前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的航天制造技术主题范文,仅供参考,欢迎阅读并收藏。
2016年10月31日,由中国航天科工集团公司和中俄科学与创新理事会联合主办的工业互联网国际论坛在广东省深圳市召开,会议主要聚焦在工业互联网在工业领域的分享、协同和创新作用。中国航天科工集团公司董事长高红卫在会上表示,智能经济时代, 人类必将成为一个命运共同体:“信息互通、资源共享、能力协同、开放合作、互利共赢”将成为人类命运共同体的统一价值追求。我们要以工业互联网的创新建设为依托,以科学精神与务实合作为前提,以相互帮衬、互利共赢为基础,在迎接智能经济时代到来的竞争中赢得先机。
“三朵云”上线
中国航天科工集团于2009年提出了“云制造”的概念,并于2015年成立了航天云网公司。作为我国首个工业互联网平台,航天云网自去年6月中旬上线以来,取得了不俗的业绩。特别是今年4月初,中国航天科工集团通过航天云网430亿元业务需求,吸引了众多供应商参与,不足两个月成交额就突破25亿元。
高红卫介绍,航天云网核心价值是建立起一个完善的“生态系统”,让散落在社会上的千万个创新创业者很方便地找到他们所需要的创新创业资源与环境;让固化于千万个企业中的同质化资源进行网上横向整合,挖掘资源利用的潜力;让有志于垂直整合的行业领军企业在网上找到心仪的合作对象;让渴望冲出国门的企业和企业家在网上找到一条更容易“走出去”的绿色通道。
中国航天科工集团是中央直接管理的特大型高科技工业企业,在制造业和信息技术等方面都有深厚的积淀。“航天云网实际上是航天科工集团在工业互联网领域发挥作用的窗口和载体,它已经在航天云网大云的体系上建设了三朵云,第一个是服务于航天科工自己协同制造所需要(包括自己转型升级所需要)的内部网的专有云,第二个是服务于社会化企业包括产业转型升级所需要的一些技术和服务的公有云平台,以及在2015年年底上线的国际云,实际上既帮助了中国企业往国际化上发展,同时也把国际最先进的技术和服务引入国内。” 航天云网天智公司总经理柴旭东对记者表示。
目前中国航天云网主要包括“云制造”、“创新创业”、“工业品商城”三大核心业务,“云制造”平台,需求方可以免费需求,从超过4万个服务商中优中选优,找到心仪的服务商;服务供应方可以服务能力,浏览研发设计、生产加工、试验、计量检测、产品等各类需求热点。“创新创业”主要是为广大创业者、投资者提供服务。2015年9月,航天云网众创空间平台正式上线。在众创空间平台上,用户可以浏览推荐项目,申请融资路演;如果需要创业咨询,几十位业界专家可以为创客们提供20多种行业的创业咨询服务。
航天云网不仅是提供渠道的媒介和提供交易机会的中间平台,其核心价值是建立起一个完善的“生态系统”。该系统以云制造为核心、以生产为依托,采用开放的技术体系、开放的商业模式和低成本高效的管控与支持体系,形成一个“有照料的生产超市”。
与互联网融合的创新实践
在全球工业化的浪潮再次来临的时候,中国制造业也开始拥抱互联网,并准备利用信息技术方面的优势实现弯道超车。
柴旭东表示,“我们实际上采取了类似于消费互联网的一种模式,围绕适应互联网经济尤其是已经逐步开始的共享经济模式,在企业层形成制造资源和能力的共享与网络效应,为企业能够通过网络使得产品和技术配置实现交易、并能充分使用网络上的各种资源。”
换句话说,航天云网就是构建起以工业互联网平台服务为基础、以生产为桥梁、以智能制造服务为核心、以大数据服务为支撑的“互联网+智能制造”产品服务体系。
举例来说,贵阳食品企业“老干妈”每天生产250万瓶调味品,每瓶都需要喷上唯一的二维码。企业想对每一个二维码进行防伪追溯,并将追踪体系的成本降低至每瓶1分钱,却苦于没有合适的合作方。通过航天云网了相关信息后,立即得到山东一家企业的响应。
深圳一家科技公司急需研制一款波峰焊喷嘴,但这种产品对材料和安全性要求极高,通过航天云网信息后,也得到某大学专家提供的解决方案。
上线以来,航天云网还与江西、贵州、四川、辽宁、浙江、黑龙江等地政府结成了战略合作关系,共同推进具有地方特色的“互联网+特色产业”支撑平台建设。江西航天云网作为江西省“互联网+江西制造”公共服务平台支撑单位,打造了首个服务于江西省企业全产业链条、全生产过程的生产业平台,并建设了全国首个“互联网+家具制造”行业云平台“康居网”。
“我们希望通过创新尤其是采用最新的信息技术,两化融合和制造领域相结合的技术,来带动商业模式和管理的创新,在工业互联网领域能够实现弯道超车。” 柴旭东说。谈到航天云网的创新之处,他认为有以下几点。
首先是技术创新,用最新的云计算、物联网技术,制造资源在云端事先共享,按需服务,支撑在云端的按需使用和相应的协作协同。它实际上是一种基于工业互联网的,以用户为核心,实现人、机、物、环境、信息深度融合,构建在云端实现制造资源和制造能力不同层次的互联化、服务化、个性化、定制化和柔性化,这是智慧制造的一种新手段。在这样的技术创新的支撑下,在云端重构一个新的产业业态,实现资源的共享、能力协同和利益共赢。以云制造为核心,推动国内国际产业资源能力的横向整合和纵向整合,聚合创新创业能力,实现技术创新和创业相结合。
总体上看,航天生产制造信息化已取得了显著的成效,计算机辅助工艺规划、数控加工、设备管理、生产计划和质量管理等软件系统在航天制造企业中应用广泛,实现了生产任务、设备资源等重要信息的管理,提升了航天生产制造能力。但我们仍存在着设计制造过程没有打通、生产设备联网率低、基础信息采集困难、缺乏生产过程信息化的标准规范以及制造模式缺乏柔性等诸多问题。推进生产制造信息化,构建航天数字化制造体系,已经成为航天企业应对当前挑战和顺应未来发展的必然选择。
天津火箭公司坐落于天津经济技术开发区西区,西距天津市区约28公里,东距滨海新区中心约18公里,注册资金5000万元,占地1700余亩,建筑面积30000余平方米。天津火箭公司是航天科技集团和中国运载火箭技术研究院明确定位的运载火箭产业化发展平台,未来将发展成为滨海新区先进制造业的代表,成为国内一流、国际知名的大型航天制造企业。
天津火箭公司的主要产品——新一代运载火箭以五米直径芯级模块基本型为代表,综合性能达到国际一流水平,能够满足我国未来30至50年发展空间技术及和平利用空间的需要。天津火箭公司研制生产的运载火箭系列产品受军工行业性质所限,主导产品加工制造技术几乎全部为企业自主研发,企业将具备非常突出的技术研发能力。
作为打造航天数字化制造新体系的排头兵以及中国运载火箭技术研究院二次创业市场化转型的基地和窗口,天津火箭公司早在建设初期就提出了“新一代、新模式、新标准、新跨越”的目标。公司自成立以来,在思想创新、转变模式的同时,一直在用“两化融合”解读并践行着“新一代、新模式、新标准、新跨越”这“四新”目标。
新一代
“大火箭”又名“五号”运载火箭,是我国完全自主研制的“新一代”大推力运载火箭,也是我国目前最大的在制火箭。从2008年制造厂房开始建设,到2015年首飞,只有短短的7年时间。在这期间要完成产品总体设计、分系统设计、工艺研发、厂房建设、装备研制、产品制造、产品试验、发射基地建设等一系列复杂而系统的工作,如果基于传统的研制方式,这基本上是一项不可能完成的任务。
为了确保首飞节点的后墙不倒,大火箭在研制初期就引入了世界先进的全数字化设计、数字化制造的理念。采用三维数字化设计技术,变实物模装为数字化模装。利用异地协同数字化技术,将西安的发动机、上海的火箭助推、北京的芯级和总体等系统进行充分融合,大大降低了各系统间互不匹配问题的发生。首次建立产品研制IPT团队,在产品设计的同时,就充分利用三维模型进行仿真验证,使工艺研发、厂房建设、装备研制、发射基地建设等工作能够并行开展。正是数字化理念的引入,使得大火箭的研制费用和周期大大缩短,而且还对提高产品的设计可靠性起到了十分巨大的作用。据初步估算,三维数字化技术在大火箭上的应用,至少缩短50%的研制周期。因此,“新一代”大火箭不仅仅只是体现在它的外表,更是体现于它的内在。
新模式
数字化信息化不仅仅是一项技术手段的进步,它们所带来的是一场深刻的技术与管理革命,更开创了一种新型的生产制造方式。大火箭也深谙此道,将数字化信息化发展与创新作为企业的核心竞争能力提升的重要推进力,推动企业生产管理模式的深度变革。
之于大火箭,新模式可以从两方面来理解,一是基于三维的数字化制造模式的创新;二是基于信息化精细、透明、高效管理模式的创新。围绕数字化制造与信息化管理两条主线,搭建起了数字化制造平台与信息化管理平台两大平台。
数字化制造平台,以三维产品数据管理(PDM)系统为核心,利用三维仿真、三维工艺设计、自动化控制、数字化检测等技术,建立了覆盖火箭制造全寿命周期的数字化制造体系。解决了三维设计数据向制的遣传递、工艺合理性验证、自动化高效加工、产品在线检测、多媒体制造现场指导等一系列数字化制造中的核心问题。其中,仅工艺规划与设计一项的周期就节省了近30%。
信息化管理平台,以企业制造资源管理(ERP)和制造执行(MES)系统为核心,以企业业务流程综合管理系统(BPM)为引擎,建立了能够覆盖人力资源、财务管理、计划生产、物资流转、现场执行以及质量管理等一系列贴合企业实际且高度集成的业务管理系统。企业搭建信息化管理平台的目的就是以信息系统为带动,使企业经营管理的过程更为透明、顺畅,信息的反馈与指令下达过程更为快捷,从而促进企业管理模式向扁平化、精细化转型。
新标准
随着公司数字化研制模式的转变以及企业先进制造技术的应用,对公司制造水平、经营能力和人才队伍也提出了新的要求。新标准是对火箭制造工艺、质量管理、精密生产的更高要求,也是对公司人才队伍业务能力、综合素质的更高要求。
在公司“两化融合”建设的高标准要求和火箭制造工艺和质量新标准要求的共同推动下,提出建立“数字化(工艺仿真)一流程化,规范化一定量表达”的技术文件标准规范,最终建立“工艺流程一现场操作一过程记录一辅助(智能)评判”同步显示系统。公司开发实施了质量过程管理系统、无损检测信息系统和数字化精密测量系统等生产应用系统,为新标准的践行实施提供了技术支撑。
新跨越
随着IT信息技术的高速发展,传统制造业在信息化的助力下也面临着空前的发展机遇,航天制造业利用信息化技术已经初步建立了数字化生产制造模式,实现了传统制造的跨越。大火箭在构建航天科技工业新体系的大背景下,由传统生产型制造向“制造超市”式的服务型制造轻型将是新跨越发展的主旋律。
航空航天技术是信息、能源、制造等综合性尖端技术的集合,是一个国家综合科技实力的象征和衡量标志,在国家的军事国防中起着中流砥柱的作用。近几年“神舟”系列载人飞船的成功飞行,以及我国首架具有自主知识产权的喷气式支线飞机ARJ21总装下线等,引发了人们对航空航天技术领域的极大关注,而航空航天类专业更是吸引了不少同学和家长的眼球,被同样怀揣飞天梦想的考生所追捧。
学科优势助推人才起飞
航空航天类专业主要研究飞行器的结构、性能和运动规律,培养如何把飞行器设计制造出来并送上太空的工程技术专业人才。从狭义上讲,航空航天类专业包括飞行器设计与工程、飞行器动力工程、飞行器制造工程、飞行器环境与生命保障工程、探测制导与控制技术等主体学科专业。然而,无论是飞机还是航天飞行器,都是综合科学技术的结晶,涉及材料、电子通讯设备、仪器仪表、遥控遥测、导航、遥感等诸方面。因此从广义上讲,材料科学与工程、电子信息工程、自动化、计算机、交通运输、质量与可靠性工程等都是航空航天技术不可或缺的学科专业。随着航空航天事业的迅猛发展,近年来又催生出航天运输与控制、遥感科学与技术等新兴专业。
航空航天类专业对同学们的要求是“厚基础、强能力,高素质、重创新”。同学们要学习和掌握航空航天技术的基础理论和知识,接受航空航天飞行器工程方面的系统训练,通过各种实践性教学环节,可具备坚实的理论基础,良好的实践能力和分析、解决问题的能力,以及创新能力。毕业生在数学、物理、力学、计算机等方面的基础比较扎实,在逻辑、分析、空间想象力、推理等思维上优势明显,知识面宽,适应力强,发展潜力大。本科毕业生考取研究生的比例很高,申请国外大学奖学金的成功率也较高。
有同学认为航空航天类专业就业覆盖面窄,如果毕业后不能进入航空航天类企业,就很难找到专业对口的工作。其实不然,航空航天高科技辐射国民经济各个部门,航空航天类专业扎实的工程技术理论与实践基础平台,促成了其拓展性宽、应用性强、适用面广的专业特点。可供毕业生选择的对口职业有很多,如飞行器设计、制造人员,科研机构研究人员,国防部门研究管理人员,各级政府部门负责航空航天相关工作的研究管理人员,民航企事业单位的技术管理人员等。毕业生不仅可从事航空航天等领域的设计、制造、研发、管理等工作,还可在民航、船舶、能源、交通、信息、轻工等其他国民经济领域施展才华,像微软、IBM、贝尔、方正、海尔等知名企业都曾纷纷到航空航天院校招贤纳才。很多民用部门也都点名要航空航天类专业的毕业生,认为他们基础扎实、学以致用。
行业繁荣点燃人才需求
航空航天科技工业是知识密集和技术密集的高技术领域,航空航天技术的广泛应用影响到政治、经济、军事、科技、文化及通信、气象、能源、探测等领域,成为社会进步的强大动力。从世界范围来看,航空航天科技工业是朝阳产业,在提升国家整体科技水平和综合国力方面起着龙头的作用。
我国经济的快速发展为航空航天工业提供了广阔的发展空间。国务院公布的《国家中长期科学和技术发展规划纲要》中,关于大型飞机、高分辨率对地观测系统、载人航天工程与探月工程等航空航天领域范畴的工程便占到16个重大专项中的4项。未来我国航空航天发展将重点开发大型飞机设计与制造成套技术,载人航天实现航天员出舱进行航天器交会对接试验活动,直至实现登月计划等。2007年大飞机项目正式上马,给我国的航空业带来了空前繁荣,带活了一批航空类企业,也为航空航天类专业毕业生带来了良好的机遇。
航空航天科技工业极具发展前景,对人才的需求会持续旺盛。据统计,2011年最被看好的12类专业之航空航天产业将引发对航空航天人才的巨大需求,包括航空航天经营管理,航空航天飞机总体设计与研发、发动机研发与制造,零部件研发与设计,航空航天新材料研发、制造及总装技术、计量检测技术、航空航天电子电器设备设计开发、信息及测控技术,航空航天生物技术、航空适航管理、航空维修改装,以及航空航天产品光电通信技术、能源系统设计、力学及环境工程、计算机、仿真、可靠性技术等领域在内的专业人才缺口巨大。有关人士根据教育部公布的相关信息归纳出的“最出人意料的十个高就业专业”,便将航空航天类专业列入其中。
上海作为我国新支线飞机和未来大型民用飞机设计总装基地和重要的航天基地,举办了“上海航展”,展会上举行了航空航天人才大型招聘会。据航展招聘组负责人介绍,目前航空航天项目需要大量人才,仅空客A380一个项目组的技术人员需求数量就超过六千人,而我国这方面人才缺口非常大。
近年来,以航天科技,科工集团,航空一、二集团等为代表的航空航天类企事业单位生产和科研任务饱满,条件大为改善,待遇提高很快,一些单位的员工年薪可达十几万,稍差一些的单位其员工薪资待遇也可达到当地中上水平。航空航天事业的迅猛发展,无异于为年轻学子的成长搭建了理想的平台。像航天空间设计研究院、航空材料研究院等单位都炙手可热,受到重点院校毕业生的青睐。毕业生就业地域以北京、上海、西安、成都、沈阳、哈尔滨、深圳等省会及核心城市为主。
从个人长远发展来看,在航空航天类企事业单位工作,发展前景好,待遇高,成长快。随着载人飞船、探月工程、大飞机等重大项目的深入实施,必将有越来越多的青年才俊在锻炼中脱颖而出。
报考提示
我国目前开设航空航天类专业的重点院校有北京航空航天大学、南京航空航天大学、哈尔滨工业大学、北京理工大学、西北工业大学、南京理工大学、哈尔滨工程大学等。近年来,清华大学、复旦大学、上海交通大学、厦门大学等也相继设置了此类专业。开设航空航天类专业的普通院校有南昌航空工业学院、沈阳航空工业学院、郑州航空工业管理学院、中北大学、中国民航大学等。由于各个院校的发展历史、层次、实力不同,学科专业水平差异也较大,同学们应注意了解自己感兴趣的院校,根据自身实力,准确定位,合理选择。
学习航空航天类专业以及将来从事航空航天技术工作,需要具备较强的学习钻研及动手能力,要求同学们的数理化基础扎实,逻辑思维能力较强,严谨求实,乐于钻研。同学们应从实际出发,量体裁衣。
一些考生和家长误以为报考航空航天类专业,体检的标准要按照军检的标准来进行,其实不然。航空航天类专业主要是培养航空航天领域的专业技术人才,对考生的身体状况没有特殊要求,同学们只要符合《普通高等学校招生体检指导意见》,就可放心报考。
摘要:文章根据1997年~2010年中国高技术产业的产值数据,计算了分行业的EG指数和Moran指数,以考察中国高技术产业空间集聚的行业特性。研究发现:其一,航空航天器制造业为高度集聚,医药类和电子信息类的高技术行业分别为中、低度集聚,这种行业差异主要由政策、技术、资金等多种市场进入壁垒综合导致;其二,航空航天器制造业布局为负空间自相关,说明高产值区域的集聚经济效应尚未明显地向外围地区扩散,其它高技术行业布局均为正空间自相关,说明高产值区域在空间上呈现彼此邻近的片状分布。
关键词:高技术产业;空间集聚;空间自相关;EG指数;Moran指数
一、 引言
本文主要围绕空间集聚程度以及空间溢出效应等方面来考察中国高技术产业集聚的行业特性以及造成这种行业特性的主要原因。具体地,采用EG指数测度空间集聚程度,以规避传统指标未充分考虑企业规模、技术溢出等因素的缺陷;采用Moran指数检验产业布局的空间自相关性,以弥补传统指标和EG指数难以体现产业集聚发生地点及其空间关联性的不足。
二、 中国高技术产业空间集聚的演变态势
1. 指标选取。
目前,用于测度产业空间集聚程度且发展较为成熟的指标为EG指数(Ellison & Glaeser,1997)。假设某一经济体被划分为m个区域,在这些区域内分布着行业i的n个企业,则行业i的EG指数(γi)为:
其中,xj为区域j所有行业的总产值(或总就业人数)占全国所有行业的总产值(或总就业人数)的比重,sij为行业i在区域j的总产值(或总就业人数)占该行业全国总产值(或总就业人数)的比重,zik为企业k的产值(或就业人数)占行业i的全国总产值(或总就业人数)的比重,Gi、Hi分别为行业i的空间基尼系数和赫芬达尔指数。此外,γi<0代表行业i的空间布局呈分散化趋势,γi>0代表行业i的空间布局呈集聚化趋势。Ellison和Glaeser(1997)还指出,若γi<0.02,行业i为低度集聚;若0.02≤γi<0.05,行业i为中度集聚;若γi>0.05,行业i为高度集聚。参照此标准的建立方法,张明倩(2007)基于中国制造业数据进一步提出了适合于评价国内产业集聚程度的标准:若γi<0.026,行业i为低度集聚;若0.026≤γi<0.098,行业i为中度集聚;若γi>0.098,行业i为高度集聚。由于缺乏单个企业的详细数据,本文假设属于同一规模类型的企业具有相同的产值(或就业人数),调整后的赫芬达尔指数为:
其中,sil、sim和sis分别为大、中、小型企业的产值(或就业人数)占行业i的全国总产值(或总就业人数)的比重,nil、nim和nis分别为这三类企业的个数。按照《中国高技术产业统计年鉴》的界定,高技术产业包括医药制造业、航空航天器制造业、电子及通信设备制造业、电子计算机及办公设备制造业、医疗设备及仪器仪表制造业等五个行业。本文所涉及区域为31个省、自治区和直辖市,时间跨度为1997年~2010年。考虑到中国的就业数据会受国有企业劳动力过剩以及地区劳动生产率差异的干扰,本文在计算EG指数时采用产值数据。
2. 实证分析。
本文利用《中国高技术产业统计年鉴》的当年价总产值,得出分行业的EG指数(见表1)。
从表1看出,其一,五个高技术行业的历年EG指数均为正,说明它们的空间布局在1997年~2010年都呈现集聚化趋势。参考张明倩(2007)的标准,航空航天器制造业为高度集聚;医药制造业除了2005年的EG指数略高于0.098以外,在其它年份为中度集聚;医疗设备及仪器仪表制造业为中度集聚;电子计算机及办公设备制造业除了在1997年~1998年、2000年~2002年为中度集聚以外,在其它年份为低度集聚;电子及通信设备制造业为低度集聚。本文认为,市场进入壁垒通过影响企业的生产决策和区位选择,能够对产业布局的地理集中化程度产生影响,故市场进入壁垒高低是解释行业集聚程度差异的一个重要方面。航空航天器制造业具有高技术、高资金的特点,加之涉及国家安全,其市场准入门槛也较高,若不具有发展基础就很难进入这一领域。因此,一旦某一(些)区域依托初始优势成为带动该行业发展的增长极,这一(些)区域的初始优势就容易在体制、技术和资金等壁垒的影响下进入“自我加强”的累积循环,从而使行业长期处于“强集聚”状态。1997年~2010年,陕西、西南(四川、贵州)和东北(黑龙江、辽宁)始终占据中国国防工业体系重要地位,这些区域占全国总产值的平均比重为19.4%、17.5%和22.6%。相反,其它高技术行业的资金、技术、体制性壁垒相对较低,企业进入市场较为容易,从而使各行业呈现一定的“弱集聚”态势。其二,航空航天器制造业、医药制造业的EG指数呈现倒U型变化,电子及通信设备制造业的EG指数呈现U型变化,电子计算机及办公设备制造业、医疗设备及仪器仪表制造业的EG指数呈现不规则变化。本文发现,Gi在绝大多数情况下与γi同方向变化,对γi的变化贡献度为92.2%①。因此,γi的变化正反映了行业i空间布局非均衡性的变化。以航空航天器制造业为例,在1997年~2004年,东北(黑龙江、辽宁)、陕西、西南(四川、贵州)等重点区域的产值占全国总产值的比重分别由18.6%、17.0%、16.0%上升到23.7%、24.7%、20.2%,从而使γi由0.123 5逐年上升到0.248 8。进入2005年以后,航空航天器制造业的发展战略逐渐由“以军为主”向“军民结合”转变,飞机制造及修理行业的外资规模不断扩大,综合导致产业布局朝着更为多极化的方向演变,形成了“以东北(黑龙江、辽宁)、陕西、西南(四川、贵州)为第一层级,环渤海(北京、天津)、长三角(上海、江苏)、江西为第二层级”的格局,从而使γi由0.242 9下降到0.187 6。在此复合式格局中,第一层级的竞争优势主要体现在航空产品的研发和生产上,其中,陕西集聚了西飞、陕飞、西航等重点企业,西南集聚了成飞、成发和贵航等重点企业,东北则集聚了沈飞、哈飞等重点企业;在第二层级中,环渤海,特别是天津滨海新区在组装大型飞机业务方面具有优势,长三角,特别是上海在飞机维修业务方面具有优势,江西在生产直升机方面具有优势。由此看出,其EG指数在近几年有所下降不代表航空航天器制造业进入了过度集聚,进而引发空间分散化的阶段,而是反映了航空航天器制造业正在形成各具特色的地方专业化,进而有利于区域分工格局的合理演进。
三、 中国高技术产业空间布局的自相关性
1. 指标选取。
目前,用于检测产业空间自相关性的常见指标为Moran指数。假设某一经济体被划分为m个区域,某行业的Moran指数为:
阿波罗工程
20世纪60~70年代,美国成功实施了宏伟的阿波罗载人登月工程,它不仅使美国在航天领域确立了领先地位,产生了极大的声誉,也使人类对月球及近月空间有了首次直接的研究和认识,在工程管理上使美国取得了一系列宝贵的大型工程计划和管理的经验。而且在技术上取得了许多重大突破,这不仅为后来的航天计划奠定了基础,后来还广泛地用于国民经济领域。
据统计,阿波罗工程使美国经济增长率提高2%,物价指数下降2%,创造80万个就业指标。该报告还认为,美国1958年国民收入为4062亿美元,1968年达到8640亿美元,1970年增至9046亿美元,10间翻了一番,这是阿波罗工程刺激的结果。另外,阿波罗载人登月推动关键科学和各种边缘交叉学科的兴起与进步,进而转化为国家未来经济实力并确保了国家安全也是不可否认的。
实施阿波罗载人登月工程,带动了美国微波雷达、遥控作业、无线制导、新型材料和电脑、药物及生物工程等一大批高科技工业群体。后来,该工程的人工智能、机器人和遥控作业等许多技术成果又转移到民用,促进了科技与工业的整体发展与繁荣,其二次开发应用的效益,远远超过阿波罗载人登月工程本身所带来的直接经济与社会效益。美国在20世纪后10年能够保持高速、高效增长,很大程度得益于阿波罗工程派生出的约上千种应用技术成果或专利在经济领域的应用,美国领先于世界的信息、生物、新材料等高新技术,很大部分来自对月球探测技术的消化、优化和二次开发。现在,航天产品或技术到老百姓手中的平均时间是5~10年。
在实施阿波罗载人登月工程时,为了降温和确保登月航天员的生命安全,研制液冷服,其原理是靠泵输送冷水循环制冷。后来,这项技术直接应用于陆海空三军,改善了坦克兵、潜艇兵和飞行员的工作条件。它还为一些特殊病人减少了痛苦。例如,有个小男孩得了外皮鳞化症,不能通过皮肤散热,因此,他大部分时间只能被关在空调冷却的环境中,许多日常活动都参加不了。在有了液冷服后,使他可以外出,从病痛和孤独中解救出来。航天液冷服技术在我国抗击“非典”中也曾发挥过作用。
重症监护病房是航天技术带来的重要医学进步之一,它是应阿波罗工程对登月航天员进行健康检测的需要而诞生的。
方便面调料中的干菜叶就是航天食品中常说的脱水菜,它是将蔬菜中所含过多水分脱去以便贮存、保管、运输出售。“阿波罗”计划中首先使用这种技术让航天员吃上含有蔬菜的航天食品,现在这种航天食品已广泛普及。果珍饮料原本也是为航天员研制的饮料。
各类时髦的运动鞋也是阿波罗成果的“产物”,其“中空吹塑成型”制造技术来源于阿波罗登月航天服,当时科学家为了制造一个完整并且厚度均匀能耐受很大压力的航天服内胆,发明了把一团耐压软材料加热软化,放在一个模具中,然后再向这个模具中吹入高压气体的方法。之后,运动鞋制造商发现这种工艺可以快速高效地来制造一个完整的鞋帮,于是便广泛地使用起来。
2004年,在纪念阿波罗载人登月35周年时,耐克公司一则气垫运动鞋广告引吸了许多人的注意:这款畅销世界的气垫运动鞋,靠的就是公司当年为阿罗波工程研制登月靴积累的技术。
在阿波罗技术的引领下,人们研制出了烟雾检测器、食品干燥剂、家电节能系统、抵御有害射线的太阳镜、钻头和无线电设备等,其中大众接触最多的购物计价用的条形码是航天技术杰作之一,它最初是美国为控制阿波罗计划不计其数的组件而发明的。阿波罗技术还给人们带来了心率表、激光手术、数字温度计、彩超等设备和技术。
阿波罗计划出台后,美国试图研究一种新技术,以使休斯顿航天中心的电脑系统实现数据互联,几年后,互联网技术孕育而生,并在登月结束后推向民用。
作为阿波罗计划的参与企业,摩托罗拉在无线通讯方面得到了快速发展。1973年,该公司工程师马丁・库帕研制出世界上第一部手机,而同时研制了世界首套为手机服务的无线移动通信终端系统。
此外,由阿波罗计划而诞生的核磁共振、激光通信、液晶电视、女性的“离子烫”、枕头的记忆海绵、自拍的手机高清摄像头等,如今均成为人们生活中不可或缺的重要技术。
阿波罗工程产生的3000多项专利技术中,至少有1000多项专利技术被直接转移到民用,到现在人类仍然受益不浅。许多人认为,“阿波罗”所带来的间接效益比直接效益还大,其投入产出比大约是1:14,即投入1美元,产出14美元。
航天技术是百宝箱
航天的其他技术也广泛用于国计民生,例如,具有强度高、比重小、防腐蚀、耐老化、隔热隔音等优异理化性能的玻璃钢复合材料,先是被广泛应用于航天器部件的制造中,后来又被广泛应用于建筑、化学、汽车、交通、机电、体育等部门,产品多达上千种。
首先,被用于火箭壳体等航天器制造的碳纤维材料,不仅耐压、耐腐蚀,重量轻,散热性好,手感舒适细腻,强度和韧性是铝镁合金的2倍,而且是一种可回收的环保材料和一种导电材质,能起到电流屏蔽的作用,其清洁性也较好,圆珠笔、油性水笔等在上面留下的污迹都能轻松抹掉。这种材料后来用于笔记本电脑等许多方面。
目前广泛使用的“尿不湿”最初被发明出来是为了解决航天员长时间太空行走中的内急问题。微波炉的诞生则是因为在太空中需要加热食物但又必须避免明火点燃其他设备。由于航天的成本很高,带上1千克物品上天的成本约1万美元,所以为了满足航天活动中要求计算机体积小、功能强而发明了笔记本电脑。
现在到处使用的粘扣带是出于在载人航天中航天员记录实验结果的需要,这种固定物能确保航天员松手以后本和笔不会飘起来。极其牢固的凯夫拉尔纤维原本是专家为了保护航天员免受微陨石伤害研制的,现常用于轮胎和防弹背心。
航天飞机热防护系统的隔热材料已被用于赛车运动冷却装置;用于照明太空植物的光射二极管技术拟用于治疗儿童脑瘤;航天平衡测量设备已用于诊断并治疗患有脑部创伤、中风、慢性头痛或中枢神经系统紊乱的病人;航天飞机用的“液体金属”材料已应用于金属棒球球棒、珠宝首饰、军用装甲与医学仪器。
1.国内飞行器制造工程专业人才培养现状
随着我国飞机保有量和需求量快速增长,以及为实现从“航空航天大国”向“航空航天强国”发展、提升航空航天工业水平而实施的“大飞机”等项目产业政策的推进,我国对飞行器制造方面的专业人才需求不断加大。近些年,各类高校依托教学科研优势,不断加强或开设了飞行器制造方面的专业,提高了行业参与度。
至今,办此本科专业的有西北工业大学、北京航空航天大学、南京航空航天大学、哈尔滨工业大学、南昌航空大学等十多所高校。各高校依托自身的优势,积极开展专业特色化建设,培育自身的专业特长。如西北工业大学偏向于CAD/CAM集成的数字化制造技术、北京航空航天大学突出于板料成型技术专业教学和实验、中北大学以飞行器特种制造为特色等,形成了面向飞机制造、适应航空航天发展要求的课程培养体系,培养出一批具有飞行器制造工艺技术的航空航天类人才。
从2002年开始,我国高校开始重视本科专业教育教学实习基地的建设,并以此为依托加强学校与企业的交流与合作,如带领学生深入企业进行现场教学、企业人员为学生讲课(讲座)、征求企业意见制订专业培养计划、订单培养等。我校飞行器制造工程专业主要面向航天航空飞行器产品制造等相关产业培养钣金、铆接、装配技术类高素质应用型本科人才。由于本专业开办时间短,目前我校在飞行器制造工程人才培养方面仍处在探索阶段。加强实践教学已成为飞行器制造工程专业人才培养模式的必然选择,而其中最有效的途径是校企合作。
2.校企“3+1”合作办学的优势
3+1校企合作办学指前三学年的培养在校内进行,第四学年除部分课程及实验教学在学校完成之外,其他现场课教学、生产实习、课程设计、毕业设计等环节均在企业内实施,以强化学生工程实践、动手能力及综合素质的培养,简称“3+1”合作办学模式。校企合作办学“3+1”模式,这种合作教育能够实现工学结合,为学生提供在真实工作环境下学习的机会,是实现应用型工程技术人才培养目标的有效途径,也是与就业联系最密切的一种教育模式。
由于有很多限制条件,学校无法投入过多资金购置像企业的一些精密加工设备作为教学仪器设备,所以学生在校内学习期间只能在理论上了解基本成形原理和方法,根本看不到实际的设备及生产工艺过程,也就无法掌握一些知识。而合作教育提供的教学手段和设备资源,弥补了学校的教学条件的不足,解决了教学与生产实际脱节甚至落后于生产现状的严重问题,实现了校企教育资源的优势互补。
学生在航空航天企业生产实践过程中会认识到,一个不受社会和企业欢迎的人是无法发挥才干的。到企业后,学生清楚地了解了用人单位人才需求目标,了解了作为飞行器制造专业的工程技术人员必须重点掌握的知识,明确了学习目的和方向,增强了学习主动性。在专业知识对生产过程发生作用的亲身体验中找到了成就感和危机感,提高了学习兴趣,明确了专业思想,树立了学以致用、理论联系实际的观念,使就业观念和定位更符合社会与航空航天企业的需求,且学生就业之后,表现出的工程意识、创新意识和适应工作岗位的能力都明显增强。
3.飞行器制造工程专业校企“3+1”合作办学模式探析
我校长期以来,一直与一些航天企业有着较好的合作关系,并与其建立了校外实习基地,如中国航天科工集团柳州长虹机器制造公司、桂林航天电子有限公司等。这些公司每年都会吸收一批本科毕业生,以补充和优化专业技术人员结构。
本科生在外语、计算机及基础知识等方面表现出了一定的优势,但普遍存在本科生专业知识与航空航天生产过程的需求脱节比较严重、独立解决现场实际问题的能力非常薄弱,同时表现出对社会及企业的了解甚少,融入工作环境的协作精神比较欠缺等问题。这正是毕业生和企业共同担心的问题。这些公司在航天专业技术领域与我校飞行器制造工程专业在培养学生过程中需要的全部专业知识具有良好的适应性。可见校企及学生三方都有合作办学需求的基础。
3.1合作办学模式的定位
飞行器制造工程专业人才培养采取校内培养和企业联合培养的方式,即学生在校期间的学习分为校内学习和企业学习两部分。学制4年采用“3+1”模式,即3年校内通识类课程、大类学科基础课程、核类专业基础和专业课程的理论与实验教学,着重加强学生基本知识、基本理论和基本技能的学习、锻炼和培养;累计1年(主要集中在第四年)校外企业核类部分理论课程和实践教学。
重点是最后一个“1”的环节,具体而言在这一年的校外企业实践教学环节中实行“部分专业课+课程设计+生产实习+毕业论文(设计)”的集成化教学方式,着重培养学生获取知识、分析问题和解决问题的能力及创新能力。
3.2“3+1”校企合作办学的主要特征
3.2.1规范选拔机制,组建一支优秀学生队伍。第四学年初,学校需要在飞行器制造工程专业组建实验班进行统一编班授课。学生自愿报名的基础上,根据学生前三年在校成绩及获奖等综合素质表现,择优选拔出一定数量的学生,成立“飞行器制造工程专业‘3+1’校企合作试验班”。规范的选拔机制应公平公正,公开透明,也是对低年级学生的一种激励。再则,一支高素质学生队伍是校企合作有效办学的重要保障。
3.2.2校企双方共同制订和实施培养计划。试验班的培养计划和教学大纲应由我校机械工程学院牵头,与企业共同协商制订,将学校教学过程和企业生产过程紧密结合,校企共同完成教学任务,使学生在掌握一定飞行器构造、飞行器制造工艺与工艺装备的基础理论和专业知识基础上,具有钣金、铆接和装配等基本操作技能,能够从事飞行器产品零件的设计、生产及装配、工厂生产管理和服务于第一线的工作的能力。实验班往往会加入部分企业需要的专业课程,学校无法完成的可由在企业中聘请的兼职教师到学校讲授。部分实践教学依据学校实验设备条件和企业生产进度协调安排。
课程设计、毕业设计选题应尽量来源于企业的生产实际。3.2.3建立校企双向管理制度。学生实践活动期间,不仅要保障学生安全和日常教学活动,还不能影响企业正常生产,因此,应严格实行校企双向管理制度。学生的劳动纪律考核应由企业负责,尽量与员工保持同步。校企双方应各派一名专职辅导员,有利于学生日常行为和具体事务协调与管理。由于航天企业有其特殊性,教学管理程序要适应航天企业产品研制与生产中的相关保密规定。
3.3“3+1”校企合作办学实施的保障措施
许多学校在开展校企合作办学的过程中,企业合作积极性不高,教学主体在实施过程中缺乏企业的实际参与和互动等问题。为了实现校企双赢的合作关系,保障校企关系持久稳定,要在以下两方面下工夫。
3.3.1寻求学校、学生与企业三方协调。学校有教学任务,学生有就业任务,而企业有其生产任务,校企合作教育应该在学校、学生与企业三者间寻求协调和统一,在学校教学管理部门、二级学院和专业教师的精心组织与周密安排下,加强与企业的沟通和联系,加强与企业兼职教师之间的合作与协调。校企之间要协同制定相应制度,明确各自在应用型人才培养过程中的职责,成立专门部门,负责协调校企合作各项事宜,真正做到有政策制度的保障。特别要健全学生在企业实践学习阶段的教学质量考核与评价体系,优化企业对试验班毕业生的择优录用机制。
3.3.2培养高质量“双师型”教师队伍。近年来,为了加强师资力量,学校引进不少拥有博士学位的毕业生补充到我校飞行器工程专业教师队伍中,他们虽然有扎实的基础理论,但工程实践背景比较薄弱。因此,师资队伍建设中,除注重学历、年龄和职称结构外,还特别强调教师的航空航天企事业单位工作经历和工程实践背景。为了加强专业课教师工程实践能力的培养,学校要鼓励或创造条件让来自高校或没有一线工作经历的教师到相关企事业单位挂职,增强实践能力,以促进校企合作教育的开展。
4.结语
合作办学是以学生为中心的,在合作教育所有效益中,适合人才市场需求,提高学生的就业能力是利益的核心。校企合作办学让高校走向企业,也让企业走进高校,将高校的理论教学与企业实践有机融为一体。这种办学模式对促进飞行器制造工程专业创新人才培养模式、拓宽人才培养思路非常有利。
当地时间2012年4月17日上午,美国“发现号”航天飞机“匍匐”在一架经过改装的波音747飞机的机身上,从佛罗里达的肯尼迪航天中心飞往华盛顿。
“发现号”此次谢幕之旅经过特别规划,在华盛顿上空做了短暂盘旋,飞经当地主要地标建筑,其中包括阿灵顿国家公墓,那里也是美国5位航天飞机宇航员长眠之处,他们分别在1986年“挑战者号”和2003年“哥伦比亚号”事故中遇难。上午10时许,“发现号”降落在华盛顿弗吉尼亚杜勒斯国际机场。之后,它将安置在位于华盛顿的美国国家航空航天博物馆,成为永久性展品。
作为美国国家航空航天局(NASA)所有航天飞机中机龄最大、服役时间最长的航天飞机,“发现号”可谓功勋卓著。自1984年8月30日首飞以来,“发现号”曾搭载宇航员240人次,完成39次太空之旅,累计飞行365天,绕地球5830周,飞行距离约2.38亿公里。
1990年4月,“发现号”航天飞机升空,将大名鼎鼎的“哈勃”太空望远镜送上天,自此开启了一个新的天文观测时代。而“哈勃”的维护工作,比如换个电池、修修陀螺仪、取回数据什么的,无一例外都是由航天飞机带宇航员前来完成。现如今,“哈勃”仍在轨道上向故园地球默默致意,却再不会隔三差五地碰见当年的“老友们”了。
航天飞机的功勋与诟病
航天飞机只是外形像飞机而已,其实是往返于地球与外层空间的航天器。20世纪70年代,美国正式开始航天飞机的研制。1981年4月12日,“哥伦比亚号”航天飞机首次飞行,正式拉开了美国“航天飞机时代”序幕。
1984年8月30日,“发现号”首次飞行。在“发现号”之前,美国制造了“企业号”、“哥伦比亚号”和“挑战者号”航天飞机,“发现号”航天飞机是第4架,其中“企业号”仅用于地球大气滑翔试验,所以,“发现号”是第3架进入地球轨道的航天飞机。“发现号”之后,美国又制造了“亚特兰蒂斯号”和“奋进号”两架航天飞机。因为“挑战者号”和“哥伦比亚号”相继失事,所以“发现号”是现存最年长的航天飞机。
说起“发现号”执行的任务,最光荣的莫过于两次临危受命,拯救航天飞机的命运。
1986年1月28日,“挑战者号”从肯尼迪航天中心发射72秒钟后在1.5万米高空突然爆炸,7名机组人员全部遇难。975天后的1988年9月29日,“发现号”临危受命,进行灾难后的首次飞行。
2003年2月1日,灾难再度降临,载有7名宇航员的“哥伦比亚号”航天飞机在着陆点上空解体,7名宇航员全部遇难。此时,有人怀疑航天飞机的安全性缺乏保障,不适合再次飞行。两年后的2005年7月25日,“发现号”再次临危受命,进行了“哥伦比亚号”失事之后的首次航天飞机飞行。
美国研制航天飞机的初衷是可重复使用,以节约发射费用。但事与愿违,航天飞机发射和维护成本居高不下。美国国家航空航天局算过一笔账:自1972年以来,美国政府共为航天飞机项目买单1960亿美元,分摊到135次发射飞行每次约15亿美元。而在考量通胀因素后,美国花在航天飞机项目上的银子,已超过登月、制造原子弹和开凿巴拿马运河的总和。
航天飞机的天价费用,让美国国家航空航天局不堪重负。而除去失事的“挑战者”号和“哥伦比亚”号外,剩余的3架航天飞机已到了故障多发的暮年。在美国经济低迷财政亏空的大背景下,还有深空探测、登陆火星等耗费巨资的项目需要实施,每年烧钱40亿美元的航天飞机,着实让美国人感觉玩不起了。更要命的是,航天飞机的安全性和可靠性未免让人失望。数据显示,其134次飞行中就有两次事故、14人遇难。按照百万公里死亡人数计算的风险,这要比民航客机高138倍。2010年初,美国国家航空航天局正式决定现有航天飞机将全部退役。2011年7月8日,“亚特兰蒂斯”号第33次、也是最后一次升空,开始了美国航天飞机的绝唱之旅。
“后航天飞机时代”谁主沉浮?
航天飞机时代的终结,并不意味着美国载人航天事业的终止。航天飞机退役后,美国计划大力发展新一代航天器“猎户座”接棒进行载人航天活动。
“猎户座”可容纳4至6名宇航员,往返于地球与国际空间站之间。同时,该飞船还可充当空间站的对接舱或逃生舱。在设计方面,“猎户座”飞船将采用“落地”的方式返回地球,中途利用降落伞减速,可显著提升返回时的安全性。飞船可搭载“逃逸塔”系统,一旦遇到危险,可迅速将宇航员“甩”出去,借助降落伞安全着陆。2006年8月,美国国家航空航天局将该飞船的合同授予洛克希德?马丁公司,由其全权负责设计、开发及建造,并预计在2015年载人前往国际空间站。
然而,按照“猎户座”计划,至少未来4年美国的载人航天器将处于空白期,美国宇航员往返国际空间站,将不得不租用目前唯一能够运载宇航员与国际空间站对接的俄罗斯“联盟号”飞船。“联盟”系列飞船至今已使用40多年,可容纳3名宇航员,也可改造为货运飞船。与航天飞机相比,“联盟”飞船结构简单、技术成熟过硬、制造周期短,是经久耐用、性能良好的航天运载工具。更重要的是,“联盟号”总体上比航天飞机安全得多。
租用“联盟号”费用并不低。自美国2004年宣布结束航天飞机计划以来,俄罗斯已8次上涨运送宇航员的费用。目前,搭乘一趟“联盟号”的租金约为4340万美元。预计到2016年,“联盟号”每个座位的费用将高达6300万美元。但俄罗斯并不以“联盟号”为满足,从2009年起俄开始研制新一代载人飞船,暂定名“罗斯号”,计划2018年投入使用。“罗斯号”可飞往空间站和月球,能重复使用多达10次,将极大降低天地往返的运输成本。
如果说俄罗斯“联盟号”主要承担载人使命,那么日本航天器则可能承担向国际空间站运送物资的任务。日本太空货运飞船空间站转运飞行器系列产品1号(HTV1),曾于2009年9月前往国际空间站。该飞船能装载约6吨货物,飞船与运载火箭分离后能自主飞行至空间站。但比较遗憾的是,HTV系列飞船目前还难以回收使用。
作为有技术实力的后进者,欧洲正在载人航天领域奋起直追。与美俄日不同的是,欧洲航天局把未来载人航天的长期发展重心再次转向航天飞机。欧航局计划在2015年到2020年间制造出自己的航天飞机。欧航局名为“极光”的中长期计划雄心勃勃:在2020年到2025年,欧航局宇航员将登上月球;从2026年开始进行宇航员登陆火星的准备;2030年至2035年间,将向火星发射一艘载人飞船,实现欧洲宇航员登上这颗红色星球的梦想。
美国停飞航天飞机,看似是美国航天史上的一次重大休整甚至挫折。但如果从产业角度看,这几乎是一次从“输血”式发展到“造血”式发展的航天产业大跨越。目前,美国正采取多种手段鼓励美国民营企业开发制造火箭和宇宙飞船,用以和俄罗斯、日本甚至欧洲展开航天器研发竞争。预计不久的将来,美国将安排商业公司承担将宇航员送入近地轨道的任务,其运作模式将和美国国家航空航天局租用俄罗斯飞船运送航天员往返国际空间站类似。这意味着,未来太空领域将有更多民间资本介入。如果一切顺利,波音公司建造的CST-100,有望在2015年开展商业旅行活动。当然,美国航天项目的去政府化趋势还是有限,仍将受到政府严密监管。
[关键词]3D打印,航空航天,生物医药,建筑
中图分类号:F204 文献标识码:A 文章编号:1009-914X(2016)15-0271-01
0引言
3D打印技术又称增材制造技术(Additive Manufacturing,AM),是指依据计算机三维模型数据,采用与减式制造技术相反的逐层叠加方式,利用金属、塑料或其它材料逐层打印来制作物体的过程,也被称作叠加成型技术或快速原型技术。3D打印技术自1984年问世以来便广受关注,经过30多年的发展,如今已成为推动世界先进制造业发展的源动力之一,被誉为“第三次工业革命”的核心技术。掌握和应用最新最前沿的科学技术,推动生产力的发展,将是未来国家间竞争的重要体现和地位分水岭。目前,发达国家正在飞速发展3D打印技术,美国、日本和德国占据了3D打印市场的主导,尤其是美国占据了全球近40%的比重。我国的3D打印技术起步较晚,然而,近年来其在国内的应用市场日趋升温,据前瞻产业研究院统计,2012年中国3D打印市场规模约为10亿元人民币,到2013年达到了20亿,预计到2016年将达到100亿,从而超越美国成为全球最大的3D打印市场。
3D打印技术引发了制造业新一轮的技术变革,已在航空航天、医疗、建筑等等多个领域取得了迅猛的发展,为尖端技术研究提供了关键的技术支撑。
1 航空航天领域
航空航天尖端领域是3D打印技术的重要应用领域之一。美国麻省理工Technology Review中指出,高性能金属材料3D打印技术的突破是3D打印领域的重要里程碑,它将成为航空结构轻量化、高效低成本化的革命性途径。美国增材制造路线图将航空航天列为推动3D打印发展的第一工业目标行业,美国国家增材制造创新联盟2014年资助的15个项目中60%与航空航天直接相关;欧盟Horizon 2020 计划给增材制造带来发展新机遇;英国政府2014年资助考文垂大学6000万英镑,建设开发航空部件的国家增材制造中心;德国建立了直接制造研究中心,主要研究和推动增材制造技术在航空航天领域中结构轻量化方面的应用;法国增材制造协会致力于增材制造技术标准的研究;瑞士的洛桑理工学院以及加拿大国家研究委员会均成立了增材制造研究中心;西班牙也启动了一项发展增材制造的专项,研究内容包括增材制造共性技术、材料、技术交流及商业模式等四方面内容;我国在《国家增材制造发展推进计划》(2015~2016 年)中提出到2016 年在航空航天等直接制造领域达到国际先进水平的发展目标。
在众多研究计划支持下,航空航天用3D打印金属构件取得了重要进展。美国AeroMet公司于2000年9 月完成了激光快速成形钛合金机翼结构件,并于2001年为波音公司制造了次承力钛合金结构件;2013年,美国普惠-洛克达因公司采用SLM技术制造了J-2X火箭发动机的排气孔盖,另外,美国军方已经利用3D 技术成功试制出导弹弹出式点火器模型,并取得良好效果。我国从2000 年开始钛合金等高性能大型关键金属构件激光增材制造技术研究,一直受到政府主要科技管理部门的高度重视,北京航空航天大学王华明教授团队的研究结果表明,激光打印的钛合金零件的抗疲劳性能比锻件高32%~53%,疲劳裂纹扩展速率降低一个数量级,该团队制造的某战机钛合金主承力构件加强框投影面积达5.02m2,通过了装机评审,使我国成为目前世界上唯一掌握飞机钛合金大型主承力结构件激光快速成形技术并实现装机应用的国家,该成果获得了2012年度“国家技术发明奖一等奖”。
2 生物医学领域
随着生物制造概念的提出和发展,3D打印技术在医学领域的应用也越来越广泛,主要涉及以下五个方面。
第一个应用方面是快速构建医学模型以利于术前模拟,提高手术成功率,美国儿童医院曾利用3D打印技术打印出了患者的心脏模型。
第二个应用方面是利用3D打印的优势来调节材料的密度,通过改变孔隙率和微孔大小,制造适应细胞生长的活性骨骼。Jiankang等人利用3D打印技术,制造出了钛合金半膝关节和多孔生物陶瓷人工骨骼,组装后得到了临床表现良好的复合半膝关节假体;国内的清华大学、西安交大和上海交通大学的研究团队在这方面取得了最具代表性的成果,成果制造出了具有生物活性的人工骨骼。
第三个应用方面是制造生物器官。美国南卡罗来纳医药大学采用3D打印技术成功打印出了三维肾脏血管;Mannoor等人[13]打印出的仿生耳能实现听觉;清华大学成功制造出了具有自然特性和生物活性的组织器官;西安交通大学采用天然基质生物材料成功研发了打印立体肝组织的仿生设计和制造技术。
第四个应用方面是个性化控制细胞分布,精确打印牙齿生物支架。美国Stratasys公司和德国Envisiontec公司的都生产出了专门用于牙科应用的3D 打印机;华中科技大学自主研发、制造出了可摘除的钛合金义齿支架;北京大学口腔医学院成功研制出了人牙髓细胞共混物,并成功进行了打印实验。
第五个方面是3D精准扫描建立3D数据模型实现整形美容。美国康奈尔大学的研究人员利用牛耳细胞在3D打印机中打印出人造耳朵,可以用于先天畸形儿童的器官移植;美国北卡罗来纳州维克森林大学再生医学研究所成功研发出能打印出皮肤的系统,并进行了实验验证;英国口腔外科医生Andrew Dawood利用3D打印技术成功恢复了肿瘤患者的说话和吞咽能力以及面部特征;我国上海大学附属人民医院利用 3DP工艺,打印头颅三维模型及缺损的下颌骨模型,成功为23位患者进行了修复下颌角截骨整形术。
3 建筑领域
3D打印技术在建筑领域的应用目前主要包括两方面:一是在建筑设计阶段制作建筑模型;二是在工程施工阶段利用3D打印技术建造实际建筑结构。
在建筑设计阶段,设计师可以使用3D打印机将计算机中的设计三维模型直接打印为建筑模型,这种方法具有快速、环保、低成本等优点,可以用于制作精美的建筑模型。目前3D SYSTEM公司能以石膏粉为原料打印彩色建筑模型。
在工程施工阶段,3D打印技术用于快速打印建筑结构目前正处于研发阶段,取得了一定的研究成果。当前应用的3D打印技术主要有D型工艺(D-Shape)、轮廓工艺(Contour Crafting)和混凝土打印(Concrete Printing)。D型工艺由意大利发明家恩里克・迪尼发明,通过打印机底部的喷嘴,喷射出镁质黏合物,在黏合物上喷撒砂子可逐渐铸成石质固体,通过一层层黏合物和砂子的结合,最终形成石质建筑物;建造完毕后建筑体的质地类似于大理石,比混凝土的强度更高,并且不需要内置铁管进行加固。“轮廓工艺”是由美国南加州大学工业与系统工程教授比洛克・霍什内维斯提出的,轮廓工艺的材料(混凝土)由喷嘴根据设计图在指定地点中挤出后,由喷嘴两侧的刮刀进行外型修整,凝固后可形成建筑结构外墙。混凝土打印由英国拉夫堡大学建筑工程学院提出,使用喷嘴挤压出混凝土通过层叠法建造构件。
4 结论
许多高尖精技术领域的需求推动了3D打印技术的研发和应用,3D打印技术的进一步发展也促进了这些领域里先进制造业的发展。进一步发展3D打印技术,解决现存的技术难题,实现打印产品规模化生产是3D打印技术推动先进制造技术发展的根本所在。
参考文献
[1] F2792-12a. Standard Terminology for Additive Manufacturing Technologies[S]. ASTM ,
2012.
天津中德职业技术学院始建于1985年,是中国与德国、日本、西班牙三国政府在职业教育和培训领域最大的合作项目,是国家示范性高等职业院校,2011年3月整体迁入中国天津海河教育园区。近年来,伴随着天津经济社会的快速发展,天津中德职业技术学院“以服务为宗旨、以就业为导向”,充分发挥和利用滨海新区开发开放和国家职业教育改革创新示范区的区域优势,不断创新职业教育新模式,紧紧围绕天津经济发展和滨海新区建设高水平现代制造业和研发转化基地的国家战略需求,特别是工业和服务业重大项目建设,以国际合作为依托、校企合作为支撑,瞄准引领技术发展的高端产业,重构专业组群,发展形成了9个专业组群40余个专业,建设了一批高水平实训基地,强化了制造业和制造类服务业的专业优势;面向企业和社会开展了大力度的职业培训,年均培训规模达到1万人次,为天津工业优势支柱产业和滨海新区重大项目提供了大量高技能人才,成为天津产业发展所需高素质技能人才培养培训的重要基地。
一、坚持就业导向,加强校企合作,创新人才培养模式,紧紧围绕产业发展和重大项目建设需求,加大高技能人才培养力度
(一)调整专业结构与布局,加快建设适应重大项目和优势支柱产业发展需要的核心专业组群,强化先进制造业专业领先优势
专业优势是学院的核心竞争力,专业设置是否适应产业发展需要是学校发展水平的标志。为了适应天津航空航天、装备制造、新能源新材料等优势支柱产业快速发展对技能人才的迫切需求,学院立足已有的制造业专业优势,主动适应工业重大项目、战略性新兴产业和优势支柱产业的发展,调整专业结构,拓展专业方向,完善专业组群。改造了传统专业,新建了与经济社会发展契合度高的航空、航天、新能源、新材料、会展等专业,做优做强了制造业与制造类服务业的专业优势。2010年,新申办专业4个(航天器制造技术、新能源应用技术、物联网应用技术和物流管理),“十一五”期间专业数增长幅度达到83%。2011年新申办专业2个;2012年新申办专业2个。
一是组织开展天津市工业重大项目人才需求分析专项调研,全面对接产业需求,为专业建设与调整提供依据。项目是产业发展的载体。2007年以来,天津紧紧抓住滨海新区纳入国家发展战略的历史机遇,紧紧围绕构筑高端化高质化高新化产业结构,实施项目带动战略,集中组织实施了总投资2.27万亿的高水平大项目好项目1440项,用大项目好项目优化产业结构、转变发展方式、提升发展水平、做大总量规模。学院紧紧把握发展机遇,及时组织开展了天津工业重大项目人才需求分析研究,于2010年8月份形成了重大阶段性成果――《天津市120项工业重大项目与中德学院专业对接及人才需求情况分析报告》,定量分析了“十二五”期间工业重大项目高技能人才需求总规模、新增规模及其产业分布并作出了预测,为学院以需求为导向的专业建设调整与规划、人才培养模式创新和办学方向调整提供了重要依据,指明了方向,主要意见已经成为学院“十二五”专业建设规划的主要思路和内容。2011年,工业重大项目人才需求分析成功申报了天津市教育科学“十二五”规划重点课题,同时又启动了服务业重大项目专项调研。开展对天津工业和服务业重大项目的调研,对于进一步明确学院改革发展用力方向,做到专业围着产业转,进一步提升专业建设水平、培育新的核心竞争优势。强化制造业和制造类服务业专业优势,提高专业和课程结构调整针对性,不断提升教育教学质量和社会服务能力,更好地服务重大项目建设和区域经济发展发挥了重要作用。
二是围绕战略性新兴产业发展,依托原有机电类专业优势,加快航空航天、新能源新材料等专业组群建设。随着空客A320、中航直升机产业化基地、新一代运载火箭等一批重大项目的实施,天津航空航天产业已经形成了“三机一箭一星一站”的发展格局,航空航天产业集群正在快速形成。学院抓住机遇,立足原有机电类专业优势,依托重大校企合作项目,加快了航空航天专业组群建设。
随着近年来我国风电产业的快速增长和重大项目的实施,天津正在成为世界风能企业聚集地,世界风电主要企业维斯塔斯、歌美飒、苏司兰相继落户天津,汉森传动、广东明阳、东汽叶片、西门子电气传动等一大批风电企业也在天津滨海高新区建立了风电整机厂及研发中心。根据这一需求,学院以示范校重点建设专业电气自动化技术专业为基础,2009年开设了“风能与动力技术”专业。天津还具有世界上最完备的光伏产业链,2010年我院又成功申报了新能源应用技术专业,为新能源新材料专业组群建设打下了坚实基础。
为了配套天津电子信息产业转型升级和物联网产业、信息安全等新兴产业的发展,2010年学院成功申报了“物联网应用技术”,加上原有的信息类及通信类专业,信息与通信技术类专业组群框架已经基本搭建完成。
三是“十二五”期间,学院将继续把服务重大项目建设、服务优势支柱产业和战略性新兴产业发展,满足重大项目建设对人才的需求,作为专业建设和改革发展方向,统筹兼顾、突出重点、扬长避短、稳步推进,实现传统优势专业做强、新专业做优。到2015年,构建完成以制造业类专业组群为核心、以制造类服务业专业组群为支撑的总体专业布局;形成以航空航天技术与服务、先进制造技术、自动化技术、新能源与新材料技术、汽车技术与服务5个制造业类专业组群为核心,以信息与通信技术、应用语言、经贸管理、文化创意与艺术设计4个制造类服务业专业组群为支撑的专业集群;总体建设9―10个专业组群、45―50个左右专业,为区域经济发展和产业结构升级,提供高端技能型专门人才支撑。
(二)实施“订单式培养”,实现人才培养与企业需求无缝对接,为企业培养最需要、最适用的人才
重大项目技术含量高、技术装备先进,对人才要求较高。订单培养是以企业需求为导向、产学研结合的人才培养模式,具有鲜明的职业教育特色。按照企业提出的人才培养目标和知识能力结构,校企共同制定人才培养计划,师资、技术、办学条件合作共享、工学交替进行教学,学生毕业直接到用人单位就业,企业避免了人才选择的盲目性,学生就业有了保障,是有利于扩大就业的技能人才培养模式,也是非常适合重大项目建设要求的人才培养模式。
2010年以来,大火箭、空客和天航等都采取了订单班的方式和学院共同培养企业需要的高技能人才。他们的实践证明,订单式培养,企业提前介入,学生精心挑选,课程精心设计,实训精心安排,学生感到收获大、进步快。以“火箭订单班”为例,“火箭订单班”是为新一代运载火箭重大项目专门订制的,学员来自学院相关专业的三年级学生,订单培养周期为一年。从2010年9月开始,我们与天津航天火箭制造公司联合设立“中德―大火箭订单班”,为企业量身打造政治过硬、技能精湛的高技能人才,两年来共培养出两期60多名学员,获得企业高度评价,取得了良好效果。
(三)创新合作机制,校企共建高水平校内实训基地,实现用最先进设备培养技能人才的职业教育培养目标
抓住国家示范校建设和搬迁海河教育园区的重大机遇,我们在新校区规划建设了3万平米的工业中心,凭借学院自身吸引力依托校企合作,与德国德马吉、博世、西门子、日本三菱、美国IBM、NI等跨国公司和行业龙头企业共同投资6800万元建设了数控技术中心(最先进DMG数控加工中心16台套)、液压与气动、电机自动化机械手技术实训中心与体验中心等一批校内实训中心,在新校区全面投入使用。这些实训中心和体验中心都是校企共建、共管、共享,一方面为学生创造出真实的生产实训环境,直接服务于技能人才培养,另一方面作为企业产品展示中心、培训中心和技术交流中心,实现了产学研结合,走出了以往实训基地建设只是花钱买设备的阶段,即更加贴近市场需求,还可保持技术先进性,真正实现了用最先进设备培养人才的职业教育培养目标。
(四)策划实施重大校企合作项目,为以专业建设为重点的人才培养模式创新提供强有力支撑
2010年以来,我们成功实施了与大火箭、空客、天津航空、中广核风电、博世力士乐、麦格纳合作的6个具有标志性意义的重大项目,对学院事业发展和人才培养模式创新产生了重要影响、带来了巨大效益。
二、坚持服务宗旨,紧盯重大项目需求,大力开展职业技能培训
在做好学历教育的同时,我们以国家示范性高职院校建设为契机,充分发挥学院在技能与管理培训领域长期积累的经验和优势,积极履行社会服务职能,紧紧围绕我市工业和现代服务业重大项目建设需要,通过“校企合作”、“学校、政府和企业三方合作”,共建技能人才培训基地,开展定向、定岗培训,为重大项目建设企业特别是行业龙头企业技能人才培养、储备、员工再提升培训服务,得到了企业广泛认可。“十一五”期间,学院面向空客A320、苏斯兰风能发电有限公司、SIEMENS电气传动有限公司、天津钢管集团股份有限公司、一汽夏利、天津奥的斯电梯有限公司、中海油田服务公司等近百余家重点企业提供技术和管理培训两万余人次。
新一代运载火箭项目落户滨海新区后,我们主动服务项目建设。2010年,我们成功实现了与中国运载火箭技术研究院的全面战略合作,并一举实现了与火箭研究院下属天津火箭公司、首都航天机械公司、十八所等6家大型航天制造骨干企业和研究单位的合作,中德学院成为首个与“中国航天”全面合作的院校;拥有60名学员的两期火箭订单班成功举办,中国航天首批订制高技能人才已经从天津中德出炉;成功申办了“航天器制造技术(运载火箭方向)”新专业,成为全国首个也是唯一拥有该专业的高职院校,泰达―大火箭奖学金设立、首都航天机械公司成为“火箭订单班”校外实训基地……一系列不断深化的合作成果,特别是校企合作人才培养的新模式和新机制,在全国产生了重大影响。与火箭研究院的合作,层次高、深度大、领域宽、模式新,体现了高水平,为学院发展搭建了一个较高的合作平台,极大地促进了中德学院品牌影响力和发展实力的提升,必将对我院长远发展产生历史性重要影响。
与空客公司的再度成功合作是我院围绕重大项目开展职业培训的典范。2006年,空客A320项目落户我市伊始,我院成功竞标空客A320天津总装线的技能人才测评中心和技能人才培训中心,为空客公司考核测评人员1344人次,培训一线员工255人,占总装线上首批招募的400多名员工的半数以上。去年,我院与空客公司再度成功合作,以订单培养方式、按照国际标准为其2012年新入职员工实施为期6个月的电工技术培训,主要涉及电工基础(M2)、航空电工基础(M3)和英语(M5)三个模块的培训。抽调教师联合进行教材开发,编制了一套符合空客公司要求和行业规范、拥有自主知识产权的英文专业培训教材;发挥学院国际合作的优势,专门聘请空客德国汉堡总部培训中心专家为我院特聘教授,对空客项目和航空专业建设予以支持;组建了11人组成的教学团队,全英文教学、考试、评估,培养锻炼了一支具有国际水准的教师队伍;建立了以项目管理为特色的运行机制和管理制度,高效快捷地调动资源和组织协调,保障了项目顺利实施。培训项目自2010年12月28日开班以来,进展顺利,我院空客项目团队出色的工作得到了空客公司上下高度认可和赞赏,赢得了空客公司的信任。鉴于行业特性及其对质量和标准的严格要求,鉴于空客公司的影响力和实力,能够成为空客的技术培训供应商,无疑对学院航空专业建设及长远发展带来深远影响。