公务员期刊网 精选范文 煤化工的工艺流程范文

煤化工的工艺流程精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的煤化工的工艺流程主题范文,仅供参考,欢迎阅读并收藏。

煤化工的工艺流程

第1篇:煤化工的工艺流程范文

关键词: 《煤化工》 教学改革 教学方法

一、概述

《煤化工》课程是涵盖煤化学、化工原理、反应工程等内容的综合性学科。此门课程通过对煤化工产品开发的生产原理、生产方法、工艺计算、设计、操作条件及主要设备等的介绍,使学生具备煤化工专业的坚实基础,对煤化学工业的原料选择、工艺路线设计优化、典型单元操作及化工工艺的实现有深刻的认识和理解,具备对煤化工工艺流程进行分析、设计、改进及开发新工艺和新产品的能力,从而更好地服务于煤炭行业。淮北市是全国五大煤炭生产基地之一,地质储量100亿吨,远景储量350亿吨。2011年原煤产量达3373万吨,居全国第四位。淮北师范大学(以下简称“我校”)坐落在淮北市,发展煤化工专业有着得天独厚的地理优势。为了满足淮北及周边矿业集团对煤化工专业人才的需要,我校化学与材料科学学院在化学工程与工艺专业开设了《煤化工》专业必修课程。但是,在教学实践中作者发现学生对这门课程的学习疏于对课堂内容的理解和思考、学习兴趣不高。为了充分调动学生积极性和主观能动性,使我校学生在将来的工作岗位上更有竞争力,作者对《煤化工》课程的教学大纲、教学内容安排、教学方法和手段进行了一系列的探索和改革。

1.教学内容的相应调整

由于我校仅开设了煤化工课程,学生对煤化学相关的名词概念不了解,对于教学内容备感生疏。因此,我及时调整教学内容,制定适宜的教学大纲,首先穿插介绍一些煤化学相关内容,包括:煤的生成、煤的结构、煤岩学、煤的物理性质、煤的化学性质等内容。着重强调煤的分子结构理论,探究煤的结构与组成和性质之间的关联性,寻找组成和性质的变化规律。同时在教学中总结煤化学理论与煤化工的相关知识之间的联系,使学生对煤化工的相关知识有了深刻的认识,从而增强了对本课程的兴趣。其次是,对于煤化工课程的重点内容,如:煤焦化、煤的液化和煤的气化,做重点介绍。尤其对工艺原理,流程,以及设备装置的结构特点,结合图片和实例做细致具体讲述,使得学生对煤化工的重点知识有更加深刻的认识。既增加了学生学习的兴趣,又提高了其学习的积极性。

2.课堂教学方法多样化

考虑到三年级学生已经完成了对化学基础课程的学习,对于化学理论知识已经有了一定的认知。因此,在教学方法上,我将传统的以教师讲述为主的单一课堂教学模式,转变为讨论式、启发式的新型教学模式,让学生参与到课程的讨论中来。通过布置专业课题或就自己感兴趣的课题,让学生课下查阅相关资料,课上积极参与互动讨论,大胆提出自己的见解,突出学生的主体作用,发挥教师的导向作用,从而调动学生的学习积极性,提高学习效率,促进学生技能的全面提高。同时要强调的是,学生为查阅资料,准备材料花费了不少精力,教师须及时跟踪,认真批阅和讲评,从而提高学生的积极性。

3.充实并更新教材内容

现今,国际煤化工行业发展迅速,许多新技术、新成果不断被应用于生产之中。老的流程工艺逐渐被自动化程度更高的新工艺、新设备所取代。因此,在介绍教材上成熟老工艺流程的同时,要适当穿插与当今煤化学和煤化工发展前沿相关的内容,增加关于当今世界上的最新工艺、设备的讲述,使学生对当今新的工艺流程有更多的认识。因此对于教师而言,仅仅掌握教材上的内容是远远不够的,还需要时时跟踪当今煤化工发展的前沿理论,更好地充实自身理论水平,这样才能更好地激发学生学习的兴趣。另外,由于《煤化工》具有实践性较强的特点,教学过程中必须注意理论联系实际,把教学和实际生产过程有效结合起来,使学生既能在实践中加深对书本知识的理解,又能提高动脑、动手的能力。为此,根据学校周边厂矿企业生产实际,我们走访焦化厂,了解其生产工艺(备煤工艺,炼焦工艺,化产工艺,甲醇工艺,干熄焦工艺),并将具体生产工艺流程的相关知识增加到教学活动中,理论联系实际,使学生对实际工业生产有了更深刻的认知。既增加了学生的学习兴趣,又使学生对企业的生产流程有了更加清晰的认识,得到了用人单位的一致好评。

4.传统教学与多媒体教学相结合

煤化工课程内容涉及大量的设备图和工艺流程图,采用常规的板书,在黑板上画流程图耗时耗力,不能满足现代化教学的需要。此外,板书绘制的流程图为二维平面图,学生对设备构件的立体构型、工艺流程中原料和产品流向等没有完整的概念。学生理解起来非常吃力,教师讲授过程同样费力。引入多媒体教学可以有效地解决上述问题,实现教学目的。借助多媒体辅助教学软件,开发了煤化工多媒体辅助教学课件,尤其是工艺原理图、设备示意图,可以借助专业绘图软件直观、形象地向学生展现,可以帮助学生理解复杂的装置立体结构和工艺流程图,增加学生的学习兴趣及理解程度。此外,借助于网络上丰富的教学资源来充实课堂教学内容,在教学过程中根据具体需要,及时地向学生介绍国内外最新的煤化工生产工艺流程和技术等,并对国内外知名煤化工企业的最新动态、发展趋势需求等进行信息传递,使学生不仅加强和巩固了理论知识,增加了学习的积极性和主动性,而且提高了学生再就业环节中的适应能力和解决实际问题的能力,从而更好地服务于企业和社会。

总之,通过激发学生的学习兴趣、调整教学内容、结合煤化工研究的前沿理论、传统教学与多媒体教学相结合,能提高煤化工教学的质量,满足经济日益发展对创新型人才的需求。教师要想取得更好的教学效果,就要有创新意识和科研进取精神,不断完善教学内容,调整教学方式更好地为学生服务,提高教学质量。

参考文献:

[1]张香兰,王启宝.《煤化工工艺学》教学中问题启发式教学方法初探[J].化工时刊,2011,25(10):64.

[2]沈扑.《煤化工工艺学》课程的教改实践与探索[J].新课程研究,2010,177:37.

第2篇:煤化工的工艺流程范文

关键词:煤化工废水处理问题煤化工废水处理对策

中图分类号: X703 文献标识码: A 文章编号:

引言

当今我国的重要能源仍旧以煤炭为主。目前煤气化龙头产业不断发展,一些最前沿的技术被应用其中,生产成品油、乙烯、二甲醚、天然气甲醇等化工产品。然而我国是水资源短缺的国家,且水资源与煤炭资源的分布呈现逆向关系,全国大力兴建煤化工企业的同时,不得不看到我国日益严峻的水资源匮乏和严重污染情况。这一情况制约了我国煤化工企业的发展。而煤化工产生的废水经过处理可以重新被利用起来,补充水资源的缺失,因此,分析煤化工废水的处理方法提出有效对策具有重大的意义

1煤化工废水的成分与处理中存在的问题

1.1煤化工废水的成分与特点

源自煤化工企业生产产生的煤化工废水,其成分含有大量的芳香烃类、类烷烃类以及含有氮、氨、硫、氰等杂环化合物的有害物质。可见煤化工废水的组成并不简单,据不完全资料统计煤化工废水中的污染物质高达300余种。对如此复杂的煤化工废水的处理成为了我国煤化工企业发展的最大制约。依据煤化工废水中含盐量高低将其分成两类:1)有机废水:主要污染物是有机物的废水。容易造成水质富营养化,含盐量低、含COD量高;2)含盐废水:这里并不是指一般的含盐份的废水,而是在工业生产的过程中高盐度的废水。显著特点就是含盐量极高,比如除盐水系统的废水、煤气的洗涤废水、生产回用系统排水等。不同的煤化工企业其形成的煤化工废水成分也不同,故而应根据不同企业煤化工废水中污染物的种类采取合适的煤化工废水处理工艺流程。

1.2煤化工废水处理存在的问题

1.2.1 经济方面的问题

一般说来,煤化工企业的自己投入巨大,在煤化工废水处理方面也需投入很多的资金。按照相关估算,投资超过百亿元并运用水煤浆工艺的煤化工企业来说,测算用于处理废水的平均费用约6亿元。这部分资金占到了企业环保投资总额的一半甚至以上。另外运用鲁奇工艺的企业废水处理的资金投入也占到了环保投资的三分之二。含盐废水的处理成本常常是有机废水处理投资成本的好几倍,经济方面的压力非同一般。

1.2.2 废水处理方面的问题

煤化工废水处理目前方法也不少,主要是按照其含有物质来选择的。设计处理方案之前都需要分析煤化工废水的成分,以达到最佳处理效果。目前方法有:物理处理法,化学处理法,生物处理法。生化法对苯酚类及苯类物质去除有用,但对一些难降解有机物处理效果很差。生化法如今还出现了新的方法,例如PACT和固定床生物膜反应器等方法,加以改进。现今,最常见的预处理方法是隔油法,隔油法虽然能很好的解决油类物质过多的问题,可处理的效果十分有限,也很难回收再利用。近几年来,涌现的新技术方法应用于处理煤化工废水工艺中,但由于煤化工企业废水中多环和杂环物质的复杂性,可谓是利弊各半,有的能够有效吸附,却极其容易产生二次污染,有的废水处理方法虽然能有效降解污染物却在实际运行之中产生高额费用,所以现在仍旧是采用多种方法结合共同处理的办法。

2、当前处理煤化工废水主要对策

2.1利用A/O法处理煤化工废水

A/O法是缺氧/好氧工艺活厌氧/好氧工艺的简称,是常规好养活性污泥法处理系统前,增加一段缺氧生物处理过程或者厌氧生物处理过程。该工艺运行管理和成本小,已经成为煤化工废水的主选工艺。这一工艺能够有效除掉煤化工废水中的主要污染物,例如在原废水水质COD<4000mg/L,BOD<1000mg/L和氨氮含量小于4500mg/L时,最后出水COD可稳定于75mg/L,BOD的含量可言稳定在18mg/L,氨氮含量在10mg/L左右,达到了废水排放的一级标准。该方法与BAF曝气生物滤池法结合,能够让煤化工废水处理达到理想的效果,一般的企业都选用这一方法。

2.2运用固定化生物新工艺

作为新型工艺的固定化生物工艺慢慢发展起来,它能够选择性的固定优势菌,还可以选择性地降解废水中难降解的有机物。优势菌种有很高的降解效率,比普通活性污泥高2倍以上。

2.3加强对废水的深度处理工艺研究

固守传统方法没有作用且不稳定的前提下,必须要加大对煤化工废水的深度处理。更要在煤化工废水处理新型工艺上下苦工来研究。目前最新的处理工艺发展趋势有如下方向:

1)混凝沉淀

混凝沉淀法在生产过程里加入混凝剂来调节和强化沉淀,平衡PH,让废水内的悬浮物在混凝剂作用下重力下沉,达到固体和液体的分离。通常加入的混凝剂有:铁盐、聚铝等。

2)吸附法

因为固体表面存在吸附水中溶质及胶质的能力,当废水通过比表面积很大的固体颗粒时,水里面的污染物会被吸附剂吸附到固体颗粒上,从而去除污染物。经过驯化的优势菌种对喹啉、异喹啉、吡啶的降解能力比普通污泥高2—5倍且优势菌种的降解效率较高经其处理8h可将喹啉、异喹啉、吡啶降解90%以上。

3)高级氧化工艺技术

煤化工废水中的有机物众多,其中酚类、多环芳烃、含氮有机物等难降解的有机物占多数,它们的存在影响了后续生化处理的效果。 高级氧化技术是在废水中产生大量的自由基HO,自由基能够无选择性地将废水中的有机污染物降解为二氧化碳和水。高级氧化技术可以分为均相催化氧化法、光催化氧化法、多相湿式催化氧化法以及其他催化氧化。

3结论

煤化工废水处理每一个阶段都会有先进的科学工艺,而一种单一的处理工艺不能够完全达到处理的最终理想效果,这一领域需要跟多的深度研究来填补,急需突破。技术趋于成熟合理的处理工艺流程成为未来煤化工废水处理的主导,企业更加需要稳定高效、运行灵活、构架合理、成本低廉的工艺技术。虽然部分企业仍旧对煤化工废水的检测和处理存在欠缺,可他们正不断提升企业煤化工废水处理工艺技术来彻底解决污染问题。充分回收利用废水资源,才给企业创造更好的效益。

参考文献:

[1]丁士兵.煤化工废水治理技术探讨[D].2008年全国石油石化企业节能减排技术交流会论文集,2008.

第3篇:煤化工的工艺流程范文

[关键词]煤化工、合成氨、工艺、节能

中图分类号:TQ113.2 文献标识码:A 文章编号:1009-914X(2015)45-0118-02

前言

氨是化学工业的重要原料之一,在国民经济中具有非常广泛的用途。我国合成氨技术发展较为迅速,在工艺流程、技术改造、节能降耗等方面都有重大进步。合成氨工业生产的技术改进重点是放在采用低能耗工艺、充分回收及合理利用能量上,主要是研制性能更好的催化剂、降低氨合成压力、开发新的原料气净化方法、降低燃料消耗、回收和合理利用低位热能等进行技术改造,以降低能耗,提高经济效益。

一、煤化工合成氨的工艺流程分析

合成氨的生产过程,粗略的讲可以分成五步:原料的制取、原料的净化、原料的精炼、氨的合成、氨的分离。

(1)原料气的制取

煤气化法是我国合成氨的主要制气方法。煤气化法是指用蒸汽、氧和其他气化剂对煤进行高温加工,使煤转化为氢及一氧化碳等可燃性气体。对于气态烃类,工业上普遍采用二段蒸汽转化法制取合成气。重油部分氧化法是以重油为原料,利用氧气进行不完全燃烧,使烃类在高温下裂解与燃烧产生的水蒸气与二氧化碳在高温下与甲烷进行转化反应,从而获得以氢气和一氧化碳为主体的合成气。

(2)原料气净化

无论任何方法制得的粗原料气,除含氢和氮外,还含有硫化氢、有机硫、一氧化碳、二氧化碳和少量氧等。净化是指对粗原料气进行净化处理,除去氢气和氨气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。

1)一氧化碳变换。在合成氨生产中,各种方法制取的粗原料气都含有大量的一氧化碳,共体积分数一般为12%-40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。通常,需先经过一氧化碳变换反应,使其转化为易于清除的二氧化碳和氨合成所需要的氢。

因此,一氧化碳的净化过程既是原料气的净化过程,又是原料气制取的继续。最后,少量一氧化碳可通过铜液洗涤法、液氨洗涤法或者低温变换连串甲烷化法加以脱除。以煤为原料的煤化工化肥合成氨装置,一氧化碳变换工序耗用大量外供蒸汽,是工厂的主要能耗工序之一。因此,降低一氧化碳的能耗是煤化工化肥合成氨装置节能工作的重点。

2)原料气脱硫脱碳过程。各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除干净。在合成氨的生产过程中,二氧化碳又是制造尿素、纯碱、碳酸氢铵的重要原料,二氧化碳的脱除及其回收利用是脱碳工序的双重目的。以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。

粗原料气经一氧化碳变换以后,变换气中除氢气外,还有二氧化碳、一氧化碳和甲烷等组分,其中以二氧化碳含量最多。二氧化碳既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中二氧化碳的脱除必须兼顾这两方面的要求,一般采用溶液吸收法脱除二氧化碳。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法(Rectisol),聚乙二醇二甲醚法(Se1exol),碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。

(3)原料气精炼

经一氧化碳变换和二氧化碳脱除后的原料气尚含有少量残余的一氧化碳、二氧化碳、氧和水等杂质。为了防止它们对合成催化剂的毒害,原料气在送往合成之前,必须经过精炼。原料气的精炼方法一般有三种,即铜氨液吸收法、甲烷化法和深冷液氮洗涤法。

(4)氨的合成

合成工段在合成氨生产中是最后一道工序,它是在高温、高压和有催化剂存在的条件下,将由精炼工段来的经过一系列处理的合格氢氮混合气体在合成塔内进行化合反应,合成为氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%-20%,故采用未反应氢氮气循环的流程。氨的合成工序基本由三部分组成,即在高温、高压和催化剂参与的条件下,氢与氮的混合气在合成塔中合成为氨;反应后的混合气体经回收、冷却、冷凝分离出产品氨;未反应的气体和补充的新鲜气体在升压后返回合成塔继续进行合成氨的反应。整个系统构成一个循环。氨合成工段是整个合成氨工艺流程的核心。氨合成工段的生产状况直接影响到工厂成本的高低,是合成氨厂高产低耗的关键工段。

(5)氨的分离

在合成塔内的合成反应由于受反应平衡的限制。仅有部分氢氮气体合成为氨,尚有大部分氢气和氮气未反应。因此,为了充分利用合成塔出口混合气中未反应的氢气和氮气,同时也为了得到纯净的产品氮,需要将氨从混合气中分离出来。氨的分离一般采用两种方法。一种是水吸收法,另一种是冷凝分离法。目前,我国大型氨厂都采用冷凝分离法分离氨。冷凝分离法是通过氨冷的方法使混合气中的气态氨冷凝为液态氨,然后通过分离器进行气液分离。

二、合成氨的节能措施

谈到煤化工的节能减排措施,人们首先就会自觉地从“源头削减、过程控制、末端治理”出发,想到生产技术进步、淘汰落后产能、产业结构升级、加强废物回收利用、甚至加强循环经济等措施。在当前煤化工产业处于方向性选择的关键时期,煤化工的节能减排措施还应外延到更深的层次,探索发展模式的升级、发展方式的转变。

(1)核心装置氨合成塔的改造

氨合成塔是煤制合成氨装置的核心部分,它对催化剂的质量要求比较高,强调气体在催化剂床层需处于均匀分布的状态,对氨合成塔技术的改进要简化煤制合成氨装置的操作,提高调节控制的可操作性,提高运行效率,增加安全性能,降低消耗,增加合成氨的制造。在大量研究的基础上,现阶段得到较为广泛认同的对氨合成塔改造的技术有S-100 型氨合成塔以及S-200型氨合成塔,这两种氨合成塔都充分地运用了托普索工艺,是应用托普索工艺的最好典范。S-100 型氨合成塔是由丹麦托普索公司在1964年推出来的,它是一种径向流动激冷型氨合成塔,结构简单且运行稳定,更容易制造合成氨,热能利用相对简单,操作便捷,对于催化剂的使用量也比较少,合成氨的产量相对较高。S-200型同样也是由丹麦托普索公司在1975-1976年开发出来的一种层间换热双层径向氨合成塔,它更改了合成氨的行程将其缩短了,减小了阻力,降低了对催化剂质量的要求却扩大了催化剂单位体积的表面积,提高了煤制合成氨装置的生产能力,提高了所生产的合成氨的浓度以及净值度。

(2)设备优化节能

合成氨操作的设备很多,包括流体输送设备,塔设备,换热设备等,每一类设备都有他独特的节能方式。

1)塔设备的改造,采用塔前预热器的合成氨工艺。采用这种工艺可以大幅度降低冷却水的消耗。通过预热塔气体,减少合成塔内换热器的负荷。当中锅蒸汽压力不变时,合成塔下段换热器负荷基本不变,实际上减少的是上段换热器负荷。减少合成塔内换热器负荷,从而提高合成塔的容积利用系数、催化剂装填量及合成塔的生产能力。塔内换热器负荷的减少,相应增加了中锅负荷,从而可提高中锅蒸汽产量。

2)流体输送设备的改造。用变频调速通过改变电机定子的供电频率来达到电机的调速,它可以根据电机负载的变化实现自动平滑的增速或减速。电动机效率高、调整范围宽、精度高,且能实现无级调速,节电效率在20% -30%。分析系统存在的高能消耗的原因,准确找到设备与流通输送相匹配的最佳工况点,采用系列高效节能泵;对负荷变化较大的系统,安装必要的自动控制系统,降低由此引起的能耗。

3)换热设备的改造。通过采用各种高效换热器,如折流杆异型管换热器、波纹管热交换器、板式换热器、热管式换热器等在合成生产中取得了一定效果。以蒸发式冷凝器为例,该设备使用了高效传热元件加以优化组合,大大提高了换热效果与冷却效果,达到节电与节约冷却水用量的节能效果,取代了传统立式的水冷冷凝器。

(3)改进废水的循环利用技术

由于工厂致力于原料的节约使用,在很大程度上都是使用碎煤原材料,而在碎煤加压等技术方面没有得到重视,导致煤气水中的焦油和粉尘分离的不彻底,使得煤制合成氨装置经常会出现管道阻塞、无法长周期的运行等问题。针对废水的循环利用技术改造,要对焦油、煤粉进行二次甚至是多次沉降,适当延长煤气水的沉降时间,但是此种的沉降要在原一级沉降分离的基础上进行。同时还要增加气浮装置,争取在进行了二次沉降或是多次沉降后,较低煤气水当中的油质量浓度和悬浮物,减少煤制合成氨装置堵塞概率的发生,提高装置的运行效率。此外,还应该改进煤气水洗涤煤气的流程,多地运用逆流洗涤,对于不同程度的气采用干净度不同的水来进行清洗,分层次分阶段提高煤气水的利用率,尽最大程度地实现煤制合成氨的节能。

(4)改进废气吸附净化技术

对于废气吸附净化技术的改进要充分考虑脱碳和提氢两个部分。一般是采用十塔操作技术,十塔操作主要是指将原料同时放入到三塔当中去,再在六塔中进行均衡的压制,之后进行有秩序的摆放,再将经过了九塔操作的材料放入到最后一个塔中去实行抽真空解吸,十塔操作过后就可以得到合格的产品气了[3]。在进行十塔操作的同时应加入托普索工艺,托普索在吸附硫等废气方面也有很大的功效,将它与低温甲醇洗、甲醇蒸汽转化变换装置有机地结合在一起,一定程度上减小了对原有的煤制合成氨装置的改动工程,能够最大化地实现大型煤制合成氨装置增产节能的效果。

(5)合成氨工艺流程的其它节能措施

1)添加合成排放气回收氢装置。此装置具有节省原料氢消耗,允许二段炉出口甲烷含量较高和降低惰性气含量的优点。

2)提高表面冷却器效率。这是普遍使用的节能改造的措施。

3)采用压降低净值高的径向合成塔代替陈旧的老合成塔。 这一措施不但可以节省循环功和冷却功,还可以降低原料气消耗。

4)设置一段燃烧炉空气预热器。

5)脱碳过程的节能。例如采用两段再生、贫液再生和更换新的活化剂等。

6)完善热回收系统和利用低位热。改造热回收系统可使更多的废热产生蒸汽,使原料气和空气进行蒸汽预饱和。设置氨吸收制冷装置可利用多余的低位能热量,以供合成氨冷凝所需冷量。

7)在甲烷化前后采用选择性氧化和分子筛干燥工艺。 这可有效提高合成气的利用率和改善氨合成工艺并降低能耗。

8)提高氨合成的水冷氨量,减少氨冷系统热损失,降低铜液所需冷冻量,可以有效降低电能消耗。

结束语

随着世界能源紧缺和价格不断上涨,合成氨工业正面临新的创新和改革。合成氨工业的节能降耗、减排增效成为当务之急,完善合成氨工艺,采取节能降耗措施,合理高效利用能源,从而更好推动合成氨产业的结构调整,今后的发展重点是调整原料和产品结构,进一步改善其经济性。

参考文献

[1]李怀亮.合成氨工艺流程的改革[J].化肥工业,2009(05).

第4篇:煤化工的工艺流程范文

关键词:能源 煤炭 新疆 煤化工 煤气化

煤炭是我国的主要能源,是国民经济和社会发展不可缺少的物资基础。我国煤炭资源丰富,煤炭资源分布面积约60多万平方公里,占国土面积的6%。根据第三次全国煤炭资源预测与评价,全国煤炭资源总量5.57万亿吨,煤炭资源潜力巨大,煤炭资源总量居世界第一。已查明资源中精查资源量仅占25%,详查资源仅占17%。探明储量达到10202亿吨。其中可开采储量1891亿吨,占18%,人均占有量仅145吨,低于世界平均水平。国务院制订的《能源中长期发展规划纲要(2004-2020)》(草案)指出“要大力调整优化能源结构,坚持以煤炭为主体,电力为中心,油气和新能源全面发展的战略”。鉴于我国“多煤、贫油、少气”的特点,在今后一段相当长的时间内,能源结构仍然以煤炭为主,煤炭在一次能源消耗中占70%左右。2004年煤炭占我国一次能源生产的70%以上,在我国能源结构上占主要地位,有举足轻重的作用。

根据我国全面建设小康社会的需求,煤炭消费的趋势将有明显上升。在煤炭消费用户的构成中,电力、冶金、建材、化工4个行业煤炭消费量占煤炭消费总量从1990年的50%提高到2004年的84%,其中电力占51.8%,冶金11.64%,化工10.5%,建材10.06%。电力用煤的消费量从1990年占27%提高到2004年的51%,将近增长一倍。随着世界范围内石油资源的日益紧缺,石油价格的日益增长,使得人们将重点也转向了煤炭能源产业。与此同时,石油化工到煤化工的转型就成了煤化工发展当中的重点。

新疆是中国七大煤化工基地之一,作为拥有全国煤炭资源储量40%的能源战略重地,新疆理所当然地成为我国煤化工产业重点发展的战略高地。新疆煤炭资源不仅储量多,而且品质好,由于受运力限制,新疆的煤开采出来要运往华东很困难,就地发展煤化工是条合理的出路,因此,当地发展煤化工产业的潜力很大。新疆煤化工发展的最大动因是成本优势,虽然煤碳价格近年有所上涨,但涨幅明显低于国际市场的油价和气价的涨幅,而相应的产品价格却因国际接轨因素而大幅提高,从而使煤化工企业相关产品的毛利空间大幅提高,并推动了部分过去不具备技术经济可行性的项目跨过成本门槛,如煤炭的间接液化项目等。基于当前市场价格下,以原油、煤和天然气为原料的化工产品成本相比较,在国际市场产品价格大幅上扬的基础上,虽然国内煤、天然气等原料成本也大幅上扬,但其幅度明显弱于原油价格的涨幅,从而导致石油化工工艺在成本上明显处于劣势。相比之下,以煤为原料的煤化工产品在生产上具有更大的成本优势,因而成为相应石化产品最具竞争力的替代产品。同时,相比兰炭、PVC等传统煤化工产业,现在的煤制天然气、煤制烯烃、煤制油、煤制乙二醇等煤化工产业在生产工艺技术上也具备了可行性,得到各大投资商的青睐。

新型煤化工以生产洁净能源和可替代石油化工的产品为主,如柴油、汽油、航空煤油、液化石油气、乙烯原料、聚丙烯原料、替代燃料(甲醇、二甲醚)等,它与能源、化工技术结合,可形成煤炭――能源化工一体化的新兴产业。其中就主要包括煤的气化、液化、干馏,以及焦油加工和电石乙炔化工等。其中,煤的气化技术是石油化工到煤化工的最关键技术。 煤气化过程是煤炭的一个热化学加工过程。它是以煤或煤焦为原料,以氧气(空气、富氧或工业纯氧)、水蒸气作为气化剂,在高温高压下通过化学反应将煤或煤焦中的可燃部分转化为可燃性气体的工艺过程。气化时所得的可燃气体成为煤气,对于做化工原料用的煤气一般称为合成气(合成气除了以煤炭为原料外,还可以采用天然气、重质石油组分等为原料),进行气化的设备称为煤气发生炉或气化炉。煤炭气化包含一系列物理、化学变化。一般包括热解和气化和燃烧四个阶段。干燥属于物理变化,随着温度的升高,煤中的水分受热蒸发。其他属于化学变化,燃烧也可以认为是气化的一部分。煤在气化炉中干燥以后,随着温度的进一步升高,煤分子发生热分解反应,生成大量挥发性物质(包括干馏煤气、焦油和热解水等),同时煤粘结成半焦。煤热解后形成的半焦在更高的温度下与通入气化炉的气化剂发生化学反应,生成以一氧化碳、氢气、甲烷及二氧化碳、氮气、硫化氢、水等为主要成分的气态产物,即粗煤气。气化反应包括很多的化学反应,主要是碳、水、氧、氢、一氧化碳、二氧化碳相互间的反应,其中碳与氧的反应又称燃烧反应,提供气化过程的热量。气化过程所产生的煤气经过净化分离以及成分调整以后就可以作为后续的化工原料合成气。之后的工艺流程就和石油化工的工艺流程类似了。

在新疆大力发展煤化工产业的同时,环境是不容忽视的一个问题,就拿煤制天然气项目为例,将煤气化处理得到含甲烷95的替代天然气,这一技术被视作为“富煤少气”中国解决资源现状问题的一把利刃,通过煤制气生产工艺技术不难发现,煤化工是高耗水产业,要保持煤化工企业正常运行,起码要有每小时上千吨新鲜水的供应。真正规模的煤化工企业,保证每小时2000―3000吨的用水量是必要的,建设煤化工项目一定要“量水而行”。类似的还有煤化工产业的三废排放对周边环境的影响问题。

第5篇:煤化工的工艺流程范文

1BioDopp工艺简介及其技术优势

1.1工艺简介BioDopp工艺是结合了氧化沟的全液内回流及一体化结构理念,利用A2/O的不同功能分区形式,借助CASS工艺前置选择区模式,辅以高效的曝气技术,通过创新的空气提推技术作为源动力,将水解酸化、生物选择区、除碳、脱氮、沉淀甚至除磷等多个功能单元结合在一起的生物处理工艺。该工艺有效节省了占地面积,缩短了工艺流程,减少了土建及管道投资,并且也大大缩短了巡检路线,便于建成后运营管理。BioDopp一体化结构见图1。BioDopp工艺的微生物驯化技术是其关键技术,工艺中其它技术设计及运行的宗旨是为微生物的驯化创造贴近自然界的生存条件。BioDopp工艺的污泥驯化,主要遵循一项原则和两个基本点:原则:空气提推技术确保池内高回流比,完成对进水瞬间稀释,确保整个流程内浓度梯度负荷最小化,创造贴近自然态的生长环境。基本点1:控制污泥比增长速率及其世代时间,使其污浓尽量高,生长尽量慢。基本点2:借助微氧理论,控制好氧池内溶氧不超过0.5mg/L,溶氧浓度的控制是溶氧仪连接变频风机PLC自控单元来自控控制。

1.2技术优势BioDopp工艺采用了低溶氧高污泥浓度的微生物技术、短程同步硝化反硝化的脱氮技术、大表面积曝气微混合技术、大水力循环的一体化结构。基于这些特点,该工艺较传统生物处理工艺有如下创新点:(1)节能降耗措施的创新BioDopp工艺,在低溶氧(0.1~0.3mg/L)较高污泥浓度(8~122g/L)的运行工况下,通过气提方式代替传统的泵内外回流方式实现了工艺所需的高比倍循环稀释要求,达到了节能降耗;在满足工艺自身曝气需要的前提下,通过曝气方式的创新实现了污水厂的节能降耗。(2)运行维护方面的创新通常污水生化处理都面临水下设备多、维护维修难,曝气设备堵塞、更换难等比较棘手的问题,BioDopp工艺均实现了突破,给予了很好的解决。BioDopp工艺采用的曝气软管,在设计上既有自动“清洗”的功能,又能保证在不停车、不影响生产的条件下,可更换或者维修。同时BioDopp池内几乎无机械设备,可做到方便提升更换。(3)混合液循环方式的创新BioDopp工艺直接用空气提推将混合液从末端循环到进水段,强化了泥水的有效混合过程,并实现对进水的高倍比稀释,减少了回流设备同时也节约了维修费用,进一步提高了系统运行的安全和方便性。同时高倍比回流使得反应池内进出污染物浓度差很小,相当于完全混合反应器,保证了反应器内微生物处于相对稳定的生存环境中,使其充分发挥去除污染物的效能。(4)高效的曝气系统BioDopp曝气软管高密度均布方式与打孔技术使鼓出气泡更为均匀,其直径更小,缓慢曲线上升的流速保证其有足够时间与水体接触传质,有效增大了氧转移效率;除此之外,曝气管采取可提升方式,使曝气管的检修与维护更加简单,易操作。(5)高速澄清器BioDopp高速澄清器是是一种泥水分离装置,通过底部污泥高速回流使污泥不在底部沉积,借助组合填料,设计独特的澄清漏斗和专属填料布置方式,完成高效快速澄清。其特殊的设计结构,配以空气提推技术,即降低了回流能耗,还节省了污泥回流泵房。(6)高污泥浓度使系统具有优越的抗冲击负荷能力在低溶氧、高活性污泥浓度条件下使曝气池有机负荷(F/M)较低,系统具有更加优越的抗冲击负荷的能力。同时由于食物不太充足,微生物增长较慢或基本不增长,甚至可能减少,更进一步消除了剩余污泥中大部分原组织物质,那些易产生异臭味气体的成分也被消除了,如此被“固化”的污泥味道闻起来像新鲜的泥土。

2工程实例

2.1大唐国际多伦煤气化废水处理工程大唐国际发电股份有限公司多伦年产46万吨煤基烯烃项目为世界上最大的煤化工工程化项目。其污水处理站主要处理全厂生活污水,化工区煤气化装置、甲醇装置、丙烯装置和聚丙烯装置的生产污水,装置冲洗排水和污染区内的初期雨水。经处理后澄清水作化工区循环水系统补水,总体实现零排放。(1)设计规模:7200m3/d(2)主要工艺流程:来水——破氰除氟系统——BioDopp生化反应池——多介质过滤和活性炭吸附——循环水回用(3)进出水水质为:(4)项目运行评价大唐国际多伦煤化工项目作为国内最大的煤化工项目之一,全厂为了达到“零排放”的目的,采用以BioDopp生化系统为主体工艺处理厂内各类污水,辅以多介质过滤和活性炭吸附深度处理,使排放污水达到循环冷却水系统补充水标准,作为循环水补充水进行回用,不仅降低了企业的排放总量,还达到了节约用水、节能降耗的效果。所有有机污水在厂内污水处理站集中处理达标后作为循环水补充水,不仅降低了企业的排放总量,还达到了节约用水的效果。BioDopp生化系统总运行成本1.82元/吨,其中直接运行成本是0.91元/吨,直接成本包括电费、药费、人工及维修(电费0.58元/吨,药剂0.15元/吨,人工0.10元/吨,维修0.08元/吨)。BioDopp生物池的建设,有效节约了占地,可将运行成本降低40%,最大限度的提高了运行稳定性。

2.2中石油吉化丙烯腈污水处理站改造工程该项目属扩容提标改造项目,废水中由于含有丙烯腈、氢氰酸、丙酮氰醇及甲甲脂等剧毒高难降解化学物质,曾用传统工艺改造过三次,都出现出水CODCr较高,出水氨氮较进水高的现象,这是含氰废水的特点。采用BioDopp工艺进行技改后,同样占地面积处理水量翻倍,管理维护非常简便。实现了剧毒废水无害化治理,解决了含氰废水脱氮的难题,在国内乃至世界范围内填补了空白。(1)设计规模:4800m3/d(2)改造工艺:将已建的1#、2#、3#SBR污水处理池进行改造,将1#、2#SBR池改造为BioDoppA池,将3#SBR池改造为BioDoppB池。(3)进出水水质为:以下,而BioDopp池出水基本稳定在50mg/L~200mg/L,由于出水指标偏低,目前吉化海特部分高浓废水通过丙烯腈出水稀释后达标排放至吉化污水处理厂。氨氮的硝化为含氰废水的处理难点,因为废水中含有大量的剧毒物质—氰化物,氰化物对硝化菌的生长存在巨大的抑制作用,而对于BioDopp工艺来讲,大比例循环稀释系统使得池内负荷相对均匀,可将梯度负荷降到最低,再加上其独特的驯化方式,使硝化菌能够在此相对稳衡的环境下生长,大量的菌株聚合在一起,形成协同效应,所以能适应一定浓度的CN-环境。吉化要求出水氨氮需控制在45mg/L以下,BioDopp池出水可将氨氮稳定在20mg/L以下。CN-进水基本在5mg/L以下,出水要求控制在0.5mg/L以下,而BioDopp工艺出水CN-可降解到0.01mg/L以下,使有毒废水无害化。该项目不仅对含氰废水处理效果好,而且成本较低,能耗及药耗均较其他工艺低。其总成本为1.94元/吨,其中直接运行成本是0.99元/吨,直接成本包括电费、药费、人工及维修(电费0.23元/吨,药剂0.25元/吨,人工0.21元/吨,维修0.30元/吨)。《BioDopp工艺处理含氰废水的应用及研究》已在国内最权威的工程类国家核心期刊发表。BioDopp工艺为含氰废水采用生化法治理打开了局面。(4)项目运行评价项目自建成以来,运行良好,由于池内控制点只有DO和pH值两个控制点,且DO信号为PLC变频自控调节,故管理非常简便。曝气系统因为具备自清洗的特点,所以不会堵塞,建成五年多以来,曝气均匀,氧利用率高,动力效率一直较为恒定处于高位。吉林石化公司要求出水COD需满足300mg/L煤化工行业污水治理呈现两高两难态势,即污水排放量大,处理难度大,污染浓度高,运行成本高。河南省煤气(集团)有限责任公司义马气化厂响应国家节能减排号召,结合厂内现有以SBR生化处理为主工艺的污水处理站运行成本相对较高,处理效果不够稳定,二期改造占地有限等局面,最终将一座SBR改造为BioDopp生化工艺。该工艺较传统工艺节省一半占地,节约一半能耗,管理维护更加简单。(1)设计规模:840m3/d(2)改造工艺:将已建的SBRA池改造为BioDopp池。(3)进出水水质见表3。(4)项目运行评价项目自建成以来,运行良好,即便是在原水水质波动很大的情况下,出水水质都基本稳定,可见BioDopp工艺的抗冲击、可恢复性很强。而且各出水指标明显优于原SBR工艺,运行管理方便,节省了大量的药剂消耗和人工费用。该项目直接运行费用为3.03元/吨,远低于原厂SBR的8.25元/吨。而且每处理一吨鲁奇加压气化废水能够减少COD排放约5kg、氨氮约0.2kg、总氮约0.2kg、酚类物质约1.0kg,其他需控制污染物1.5kg,并能够得到同等体积的可回用水。BioDopp工艺在真正实现了节能减排的同时还为煤气化行业污水处理提供了一条成熟可靠、投资少、运行费用低、适用性强的技术。BioDopp技术依据自身结构特点和微生物技术,建立了短流程脱氮体系、实现了高效彻底的生化降解效果,大大节约了运行成本,在河南煤化工引起了轰动,目前已依托河南煤化工在河南省科技厅获得科技成果,在鲁奇炉和BGL炉废水领域已被认定为河南省重点推介技术。

3经济效益和环保效益评价这里以河南煤化工义马气化厂污水处理站改造工程为例,对BioDopp工艺的技术经济指标和该工艺的社会环保效益进行分析。

3.1经济效益评价

3.1.1技术经济分析在义马气化厂改造工程中,BioDopp工艺吨水电耗约为1.6~2.0kW•h/t,相对于传统工艺约吨水电耗2.4~4.2kWh/t,可实现能耗节省约33.3%~52.4%。BioDopp技术的立足点就是节能、高效,该技术依靠先进的曝气方式和工艺流程大大降低了对电能消耗,比如软管曝气、空气提推的设计。通过物料衡算可知BioDopp工艺节能主要体现在系统脱氮形式上,大部分通过短程硝化的形式得到去除。这就比其他活性污泥工艺有一定的节能优势。其他活性污泥全程脱氮的硝化过程反应式为:NH4++3/2O2NO2-+2H++H2ONO2-+1/2O2NO3-而短程硝化将硝化控制在亚硝化阶段,则节省25%O2。且BioDopp工艺一直维持在低氧条件下,最高溶氧不超过0.45mg/L,与传统工艺曝气区大于2.0mg/L相比,本工艺节能成果显著。与常规活性污泥法相比,节省O2的量为:1-0.45/2×(1-57.77%×25%)=80.75%鼓风曝气系统电耗一般占全厂电耗的40~50%(计算取45%),曝气池是二级生物处理厂耗能最大的构筑物。则至少能节省费用:45%×80.75%=36.34%。与义马气化厂SBR生化系统(吨水耗电6.2kW•h)相比,BioDopp工艺每年可节省费用至少为:35×24×(6.2-2.0)×0.6×365=772.63万元/年另外,短程脱氮过程中反硝化直接由亚硝酸盐开始,则节省62.5%碳源,同时提高了反硝化速率。BioDopp工艺与常规活性污泥法相比,节省脱氮碳源为57.77%×62.5%=36.11%,反硝化速率提高47.36%,反应器容积也相应缩小,节省了占地面积和土建费用。由于BioDopp工艺实现了短程同步脱氮,硝化过程中消耗碱度和反硝化过程产生碱度的大部分过程均在曝气区中发生,两者中和能够有效地保持反应器中pH值稳定,同时可以降低硝酸盐氮浓度以减少速澄区污泥漂浮及回流污泥对厌氧释磷的影响。

3.1.2经济效益分析(1)BioDopp工艺与厂内SBR工艺直接运行费用比较见表4。(2)BioDopp工艺在义马气化厂污水改造过程中的经济指标:①节省占地30~50%,节省一定土建投资及征地费用;②节省供氧量40%,节省碳源25%以上,能耗及药耗总和节省超过50%;③系统剩余污泥量减少40%以上,且运行时无臭味。(3)BioDopp工艺与其他常见气化废水处理生化工艺相比较,其经济性能有较大优势,具体表现如图2。

3.2社会和环保效益评价

本改造工程运行结果展示出良好的社会与环保效益,改造工程工艺应义马气化厂“节能减排”的目的而设计,其处理结果完全达到义马气化厂的要求。义马气化厂属于“九五”国家重点项目,并多次扩建,是国内煤气化行业的标杆企业,其节能减排目标的提前顺利完成不仅显示了其作为一个大型国有企业的社会职责,而且在集团内部树立了标杆作用,同时为行业企业做出了良好榜样作用。应用BioDopp工艺流程每处理一吨Lurgi碎煤加压气化污水能够减少COD排放约5kg、氨氮约0.2kg、总氮约0.2kg、酚类物质约1.0kg,其他需控制污染物1.5kg,并能够得到同等体积的可回用水;同时使用BioDopp工艺流程来处理Lurgi碎煤加压气化污水,比同等工艺吨水处理能耗低2~4kW•h,间接减少二氧化碳排放当量为1.2~2.5kg/t,如果同时计算药耗与其他费用,可间接减少二氧化碳排放当量为2~4kg/t,真正地实现了节能减排的要求。综上,BioDopp工艺流程简单,占地小,运行成本低,而且出水水质有保证,甚至可以达到回用水标准。这不仅降低了工业大户的用水成本,而且避免了周边水体受污染,使居民能够安心用水。既响应了国家节能减排和循环经济的政策方针,又达到了经济效益和社会效益的和谐统一。

第6篇:煤化工的工艺流程范文

关键词:煤化工 高压煤浆泵 国产化

中图分类号:TQ545 文献标识码:A 文章编号:1672-3791(2013)07(b)-0092-02

1 煤化工市场的回顾与展望

近年来,我国能源化工产品的需求出现较高的增长速度,煤化工在我国能源、化工领域中已占有重要地位。随着煤化工新工艺、新技术的发展,给上游设备行业提出新的挑战,这也促进了煤化工装备行业的技术进步。过去的一年是中国新型煤化工产业示范取得重要成果的一年。煤制烯烃与煤制油的工业化示范装置运行取得新突破,煤制合成天然气和煤制乙二醇示范装置也处于积极推进过程中。在高油价和能源供应紧张的趋势下,新型煤化工为未来中国的油气资源补充和部分替代开辟了新方向,前不久国家发改委了要在云南、新疆、贵州、蒙古、陕西、山西等地选择煤种适宜、水资源相对丰富的地区,重点支持大型企业开展煤制油、煤制天然气、煤制烯烃、煤制乙二醇等升级示范工程建设,加快先进技术产业化应用。

2 高压煤浆泵在煤气化装置中的重要性

在煤化工生产工艺系统中,隔膜泵是煤气化装置心脏设备,煤气化工艺流程先进,技术要求高,而且生产过程中属于连续性生产。而隔膜泵连续运转率直接决定了整个气化装置能否正常生产。该类型泵的设计、制造涉及机械、电子、液压、材料、橡胶密封等多学科技术,技术复杂,鉴于高压煤浆泵必须要保证能长周期不间断地连续稳定运行,一次短暂的停运都会带来很大的经济损失,故而高压煤浆泵的选择非常关键,性能高求很高,考虑到要使煤浆与传动部位隔离,煤气化装置的高压煤浆泵都选用隔膜泵,高压隔膜泵技术较为成熟、目前被用户广泛选择的有荷兰GEHO、中色泵业、德国FELUWA等三家。高压煤浆泵是煤气化装置的心脏设备(见图1)。

3 国产高压煤浆泵的工作原理以及技术参数

高压煤浆泵是上世纪七十年代在往复式活塞泵基础,增加隔膜室演变而来,实现了输送介质与活塞的隔离,从而创造了一项 全新的先进输送技术和设备。具有易损件寿命高、维修简便、连续运转效率高、运行成本低、高效节能环保等诸多新优点和新特点,高压煤浆泵的结构型式是指活塞的单双作用、活塞缸数、活塞的立式及卧式。隔膜泵有双缸双作用、三缸单作用卧式结构,多缸单作用立式结构等,常用的为双缸双作用、三缸单作用卧式结构。双缸双作用、三缸单作用隔膜泵,均由传动系统、动力端、液力端、液压辅助系统、进出料补偿系统、控制系统组成。

高压煤浆泵的技术参数是指基本性能参数、连续运转率及易损件寿命、输送介质及运行工况参数。

(1)基本性能参数是指输送的流量、吸入压力、排出压力、电动机功率及调速性能、泵的重量、泵的外形尺寸等。

(2)连续运转率是指泵的工作制及效率。

(3)易损件寿命是指橡胶件及阀件等的寿命,这两个参数是相互关联的。

(4)输送介质参数是指所输送的介质的密度、粒度、粘度、酸碱性、温度等。

(5)运行工况参数涉及隔膜泵选型的经济性、合理性。

合理选择输可靠、经送泵型是保证整个工艺系统济运行的关键,应具体考虑如下因素。

(1)输送介质的重度、粒度、介质的浓度、温度、磨蚀性。

(2)泵型对管路运行工况变化的适用性。

(3)泵的吸入性能及效率、安全可靠性。

另外高压隔膜泵的正常稳定运行对所处工况是有严格的要求,其条件为:严格的粒度分布;介质的两相流特性;吸入性能条件及吸入、排出的压力脉动;多台泵时的峰值叠加问题等。

4 中色品牌高压煤浆泵在中石化南化公司的应用

南化公司合成氨部煤气化装置在石化(煤化工)系统的同类装置中具有代表性。装置现有两套煤气化炉,操作压力达8.5 MPa(为目前国内、外最高压力),操作温度为1250 ℃~1300 ℃。单炉产气能力能满足日产1000 t(30万吨/年)合成氨系统的需要。合成氨系统是全公司最重要的一套生产系统,工艺流程长,其运行情况直接影响到公司生产全局,一次系统停车损失在500万元以上。由于高压煤浆泵不能在线切换,生产过程中,高压煤浆泵的瞬间的停运,将造成3200单元(气化工序)及后继的300单元(CO变换工序)、400单元(低温甲醇洗工序)、500单元(液氮洗工序)、600单元(氨合成工序)全系统跳车。因此南化公司对煤浆泵制造厂家的选择极为重视,在泵的选购工作中,公司领导亲自参与,经过了认真地考查和筛选,最终选定了2家煤浆泵制造厂。分别为荷兰GOHE公司和中色泵业公司各签订了一台高压泵。按公司原构想:GEHO泵为首选运行泵;因2006年时中色泵业泵业绩多在矿业行业,在高压煤气化装置尚无业绩,故作为备选,公司对煤浆泵制造厂家的选择极为重视,在泵的选购工作中,公司领导亲自参与,经过了认真地考查和筛选,最终选定了2家煤浆泵制造厂,其中一家为荷兰GOHE公司,一家为中国有色(沈阳)泵业有限公司。其中,与GOHE公司签订了一台高压泵;与中国有色(沈阳)泵业有限公司签订了一台高压泵,两台低压泵。这是南化公司在国内、外高压煤气化系统首次选用中国制造的煤浆隔膜泵,并在高压煤浆泵设备的国产化研制过程中,发挥了积极的作用。此前,高压煤浆泵长期为国外品牌所垄断

中色泵业高压煤浆泵投入运行后,设备运行工况正常,可以长周期稳定运行,累计运行时间为21900 h,经过一年来的多次运行检验,可以满足(8.5 MPa)煤气化装置的生产要求。生产过程中,该泵的故障率较低。

经过六年多来使用情况出乎意料:两台煤浆泵的导致装置停车的次数累计统计比为GEHO泵∶中色泵业泵=7∶3。

中色泵业高压煤浆泵在泵进口管线的尺寸设计上值得肯定,运行期间泵的主电机电流稳定,而进口泵在运行期间曾多次出现大的电流波动和堵转,造成跳车;此现象与进口泵的进料管线的尺寸设计不妥有关,现已按中色泵业煤浆泵的修改进口管线,修改后,其主电机的电流波动和堵转的现象消失。高压煤浆泵的型号(见图2)。

5 结语

国产高压煤浆泵有广泛、良好的使用业绩,技术成熟。国产化技术可行,没有风险,相对进口高压煤浆泵在费用、运输、备品备件、技术交流和技术服务上具有较大的优势,如果能在精加工、外观设计等方面作进一步的改进,将在国内、外具备更大的市场竞争力。

参考文献

[1] 外商投资产业指导目录[M].2011年修订.

[2] 中国煤化工月报.

第7篇:煤化工的工艺流程范文

关键词:硫回收;煤化工;克劳斯反应;浓缩硫化氢酸性气;节能减排

1 前言

我国煤炭储量丰富,国家对煤碳资源的开发力度利用不断加大,以煤为原料生产化肥、甲醇等化工产品的煤化工产业进入了一个快速发展的阶段迅速,随着对煤化工下游产品产业链的延伸开拓,煤化工产业的发展将会进入新的发展阶段仍将继续保持快速发展的势头。硫回收是煤化工装置不可缺少的工段,主要是处理工艺过程中分离出的含H2S酸性气,利用不同的工艺原理和技术将原料中的组分硫转化成硫磺或硫酸等化工产品。

随着人类科技文明和工业化程度的不断提高,环境污染及气候变化问题也越来越突出,已成为世界性的难题,人类利用地球资源的同时,必须加强对地球环境、自然气候的保护;煤化工领域硫回收技术对减少装置有害气体的排放,保护环境有着重要意义,符合国家节能减排政策,因此加强利用和优化硫回收工艺技术对保护人类生存环境意义重大。

2 硫回收工艺原理

目前煤化工装置硫回收技术非常广泛,主要以克劳斯制硫工艺为主导,另外还有碱吸收法制硫、WSA制硫酸工艺等。技术专有商包括荷兰JOCABS、德国鲁奇、美国洛凯特、美国KPS、美国壳牌康世富、丹麦托普索等,国内专业硫回收技术公司主要有山东三维等。

2.1 克劳斯硫回收工艺

煤化工装置低温甲醇洗工段分离的含H2S酸性气制硫磺工艺基本是在克劳斯技术基础上发展起来的。克劳斯硫回收工艺主要分为酸性气燃烧反应、酸性气催化反应、反应尾气处理三个部分。

2.2 碱吸收(生物脱硫或络合铁法)工艺LoCAT及生物制硫

该工艺用溶液(碱液)吸收的方式脱除硫化氢,然后通过铁变价法或生物法将碱液再生。美国洛凯特(LO-CAT)和壳牌生物脱硫均属于该类工艺。

该工艺特点是工艺简单,回收率高。可直接处理H2S 浓度很低的合成气。缺点是再生反应器尺寸较大,操作费用较高。

这两种工艺手上资料有限,仅作介绍。

2.3 WSA制酸工艺

该法是将来自低温甲醇洗的含H2S酸性气全部燃烧生成二氧化硫,二氧化硫通过催化氧化生成三氧化硫,与水结合生成硫酸。

3 硫回收工艺技术特点

硫回收因产品不同,工艺流程有所差异,硫磺因其易储存运输,用量大,所以多数煤化工装置硫回收均采用制硫工艺;如果工厂本身需要使用硫酸,硫回收工段采用制酸工艺更为适宜。

这里着重分析克劳斯制硫工艺。

(1)酸性气预处理:目前克劳斯制硫工艺酸性气进入燃烧段前均设有甲醇分离工序,用于脱除酸性气中含有的甲醇组分,一般都设有甲醇分液罐,有的技术还设有甲醇洗涤塔,荷兰JOCABS公司对于甲醇对后续反应的影响提出过甲醇在燃烧过程中会生成噻吩使后续催化反应的催化剂积碳而影响催化剂性能,但没有明确的验证和文章解释。

(2)酸性气燃烧:根据酸性气中H2S含量不同,通常采用部分燃烧法和分流法。酸性气浓度较高时采用部分燃烧法,酸性气浓度较低时常采用分流法。目前酸性气燃烧多采用分流工艺,即一定比例的酸性气在烧嘴进行燃烧反应,另一部分气分流至燃烧炉后段,比例约3:1,这样可保证烧嘴燃烧温度在1000℃以上以及火焰的稳定性。

(3)自燃烧炉出来的工艺气经过废锅冷凝将硫分离出来,进入克劳斯催化反应工序前需要将温度升至230℃以上,有些工艺采用预热器如荷兰JOCABS,也有采用高温掺和阀(鲁奇、山东三维)引一股燃烧炉的高温工艺气与冷凝后工艺气混合达到反应要求温度;因掺和温度高,所以对高温掺和阀的制造加工要求高,在鲁奇工艺包中,该阀属于专供设备;山东三维也将该阀作为专利设备随工艺包附带。高温掺和阀因热应力及冲刷腐蚀制造难度大,推荐换热器预热型式。

(4)在催化反应阶段降低温度对化学平衡有利,但为了保证有机硫水解,一级催化反应器宜适当提高反应温度,缩短反应达到平衡转化率的时间,从而提高转化率。

克劳斯反应催化剂主要有:

(5)通过不同催化剂的相互组合,达到理想的反应转化率,但通过二级或三级克劳斯催化反应,尾气中硫含量是不能达到规范要求的指标,需要进一步处理。

(6)硫回收制硫工艺进行归纳可分为三大类:克劳斯延伸型工艺:包括超级克劳斯工艺、超优工艺等;克劳斯尾气处理型工艺,即尾气加氢还原+溶剂吸收:胺吸收法及低温斯科特等均属于该类工艺;另外还有碱吸收工艺:包括上文所述生物脱硫和络合铁工艺。

3 结论

通过对对于煤化工项目硫回收装置工艺技术分析,我们看到,在满足国家环保要求,技术先进可靠,同时要求投资和操作费用又较低的前提下,克劳斯延伸型工艺是我国目前煤化工领域硫回收装置的最佳工艺选择。随着国家对环保要求的进一步提高,克劳斯反应尾气的处理将会由延伸型工艺向尾气处理型工艺和节能环保型工艺转变。

参考文献

[1] 覃泰岭,孙秀英. 硫回收装置在煤化工行业中的选择. 科技信息,2009,(23):815.

[2] 俞志兴. WSA 工艺在酸性气体中的应用及问题探讨. 硫酸工业, 2006,( 6): 19~23.

[3] 张峰. WSA 湿法制酸工艺及其在我国的应用. 硫磷设计与粉体工程, 2011,(4):3.

[4] B Johnson,C T Lankford,E Jensen,et al. WSA 工艺在煤气化超高硫回收中的应用. 硫酸工业,2008,( 3) ; 26~28.

[5] F Jensen,A Kristiansen. 用于低含硫气体处理的托普索WSA工艺. 硫酸工业,2005,(4): 1~6.

[6] 肖生科,廖忠陶,刘 强. 硫磺回收装置优化运行技术策略. 石油炼制与化工, 2010,41(4): 23.

作者简介

自2003年太原理工大学毕业后从事煤化工项目设计工作已有10年,积累了丰富的经验,任职经历

第8篇:煤化工的工艺流程范文

1.1背景

武汉科技大学是由武汉钢铁学院等隶属于原冶金工业部的三所在汉高校通过合并和改名而来。1998年,根据国家高等教育管理体制改革需要,学校成为第一批实行“中央与地方共建,以湖北省人民政府管理为主”的划转院校。划归湖北省管理后,学校立足于湖北建设、面向中南地区、辐射全国。武汉科技大学化学工程与工艺专业始建于1958年,原名为“炼焦化学专业”,1985年改为“煤化工专业”。1992年,按“煤化工”、“城市燃气”和“炭素材料”三个专业分别招生。1996年,随着教育部大学本科专业目录的调整,“煤化工”、“城市燃气”和“炭素材料”三个专业归并为“化学工程与工艺”专业[1]。总之,化学工程与工艺专业以煤化工(焦化)为特色,是武汉科技大学的传统特色专业。武汉科技大学是我国焦化专业人才的摇篮,所培养的焦化专业人才遍布全国各地,且大多成为企业的技术骨干或领导。为了适应市场经济形势、进一步提高人才培养质量和扩大毕业生的就业面,需要不断完善培养目标,加强基础理论知识的教学和采用多学科复合型培养模式,对多学科交叉课程进行整合和调整;强化工程实践能力、动手能力和创新能力的培养;在采用宽口径和重基础培养模式的同时突显专业特色。

1.2目标

所构建的化学工程与工艺专业课程体系能适应社会发展的需要,培养出具有宽厚基础理论、合理知识结构、较强创新能力、较全实践技能和明显煤化工特色的复合型化工类高级工程技术人才。毕业生能在焦化、炭素材料、燃气、石油化工、精细化工、环境保护等行业从事生产管理、工程设计、技术开发和科学研究等方面的工作。

2课程体系建设

2.1整合与优化原有课程

2.1.1整合《工程力学》与《化工设备机械基础》

武汉科技大学化学工程与工艺专业在课程整合之前,所开设的《工程力学》学时数为82。《工程力学》是整个课程体系中学时数很大的课程之一,且有些内容对化学工程与工艺专业并不是十分重要。为了增加学生社会的适应能力,加大学生的知识面和提高综合素质,经过仔细研究和综合权衡,决定压缩一些已开设课程的学时和增加一些新的课程。《工程力学》就是这次课程体系改革的压缩对象。考虑到《工程力学》与《化工设备机械基础》关系最密切,就将压缩后的《工程力学》与《化工设备机械基础》整合成一门课程,取名为《化工设备与材料》。整合的《化工设备与材料》定位为化学工程与工艺类专业一门综合性的机械类技术基础课,其内容包括工程力学、化工设备材料与焊接和化工容器设计三大部分。其任务是使学生具备基本工程力学知识,了解化工设备的选材要求及常用材料的特性,了解和掌握化工设备的设计计算方法和过程及典型设备的结构设计与计算,强化化工类专业本科生对化工设备的机械知识和设计能力。整合后的《化工设备与材料》总学时数为46,其中工程力学部分由原来的82学时压缩到16学时,为其它课程腾出66学时[2]。

2.1.2整合《化工设计》与《化工技术经济》

很多学校将《化工设计》是列为化学工程与工艺专业的一门专业必修课。课程主要介绍化工工艺设计的基本知识和方法,包括原料路线、技术路线的选择,工艺流程设计,物料衡算、能量计算,工艺设备的设计和选型,车间布置设计,化工管路设计,非工艺设计项目的考虑和设计文件的编制等内容。学习该课程可提高综合运用已学过的化工原理、物理化学、化工热力学、反应工程、分离工程、化工工艺学和机械制图等方面知识解决化工工程实践问题的能力。武汉科技大学化学工程与工艺专业原来的课程体系中没有设置这门课,主要是因为受总学分和总学时的限制,没有富余学时来开设这门课,现在通过整合《工程力学》与《化工设备机械基础》腾出66学时,学时的问题已得到解决。所腾出66学时不能全部用于开设《化工设计》,经过仔细研究后决定将《化工设计》与已开设的《化工技术经济》进行整合,取名为《化工工程设计与技术经济分析》,定位为专业基础课,学时数由原来的18调整为54。

2.1.3优化《能源化学》

《能源化学》是化学工程与工艺专业的专业基础课,其前身为《煤化学》,为了拓宽学生的就业面,重新整理了传统课程的教学内容,在煤化学课程的基础上,将其它一些主要能源也引进来,从而形成了能源化学课程,总学时数为54,其中实验学时数为8。经过几年的教学实践后发现,由于教学内容较多,该课程的教学时数过于紧张,尤其是实验学时严重不足。在本次课程体系建设中,将该课程的理论教学内容和实验教学内容进行分离和单独设课。实验教学内容取名为《能源化学实验》,学时数为18;理论教学内容仍用原来的课程名称,学时数为46。

2.1.4优化《能源化学工学》

《能源化学工学》是化学工程与工艺专业模块1(煤化工模块)的主干专业课程,由《炼焦学》和《炼焦化学产品回收与加工》整合而成。以前的课程体系设置时为了强调重基础,对该课程的学时进行了大幅压缩,总学时数为54,其中实验学时数为18。经过几年的教学实践后发现,该课程的教学时数压缩过大,对教学效果产生较大影响,用人单位的反馈意见也证实了这一点。在本次课程体系建设中,将该课程的理论教学内容和实验教学内容进行分离和单独设课。实验教学内容取名为《能源化学工学实验》,学时数为18;理论教学内容仍用原来的课程名称,学时数为46。

2.1.5优化《高炭化学与碳材料工程基础》

如前所述,炭素材料曾是武汉科技大学化工类的招生专业之一。在化工专业课程体系中设置炭素材料类的课程也是一大特色,这种特色为化工类毕业生的就业提供了更多机会。每年都有化工类的毕业生在炭素材料行业中就业,在全国的主要炭素企业中都有武汉科技大学化学工程与技术学院毕业的校友。但有一段时间为了强调重基础,弱化了炭素材料课程的教学,仅开设了《碳材料工程基础》,而且还是任意选修课,教学时数只有28学时。根据毕业生和用人单位的反馈意见,在本次课程体系建设中,决定优化该课程的教学设置,将该课程定位为指定选修专业课,教学时数增至44,课程名称改为《高炭化学与碳材料工程基础》。

2.2增设《化工CAD绘图与识图》

工程图纸是工程技术上用来表达设计思想和进行技术交流的主要手段,任何工程技术方案的实施,都必须以其为依据,因而被喻为“工程界的技术语言”。很多学校的化工类专业都开设计《化工制图》这门课程,主要内容有化工工艺图和化工设备图两大部分,用于培养学生阅读和绘制化工专业图样的能力。同时,它也为学生完成毕业设计和适应今后工作需要提供了不可缺少的基本能力。武汉科技大学化学工程与工艺专业原课程体系中只设置了《机械制图》,没有开设《化工制图》。根据毕业生和用人单位的反馈意见,在本次课程体系建设中,决定增设《化工CAD绘图与识图》这门课程。该课程由《化工制图》和《Auto-CAD绘图》整合而成,内容包括:AutoCAD绘图软件及其应用、工艺流程图、设备布置图、管道布置图和化工设备图,教学时数为36,其中14学时为上机实践学时。

3教学方式改革

3.1在实践中培养学生的动手能力和创新能力

依托湖北省煤转化与新型炭材料重点实验室,通过开设本科生创新性实验与创新性研究等课外实践活动,为培养学生的动手能力、创新能力提供保障。鼓励和扶持本科生进行实验技能和化工设计竞赛。本科生从三年级开始下到实验室,参与到指导教师的实际科研项目中去,熟悉科研过程,锻炼实践技能,培养创新能力。

3.2组建和培养教学团队

原来大多数专业课都只有一名任课教师,待其退修或调离工作岗位后再找教师接替。现在每门课至少有两门任课教师,一般采取以老带新的模式,且任课教师都要有工程实践经验。如《能源化学》教学团队,由2名老教师、1名中年教师和2名年轻教师组成,其中3名教师具有博士学位,4名教师有正教授职称,2名教授为博士生指导教师。已有8名没有工程实践经验的年轻教师被派到河南、云南等地焦化企业进行了3个月实践锻炼,回校后教学效果有了明显提高。

3.3多种途径组织实践教学

近年来,化学工程与工艺专业建立了一批相对稳定的教学实习基地。考虑到专业特色和培养方向的要求,实习基地以武汉平煤武钢联合焦化有限公司为主体。该公司在国内具有技术力量雄厚,生产工艺先进的特点,并具有较高的管理水平。同时,该公司可以说是焦化的一部“百科全书”,建有4.3m、6m、7.63m焦炉,所采用的配套工艺也有多种,是一个相当理想的焦化特色化工专业教学实习基地[3]。但是现在化学工程与工艺专业的招生人数越来越来多,一年的招生人数达280人之多。一个焦化公司能一次接纳这么学生去实习已经勉为其难,实习过程只能用走马观花来形容,很难深入下去。为了解决这一问题,采取了一系列措施,如下厂前先给学生分工段介绍现场工艺流程和主要设备,播放现场录制的录像,开发主要设备的三维数字模型供学生在电脑进行自主观察、解剖和组装,购置计算机仿真培训软件供学生在电脑上进行仿真操作。

第9篇:煤化工的工艺流程范文

DOI:10.19694/j.cnki.issn2095-2457.2018.12.035

《石油化工工艺学》是我校化学工程与工艺专业开设的专业核心课程,该课程的主要任务是从石油化工生产工艺角度出发,运用化工过程的基本原理,阐明石油化工工艺的基本概念和基本理论,介绍典型工艺的生产方法与工艺原理、典型流程与关键设备、工艺条件与节能降耗分析。与化工专业其他课程相比,该课程具有综合性强、知识点多、应用性强,理论与实际紧密结合等特点。面对繁琐的知识点,如何在有限的教学课时内提高课堂教学效果,启发学生学习兴趣、增强学生学习主动性成为教学的关键问题,本人在多年的石油化工工艺学课程教学中,通过与本校及其他院校“教学名师”学习交流,并反复教学实践及接受学生反馈,得到了一些心得体会,下面将从以下几点进行阐述。

1 将该课程内容与前期课程内容结合对比讲解

《石油化工工艺学》课程是在学生学习了《有机化学》、《化工原理》、《化学反应工程》及《煤化工工艺学》等课程的基础上开设,学生通过前期课程的学习掌握了精馏、重整及裂化等相关知识点,该课程在讲授的过程中如果涉及到与前期课程相关的内容,可以与之结合对比讲解,在回顾前期内容的同时也便于其理解掌握新的内容。例如在讲授“原油的常减压蒸馏”时,将其与化工原理课程中精馏部分的内容结合对比。首先,让学生回忆精馏的原理及所用设备的结构、分类和特?c;然后,要求学生将普通精馏设备与原油常减压蒸馏设备对比并讨论它们之间的异同点。通过这种方式能够大大活跃课堂气氛,引起学生的好奇心,加深学生对所学知识的理解和掌握,同时,也能引导学生形成良好的学习习惯,培养他们对该课程的学习兴趣。再比如,讲授“催化重整工艺”时,首先让学生联系有机化学中“同分异构”的概念,这样学生便能明白“重整”过程中分子结构发生的变化,进而能够深刻理解催化重整提高汽油辛烷值的本质原因[1]。

2 引入新的教学方法及案例

教学方法是实现教学目标、提高教学质量的具体实施环节,也是教学改革的重点之一[2]。根据教学内容选择适当的方法,能够充分调动学生的学习积极性和主动性,提高教学效果。目前,《石油化工工艺学》仍以课堂教学为主。为了更好的提高教学效果,引入新的教学方法及案例非常必要。如引入多媒体教学手段,可以借助多媒体的声光交互、动静结合的特点给学生全新的视觉感受,极大地提高学生的学习兴趣[3];此外,教学中如果将一些设备和生产工艺流程以图片、声像资料和动画等方式展示,可将抽象的原理简单化、直观化,复杂工艺流程中的单元操作也变得形象、易懂,能够帮助学生在有限的时间内接受一些难点内容,实现了高效且良好的教学效果。比如在讲授催化裂化工艺流程的核心工艺反应-再生系统时,书本上给出的仅仅是简单的流程示意图,不利于学生理解掌握反应-再生系统中原料的反应、催化剂的分离再生及产品的分离精制等重难点内容。如果能够找到一些相关的工艺流程录像和动画,帮助学生直观地观看原料和催化剂在反应器中的存在状态、反应状况及催化剂的分离再生特点,就能够吸引学生的注意力、激发他们的学习兴趣。另外,通过尝试“翻转课堂”的教学方法,利用短小精悍的教学录像,也可以重构学生的学习流程,提升学生的自学能力。

案例教学,是一种开放式、互动式的新型教学方式。通过引入一些实际案列可调动学生的参与热情,唤起潜藏在学生身上的丰富实践经验及能力;通过对同一问题不同观点的交流互动,能够激发学生的创造性思维,提高其判断、分析、协调及解决问题的能力。例如,在讲授目的产品不同的原油常减压精馏工艺时,可以引入下面的案例:以生产燃料为目的的原油常减压工艺流程,常采用三段汽化工艺,即,在常压精馏塔前还设置有初馏塔;而在以生产基本化工原料为目的的三段汽化工艺流程中,在常压塔前设置的是闪蒸塔。针对这个实际案例,组织学生对两个工艺过程的不同之处展开讨论,在这种交流互动中,学生可以畅所欲言,尽情发挥自己的观点,获取专业知识的同时也锻炼了学生的思考能力和逻辑思维能力。

3 组织学生在课堂上将所学重难点内容进行讲解

通过课堂教学和自主学习的合理分配,让学生积极主动参与是提高教学效果的有效方法之一[4]。传统的课堂教学活动中,都是以教师讲授为主,学生大部分时间处于听的状态,不利于教师了解学生对知识的掌握程度。针对该问题,在讲授完一些重难点内容后或在开始讲授一些新的内容前,指定若干学生利用课下时间将以上内容进行汇总整理。后期上课时,要求他们作为 “教师”将整理的内容在课堂上讲解(讲解时间一般10分钟),进行教师和学生的角色转换,把课堂交给学生;同时,要求其他学生认真听讲并将讲解错误或不明白的地方记录下来,讲完之后进行现场提问。通过这种方式,不仅可以充分了解学生对于内容的掌握情况还可针对其薄弱环节进行补充强化;与此同时,学生也可以锻炼自己的表达能力、逻辑思维能力;也为一些打算考取教师资格证的学生提供了组织课堂教学的机会。例如,在介绍催化重整部分内容时,提前一周把要讲授的内容布置给学生,要求学生利用课下时间准备课件,重点讲解催化重整原料的预处理、重整工艺流程和工艺条件。学生在课堂上讲完之后,引导听课的学生针对讲授的内容进行提问,比如,催化重整工艺流程中串联了三个反应器并且每个反应器之前都设置了加热炉,为什么要采用这样的流程,设置加热炉的目的是什么?学生还可以联系之前的内容进行提问,催化重整的原料对砷含量要求非常严格,为什么?常减压精馏过程中如何控制砷含量?通过类似这样提问回答的交流过程,学生可将该课程前后章节的内容联系起来,温故知新,也提升了学生学习的积极性和兴趣。

4 将部分教学内容与科研实践相结合

以上的课堂教学方法,既注重了知识的交叉与融合,又注重了知识领域的拓宽和案例的结合,但是学生仍缺乏实践经验及将理论知识应用到实际工程问题的意识,所以可将教师的科研与教学内容结合。实际上,大量科研课题是针对石油化工中的瓶颈问题开展的,因此可将教师的科研实践与教学内容相结合,增强课堂教学的趣味性和研究性,激发学生的学习热情。例如,在讲授“石油烃裂解制烯烃”时,告知学生目前乙烯的产能过剩,而丙烯的需求量很大,靠石油烃裂解制烯烃时副产的丙烯不能满足目前的市场需求,因此大量科研工作者在研究用甲醇制丙烯。以此为切入点还可引导学生分析甲醇的来源,将煤化工工艺学的内容联系起来。在课堂教学中大量与科研实践相结合,促进了学生将理论知识应用到实际工程问题意识的培养。此外,还可通过认识实习、开设专业综合实验、顶岗实习等多种实践教学手段,补充和完善理论教学,培养与训练学生的实践能力。教师也可通过将学生邀请进入自己科研团队的方式让学生进一步了解行业背景,尝试让学生利用书本知识解释科研实验中的反应机理。例如,上面提到目前很多科研工作者从事甲醇制丙烯的研究,用到的催化剂是固体分子筛酸碱催化剂,之所以用分子筛催化剂是因为它的酸碱中心可以使碳链发生异构化、烷基化等反应,通过这样的思考可以促进学生对于专业知识的理解和掌握。经过从理论到实际,再到理论的摸索学习过程,增强了学生认识问题、分析问题、解决问题的能力,培养了学生的自学能力,也增强了教学效果。