公务员期刊网 精选范文 流体力学基础知识范文

流体力学基础知识精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的流体力学基础知识主题范文,仅供参考,欢迎阅读并收藏。

流体力学基础知识

第1篇:流体力学基础知识范文

一、流体力学课堂的教学方法

流体力学是工程技术专业的基础课程,其课程性质决定了其课堂教学的内容理论性知识多、记忆量大,比较枯燥。学生在进行学习的过程中,容易产生乏味感和懈怠感,导致流体力学的课堂效果不佳,学生对知识点的掌握情况不好等问题。在课堂上学生无法做到全神贯注地学习和理解,也就使学生无法做到对知识点的有效掌握,就会使学生的学习兴趣下降。特别是流体力学与其他学科和行业都有一定的联系,学生在学习过程中如果不能理解所学的知识点,对其在其他相关学科中的学习也有一定的阻碍。由于流体力学是一门基础性学科,学生在进行学习时,其基本的任务是要将流体力学的理论知识与重点深入地理解和掌握,但学生往往忽视了基础知识以及理论知识的重要性,过分地关注在例如方程推导等内容上,使学生的学习出现断层,无法做到整体的理解和掌握。针对这些问题,教师可以在课堂中进行一定的改革和变化。首先,教师可以在每日上课前对本次课程所要讲解的内容进行引导。通过精彩的引言,将本次课程所讲的内容与前后知识点相结合,使学生能够得到具有极大吸引力以及趣味性的课堂形式。在进行讲解过程中可以将流体力学知识与生活中的自然现象以及科学原理进行阐释,从生活中带入,使学生产生共鸣,进而做到有效的学习。而在课堂结束后,为了保证学生的学习效果,检查学生的记忆效果,则可以为学生进行别致的课后作业,在课后作业的帮助下,使学生能够有效地记忆知识点和概念,使学生能够改善知识点掌握不良的情况,为学生在其他学科的学习中增添助力。而教师在教学过程中,对学生的引导也十分重要。学生在学习过程中,容易出现学习内容理解偏颇、学习方法不当以及学习的重点掌握不明等问题,这时教师应对学生进行积极有效的引导,特别是在概念的记忆方面,引导学生以记忆概念为主的学习方法,防止学生过分追求解题而导致的知识点记忆断层。教师在每章节的教学后,应对学生进行一定的复习教学与指导,帮助学生明确每一章节的重要内容,并对学生的知识理解做到有效的掌握和补充。

二、多媒体教学与传统教学相结合

多媒体教学作为当前较为先进的教学方式,对丰富教学内容,增添教学形式都有重要的地位和作用。多媒体教学目前也成为流体力学教学过程中重要的教学形式之一。多媒体教学与传统教学不同的地方在于,教师不需要在课堂上利用板书进行教学内容的展示和讲解,在教学过程中,能够加快教师的教学进度,使学生能够轻松地完成繁重的教学任务,并通过多媒体教学形式,在较为复杂且理解性较强的知识点的学习过程中,能够通过动画、图像、视频以及声音等内容进行辅讲解,使学生更好地理解所要掌握的内容。但多媒体教学也存在着一定的缺陷,例如在多媒体教学的模式下,教师不需要通过板书进行讲解和推导,学生理解和记忆的时间短,无法保证所有学生都能够做到对所讲知识有效地理解和掌握,而多媒体教学在师生互动方面也存在一定的缺陷,学生与教师的互动减少,教师则无法通过学生的反馈调整教学的进度和速度,使学生在高压高速的课堂氛围下进行学习,长时间就会造成学生注意力不集中,教学效果大打折扣。可见,多媒体教学与传统教学,在教学过程中缺一不可。可以通过对二者的结合,将多媒体教学与传统教学的优势与劣势互补,以做到最有效最积极的课堂教学形式和效果。

三、结语

第2篇:流体力学基础知识范文

关键词:行业类高校;高等流体力学;电力特色

作者简介:张莉(1973-),女,河南商丘人,上海电力学院能源与机械工程学院,教授;李永光(1957-),男,湖南长沙人,上海电力学院科研处处长,教授。(上海 200090)

基金项目:本文系上海电力学院研究生学位课程建设项目(项目编号:YKJ-2012004)的研究成果。

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2013)04-0086-02

2007年,上海电力学院(以下简称“我校”)热能工程二级学科首次招生,“高等流体力学”首次开课,授课人数20余人,随后几年间授课人数逐年增长。2012年我校动力工程与工程热物理一级学科又增设了工程热物理、动力机械及工程两个二级学科,“高等流体力学”授课范围扩大的同时,授课人数也增加到60余人。但是鉴于我校研究生数量较少、研究生培养历史较短以及师资力量相对薄弱等方面的原因,课程教学的教材只能选用已有的教材。在组织教学内容的过程中发现,大多数教材普遍存在一些问题,如过于强调基本理论、对数学知识的要求偏高、工程应用方面涉猎很少,或者有些工程学科专业的相关研究生教材又往往缺乏理论深度,工程应用背景针对性强,有的强调高速气动、有的强调水动叶栅流动、有的强调涡动力学等等。鉴于此,作为行业类非重点高校,在“高等流体力学”课程的教学中有必要结合我校电力特色进行教学内容和教学模式的研究和探讨。

一、课程教材的调研

为了能更好地做好此次教学研究工作,课程组首先对高校相关研究生专业的“高等流体力学”教材进行了调研,分别对清华大学、西安交通大学、上海交通大学、浙江大学、东南大学、华中科技大学、华北电力大学、东北电力大学等国内若干所大学相关课程的教材及内容做了简单分析。

从调研情况看,所有高校都对流体力学的基本理论很重视,主要教学内容均包括了流动的基本概念和基本方程、流体运动学、势流理论、涡旋流动、理想流体流动、粘性流体流动等,目的是使研究生通过学习流体的运动规律,掌握研究流动的方法进而分析解决实际的工程流动问题。同时,各高校的教材和主要教学参考书还注重与自身学科研究方向的结合,课程的某些重点内容与培养方向相接轨,突出了自身的特色。通过调研发现,“高等流体力学”作为研究生学位课,其教学内容在注重理论基础的同时,还必须要与自身的相关学科研究方向相结合,在注重通用理论的基础上,形成自己的特色。

二、我校授课对象的情况分析

做好此次的教学研究工作,还必须对我校的授课对象有一个清楚的认识。目前,“高等流体力学”已列为本校工程热物理、热能工程、动力机械及工程三个二级学科的研究生学位课程。尽管上述三个二级学科涉及能源、动力、机械等宽广的工程领域,但结合我校的电力特色,这三个二级学科主要是为电力行业培养高级的专业人才,而在电力行业中流动现象多存在于流体机械、动力机械、换热设备、容器、管道等部件,因此,在教学内容上应在透彻讲解流体力学微分方程组的基础上,注重联系工程实际,偏重于讲解流体在上述部件中的流动以及与这些部件间的相互作用。

研究生生源的实际情况也是教学过程中需要考虑的因素。到目前为止,我校共招收6届研究生,通过向历届学生了解发现有以下情况存在:部分同学跨专业(如:数学专业、电力系统及其自动化专业、计算机与信息专业等)考入学校,本科阶段没有学习过“工程流体力学”课程;即使是研究生与本科专业背景相同的同学,他们也普遍认为”工程流体力学”较难,硕士入学考试时,大都不选考“工程流体力学”,这也使得他们可能在大三、甚至大二学完以后,再也没有系统地梳理过流体力学知识。由于各高校专业方向的侧重点不同,大部分同学对电力行业内的流体知识也不是特别了解;考入学校的学生多数为调剂生,入学成绩整体不高。这些情况都表明,我校硕士研究生入学时的流体力学知识基础相对比较薄弱,需要在授课过程中讲授深层次新知识的同时,及时地对基础知识进行回顾和提醒。

三、教学内容的组织

基于以上的调研和分析,课程组首先对教材进行了选取,对教学内容进行了组织。

1.教学目标的明确

“高等流体力学”是为工程热物理、热能工程以及动力机械与工程专业研究生设置的专业学位课程。根据专业人才培养的需要,结合长期本科教学的经验,确定了课程的教学目标:通过对流体力学的基本概念、基本方程、理想不可压缩流体的流动、粘性不可压缩流体的流动、层流边界层与紊流流动、理想可压缩流体等内容的学习,深化学生对流体力学基本内容的理解,提高学生的理论水平,为相关专业课程的学习、课题的研究及论文的撰写打好理论基础。

2.教材的选用

“高等流体力学”是动力工程及工程热物理学科的一门传统课程,有很多课程教材可供选用。通过调研比较,西安交通大学有关电力生产的学科研究方向与我校的研究方向比较吻合,其在“动力工程及工程热物理”一级学科中的学位课 “高等流体力学”选择了西安交通大学出版社出版、张鸣远等编著的《高等流体力学》一书作为教材,课程组通过对该书内容的分析,也一致认为张鸣远等编著的《高等流体力学》比较适合我校侧重于电力人才培养的需求,因此决定选用该书作为本校“高等流体力学”课程的教材。与此同时,将调研中搜寻到的各有特点的教材作为参考书目推荐给学生供他们参考使用。

3.教学内容的组织

在进行“高等流体力学”课程教学内容的组织时,结合我校研究生培养方案和学科建设,既照顾到经典流体力学的通用知识,又重视课程知识的针对性、行业应用的特殊性、学生学习的兴趣以及与学校其他研究生课程的关联性。课程内容的组织主要从以下几个方面考虑:

(1)奠定扎实基础。“高等流体力学”是一门系统性、逻辑性较强的课程,作为硕士研究生的学位课,在加深学生对流动所伴随的物理现象的认识、概念的建立及规律分析的同时,还应努力加深学生学科知识分析和研究问题的基本思想和方法的理解和掌握,提高分析和解决流体力学问题的水平及能力。

(2)突出电力生产特色。针对我校研究生的专业背景和学科研究方向,强调本学科与电力生产流程和设备的结合,强化学生应用流体力学知识,认识并解决相关电力工程问题的能力。教学内容应注重理论与实践相结合,保持基础理论知识与工程应用知识的相对平衡。

(3)注重课程的关联性和完整性。在关联性方面,首先与本科阶段的教学内容要有恰当的分工和衔接,其次要避免与其他相关课程之间缺乏衔接;在自身内容体系的完整性方面,既要注意到对数学知识回顾和补充的必要性,又要对工程中不常见的复杂流动概念的介绍有所兼顾。

考虑以上几个方面,课程组将教学内容梳理成五部分,第一部分安排了“矢量运算分析”、“场论知识”的回顾以及曲线坐标、张量分析知识的补充;第二部分“流体力学的基本方程”主要介绍流体力学的基本概念,流体力学的控制方程组以及一些相关的重要定理;第三部分“理想不可压缩流体的流动”介绍平面势流,空间轴对称势流和理想流体中的旋涡运动,其中对平面势流里的复位势、叠加法、镜像法和保角变换法做重点讲解;第四部分“粘性不可压缩流体的流动”中介绍纳维―斯托克斯方程的精确解,小雷诺数流动,层流边界层流动和紊流,其中对工程中应用较多的层流边界层流动和紊流做重点讲解;第五部分“理想可压缩流体的流动”分别介绍一维流动和平面流动,其中对一维流动做重点讲解。

四、教学模式的探讨

学生的学习情况在不断地发生变化,这就需要教师不断根据实际情况,进行教学模式的探讨,充分调动学生学习的主动性和积极性,使他们在有限的学习时间中学习好内容繁多的“流体力学”。

1.教学方法

“高等流体力学”是一门基础课,基本概念和基础理论部分内容较多,涉及的公式推导也比较多,传统的“黑板板书”的教学手段对教学信息的处理和呈现都比较单一,造成学生对于传热学内容的理解和掌握有一定的难度。为此,课程组以教材为蓝本编制了电子课件,教学中采用板书与多媒体相结合的教学模式,突出传统板书中能够清晰讲解复杂理论推导的优点,充分利用多媒体教学信息量大、图像清晰生动的特点。经过一段时间的尝试,这种教学方法既达到了避免研究生在课堂上因长时间精力高度集中而产生疲劳的问题,又有利于他们理解并掌握复杂的流体力学基本理论的教学效果。

2.教学手段

尽管本课程以课堂讲授教学方式为主,但要避免“填鸭式”的讲授,要注重以启发式讲授为主的多种教学方法的综合应用,提高课堂教学的趣味性,以提高学生学习兴趣和主动性。课程组结合本科“工程流体力学”多年的教学经验,在教学过程中注意做到几个注重:注重物理概念与数学方法的有机结合,强调物理含义的数学表示以及数学内容的物理解释;既注意严格的理论推导,又注意叙述的深入浅出;注重教学思路,教学方法,在引进概念介绍方法时,突出解决问题的思维方法及推理要点;注重从与教材不同的角度或思路来讲述同一教材内容,以丰富学生思维和联想能力;注重引导学生围绕课程内容,发现问题、提出问题、解决问题,同时再结合课程组教师的科研积累,搜集并提炼出了大量与电力生产紧密关联的工程案例,通过案例的讨论和分析,增强学生学习理论知识的兴趣,提升课堂教学的互动效果,增强学生运用理论知识分析并解决工程实际问题的能力。

3.辅助教学

仅仅通过课堂上对教材的学习是远远不够的,还必须配套地做大量的习题,才能较好地使学生掌握具有理论性强、公式多、数理基础要求高的“高等流体力学”课程。考虑到我校研究生教学的特点,课程组根据教材的主要内容编写了典型习题集。习题集力图做到习题具有典型性,能够对应教学内容的各个知识点,学生通过习题的练习,能有效地掌握教材中的基本知识。此外,习题集中的习题也尽可能地结合电力生产中的流动问题,帮助学生对专业关联工程问题进行认识和思考,培养学生应用知识的能力。

4.课程考核

课程考核成绩应该能够较为客观地反映学生对课程的整体学习情况。为了全面地反映学生的全程学习过程和最终的学习效果,课程组经讨论明确了课程的总评成绩由平时成绩和期末考试成绩综合评定得出,平时成绩与期末考试成绩的分配比例是2∶8。平时成绩包含作业、考勤、课堂表现等几部分。期末考试采用笔试形式,考试试卷从建立的试卷库中随机抽取。

期末考试是课程考核的重头戏,为了提高学生的学习积极性,同时也为了增强教师的工作责任心,实行考、教分离是一个较好的督促办法。为此,2012年课程组根据课程的教学要求组织编写了试卷库。试卷库中的试题符合教学大纲的要求,内容丰富、形式多样、题型一致,试题表述清楚,要求明确,无偏题、怪题,难易得当,考核的知识点覆盖面宽,能考核学生掌握知识以及应用知识进行综合分析能力的情况。此次编写的试卷库共包含试卷6份,至少够三年使用,随着试卷库的使用,课程组还拟将对试卷库进行不断扩充。

五、结束语

“高等流体力学”的日常教学工作一个任重而道远,为了适应高等流体力学服务于日新月异的学科发展的需求,提高该学位课程的教学效果,更好地为本校研究生人才培养服务,课程组将把教学研究工作不断地持续进行下去,搜集最新最前沿的相关信息以补充教学内容,探讨教学模式以提高教学效果,及时对习题库和试卷题库进行更新。相信只要教师多花一点时间,多动一点脑筋,多找一些教育学生的切入点,因材施教,一定能取得好的教育效果。

参考文献:

[1]张鸣远.高等流体力学[M].西安:西安交通大学出版社,2006.

[2]董守平.高等流体力学[M].东营:中国石油大学出版社,2006.

[3]王献孚.高等流体力学[M].武汉:华中科技大学出版社,2006.

[4]王松岭.高等流体力学[M].北京:中国电力出版社,2011.

[5]周云龙.高等流体力学[M].北京:中国电力出版社,2008.

第3篇:流体力学基础知识范文

关键词:教学目标;流体力学;理念

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)07-0199-02

一、引言

随着新信息技术的发展,高等院校课程的教学模式已从粉笔加黑板传统单一的授课方式进化为应用现代化教学设备如多媒体课件、微课、幻灯片等多元化的授课模式。现代化的教学手段使枯燥的理论知识、复杂的运行状态、难解的装置结构呈现在屏幕上,化解了问题难点,开阔了学生视野,拓展了学生思维,节省了授课时间,为更新内容创造了条件。本人作为教学一线教师,充分认识到有些课程,特别是专业基础课和专业课的概念抽象,理论晦涩难懂,学生产生了抵触情绪。经十余年教学经验总结,以流体力学课程为例提出采用现代化教育手段激发学生发散性思维从而达到提高学习兴趣的目的,在讲授过程中与实际应用紧密联系在一起,使学生达到举一反三、触类旁通,并通过课上提问、随堂测验、实验检测与期末考试来考核学生学习效果的理念。流体力学课程在教学过程中遵循“以人为本”的教育理念,充分发挥教师的主导作用和尊重学生的主体地位,根据学生特点精心做好教学设计方案;教学队伍成员教学思想活跃,积极开展教学改革和教学研究工作,承担校级教学研究课题,大大推动教学改革工作;课堂教学采用启发式教学方法,加强习题课、讨论课比重,注重学生能力培养等等。

流体力学课程是我校建筑环境与设备工程、给排水科学与工程、环境工程、热能动力工程等多个专业中核心专业基础课程之一,是其他专业的主要专业基础课程,在专业培养方案及整个教学体系中处于承上启下的重要位置。但由于该课程理论性较强,概念抽象,学生普遍缺乏对流体的感性认识,使流体力学课程历来被认为是教师难教、学生难学的课程之一。因此,需要在教学方法、内容及形式上做出改进,在此基础上本文提出了基于IAE(Interest,Apply,Exam)理念的教学模式。

二、学习的兴趣――Interest

流体力学学科既是基础学科,又是用途广泛的应用学科,它不但涵盖了经典理论而且与各类工程专业紧密结合。所以又可以称之为既古老又充满活力,不断发展的学科。在教学内容上我们科学地处理了“基础”与“前沿”、“经典”与“现代”、“理论”与“实际”的关系,建立了完善的培养方案和课程体系,流体力学课程体系可分为基本理论、基本应用与专门课题三大模块。对于这样一个课程如何提高学生学习兴趣,首先,从开课伊始便让学生对授课老师产生兴趣,继而对该课程产生兴趣。为此需老师通过丰富的阅历、发散性的思维、渊博的知识、新颖的教学方法等来吸引学生、激发其学习兴趣。课程内容固定,但教学方法是灵活的,结合实际生活、学科的前沿知识引导学生去提问、思考和探索。比如讲到流体的物理学性质――粘性,学生看到教材上枯燥的长篇理论,深奥的道理很可能兴趣全无,在讲授过程中将日常生活中常用的水与食用油作为切入点,对比两者粘性大小,引起学生好奇,达到活跃思维,激发创新的目的。另外,在高科技技g引领下,每个人都离不开智能手机,学生也不例外,甚至课堂上玩手机,既然离不开手机,索性将一些枯燥的理论制作成生动的视频,与学生共享,在枯燥的课堂上用现代的技术手段(微课或慕课)活跃气氛,激发学生学习的积极性。这样学生通过发散性的思维模式去理解抽象的概念往往会有意想不到的结果,进而将书本知识内容融会贯通、学以致用,即使是再枯燥的理论也会产生浓厚的兴趣。

三、实际的应用――Apply

当前流体力学课程的发展进入了一个崭新时期,分析手段更加先进,与其他学科的交叉渗透更加广泛深入,与实际工程联系更为紧密。为有效提高教学效果,更好地实现培养目标,经过多年的摸索,我校形成了能够理论联系实际,课内外结合,融知识传授、能力培养和素质教育于一体的显著教学效果组织形式,即理论课教学―实验实习―课程设计互动的综合教学模式。遵循了从实践中来到实践中去的原则,符合学生对知识从感性认识到理论学习再应用到实践的认识规律。这种教学内容的组织与安排模式各环节紧密衔接,理论与实践结合得更加紧密,使学生在学习知识时能够融会贯通,对培养学生的创新思维和独立分析问题、解决问题的能力具有较好的效果,促进了学生综合素质的提高。该课程的基本应用是指应用流体力学的基本理论及相关方程求解与专业相关的典型工程流动问题,如孔口、管嘴及有压管路流动,以及气体射流流场特征与参数求解等。专门课题是指对流体力学领域中的一些典型或热点课题,如“流体减阻理论与方法”及“有压管中的水击现象”等给予生动形象的讲解。并将该课程应用到专业前言知识中去,比如海绵城市建设,智慧水务与智慧城市构建、水资源开发利用存在问题等,能够达到更好的教学效果。

四、考核的方式――Exam

学生考核的可靠性和可行性问题一直是我们探讨的问题。教学过程中全面考核学生的能力,主要方式有以下几种:

1.随堂测验与课后作业:流体力学知识点较多,每次课都需留3―4道习题练习,以便学生掌握巩固课堂所学内容,考核知识积累能力。教师通常批改一半作业,另外通过辅导答疑了解学生的学习情况,从而在课堂上有针对性地进行教学总结,提出存在的问题,研究解决办法,提出改进措施,教师对每个学生每次的作业都要有成绩记录。

2.实验考核:该考核可检测学生理论联系实际、分析问题的实践能力,实验指导教师对实验报告全批全改。学生完成作业和实验报告质量较高,教师对作业和实验报告的批改量≥70%,且有成绩记录。通过基础性实验教学加强学生对基本概念、理论的理解掌握,使学生掌握静压强、动压强、流量、水头损失等基本参数的测量方法及基本技能;通过综合性实验,培养学生对实际工程中涉及的流体力学问题进行实验研究的兴趣,使其在实验的安排与设计、仪表的选用、现象的观察、实验数据的处理、结果的分析及报告的撰写等方面均得到较好的训练,从而为学生创新能力和综合素质的培养创造条件。

3.期末考试:该环节主要考核学生综合分析和解决问题的能力。通常考试是检验学习效果的一个重要途径,但是我们要避免一考定最终成绩的现象,因这样有些同学会在考前死记硬背课本上的内容,或“临阵磨刀”,甚至“越磨越糟”,往往适得其反。多年来,流体力学一直使用试题库出题,考题难易适度,试卷内容包括基础知识与基本理论、分析计算能力、灵活应用知识,符合教学大纲要求,体现了教学过程中加强基础知识、基本理论及基本能力的教学思想。

4.总评成绩:综合以上几方面确定学生的最终成绩,即平时成绩、实验成绩与期末考试成绩的加权组合。实践证明此计分方法,既激发了学生的学习积极性,又全面考核了学生全学期的学习成绩。

除此以外,我们利用校园网络平台,建立流体力学网络辅助教学体系,在网上提供教学大纲、电子教案、教学日历、自我测试题、电子版流体力学题库、题解、学习指南、模拟试卷、多媒体课件、教学录像及网上答疑系统等,建设丰富的网络教学资源,给学生课后复习、自学、辅导和练习创造条件。

五、结语

本文提出的基于IAE理念的教学模式已在我校部分院系逐步发展,但仍处于探索阶段,为了提高教学质量,有效地实施高等院校的素质教育,培养创新型人才,我们应该随着时代的步伐,技术的革新不断地去调整教学模式与方法,更好地适应时代的发展。通过采用有效的教学方法、先进的教学手段和灵活的教学方式,使教学更加科学化、规范化、生动化和形象化,将所要讲授的内容与一系列问题相结合,启发学生思考和研究,鼓励学生提出问题,开展课堂讨论,鼓励学生大胆发表不同见解。有效地调动学生的学习积极性,使学生容易掌握重点和难点,所学知识能够连成线,穿成串,结成网,形成体,教学效果显著,同时培养了学生独立思考、创新意识和创造性思维能力。

参考文献:

[1]王文礼.MOOC的发展及其Ω叩冉逃的影响[J].江苏高教,2013,(02):53-57.

[2]刘利.手机微课在审计教学中的应用研究[J].集宁师范学院学报,2016,(02):73-77.

[3]王建平.力学课程教学改革浅析[J].教育科学,2009,(01):183.

第4篇:流体力学基础知识范文

[论文摘要]结合学习主体所处的时代环境变化和流体力学知识体系的学科跨度大以及对数学基础知识要求很高的特点,分析了流体力学教学中存在的问题和难点,提出大量采用实验模型和实例教学以加强流体流动现象的观察理解对提高流体力学教学效果的必要性和重要性。 

 

前言 

流体无固定形状,即使受到的剪切力再小,只要持续存在,其变形便会随时间持续增大,不像固体那样,一定的受力只能产生一定的变形。流体力学的基本理论非常严密,描述流体流动现象的数学方程非常复杂,高度非线性[1],因此学生对流体力学敬而远之的现象比较严重。此外由于因特网及电子计算机的普及,各种虚拟现象泛滥,在这样的环境下成长的学生接触和感受实际发生的各种流体流动现象的机会大大减少,对自然现象的观察和理解能力很弱。很多学生在接受流体力学教育之前所受的应试教育的影响下[2],学习只是为了在短时间内对给出的试题做出接近正解的答案获得高分,这种教育具有多大的意义,近年来许多学者从教育学的角度提出了疑问[2]。只有直面实际的流体流动现象,抓住问题的本质,才能诞生真正的学问和研究。笔者基于对本科和研究生的流体学教学中存在的难点和问题,指出了重视流体流动现象的观察和理解对提高流体力学的教学效果的必要性和重要性。 

 

一、流体力学教学面临的问题 

 

(一)新形势下学生所处的社会环境变化 

学生从小利用电脑打电子游戏的玩耍时间和机会大大超过了自己亲自动手制作道具及模型的体感玩耍时间,通过体感玩耍接触和观察自然现象的机会大大减少。 

因特网的普及使得在短时间内获得大量的信息或实时获得信息成为可能,近年来出现学生过度依赖因特网的倾向,疏远了纸质图书及相关文献这些知识比较系统逻辑性也有保证的传统信息载体。但因特网上除了正确的信息外,还有很多不准确甚至错误的信息,即使是正确的信息,各信息段之间也缺乏系统性,因此学生仅通过因特网难以建立系统的知识体系的。 

手机在学生中的普及也使得学生们在实际问题时,不是自己独立分析问题,找出问题发生的原因,而是直接利用手机询问他人求得答案,这样很难培养独立制定计划,对可能事态进行预测,独立进行解决问题的能力。这恰恰是对一个未来走向社会成为一个优秀的技术人员的必经的磨砺之道。 

(二)流体力学教学面临的问题 

流体流动的力学模型及其运动的物理意义难以理解[3]。流体粘性产生的模型与牛顿粘性定律之间的对应关系就是最好的一个例证。大多数学生虽然能够使用牛顿粘性定律进行计算,但对运动的流体为何会产生粘性却不能正确的理解。的确,对于涉及到流体力学的某些技术或产品设计,只要懂得一定的计算即可,但是对于开发和设计全新的产品,如不能准确把握所涉及到的相关流体流动的物理本质,有时会产生完全错误的设计结果。 

流体的运动状态繁多,流体力学融合领域广,要求学生掌握更多的学科预备知识,尤其对数学知识的要求更高,使部分学生觉得流体力学是难以接近的一门课。同一流动现象常常可以从多个角度进行解释,容易使学生产生混乱。比如对翼型的流体力学工作原理,可以从流体流动的动量变化、伯努利方程、压力积分、流线的曲率变化等几个方面进行解释,解释方法之多反而会使学生产生混乱,但每一种解释方法都是正确的,解释的都是一个本质,只有完全理解各种解释方法所依据的理论,才可以解除认识上的混乱,将学到的知识条理化、系统化。 

描述流体流动的数学方程高度非线性化,数学上求解比较困难。描述流体流动的纳维斯方程和能量方程是否可以求解以及数学解的唯一性的证明需要微分方程、偏微分方程、多元积分等很深的数学功底,但近年来学生的数学和力学基础存在下降的趋势。 

学生在进入大学前所接受的应试教育的影响很大,以考试成绩自评学习效果的认识根深蒂固[4]。实际的流体流动现象往往没有单纯的标准答案,有时甚至存在多个解,重要的是抓住流动现象的物理本质,系统的理解流体力学的基本原理。 

二、教学方法对应 

 

解决上述问题的根本方法,笔者认为只有从流体力学教学上,直面涉及流体的各种现象,使学生准确的把握物理本质。为此在流体力学课堂上,广泛采用流体模型教学和实例教学,增加学生观察理解各种流动现象的机会,唤起他们对本门课的兴趣的同时,让他们形成为探究流动现象背后的物理本质进行思考的习惯,这对解决流体力学教学所面临的问题至关重要。 

使用电吹风斜向上吹一个让学生事先准备好的气球模型,没经验的学生会意外的发现气球会向斜上方飘起。这一流体流动现象可从风从气球上部通过时,由于气球表面的影响风的流向会产生变化,也就是流线产生弯曲,根据风的动量变化必然产生使得气球浮起的升力得到解释,还可以从物体绕流边界层效应得到解释。从这一简单的模型教学,还可以解释飞机的机翼通过改变空气的流向进而获得升力的流体力学上的工作原理。 

在一个装满水的塑料瓶内分别放入密度大于水和小于水的钢球和泡沫小球,然后放在一个可移动桌面上,使桌面等直线加速运动,可发现钢球运动较慢留在瓶底,而泡沫球运动较快停在瓶嘴附近。观察这一个现象引导学生:泡沫球运动得较快是因为等加速运动瓶内流体的静压在运动方向上递减形成压力梯度,小球的前进方向的压力大于等加速运动产生的惯性力,因此小球相对于塑料瓶向前运动;而作用于钢球的前进方向的静压力虽然与泡沫小球相同,但惯性力大于前进方向的静压力,因此钢球相对于塑料瓶向后移动。这一模型教学比一般教科书上关于流体等加速直线运动流体的静压分布的例题更容易使学生抓住问题本质,且能培养学生独立思考之习惯,使学生体会到透过流体流动现象来正确观察和理解把握流体力学基本规律的乐趣。 

经常使用立式洗衣机的人都知道,洗完衣服后,衣兜总要被翻过来,假如原来兜里装有硬币等硬物,也会被掏出来[5]。把这个实例在课堂上讲出后,学生们甚有兴趣,追问其中的奥秘,当教师根据伯努利定律做出解释并介绍伯努利这位集物理学家、数学家、力学家及医学家于一身的瑞士的大科学家的基本情况后,学生们顿时对这位科学家充满了崇敬之情,通过大量这种实验模型及实例教学,学生们对学习流体力学这门课更有了兴趣和信心,教学效果的提高自不待言。 

 

三、结语 

本文详尽的分析了计算机、因特网、手机等现代化通讯工具普及后对学生产生的影响,由于流体力学课程知识体系的特点,这种影响产生的负面问题很多,尤其是教授成长在应试教育体制下走入大学的学生,更需要转换认识,改变教学观念,在课堂教学中广泛植入实验模型教学和实例教学,让学生直面实际存在的各种流体流动现象,通过实际的流体流动现象的观察和理解,达到生动及形象的把握这些流动现象背后的流体力学的基本定理,有效提升教学效果的同时,通过简单实验模型的制作还可提高学生的动手能力,这对学生走向社会成为一个具有创造性思维能力、独立思考的优秀技术人员也是一个必不可少的雏形磨砺。 

 

[参考文献] 

[1]黄卫星.工程流体力学[m].北京:化学工业出版社,2008. 

[2]李丹,杨斯瑞.应试教育与创造性人才的培养[j].继续教育研究, 2009, 25(2): 180-185 

[3]向文英,程光均.流体力学教学与实验创新[j].重庆大学学报(社会科学版),2003,18(4): 21-26. 

第5篇:流体力学基础知识范文

关键词:过程装备与控制工程;力学课程;内容优化;教学方法

作者简介:孙铜生(1981-),男,安徽天长人,安徽工程大学机械与汽车工程学院,副教授。(安徽 芜湖 241000)

基金项目:本文系安徽工程大学教学研究项目“过程装备与控制工程专业力学基础课程教学研究与探索”(项目编号:2011xjy32)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2014)14-0110-02

我国的过程装备与控制工程专业始建于20世纪50年代,前身为化工设备与机械专业,由于其应用于加工制造流程性材料产品即过程工业中,且随着自动控制技术在化工机械中得到越来越广泛的应用,1998年经过教育部批准更名为过程装备与控制工程。该专业目标是培养从事过程装备与控制工程领域的工程设计、安装、检修与科研的应用型高级专门人才,专业基础课及专业主干课主要有:理论力学、材料力学、机械设计、机械原理、电工技术、电子技术、工程流体力学、工程热力学、化工原理、流体机械、化工设备设计、化工容器设计、过程装备控制技术、过程装备制造与检测、控制工程基础等,可见力学类课程在专业学习中起着重要的作用。

一、力学课程在过程装备与控制工程专业中的地位

过程装备根据制造方法不同可分为两类:一类以焊接为主要的制造手段,如塔器、换热器、锅炉等,称为过程设备;另一类以机械加工为主要的制造手段,如压缩机、离心机、泵等,称为过程机器。[1]过程设备一般都承受高温、高压,承压部件的设计与制造是过程设备的关键问题,故过程设备又是压力容器,压力容器又分为低压容器(0.1MPa≤p<1.6MPa)、中压容器(1.6MPa≤p<10MPa)、高压容器(10MPa≤p<100MPa)、超高压容器(p≥100MPa)。为了过程装备能够正常工作,需要其具有一定强度、刚度及稳定性,如果装备的结构设计不合理或选材不当,就不能保证装备的正常及安全运行,同时还要满足经济性要求,这就对理论力学及材料力学提出了更高的要求。过程装备中既有以流体能量为原动力的动力机械如蒸汽轮机、内燃机等,又有以流体作为工作介质的工作机械比如泵、各种塔器、换热器、压缩机等,这些过程装备都是以流体静力学、运动学及动力学为基础的,故工程流体力学对过程装备的设计尤为重要。过程装备的主要目的是为了获得产品,从原材料到产品要经历一系列物理的或化学的反应,这些反应伴随着能量的转换,特别是热能与机械能的转换,而工程热力学的研究内容就是能量的转换规律、提高能量转化效率的途径及能源利用的经济性,故工程热力学是过程装备与控制工程专业的一门基础性课程。可见,力学类课程可为学生学习专业知识和从事本专业的科研、生产工作奠定必备的理论基础。

二、力学课程教学问题及内容优化

1.课程存在的问题

通过对开设过程装备与控制工程专业的部分院校走访及对各力学教材的分析,发现目前专业力学课程存在的主要问题有:

(1)基础课程和专业课程的衔接不好。比如在工程流体力学里讲述了流体动力学方程式及管中流动等,而在流体机械中这些基础知识重复出现;工程热力学中的压气机热力过程及制冷循环在流体机械中也有重复;理论力学中的摩擦在机械设计中也有相关内容,材料力学中的平板弯曲分析理论与过程设备设计中有关内容重复等;工程流体力学中的流体静力学基本方程式、流体在管中流体的连续方程式和能量方程式、流体粘性和牛顿定律、层流及湍流、流体流动的沿程阻力及局部阻力等内容均在化工原理中出现。

(2)力学课程之间也存在内容交叉。比如工程流体力学和工程热力学中都有关于气体和蒸汽的流动、定熵和绝热气流的基本方程式的章节,工程流体力学中的流体状态参数和工程热力学的工质状态参数内容重复;理论力学中的动量矩定理在工程流体力学中重复出现。

综上可见,目前力学基础课停留于教学计划中的自身建设,课程规划缺乏有机协调,课程结构需要进一步优化,避免重复建设和教学资源的浪费。

2.课程内容优化

由于理论力学是学习材料力学的基础,可将将理论力学和材料力学合并为工程力学,工程流体力学及工程热力学单独开设,将专业课中所需要的理论知识全部归并到力学课程中进行讲解,力学课程中的交叉内容按照先上课程先安排的规则进行调整,优化后的主要教学内容有:

(1)工程力学。[2]平面汇交力系;平面力偶系;平面一般力系;空间力系;点的运动及合成运动;钢体的基本运动和平面运动;质点的运动微分方程;刚体转动的微分方程;质点及质点系的动能定理;刚体的惯性力系;动量定理与动量矩定理;虚位移法;轴向拉伸与压缩;剪切的计算;圆轴的扭转;梁的弯曲内力、弯曲应力及弯曲变形的计算;第一、二、三、四强度理论;组合变形及强度计算;压杆稳定性计算。

(2)工程流体力学。[3]流体的基本参数及粘性;流体平衡的微分方程式;重力场中的流体平衡及流体的相对平衡;流体静压强的计算与测量;流体运动的连续方程式;流体运动的微分方程式;伯努利方程式;层流及湍流;管路的沿程阻力及局部阻力计算;薄壁孔出口流;厚壁孔出口流;平面缝隙流体;环形缝隙流动。

(3)工程热力学。[4]热力系统与热力学状态;功和热的概念;热力学第一定律;开口和闭口系统能量方程式;气体和蒸汽的比热容、热力学能、焓和熵;气体和蒸汽的基本热力过程;热力学第二定律;卡诺循环与卡诺定理;孤立系统熵增原理;压气机的热力过程;制冷循环;气体动力循环;蒸汽动力装置循环;实际气体性质及热力学表达式。

三、力学课程教学方法探索

1.理解记忆教学法

教学中发现学生学习过程中存在以下两个问题:

(1)部分同学觉得力学课程太难,书上随便哪一页都可以看到公式,一本书学下来接触的公式基本上都在几百个,便放弃了课程学习。

(2)部分同学认为既然力学就是公式的组合,那么平时上课不需要听讲,考试前把公式背一遍就可以了。其实这两种态度都是不可取的,力学课的公式虽多,但大多数公式都是基于一些基本的定理推导来的,只要理解这些定理的实质就能灵活应用,大多数的公式都可以通过简单的推理得来,所以在教学中要特别注意基本定理的讲解。比如工程热力学课程内容基本是建立在热力学第一定律和第二定律的基础上,在进行热力学第一定律讲解时,首先应从能量守恒原理讲起,能量不生不灭,热力系统存储能量的增量等于进入系统能量与离开系统能量的差值,而热力系统又分为开口系统和闭口系统,因此第一定律表达式有两种形式,难点在于开口系统表达式的推导,只要逐次分析进入系统的能量的组成、离开系统的能量组成及系统储存能量组成并用表达式表示,那么开口系统能量表达式就不难理解了。再如,工程力学中讲解如何提高梁抗弯能力的措施时,结合梁弯曲时的正应力强度条件。因此,不难理解如下措施:第一,选用合理的截面:由正应力强度条件可知,梁的抗弯能力还取决于抗弯截面系数。而材料的重量又取决于梁的截面积,因此可把抗弯截面系数除梁截面积作为一个衡量指标,以达到既提高强度,又节省材料的目的。第二,采用变截面梁:从正应力强度条件可以看出,横力弯曲时,梁的弯矩是随截面位置而变化的,位置不同弯矩的大小不同,在某个截面处弯矩最大,若设计成等截面的梁,只有最大弯矩所在截面处正应力达到许用应力值,材料强度得不到充分发挥。为了减少材料消耗、减轻重量,可把梁制成截面随截面位置变化的变截面梁。第三,适当布置载荷和支座位置:从正应力强度条件可以看出,在抗弯截面模量不变的情况下,最大弯矩越小,梁的承载能力越高,应合理地安排梁的支承及加载方式以降低最大弯矩值。

2.工程实践教学法

力学课程主要任务在于:通过对课程的学习,可提高学生力学基础理论水平,培养学生分析和处理问题的抽象能力和逻辑思维能力,为学生从事过程装备本专业的设计工作奠定必备的理论基础,同时可训练学生在实际工程中的理论联系实际的能力。因此在力学课程讲解过程中,要注重将力学知识和工程实例结合起来进行讲解。[5,6]一方面可以加深同学们对课程的认识,训练并提高从事设备设计工作的实践能力;另一方面可激发同学们的学习兴趣,从枯燥的公式推理中解脱出来,提高学习效率。例如,在进行逆向卡诺循环讲解时,逆向卡诺循环又分为制冷循环和热泵循环,通过理解记忆教学法推出制冷系数和供暖系数分别为:

(1)

(2)

这里,q1为工质向高温热源的放热量,q2为工质从低温热源的吸热量,T1为高温热源温度,T2为低温热源温度。这四个参数在理解时往往会混淆,为什么会从低温热源吸热向高温热源放热?为什么在同一个循环下会有制冷和供暖两种效应?为什么制冷系数用从低温热源的吸热量除循环净功而供暖系数却用向高温热源的放热量除循环净功呢?这里就可以引入空调的实例,夏天时把模式调到制冷上,空调就会吹出凉风,冬天时把模式调到供暖时,空调就会吹出暖风。夏天,室外比室内温度高,室外就是高温热源,室内是低温热源,制冷的原因就在于把室内(低温热源)的热量排向室外(高温热源),这就实现了从低温热源吸热向高温热源放热,同时室内制冷效果就在于从室内吸收的热量的多少,因此制冷系数把q2作为分子。冬天,室内比室外的温度高,室外就是低温热源,室内是高温热源,供暖的原因在于把室外(低温热源)的热量排向了室内(低温热源),同样实现了从低温热源吸热向高温热源放热,室内供暖的效果在于从室外吸收的热量的多少,所以供暖系数把q1作为分子。

3.知识串联教学法

过程装备的设计过程中往往需要把所学力学课程的知识进行综合,在一门力学授课课程中不能与其他力学课程独立,要注意将力学课程知识进行衔接,使同学们对力学课程形成一个整体思维,以便在今后能灵活应用并有机结合力学基本原理来解决工程实际问题。

例如,在工程流体力学中讲解流体静压强的方向性时,可将其与工程力学中的空间汇交力系知识进行串联,先分别把作用在微元四面体上的力向三个坐标方向进行投影,写出表面力方程为:

(3)

而微元体上的质量力为:

(4)

再根据空间汇交力系的平衡方程,表面力和质量力的合力在三个坐标方向的投影都为零,从而可得出在三个坐标方向的压强相等,也即流体静压强无方向性的结论。

四、结束语

力学课程在过程装备与控制工程专业建设中要引起足够重视,教学内容优化可避免重复教学,使学生在有限的课堂中能学习更多的专业知识,在教学过程中要不断探索教学方法,提高教学效果,营造良好的教学气氛,全面提高学生的综合素质。

参考文献:

[1]邹广华,刘强.过程装备制造与检测[M].北京:化学工业出版社,

2012.

[2]北京科技大学,东北大学.工程力学[M].北京:高等教育出版社,2010.

[3]张也影.流体力学[M].北京:高等教育出版社,2005.

[4]沈维道,童钧耕.工程热力学[M].北京:高等教育出版社,2010.

第6篇:流体力学基础知识范文

铸造是材料成型与控制专业的一个重要的方向之一,也是促进本科生就业的一个重要的方向,《铸造工艺与设备》是铸造专业方向的主干课程,本课程讲授铸造工程师必备的工艺理论和基础知识,使学生了解和掌握铸件生产的过程;铸造工艺及工装设计的基础知识[1];掌握铸造生产过程中铸造工艺理论和基本操作技能,促进知识向技能转化;对铸造生产的铸件进行具体设计。

1 该课程的现状

(1)课程体系不完整,该课所涉及的领域较多,必须先修完金属学、传热学、流体力学、材料力学、铸件凝固原理等基础课和专业基础课,才能很好的理解和学习铸造工艺学。也是铸造工艺学是一门理论性与实践性兼备的课程。例如,流体力学就没有这门课程,在学习《铸造工艺与设备》中相关浇道系统设计时,就要用到伯努力流体力学方程,就造成了学生的理解困难[2]。另外还缺少《合金熔炼与设计》课程。铸造专业方向作为材料成型与控制专业的方向之一,其专业基础课程和其它方向有其显著特点。需要抓紧铸造的课程体系建设,对本课程体系进一步的调研和调整。

(2)缺乏实验环节,目前实验室建设在初级阶段,没有专门的实验室及实验人员。铸造合金性能、造型材料检测、铸件无损检测、铸造CAE等实验都没有条件开展[3]。缺乏和理论课程相配套的实验。其中造型材料检测系列实验不仅是铸造方向必备,在科研上的应用也是相当好。

2 采取的措施

在当前教学条件极其有限的情况下,针对课程特点采取了一些措施。

(1)课程内容的选取。

课程的内容安排上,从工程实际出发,既保证理论内容的完整和严密性,又不拘泥于烦琐和枯燥的理论推导。按照从铸件工艺性分析到材料对工艺性影响因素的分析、从工艺方案选择到浇注系统设计、从现代铸件设计方法到工厂的铸造工艺设计、从传统的造型材料到现代造型材料顺序循序渐进安排教学内容,由浅入深,由简单到复杂,符合学生的认知规律[4]。

在教学内容上,根据最新科技发展状况及时加入一些新内容,转移侧重点,删除一些过时的内容,使学生能够及时了解和掌握实用的专业知识和本专业科学技术发展最前沿的动态[5]。将一些计算机模拟结果引进浇注系统和冒口的设计中。调整与其它课程的关系,避免内容上的重复,与整个教学体系融为一体。例如,在本课程的“金属-铸型的相互作用”的内容有大量的内容与《材料成型原理》的“凝固原理”里面的内容重复。把铸造工艺设计与工厂实际生产挂钩,挑选一些有代表性的实用零件进行工艺分析和设计。以工厂目前实践中应用的最具有代表性铸件为背景内容进行介绍,使得学生很容易掌握本专业设计前沿技术,同时也掌握工程应用中的一些非常重要的概念和结论。例如,将学生生产实习过程中(东风公司)看到的铸件为课堂实例进行讲解。

(2)建立铸造工艺资料库,为保证《铸造工艺与设备》课程以及课程设计、毕业设计的顺利进行,提高教学质量,提高学生铸造工艺设计能力,弥补铸造工程实践的不足[6~7]。在互联网上收集了大量的铸造工艺图片、视频,得到大量的工厂实际工艺设计实例,以及大量适合于铸造工艺设计的机器零件图,且可以满足学生毕业设计和课程设计的题目需求。

(3)建立网络学习环境,目前本课程的电子教案和电子网络课件进入“网络课程综合平台”上运行,学生可以在网上阅读和下载与教学相关的资料,同时也可以通过网络对学习中遇到的问题进行交流和讨论。今后将继续对本课程的网上资源进行补充和完善。

3 建议

为加强本方向的实践环节作以下建议:(1)加快引进具有高级职称的人才或者对年轻教师进行企业培训;铸造方向需要加紧人才引进。在适当的时候应该选派青年教师到重点高校或者企业进行专业性培训,使得在专业上得到更快的成长。(2)加快铸造工艺实验室的建设和规划;参与铸造工艺设计大赛,中国机械工程学会、中国机械工程学会铸造分会举办的“中国大学生铸造工艺设计大赛”,清华大学、华中科技大学、重庆大学等国内知名大学参与,有大量的硕士与本科生参赛,并且取得较好成绩。建议参与比赛,以压力铸造为主,结合“压铸工艺”课程、三维建模软件UG、AnyCasting计算机模拟软件,结合实际开发的压铸模具与工艺。

第7篇:流体力学基础知识范文

关键词:液压传动课程;教学改革;一体化教学

液压传动这门课程是讲述如何以液体作为工作介质,在密闭系统中,依靠液体压力来传递运动、动力或某种信息(如开、关信号)的传动方式。该技术自1795年诞生以来经历了两百多年的发展历程,如今液压传动技术已经广泛地同机械、电子、气动技术结合,形成了很多融机、电、气、液于一体的设备。作为大多数机器或装置的一个重要组成部分,也就决定了液压传动这门课程必将成为中等职业学校机械类专业学员的一门重要专业基础课。通过对当前经济发展需求和中职学生现状分析,文章提出新形势下,中职学校专业课只有在教学内容、教学观念、教学形式、教学评价等方面作出符合市场职业需求的改革,才能为社会培养出合格有用的技术行业初、中级人才。笔者想简单谈谈结合课改精神中职液压传动课程的教学,和广大同行做个交流。如何提高液压传动课程的教学质量,我认为以下三点很重要:

一、抓住学科脉络

液压传动课程主要讲授三大部分的内容:

1.基础知识

基础知识部分包括:工作介质、液体静力学、液体动力学、孔口与缝隙流量、气穴与液压冲击。讲授这部分知识大概需要10课时。这部分知识的特点是大部分物理量、单位为初、高中所学,关键是复习,难点在单位的换算;另外就是流体力学新知识的掌握。

2.系统的组成

此部分为系统的各个组成元件的结构和工作原理。讲授这部分知识大概需要20课时。重点是动力元件和控制元件的结构与工作原理。这一部分涉及大量机械制图知识。

3.整个系统

此部分是将所有局部组合在一起构成整体,这是液压传动课程中最难理解的部分,也是最重要的部分。讲授这部分知识大概需要12课时。根据这门课程的地位、作用和学习这门课程所需的知识体系,综合分析该课程最佳开课时间应设在学生系统的学习机械专业课程的同时,也就是一年级的第二学期,学期课时数应在42学时以上。

二、多种教学手段灵活运用

1.针对基础知识的教学

针对这一部分和动力元件的参数部分,因为理论性较强,有些兄弟院校在教改过程中决定干脆砍掉不讲,以免被说成是大学教育的压缩版。我不赞成将这一部分砍掉不讲。道里很浅显,假如你不懂得流体力学的基础知识,那么你不会了解液体在系统内流动时的能量转换关系,在遇到实际问题时你就不能从病理的角度去分析故障,其结果只能是头疼医头脚痛医脚。但是,这部分知识也不能讲得太深入,否则,就真成了“大学教育的压缩版”了。笔者认为的尺度是:学员应该对最基础的单位及单位之间的换算达到熟练掌握的程度,对流体力学的一些理论应能够理解,但并不要求记忆公式,在辅助资料齐全的情况下,学员应能够查得公式及有关参数来完成老师布置的练习任务。教学的主要方法就是传统的讲授法和练习法相结合,采用一体化教学模式,即讲即练,重在练习。

2.针对系统组成的教学

针对这部分教学我主张采用演示法与练习法相结合。以多媒体动画演示结构和工作过程,在以实物拆解的方法加以练习,真正做到让学生看得见、摸得着。但在多媒体教学过程中,由于信息量较大,有时学员难以把握课节重点,最好能将多媒体教学与板书相结合,便于学员抓住课节脉络,及时做好记录。

3.针对整个系统的教学

学习这一部分的难点在于工作介质是在管路和元件的内部流动,难于观察,不容易获得感性认识。教学方法的改革在很大程度上依赖教学基础设施的投入,在有条件的情况下,可以借助动态透明系统教具,通过观察法教学,还可以采用实验法,通过学生亲自动手组装系统,完成实验任务,使学员获得感性认识。没有条件的,可以有演示法,通过多媒体动画演示系统的工作。光靠课本图解、挂图来讲解,教学效果是很差的。

三、严谨的考核方式

培养应用型人才不是纸上谈兵,要杜绝高分低能,这就要求我们在考核学员的时候要贯穿整个教学过程,这样才能及时发现不同个体存在的不同问题,及时解决。笔者的考核方法是:期末笔试成绩占总成绩的50%,用以考核知识的掌握程度;平时成绩占总成绩的50%,包括:课堂提问、练习、实验、作业、出勤,用以考核整个教学过程中学员的实际表现,只有在各个方面都有突出的表现才能在总成绩上获得优异的成绩。

最后,教学的过程是教师教与学生学的过程,无论你采取什么办法,只要你在确保教授内容的正确性的同时又能极大程度地调动学生学的积极性,那么你的方法应该就是可取的。笔者愿意同广大同行交流技术问题,交流教学心得,不周之处望批评指正。

参考文献:

第8篇:流体力学基础知识范文

【关键词】矿山安全工程;实践教学;数理力学

一、矿山安全学科分类及属性

矿山安全工程是以矿山生产过程中发生的人身伤害事故为主要研究对象,在总结、分析已经发生的矿山事故经验的基础上,综合运用自然科学、技术科学和管理科学等方面的有关知识,识别和预测矿山生产过程中存在的不安全因素,并采取有效的控制措施防止矿山伤害事故的科学技术知识体系。

矿山安全工程在学科门类上是矿业工程的一个分支,跟采矿工程同属于一级学科矿业工程下面的二级学科。因此,从学科属性和性质上来讲,矿山安全工程专业知识体系的构建也应当遵从矿业工程知识体系构建的学科规律。

现如今,煤矿开采工艺已较为成熟,但是安全性制约了高效性的发挥,主要体现为,随着开采深度的增大,地应力、瓦斯、构造等地质条件恶化,带来了冲击地压、瓦斯突出、热害、水害、火灾等灾害进一步加剧,这对煤矿安全技术提出了新的挑战。如前所述,煤矿生产的新特征对矿山安全工程技术提出了新的要求和挑战。

二、矿山安全教学中存在的问题

当前淡化专业,宽口径、通识教育的导向下,很多属于采矿学科的专业课被一再削减,课程的难度也大大降低。课程太多,学时数不够,艰深课程概论化导致的。在通识教育的倡导下,很多本该扎扎实实细致 讲授的数学物理类、力学类课程只能概论化,甚至完全不讲。而这些较为难懂的课程正是后续课程的基础,更是学生今后向上攀登的基石,缺少了这些硬功夫,学生很难再上一个台阶。

现行矿山安全专业大中专教育中还存在的问题是,学生的数理功底普遍薄弱。在讲授专业课程中发现,学生对课程中的理论公式普遍有一种畏难情绪,也没耐心去认真计算推导,若放在课堂上推导又受到学时的限制,若放在课下学生自学,由于数理功底弱,学生又无法完成自学,这就产生了一个尴尬的局面。大量的文科性质、管理性质的安全管理类课程冲淡了行业专业课程,造成矿山安全工程专业学生底子薄、数理基础弱。

此外,理论教育与实践脱节也是许多学校矿山安全工程教学的疏漏,众多学校着眼于基础理论方面的学习,学生只能从书本中想象具体的操作情况,这显然与该专业的专业需求不匹配。

三、矿山安全教学新思路建议

1.加强数理力学基础,构建合理知识体系

只有采用严密定量化的力学理论才能精确计算,为工程实际提供理论和技术指导,这就需要在知识体系中重点加强数理力学知识。因而矿山安全教育应该构建合理的数理和专业知识结构,如理论力学、材料力学、连续介质力学、传热学、固体力学、流体力学、弹性力学、岩石力学、渗流力学、损伤力学、断裂力学、散体力学、渗流力学等力学知识应该给予充足的学时予以讲授。在强大的数理力学基础上,学生应掌握采矿学、矿山地质学、通风学、工程流体力学、矿山压力岩层控制等专业基础课程。在此基础上可适当学习安全学的一些基本课理论教学与实践结合矿山安全工程包括矿山灾害所有的防治技术,是保障矿山安全的最主要的技术手段。

2.理论教学与实践教学相结合

理论教学以课堂讲课为主,课堂专题讲座和讨论、影音教学和案例教学为辅。在课程讲授过程中,必须使学生全面掌握矿山安全基础知识,构建学生终身受益的知识体系。将“矿山安全工程”知识内容分为九部分内容: 矿山安全现状与管理、伤亡事故发生与预防原理、矿山机电伤害事故预防技术、矿井瓦斯灾害防治、矿山防火防爆、矿尘防治、矿井水害防治、矿山爆破安全、矿山救护等。在课程教学中,不局限于基本知识和基本技能的掌握,更应立足于全面提高学生素质,坚持“以提高矿山安全的综合素质与能力”的课程教学理念,在讲解基本理论、基本技术的基础上,引用大量的案例对不同防治技术进行分析,增强学生的感性认识,促进学生积极思考,提高学生分析问题的能力。

实践教学主要结合理论教学,开展实验室实验、课程设计、现场实习等教学环节。为学生开设相关实验,并鼓励学生开展设计性的综合实验,如矿井瓦斯抽放系统实验设计、矿井火灾灾变时期风流变化实验等。为提高学生应用知识解决实际问题的能力,该课程采用课程设计与现场实习来提高学生的实践能力。针对课程的教学内容,开设了不同内容、不同规模的课程设计。有的设计内容需要设计图纸,如矿井瓦斯抽放系统设计;有的是对某矿山事故进行分析,如利用事故树分析矿山外因火灾的原因。通过课程设计,有力提高了学生应用知识的能力。综合性实验注重对学生实践能力的培养,结合矿山现场的研究项目,选择一些与实践紧密联系、并具有一定难度的实验项目,将实验目的、实验要求以及主要任务交给学生,学生通过自己预习理论知识,查阅资料,进行讨论,掌握实验原理、方法和步骤,组织实验方案的实施,最后完成实验任务。

3.改革传统的考核方式

一是主要对实验课程基本概念和常识等基础知识的考核,采用包括内容、平时的表现、课堂表现、出勤率、回答问题等,占总分的30%。二是采用实验报告占总成绩50%考核;另一项是设计创新性实验形式,它是根据课程的特点而设置的,学生可以根据自身的优势和特长选择其中的实验方法或内容,实验、实践教学过程中提出问题、分析问题和解决问题的能力等等,占总成绩的20%。通过这样的实验教学改革,达到实验教学改革的目的。

四、结语

矿山安全专业大专教育的数理力学基础和知识结构对学生个人职业发展和对矿山企业的服务质量至关重要,此外应该重点加强学生的实践能力教育,引导学生构建匹配合理的知识结构。才能使人才具备更强的竞争力,未来才能在矿业涌现出领军人物。

【参考文献】

第9篇:流体力学基础知识范文

关键词:实践教学;创新;能源动力工程;改革

作者简介:代元军(1978-),男,河南正阳人,新疆工程学院电力工程系,副教授;孙玉新(1982-),女,吉林蛟河人,新疆工程学院电力工程系,讲师。(新疆 乌鲁木齐 830091)

中图分类号:G642.423 文献标识码:A 文章编号:1007-0079(2013)29-0102-02

能源是世界发展的重要资源和动力,能源的科学开发和优化配置,是当今各国现代工业以及国民经济和社会发展乃至富民强国的必由之路。新疆有着极为丰富的能源资源。据统计,新疆的石油、天然气和煤炭预测资源量,分别占全国陆地预测资源量的30%、34%和40%,光、热、风等资源也在全国占有较大份额,这为新疆建设国家能源战略基地奠定了坚实的基础。

在新疆如此丰富的特色资源下,新疆本科院校能源与动力本科专业如何在实践教学环节中结合新疆特色和学校特色,改革和创新层次分明、知识和能力逐级递增的实践教学体系,是摆在能源与动力工程教育工作者面前的难题。

一、分层次建立能源与动力工程专业基础教学实验中心

分层次建立能源与动力工程专业基础教学实验中心,将“工程流体力学”、“工程热力学”、“传热学”三门能源与动力工程专业基础技术课程的相关实验组合起来,并提出把“工程流体力学”、“工程热力学”、“传热学”课程所涉及的相关实验设置成四个层次的教学实验方案。

第一层次实验:基础性教学实验。主要是指与课堂教学内容紧密联系的实验(验证性实验),其中包括实验方法、实验技术的基本训练。例如在“工程流体力学”课程中设置了两个专项实验:雷诺实验、伯努利能量方程实验。在雷诺实验中,主要让学生观察水流的流态,即层流和紊流现象,然后测定上、下临界雷诺数,最终使学生了解流态与雷诺数的关系。在伯努利能量方程实验中,主要是观察流体流经能量实验管时的情况,并对实验中出现的现象进行分析,从而加深对能量方程的理解,并最终掌握测量流体流速的原理。在“工程热力学”课程中,设置CO2临界状态观测及P-V-T关系测定实验,通过该实验了解CO2临界状态的观测方法,增加对临界状态概念的感性认识,以及对课堂所讲的工质热力状态、凝结、汽化、饱和状态等基本概念的理解,掌握CO2的P-V-T关系的测定方法,学会用实验测定实际气体状态变化规律的方法和技巧。

第二层次实验:“工程流体力学”、“工程热力学”、“传热学”中所涉及主要物理参数的测试手段和方法的实验。主要是指温度、压力、流量、比热、流速、传热系数、传热温差及数据采集等测试手段和方法的训练。例如在“工程热力学”课程中,设置气体定压比热测定实验。该实验让学生了解气体比热测定装置的基本原理和构思,熟悉本实验中测温、测压、测热、测流量的方法,掌握由基本数据计算出比热值和求得比热公式的方法,分析本实验产生误差的原因及减小误差的可能途径。在“传热学”课程中,设置综合传热性能实验。该实验通过测定不同表面状态及气流条件下管道的综合传热系数,观察和分析影响传热的各种因素,从而对传热过程有一个直观的了解。

第三层次实验:实现设计目标的综合性实验。主要是指以实现某一功能为目的,构建工程性、设计性实验,培养学生构想、设计、解决问题的能力。例如换热器结构改造的传热性能对比测试实验。该实验的测试对象为学生设计的换热器外表面不同形状的肋片,通过实验测试其传热系数,找到最佳的肋片形状。

第四层次实验:知识延展性实验。主要是指通过互联网、多媒体、可视化技术介绍新知识、新技术、新发展,以期延伸和拓展学生知识视野和相关专业知识面。

通过以上四个层次的实验训练,能够培养能源与动力工程专业学生的流体及热工实验的实验方法、实验设计、实验技术等实验能力,为进一步开展专业课学习和专业性实验打下坚实的基础。

二、分级建立能源与动力工程专业实验基地及教学实验中心

1.初级为专业基本实验

主要培养学生掌握能源动力工程领域常用的实验方法,使用常用仪器、仪表,学会处理数据,具有规范、熟练、准确的实验操作技能,重在学知识、练技能,属于专业学习中的初级水平。专业基本实验主要包括“公差与金属材料”组建2个实验台位,“自动控制原理”组建2个实验台位,“热工过程检测技术”组建2个实验台位。

2.中级为专业综合实验

以专业方向课程设置为主线分别以热电工程模块、制冷空调工程模块、新能源工程模块三部分构建专业平台实验。

热电工程模块包括锅炉实验平台、汽轮机实验平台、热工过程自动化实验平台;制冷空调工程模块包括制冷原理及设备实验平台、空气调节实验平台、供热工程实验平台、食品冷冻冷藏原理与设备实验平台;新能源工程模块包括风能利用与控制技术实验平台、太阳能利用与控制技术实验平台。

3.高级为设计、创新实验

在三大专业方向模块综合实验的基础上,依据自主专业创新教学环节和毕业设计课题,组织大三、大四学生参加专业大赛或者参与教师科研项目。教师拟定实验大纲、提出问题让学生自行思考、分析、设计、优选,重在锻炼科学思维,发展创新能力,培养学生自主学习、大胆创新的学习习惯。这种设计创新实验是基于专业教学和科学研究之间的实验,主要结合专业大赛和毕业设计来进行。

三、建立能源与动力工程专业校内仿真实习基地,改革传统生产实习模式

生产实习教学环节是为了加强学生对所学专业理论课程的理解、增强对所学专业的感性认识,培养学生综合分析问题和解决问题的能力。在这一重要实践环节的实施过程中存在诸多问题,实习质量难以达到预期。以能源与动力工程专业方向之一的热电工程为例,能源与动力工程专业学生在电厂实习花费较大;电厂企业出于安全和经济效益的考虑,和学校很难建立起长期稳定的校外实习基地。由于电厂岗位工作的资质要求,实习学生不能上岗操作,生产实习只能是走马观花,流于形式,实习效果得不到保证。

为了解决以上问题,在自治区煤炭煤电煤化工实训基地建设工程的不断推进下,新疆工程学院能源与动力工程专业将传统的单纯的在电厂企业生产实习模式改为校内仿真实习与校外实习相结合,并逐步过渡到以校内仿真实习基地为主的生产实习模式。能源与动力工程专业的学生在新疆工程学院的300/600MW火电厂仿真实验室开展与实际电厂 1∶1仿真的运行操作和故障处理的训练。

在仿真实习中,学生主要熟悉、掌握锅炉机组及其主要附属设备的结构、工作原理和运行特性;熟悉锅炉机组各系统,如煤粉制备系统、风烟系统、疏水排污系统等的运行方式,运行监控系统及自动控制系统概况;熟悉锅炉机组正常运行中监视、调节的主要内容(参数)及其调节方法,如负荷、给水、燃烧、汽温等的调节和监视;熟悉锅炉机组起动前的准备内容,起动程序及起动过程中的有关注意事项;对锅炉机组的几种停运方式、停炉程序、停炉后的冷却和养护等熟练操作;掌握锅炉机组的事故预防和处理方法,学会分析有关事故,如给水、汽温、管子爆破、煤粉爆炸、熄火等,以及事故发生原因、预防处理的方法;熟悉考核锅炉运行的主要经济指标。生产实习模式的改革改进了学生的思维模式,强化了学生的工程意识,提高了学生参与实习的主动性、积极性,强化了学生的动手能力和综合能力,培养了学生严谨的科学作风。

四、改进能源与动力工程专业毕业设计,培养学生创新能力

毕业设计是能源与动力工程专业学生在毕业前关键性的综合性实践教学环节,是在教师的指导下学生独立完成的工程设计或者论文。通过该综合性实践教学环节的锻炼,复习和巩固本专业学生的专业基础知识和专业知识,培养学生对已学知识和未学知识的综合学习与运用能力。改进能源与动力工程专业的毕业设计,对培养学生的实践能力、创新能力和适应社会要求的能力具有重要意义。

毕业设计所涉及的内容,专业课程的任课教师应该在授课过程中加强讲授和训练,让学生尽早掌握毕业设计的理论知识。要根据专业方向和现有的新技术和新方法提出贴近生产一线的毕业设计题目,并且要保证题目的多样化,使得学生能尽量根据毕业后的工作方向确定题目,以便毕业后能够尽快适应工作岗位的专业要求。在毕业设计过程中,应该加强检查指导工作,保证学生能够按时按质的完成毕业设计。严格对毕业设计进行考核,通过考核评定出不同的等级,表彰设计过程中的优秀学生,以此来督促和提高学生做好毕业设计工作。

五、结束语

在新疆经济大发展的推动下,新疆工程学院热能与动力工程教研室通过积极调研和深入思考,对能源与动力工程专业实践教学环节进行了改革,并在实施过程中加以修订和调整,最终取得了较好的效果。

参考文献:

[1]秦春艳,才博.新疆新能源产业发展现状及对策研究[J].安徽农学通报,2009,15(22):3-5.

[2]程远,俞端仪,吴重光.建立校内仿真实习基地 改革传统生产实习模式[J].高等工程教育研究,1997,(3):32-36.

[3]新疆工程学院.2013级本科专业培养方案[Z].2013.

[4]李华彦,董丽娜.热能与动力工程专业毕业设计改革与探讨[J].中国电力教育,2010,(27):140-141.