系中的各种微粒以及溶解结晶平衡等均有不同的影响。Grutsch J F等研究发现,利用磁处理能成功地控制CaCO3和CaSO4垢的沉积,将磁技术用于供暖系统等许多装置的冷凝器,发现不再形成污垢,早先形成的锅垢,则会溶解而被排出。

Dcren的研究表明,磁处理后的晶核增长受到抑制,成核速率却大大增加,从而能生成更多的不规则的晶体。Donadson J D等的研究表明,在CaCO3溶液蒸发沉淀过程中,磁处理能使方解石和文石的比例由无磁场作用时的80:20变为20:80,文石结晶较疏松,不易结垢。

2.3.2磁分离技术

磁分离技术是利用水中杂质颗粒的磁性进行分离的,对于水中非磁性或弱磁性的颗粒,则可利用磁性接种技术使它们具有磁性而将其分离除去。如含Cr6+、Ni2+、Zn2+、Co2+、Cu2+、Sn4+、Hg2+、Mn2+、V4+、Ti3+等重金属离子的工业废水,不易分解和自然氧化,可用磁凝聚分离法去除。先加硫化物使重金属离子与S2-反应生成沉淀,加Fe3+,调节溶液pH,再添加磁种,通过Fe(OH)3胶体的桥连作用与磁种结合,使磁种间静电作用力减少,易于絮凝而形成较大的絮团,最后通过磁滤让重金属组分随磁种滤出。

高梯度磁分离器则以高饱和磁密不锈钢聚磁钢毛或带锐背的薄钢板作为聚磁介质,当水中污染物对钢毛的磁力作用大于其粘性阻力和重力作用时,污染物被截留在钢毛介质上,在切断磁路后,磁力消失,被钢毛介质捕集到的污染物用水或气水反冲洗下来,从而达到从废水中去除污染物的目的。

2.3.3防治大气污染

汽车尾气中有害气体排放物对环境的污染日益严重。俞明等进行了燃油磁化对发动机排放与节能影响的试验研究,对装夹于化油器入口处和悬浮于油箱中两种类型的燃油磁化方式与无磁化状况分别进行了对比试验,结果表明:两种磁化方法均使CO减少,悬浮油液的磁化方式对HC的排放效果没有明显影响,燃油经济性随状况的变化而变化;而将磁化器装夹于化油器入口处时,HC排放量和燃油经济性均有一定的改善,可见,燃油磁化作用可以通过改变燃油特性,影响燃烧过程,进而降低发动机有害气体的排放量。

3结语

磁化学作为一门新兴的学科,有着广泛的应用前景。目前,磁化学作用机理研究的较深入的领域主要在有机磁化学方面,如建立在自由基对理论之上的磁动力学理论。而有关磁场对水溶液体系的无机化学反应或结晶化学平衡等影响的机理,争议较多且不够深入。磁化学的应用研究还较多停留在实验室阶段和经验性阶段,应加强其基础理论和开发应用的研究,以便设计出特殊的反应途径,开拓新的反应通道,合成出用其他手段难以奏效的功能产物,从而使磁化学在化工领域发挥更大的作用。

参考文献:

[1]朱传征.磁化学及其进展[J].化学教育,1995,(4):4-7.

[2]陆模文,胡文祥.有机磁合成化学研究进展[J].有机化学,1997,17(4):289-294.

[3] 朱传征,戴立益,杨宝林等.常压下磁场对合成氨催化反应影响的研究[J].华东师范大学学报(自然科学版),1998,(2):51-54.

[4]张高科,陈虹.材料制备及加工中的磁化学研究及应用[J].硅酸盐通报,2002,(1):34-37.

[5]冯光宏,谢建新.磁场处理对微合金钢相变过程的影响[J].北京科技大学学报,2001,23(3):261-264.

[6]金增瑗,王玉贤.磁场对蔗糖转化影响的研究[J].化学研究与应用,1998,10(6):628-631.

第9篇:高分子材料的取向范文

关键词:含氟丙烯酸酯,乳液聚合,共聚

氟是迄今为止所知的电负性最大的元素,其原子共价半径(0.064nm)仅比氢原子稍大,所以当碳氢键(C—H)上的氢被氟取代后,氟原子和碳原子形成的碳氟键(C—F)的键能增加了63kJ/mol[1]。同时由于氟原子核对核外电子及成键电子云的束缚作用较强,C—F键极性小,含有C—F键的聚合物分子间作用力较低[2](例如PTFE的分子间作用力为32kJ/mol,而大多数聚合物的分子间作用力为4-40kJ/mol),因而表面能低,具有非粘着性、自性、憎水憎油性。又由于氟原子可极化性小,所以折射率小,可用作光学材料。

由于材料领域对材料性能要求不断提高,氟树脂领域的研究十分活跃,至今,已有各种含氟树脂材料的合成工艺被开发出来并应用到弹性体、泡沫塑料、涂料等产品中,力学性能及表面性能都很好的含氟丙烯酸酯材料更是近年国内外研究的热点。

1含氟丙烯酸酯聚合物乳液聚合研究现状

全氟丙烯酸酯聚合物是在原聚合物的侧链上引入全氟基团,由于全氟侧链取向朝外,对主链及内部分子形成“屏蔽保护”,氟原子的电子云把碳碳主键很好地屏蔽起来,保证了碳碳键的稳定性,使得全氟丙烯酸酯类聚合物物理性能稳定,耐久性及抗化学药品性好。上世纪80年代出现的全氟丙烯酸酯聚合物乳液由于具有优异的表面特性,耐候性及环境友好性,已经在建筑涂料,纺织工业以及其他重要领域得到广泛的应用[3-5]。

含氟丙烯酸酯聚合物合成多为自由基聚合,所用引发剂大多数是水溶性过硫酸铵、过硫酸钾(钠),但也有用氧化还原体系或油溶性引发剂(如偶氮二异丁氰AIBN)来合成高性能含氟聚合物乳液的相关报道。目前的合成方法多采用乳液聚合,但也有本体聚合[6~10]、溶液聚合[11,12]等其它传统聚合方法的报道。近年来由于环境问题日益受到重视,出现了无污染的以超临界CO2为分散介质的多相分散聚合[13]以及微波、等离子体引发聚合体系[14]。

含氟丙烯酸酯聚合物乳液可以通过常规乳液聚合方式来制备。Linemann等[15]用乳液聚合的方法在氮气氛围中制得了聚丙烯酸四氢全氟癸酯和聚甲基丙烯酸四氢全氟癸酯。在聚合中使用的是固体引发剂(V-50),乳化剂为C18TAB,最后得到的乳液的平均粒径为191nm。Thomas等[16]用微乳液聚合的方法合成了甲基丙烯酸全氟烷基酯与丙烯酸丁酯的共聚(BuA/FMA,98.6/1,4),最后得到的共聚物粒子的平均粒径为64.2nm。Boitevin[17]比较了丙烯酸四氢全氟辛酯和甲基丙烯酸四氢全氟辛酯的均聚物以及与甲基丙烯酸吗啉代乙基酯的共聚物,发现均聚时全氟丙烯酸酯的反应活性要比其甲基丙烯酸酯的类似物高,但共聚时则相反。并且全氟丙烯酸酯单体的活性随着间隔基团长度的增加而增加,可能跟全氟侧链失电子效应的减弱有关。

由于含氟单体价格昂贵,目前所合成的含氟丙烯酸酯聚合物乳液主要是将含氟单体和丙烯酸酯类单体或其它乙烯类单体通过乳液共聚合而制得。该方法合成条件简单、操作易控,可制得稳定的共聚物乳液,产物防水性、防油性、耐候性及耐腐蚀性较好。Shimokawa等[18]采用常规乳液聚合法将丙烯酸酯、丙烯酸和(甲基)丙烯酸氟烷基酯进行共聚,合成了防水防油性能优良的含氟丙烯酸酯乳液共聚物。Yamaguchi及Robert等[19,20]将含氟烷基丙烯酸酯、含硅烷甲基丙烯酯、甲基丙烯酸酯(甲基丙烯酸十二烷基酯,甲基丙烯酸羟乙酯)等,通过乳液共聚合制得了防水、防油性能优异的含氟、硅共聚物乳液。Yamaguchi等[21]以F3C(CF2)7(CH2)2O2CC(CH3)CH2,CH3(CH2)11O2CC(CH3)﹦CH2和马来酸为单体,以AIBN为引发剂进行自由基共聚制得乳液。Shirnokawa等[22]将丙烯酸-(全氟辛基)乙酯、甲基丙烯酯丁酯、丙烯酸按5:90:5的质量比混合,通过乳液聚合得到含氟水乳液。Chen[23]与其同事采用IPTI-A复合乳化剂(含有两种非离子乳化剂和一种阳离子乳化剂),以RfCH2CH2OC(O)CH﹦CH2(Rf﹦C6F13~C14F29、C18H37OC(O)C(CH3)C﹦CH2为单体和2甲羟基丙烯酰胺交联剂进行共聚,并且利用小角度X射线散射技术研究了聚合物的表面形态,讨论了其对聚合物斥水斥油性的影响。邓宝祥等[24]以全氟丙烯酸酯和十二醇丙烯酸酯为原料,采用自由基引发乳液聚合方法,以二元单体共聚合成了含氟聚合物乳液,并讨论了乳化剂、引发剂的类型及用量,分散体系等的影响。湖北大学的陈艳军等[25]以丙烯酸全氟烷基酯、甲基丙烯酸甲酯、丙烯酸丁酯为单体原料,在阴离子乳化体系中采用一次投料方式制备了含氟丙烯酸酯的三元共聚物乳液,发现聚合中使用较少的氟单体就能大大提高乳胶膜对水的接触角。Linemann等[26]发现TMAFMphase实验法是分析含氟涂料成膜形态及膜微结构的一种有效方法,并用此法测试了聚甲基丙烯酸全氟辛基乙酯乳液与聚丙烯酸丁酯共混乳液的成膜条件,结果表明在高于含氟组分熔点的温度下,退火工艺有利于含氟组分在膜表面富集,这为制备含氟量低、污染小的防水涂料提供了理论依据。

Park等[27,28]首先利用链转移剂(HOCH2CHSH)制备端羟基的寡聚甲基丙烯酸甲酯,再和丙烯酰氯酰基化合成PMMA单体。接着PMMA大单体与甲基丙烯酸全氟烷基乙酯(FMA)在以V-50和NP-50分别作为引发剂和乳化剂的条件下,制备了PMMA与PFMA的接枝共聚物,发现当FMA的含量(FMA/MMA,wt)大于0.01时,PFMA-g-PMMA与水的接触角大于100°。要比二者的无规共聚物平均高出10°左右,这是因为后者分子链中甲酯侧基阻碍了全氟基团在外层的堆积。

2含氟丙烯酸酯聚合物乳液聚合的研究热点

对于含氟丙烯酸酯聚合物来讲,空气和其界面间的分子间作用力十分低,导致聚合物固体的表面自由能极低,一般很难被有机溶剂和水润湿,而且表面还趋于不粘性和低摩擦系数。己有的研究表明氟化丙烯酸酯聚合物的表面性质,如拒水性、拒油性、自洁性等,是由于高聚物中的全氟链段朝空气伸展,占据聚合物/空气界面的缘故。另外全氟侧链还可保护聚合物的内部分子,从而提高了高聚物的耐候性。但是含氟丙烯酸酯单体的价格十分高,过多的使用该类单体势必会提高改性后的丙烯酸酯聚合物的价格。因此合成上只要能使氟化组分中的全氟侧链尽可能多的位于聚合物和空气界面上,即可制得性能好、含氟量低的氟化丙烯酸酯聚合物,从而降低含氟丙烯酸酯聚合物的制备成本。目前有效地使含氟组分位于氟化丙烯酸酯类聚合物和空气界面上,以降低体系的表面张力的方法主要有以下几种:

(1)将丙烯酸酯与全氟丙烯酸酯进行无规、接枝、嵌段共聚,后两种方法都可在FA单体用量不超过1时,使共聚物的表面性能达到PFA均聚物的水平。华东理工大学的李鲲郭建华等人[29]就是通过“活性”聚合的技术,得到了结构精确控制的含氟共聚物.通过原子转移自由基聚合方法(ATRP)使得含氟结构单元以嵌段的形式连接于碳氢主链的末端,从而使含氟结构的效能达到最大化。

(2)在上述方法的基础上

设计具有特殊粒子形态的聚合物乳液,如在聚合的过程中将氟化单体采用延时滴加工艺,将少量含有长链全氟烷基的氟化单体共聚到其它乙烯基聚合物的主链上,制备以含氟组分为壳,丙烯酸酯组分为核的核壳型聚合物乳液。在成膜时,核和壳相在膜中完全分散,由于疏水性和表面张力的不同,含氟的壳相会优先迁移到表面,使体系的表面能降低。此种方法以ParkI-J,LeeS-B等人所做工作最具代表性[27,28,]。(3)使用含氟复合乳化剂配成乳化体系,可以有效地提高乳液的稳定性,增加含氟单体进入大分子链的能力,提高体系的表面性能。Suzuli等[30]就是使用阳离子型的含氟表面活性剂和不含氟的阳离子型表面活性剂复合作为乳化剂代替常规乳化剂,将丙烯酸酯、羟甲基丙烯酰胺、丙烯酸氟烷基酯通过乳液共聚合,制备稳定性很好的热固性含氟丙烯酸酯共聚物乳液。

(4)采用反应型乳化剂或反应型引发剂,减少乳化剂用量或不用乳化剂,采用微乳液合成方法,可以大大减小乳液粒径,提高体系的稳定性。

3展望

(1)由于材料领域对材料新性能的要求越来越高,对于具有优异耐侯性能和独特表面性能的含氟丙烯酸酯的研究和应用值得关注。

(2)今后含氟丙烯酸酯的发展重点应该集中在:随着对含氟丙烯酸酯的理论探讨进一步深入,完善共聚物中氟链段结构与表面性能改善关系的理论解释;开发氟化丙烯酸酯的新产品和新工艺,确保在较低含量的氟单体用量的情况下达到较好的表面性能。

参考文献:

[1]RichardE.[J].中国塑料,1996,(增刊):22-26.

[2]林义,余自力,徐彬,高分子材料科学与工程,20__,5

[3]李小瑞,辛华,造纸化学品,20__,4

[4]陈艳军,王艺峰,徐沛智,涂料工业,20__,9

[5]黄月文,刘伟区,罗广建,寇勇,化学建材,20__,2

[6]DeWitteJ,PiessensG,DamsR.SurfaceCoatingsInternational,1996,79(7):312-319.

[7]TsibouklisJ,etal.InternationalJoumalofAdhesion&Adhesives,20__,20:91-97.

[8]TsibouklisJ,etal.Biomaterials,1999,20:1299-1304.

[9]PullinRA,NevellTG,TsibouklisJ,Materialsletters,1999,39:142-149.

[10]winterR,etal.JofFluorineChemistry,20__,115:107-113.

[11]LinemannR,MalnerR,BarG,etal.PolymerPriprints,DivisionofPolymerChemistry,20__,44(2)

[12]GusnZ,DedimoneJM,Macromolecules,1994,27:5527-5532.

[13]DesimoneJM,GuanZ,ElaberndCS,Science,1992,257:945-951.

[14]HochartGmetal.Polymer,20__,41:3159-3165.

[15]LinemannRF,MalnerTE,BrandschR,etal.Macrimolecules,1999,32(6):1715-1722.

[16]ThomasRR,eta,Macromolecules,20__,33,8828-8835.

[17]GuyotB,BoutecvinB,AméduriB.MacmmolChemPhys:1996,197:937-942.

[18]ShimokawaW,FukazawaY.JP,051753826.1993.

[19]YamaguchiK,KinoshitaH,KohayashiN.JP,07247461,1995.

[20]RobertAH.US,54420__,1994.

[21]Yamaguchi,H,etal.JP,09296134,1997.

[22]ShimokawaW,FukazawaY.JP,0517538,1993.

[23]ChenSI,etal.JApplPolymSci,1997,63:903-910.

[24]邓宝祥,解如阜.天津纺织工学院学报,1996,15(1):6-11

[25]程时远,陈艳军,王康丽.高分子学报,20__,(5):560-568.

[26]YangChengcheng,ZhangZhaobin,HuChunpu,ChinaSyntheticRubberIndustry,20__,28(1)

[27]ParkI-J,LeeS-B,ChoiC-K.Polymer,1997,38(10):2523-2529.

[28]ParkI-J,LeeS-B,ChoiC-K.Macromolecules,1998,31:7555-7561.

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

AI写作,高效原创

在线指导,快速准确,满意为止

立即体验
文秘服务 AI帮写作 润色服务 论文发表