公务员期刊网 精选范文 数学建模优化问题范文

数学建模优化问题精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学建模优化问题主题范文,仅供参考,欢迎阅读并收藏。

数学建模优化问题

第1篇:数学建模优化问题范文

关键词:数学建模 日常生活 数学化生活

一、数学模型和数学建模基本含义

数学模型:在准确把握事物系统内部具体突出特征和关系的基础上,整合抽象关系表现,运用数学语言进行近似概括和表达,生成一种数学结构系统。数学模型的建立是类似性反映客观存在形式和各种复杂关系的方式。[1]

数学建模:是在现实生活中建立数学模型来解决问题。

二、数学建模程序

数学建模在理论上只是对于具体数学模型的宏观规范,需要在实际操作中进行必要具体问题的具体分析,达到数学建模形式的灵活运用。[2]

数学建模的一般程序:

1.准备模型。此阶段的实现是建立在对于实际问题的熟悉基础上,熟悉问题出现的原因、背景,明确数学建模所要实现的目的。

2.建立模型。在准备的基础上,对于收集的数据和资料进行分析和处理,利用数学语言找出假设条件,保证数学语言的相对精确性。具体问题所涉及到的相关变化因素以及其中的不确定关系需要数学工具的恰当协作,建立起数学模型。其具体数学模型可以包含方程、不等式、图形函数和表格等。注意在建模时,为了达到模型的广泛普及和推广,应该力求数学工具的简单化。简单化的建模工具可以贴近现实生活,可以广泛被采纳、接受和运用。

3.求解模型。求解模型需要利用数学工具,数学工具可能使用到方程、逻辑推理和证明、图解等直观或间接方式。模型求解的结果需要根据实际问题各因素关系的正确分析加以确定,结果分析中需要根据结果预测数学公式、完成最优决策的选择和控制的最佳实现。最优决策的选择是解决实际问题中比较常见的难题,在综合衡量多种选择的前提下,进行最优的选择是关键的决定,而数学模型的建立可以在数学工具的辅助下,更快、更简洁、更直观的实现选择最优化,解决实际问题

4.检验模型。模型建立后综合分析的结果完成后,需要及时将分析结果归于实际生活中,进行检验。检验模型建立的正确性和科学性要利用实际现象和数据对模型相对应的数据和结果进行对比分析,分析其吻合性和出入性,准确把握数学模型的合理性和实用价值。数学建模的成功性认定,一般要求模型在解释已知现象的基础上,还有进行超越性的预测未知现象的能力和价值。建模检验过程中,模型假设可能存在问题,其确定原因一般来源于检验过程中,结果与实际不符合,但是求解过程无差错的情况。模型假设错误的弥补措施主要是及时修改和适当补充,以弥补其错误性。在修改和补充模型假设时,当结果相符合,精度达到规定要求时,可认定为模型假设可以使用,那么模型也可以实现其应用价值和推广功能。

三、数学建模与生活中最优化问题

最优化问题包括工农业生产、日常生活等方面,方案优化的选择、试验方案的制定等均涉及到数学建模的应用。对于最值问题,一般的方法是通过建立函数模型的方式,将实际问题和方案转化为函数形式,求最值问题。方案的最优化类似也是建立起不同方案的相应函数。[3]

例如:

1.有关房间价格最优化问题

星级旅馆有150个客房,其定价相等,最高价为198元,最低价为88元。经营实践后,旅馆经理得到了一些数据:当定价为198元时,住房率为55%;定价为168元时,住房率为65%;定价为138元时,住房率为75%;定价为108元时,住房率为85%。如果想实现旅馆每天收入的最高值,每间客房应怎样定价?

数学建模分析:

据数据,定价每下降30元,入住率提高10个百分点。也就是每下降1元,入住率提高1/3个百分点。因此,可假设房价的下降,住房率增长。

建立函数模型来求解。设y为旅馆总收入,客房降低的房价为x元,建立数学模型: y=150×(198-x)×0.55+x 解得,当x=16.5时,y取最大值16 471.125元,即最大收入对应的住房定价为181.5元。这里建模的关键是把握房价与住房率的关系,模型假设二者存在着某种线性关系。

2.生活中的估算―挑选水果问题

关于挑选水果挑选最大个的水果合理性问题分析与思考

首先从水果的可食率角度分析。水果尽管种类繁多形状不规则,但总体来说较多的近似球形。因此,可以假设水果为球形,半径为R,从而建立一个球的模型。

挑选水果的原则是可食率较大。依据水果的果肉部分的密度是比较均匀的原理,可食率可以表示为可食部分与整个水果的体积之比。

2.1对于果皮厚、核小的水果,如西瓜、橘子等。假设水果的皮厚度差异不大,且是均匀的,厚为d,可推得:可食率==1-

2.2对于果皮厚且核大的水果,如白梨瓜等。此类水果可食率的计算需要去掉皮和核,才能保证其可食率计算的准确性。设核半径为k*R(k为常数)。那么,可推知:可食率==1-3-k3 ,其中d为常数,R越大说明水果越大,水果越大,其可食率越大,越合算。

2.3有些水果皮薄,但出于卫生考虑,必须去皮食用,如葡萄等。此类水果与(1)类似,可知也是越大越合算。

关于挑选水果最大合理性的数学建模的关键在于:首先从可食率切入,模型假设之前分析水果近似球形的较多这一特性,假设球型,建立数学模型,将求算可食率转为求算水果半径R的便捷方式。

生活中涉及到数学建模的应用很多,初等数学知识是解决实际问题的重要途径和有效方法。数学建模应该紧密的联系生活实际,将数学知识综合拓展,使数学学科的魅力和情景呈现出新的形式和样貌,充满时代特征。数学建模生活中的应用有利于解决实际生活的种种难题,进行最优选择和决策,同时还可以培养思维的灵活性和深刻性,增加思维方式转变的速度和知识的广泛性和创造性。

参考文献:

[1] 《中学数学应用》 金明烈 新疆大学出版社 2000

第2篇:数学建模优化问题范文

【关键词】会计模型;会计建模;会计领域;综合性分析方法

一、提出背景

自从萨缪尔森把数学分析引入经济学领域后引起了经济领域的突破性变革,不仅解决了经济问题的困惑所在,而且也开启了数学在经济领域应用的划时代大门。随着数学的不断发展进步,1992年兴起了数学建模,在期间的20年里,数学建模处理解决了不同领域的复杂繁琐问题,攻克了许多领域的变动连续性难题,集成优化地解决得出了时效变化发展中的难题结果,为各领域的集优化速发展做出了应用性贡献。

而今,国民经济的各个领域及大型企业集团的技术人员等都运用相关模型进行分析。从会计科学技术的发展角度来看,不少新的分支学科出现了,特别是与会计相结合产生的新学科,如环境会计、绿色会计、土地会计等;同时,会计电算化发展至今已有30年的历程,我国已步入了会计信息化时代,现代信息技术与会计相融合而成的会计信息化管理信息资源,为对其进行获取、加工、传输等方面的处理提供了信息资源,实现了高度自动化和信息高度共享,使得信息技术的运用给会计建模带来了可行性。所以,作为现代会计,必须用应用会计知识等构造会计模型形成会计建模解决实际问题以适应经济时展的需要,并在会计研究与分析解决中作为独立出来的一个分支―会计建模。

二、问题提出的时代背景意义

会计被称为“通用的商业语言”,经济越发展,会计越重要,其是一个经济信息系统。随着会计文化的新起深化,会计建模是增强会计文化理解与传播及可读性的有力途径;而会计发展至今,会计具有预测经济前景、分析经济发展动态等效果与作用,会计作为一个经济信息系统和知识综合体系,对促进市场经济和现代企业制度的充分发展完善起着极为不可替代的作用。

会计已有三千多年的历史,经历了由古代的手工记账到信息化下的会计核算软件记账的过渡性发展阶段,期间所演化重组而成的新信息的生成方式程序及处理解决方法也因经济等环境不同而异。同时,会计要对会计现象进行解释和预测的实证研究和对不同层次的经济政策、会计政策作出最佳的规范选择,是一个规范分析和实证分析相结合的鲜明实践过程,也是进一步解决最佳会计理论、方法、程序在实践应用中的一个研究探讨过程。

经济波动变化产生的原生、次生信息数据交互组合而成的衍生错综信息严重影响了会计信息可靠计量下的准确完整性程度,给会计职业判断力的偏离造成了重要阻碍,而会计建模是一种解决各种复杂而又实际问题的十分有效的工具,信息化下,大量复杂的数值计算(如成本计算)、图形生成以及优化统计等工作需要运用建模方法来集成优化的处理解决以得到理想的实际结果。

三、问题概念解释

会计建模是根据研究需要针对实际问题组建会计模型的动态过程,其实质是会计理论、应用与所研究的实际问题相结合的结果。

会计模型是应用会计、数学等知识和计算机结合解决实际问题的一种工具,为了解决某种问题,通过简化抽象实际问题使用字母数字等会计符号或会计语言建立起来的等式、不等式及图表、框图等对实际问题现象的一个近似的客观描述事物特征及内在联系,以便于让人们更直观地认识所研究探讨的对象的一种会计结构表达式。

会计模型与会计建模是应用会计理论、数学和计算机等解决实际问题的工具,建立在会计理论、数学与实际问题之间。

会计建模是数学及其建模在其应用领域中独立出来的专门用于处理解决会计领域信息等一系列问题的一种专业化新兴建模方法,其是一种专门用于处理分析数据信息进而解决出精确结果的应用于会计领域的新方法。

四、基于数学建模视角下的会计建模研究问题的分析步骤及其特点步骤

(一)分析步骤

(1)对于问题条件尚不完全明确的,在建模中应通过各种假设来逐步问题明确化,以通过假设达到实际状态;

(2)在对实际问题进行分析时得到完全确定的条件下,需要对给出的问题进行恰当分析,以客观全面地反映问题的实质因素;

(3)在问题分析中需要考虑一些随机因素,需要借助计算机进行模拟实验处理,以排除随机因素的波动干扰对实际结果的非正态分布影响。

(二)建模特点

(1)结论具有通用性、精确性、深度性及层次性;

(2)在现实的具体问题中的可行性的实施程度高,在建模过程中排除了各种实际影响因素,是建模在各种趋同实际的假设条件下进行的;

(3)复杂的实际问题的建模过程需要反复迭代、验证及误差修正才能得到满意的实际模型;

(4)所建立的模型在现实的具体问题中具有较高的理想接近程度;

(5)具有高度的逻辑思维抽象性,对现实问题对象的分析要更全面、更深入、更有条理性等,是多角度化下的多元分析思维的处理结果。

(三)会计建模大致步骤

摘要关键字引言(问题重述)提出背景文献回放(模型准备)样本选取模型假设变量解释变量说明与约定模型建立模型介绍指标模型体系的建立模型数据处理与分析模型求解模型评价模型检验原因探析实证分析结果(描述性统计相关系数分析多元回归分析)对策及建议(结论)模型应用参考文献附录(图、表、计算机程序)。其中模型准备阶段就是相关理论模型概述,如Logitic模型、灰色系统理论模型、时间序列分析模型、序列平稳性分析等;模型数据处理与分析、模型求解等需运用计算机软件及技术。

五、数学建模思路方法在会计领域应用的具体分析

孙晓琳(2011)在《终极控股股东对公司投资行为影响的理论分析》中的“基于终极股东控制权私有收益的公司投资理论模型”分析时采用了“模型假设变量设置模型构建模型分析”中的数学建模思维步骤。

齐晓宁、申江丽(2011)在《注册会计师非审计服务与审计独立性关系分析》中的“注册会计师非审计服务与审计独立性关系的实证研究”分析时采用了“研究假设样本选择与数据来源研究模型与变量假设设计(被解释变量解释变量控制变量)统计结果(描述性统计模型结果统计)实证研究结论”的数学建模思路路径。

刘宏洲(2011)在《财务危机预警的Z计分模型实证研究》中采用了“研究设计(研究模型研究假设样本选择与数据来源)实证结果的分析解释与解释模型评价”的数学模型路径,实证了分析结果。

综上种种理论研究表明,研究者在进行问题分析、研究、处理及解决过程中都或多或少的融入运用了数学建模中的思路方法,其中数学建模中的模型评价与改进方向就是会计建模的研究不足与研究方向。其解决得出的结果步骤极具严谨说服力,结论结果的实际误差率较小,是一种极为理想的最低误差率精确结果。

由综上也可以看出,数学建模中的方法已经融合到了会计领域,并在会计领域中的复杂问题解决中发挥了极为核心环节的作用,多数会计研究中,在分散独立地解决某一问题时用到了会计建模中的模型方法,如层次分析法等;其优点得到了众多研究者的认可积极运用及研究方法思维深入研究者们的思维。

总之,以上种种建模思路方法在会计领域的具体灵活、综合而广泛运用,表明了建模思路在会计领域相融性的相关联运用地成熟与完善,充分说明了建模自身兼容型的适强大合和在会计领域应用的广阔发展前景,证实了建模在会计领域应用酝酿的完善成熟。

六、对会计建模的可行性认识

首先,会计建模是一种综合分析法,集合了各个独立于某方面、某领域的核心系统分析法。其由单一模型向多角度散射模型演化的集合拟集综合法,是一种以具体客体分析法为基础,综合其他独立的会计分析法,集成了其他适用会计分析的方法及系统运用各种辅助分析法,把各独立的会计分析法通过相关联度的大小连结成一个多角度多层次多思维为出发点的综合结构体系统分析法,把最有可能影响精确结果的内外在因素都做假设成变量假设,都进行变量假设环节的变量假设循环。

其次,会计建模是以会计信息数据为基础、市场经济动态环境发展变化为考察点、以数学建模的思想为带动理论指导点、以计算机技术与工具等为依托,进而构成一个集数学、计算机等与会计相结合于一体的核心建模论文的处理解决复杂问题的综合系统结构框架,是不同角度多变量误差拟合修正优化模型。

最后,计算机尤其会计电算化等处理工具与分析技术的强大与不断进步更新及科学技术的不断发展进步和计算机的迅速发展普及,大大增强了会计解决会计问题的能力,为会计建模所需数据与信息的处理分析提供了强大的物质源泉支持。同时我国市场经济的不断发展与完善活跃,为会计数据信息的获取提供了原始来源,经过技术工具加工处理过的数据信息具有真实完整、可靠计量的属性,为会计信息数据的获取途径与扩大时空间分布提供了便利;相关分析方法的广泛与活跃交叉运用加强了其在会计建模中的运用强度与可运用操作度,为相关分析法在会计领域的应用提供了分析方法和理论基础。

七、结论建议及展望

由于各种分析处理工具与技术的进步更新成熟为获取多方面多角度不同来源的会计信息数据提供了时间与空间分布上的基础,为各种会计信息数据的加工提炼处理提供了便利条件,为用会计建模解决实际变化的复杂研究对象问题提供了有力条件;同时为了会计信息数据及结果的准确误差性最优小及接近程度准确的预测会计领域中的发展态势及变化波动状况而提出运用会计建模来处理解决复杂系统实际问题。为此,为了适应时代新经济制度的市场经济体制的会计经济趋速发展的趋势,本文正式提出数学建模在会计领域转化为会计建模的呼吁与号召。

会计建模建立在一定的理论与实践基础上,更需要进行充分的各项准备工作才能顺利实施开展,相信会计建模是今后研究解决会计棘手问题的主流,也坚信会计建模受到重视与关注并成为高校、研究机构、研究人员等的主要研究方法。

参考文献

[1]孙晓琳.终极控股股东对公司投资行为影响的理论分析[J].会计师,2011(10):111~112.

[2]齐晓宁,申江丽.注册会计师非审计服务与审计独立性关系分析[J].会计之友,2011(10):

58~60.

[3]刘宏洲.财务危机预警的Z计分模型实证研究[J].会计之友,2011(10):83~84.

[4]薛毅.数学建模基础[M].北京:北京工业大学出版社,2005(1).

[5]葛家澍等.会计大典第1卷[M].会计理论[M].北京:中国财政经济出版社,1997(12).

第3篇:数学建模优化问题范文

[关键词]高职学生 数学建模

[作者简介]郑丽(1974- ),女,河北邯郸人,邯郸职业技术学院,副教授,研究方向为数学教育。(河北 邯郸 056001)

[课题项目]本文系2012年河北省教育厅人文社会科学研究项目“基于数学建模的高职学生创新能力的培养”的部分研究成果。(课题编号:SZ123022)

[中图分类号]G647 [文献标识码]A [文章编号]1004-3985(2014)12-0187-02

数学建模是在20世纪六七十年代进入一些西方国家大学的,我国几所大学也在80年代初将数学建模引入课堂。1992年由中国工业与应用数学学会组织举办了我国10城市的大学生数学模型联赛,74所院校参加了本次联赛。教育部及时发现,并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,每年有几万名来自各个专业的大学生参加竞赛,有效激励了学生学习数学的积极性,提高了学生运用数学解决问题的能力,为培养学生利用数学方法分析、解决实际问题开辟了一条有效途径。

从1999年起,全国大学生数学建模竞赛设立了专科组,高职院校作为高等教育的重要组成部分,在开展数学建模活动中投入了极大的热情,数学建模也成为高职院校数学教学改革的一个热点。作为高职院校的数学教师,笔者自2001年以来一直担负着学校的数学建模培训工作,每年学生们都积极参加数学建模竞赛,也取得了国家级、省级的奖励。结合高职院校的学生特点,以及十年间高职数学教学和数学建模活动的实践,笔者对高职院校开展数学建模活动的意义进行了探讨,并总结了高职院校实行数学建模培训的思路与方法。

一、在高职院校开展数学建模活动的意义

(一)数学建模活动能够满足部分学生的学习需求

高职院校的学生大多是基础知识相对薄弱的,但是也有不少学生基础扎实,善于思考。高职院校目的是培养既有理论基础,又有实践能力和创新精神的复合型人才,这就要求我们既要进行大众化的人才培养,又要满足部分学生对知识、能力更高层次的需求。数学建模活动为这些学生带来了新的挑战和机会,为他们展示创新思维与实践能力提供了舞台。

(二)数学建模活动可以培养学生的创新精神,提高学生的综合素质

通过数学建模训练,可以扩充学生的知识面,培养学生利用数学知识解决实际问题的能力,增强学生的知识拓展能力、综合运用能力;还可以丰富学生的想象力,提高抽象思维的简化能力和创新精神,既有洞察能力和联想能力,又有开拓能力和创造能力,以及团结协作的攻关能力。

(三)数学建模活动可以促进数学教师的教学能力和科研能力,推动高职数学教学的改革与创新

通过在高职院校中开展数学建模活动,对数学教师本身也是机会和挑战。教师必须重新组织教学内容,补充自身知识的缺陷与不足,促使教师自身综合素质的不断提高。通过数学建模训练,教师在数学教学中必然会改进教学方法,转变教学观念和教学方式,教学水平和科研能力都会逐步提高。通过数学建模训练,教师也能够学会一定的科学研究方法,增强实践教学意识,对于在数学教学中培养学生的创新能力和抽象思维有了明确的认识。通过数学建模训练,教师更善于在教学过程中激发学生学习的主动性,调动学生学习的积极性,重视教学方法与教学手段的改革,推动教学质量不断提高。

二、在高职院校实行数学建模培训的思想与方法

(一)高职院校实行数学建模培训的必要性

数学教育本质上是一种素质教育。通过数学训练,可以使学生树立明确的数量观念,提高逻辑思维能力,有助于培养认真细致、一丝不苟的作风,形成精益求精的风格,提高运用数学知识处理现实世界中各种复杂问题的意识、信念和能力。高职院校中,作为基础课程的数学课,不仅要为学生学习专业课提供必要的数学知识,同时还要培养学生的数学思维,培养他们勇于创新、团结协作解决问题的能力。而开设数学实验课,进行数学建模活动有助于提高学生在数学学习中的兴趣与主动性,提高学生利用所学知识解决实际问题的能力,为培养高质量、高层次复合型人才提供有力的帮助。

(二)突出高职特色,渗透数学建模教学思想

高职学生的学习基础总体比较薄弱,但实践能力和动手能力又相对较强。这就要求教师在教授数学知识的时候,必须把握“以应用为目的、必需够用”的原则,扬长避短,体现精简数学理论,弱化系统性,突出数学应用,强调实用性。在开展数学建模活动中,要从开设数学实验课入手,普及数学建模思想,强化数学建模在实际当中的应用。

从目前课程设置及课时的统计上,可以看出作为基础课程的数学课总课时整体呈缩减趋势。面对这种现状,我们需要在保证学生够用的前提下,突出数学的应用性,这就需要我们进行教学内容和教学方法上的改革。开设数学实验课,引导学生进行数学建模活动,给数学教学改革带来了新的启示,使数学教学改革在迷茫中找到了突破口。通过组织学生参加全国大学生数学建模竞赛,以及对数学建模和数学实验的进一步研究,我们提出了在高职院校中开设数学实验课的构想,利用现有课时使学生尽可能多地了解数学的思想方法,掌握应用软件解决数学问题的技能。数学实验课建设的指导思想是以实验为基础,以学生为主体,以问题为导向,以培养能力为目标。在数学教学改革中,要坚持贯彻指导思想,努力构建数学实验课程教学的模式。

(三)数学建模培训的方法探索

在高职院校的实际数学教学中,可以采取在大一第二个学期,由各系推荐,学生自愿的方式开设数学实验选修课。这一阶段主要给学生补充一些必要的数学知识及软件应用方法,介绍一些最常用的解决实际问题的数学方法,比如数值计算、最优化方法、数理统计中最基本的原理和算法,同时选择合适的数学软件平台,熟练计算机的操作,掌握工具软件的使用,基本上能够实现所讲内容的主要计算。组织兴趣小组,集体讨论,相互促进,共同提高,培养团队精神。在教授过程中尽量引入实际问题,并落实于解决这些问题,引导学生自己动手操作,通过协作讨论,写出从问题的提出和简化到解决方案和数学模型的实验报告,并尽可能给出算法和计算机的实现,得出计算结果。

在期末选出部分比较出色的学生,为参加全国大学生数学建模竞赛进行培训,时间主要集中在暑假期间。这一阶段安排学生熟悉数学建模所涉及的各种方法,诸如几何理论、微积分、组合概率、统计(回归)分析、优化方法(规划)、图论与网络优化、综合评价、插值与拟合、差分计算、微分方程、排队论等方法。学生也要在尽量岔开专业的前提下,依照教师建议及学生自己选择进行分组,利用历年一些典型的竞赛题目模拟训练,对于每道题目要求各组按比赛要求给出模型论文。教师引导学生及时总结题目中所用的方法,找出各自的长处与不足,为后面的训练与比赛积累知识与经验。

三、如何在高职院校中开展数学建模培训

(一)高职院校数学建模培训的总体规划

确定对于高职学生实行数学建模培训的思想与方法后,重点就是要组织教学内容。目前关于数学建模的书籍及参考资料多种多样,其中大多是面向本科学生的,近几年也有不少针对专科学生的数学建模材料。前期数学实验课的选修过程中,建议高职院校不要局限于某一本教材,而是参考各种资料,选择一些比较典型又易于上手的数学模型,让学生既在学中做,又在做中学。而在针对全国大学生数学建模竞赛的集中训练中,要优化数学建模竞赛队员的组合,强调三人各有专长,有的数学建模能力较强,有的计算机软件应用能力较强,还有的擅长文字表达。这一阶段要扩展学生知识面,打牢基础,强调“广、浅、新”。强化训练历年竞赛真题,使学生多接触实际问题的简化与抽象方法,应用数学知识解决实际问题。同时要对一些比赛常用的基本技能进行强化训练,如数学软件的应用、数学公式编辑器的使用,以及论文格式的编排等。

(二)高职院校数学建模培训的基础内容

初期的数学实验课,应先从初等模型入手,引导学生应用中学所学的数学知识解决一些实际问题。教师有意识引导学生发散思维,让他们沿着问题分析―建立模型―求解模型―模型分析与检验的过程解决问题。由于初等模型不需要补充多少知识,学生用原有的知识能够解决模型问题,使得学生对数学实验与数学建模充满了兴趣与信心。

接着可以引入一元函数及多元函数的微分模型,以求最值问题为主。高职院校各专业学生基本都在第一学期学过了一元函数的导数及应用,对于这类模型也比较容易接受。在此期间应穿插数学软件的学习与练习,重点是Mathematica和Matlab的使用,利用数学软件帮助求解模型。

再来就是微分方程模型,这时由于不同专业学生学习情况不同,所以要先适当补充微分方程的基本知识,才能由易到难,由简单到复杂地带领学生建立微分方程模型,然后借助数学软件求解模型。在第二学期,有些专业的学生会开设线性代数或概率论与数理统计,所以后半学期会在线性代数基础上讲解规划模型,以及概率统计的模型。

这样通过一个学期的数学实验与数学建模课程,多数参加数学建模培训的学生分析问题、解决问题的能力都能显著改善,还可以扩充知识面,学习新理论和新方法,自身的能力、水平和综合素质都有很大的提高。

(三)高职院校数学建模培训的强化内容

暑假期间,筛选部分优秀的学生进入数学建模竞赛培训阶段,学习时间可以比较集中。这一时期应利用典型模型,结合实际问题,穿插讲解数据拟合及综合评价等数学建模中常用到的方法,让学生在具体模型中体会学习机理分析、数据处理、综合评价、微分方程、差分方程、概率统计、插值与拟合及优化等方法。同时深入学习Mathematica和Matlab等数学软件,掌握它的强大功能,还要求部分擅长计算机软件的学生能够熟练使用Lingo软件,这几种软件的应用为求解数学模型提供了方便快捷的手段和方法。最后,在历年的数学建模竞赛题目中选取部分题目,分别涉及不同的建模方法,让学生做赛前的强化练习,模拟比赛环境与要求,各组在规定时间内拿出符合比赛要求的建模论文。

在高职院校开展数学建模活动,有助于促进教师知识结构的更新与扩展,为数学教学的改革与创新提供了切入点和发展方向。同时,高职院校的学生通过参加数学建模竞赛,可以用事实来证明自己的实力和价值,更有利于自身综合能力和素质的提高,增强了未来的就业竞争力。

[参考文献]

[1]陈艳.数学建模对实现高职高专数学素质教育之分析[J].学理论,2011(12).

[2]姜启源,谢金星,叶俊.数学模型[M].3版.北京:高等教育出版社,2003.

第4篇:数学建模优化问题范文

关键词:数学建模 学习方法

一、数学建模的意义

新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和个专题内容中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识的方法,增进对数学的理解,体验探究的乐趣。因此掌握数学的学习方法和提高数学的应用能力已经成为高中学生刻不容缓的一门课程,而建立数学模型恰恰是学生学习好数学的一个很好的路径。数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。作为用数学方法解决实际问题的第一步,数学建模自然有着与数学同样悠久的历史。两千多年以前创立的欧几里德几何,17世纪发现的牛顿万有引力定律,都是科学发展史上数学建模的成功范例。进入20世纪以来,随着数学以空前的广泛和深度向一切领域渗透,以及电子计算机的出现与飞速发展,数学建模越来越受到人们的重视,而且在现实世界中的作用也不言而喻了。

二、数学建模对数学学习的促进

1.数学建模促进数学思维的发展

数学建模与数学思维能力的发展是当前教学课堂的热门话题。数学建模法是一种极其重要的思想方法,是培养学生实际应用数学的能力与意识的重要途径。因此可以结合正常的教学内容,一方面渗透建模思想,另一方面根据教学内容的特点确定相应的思维训练侧重点,创设出集建模思想渗透与思维训练于一体的教学方案。达到深化知识理解和发展数学思维的能力,激发学习兴趣,强化应用意识的目的。下面通过用数学建模方法解实际问题来进一步阐述数学建模对促进数学思维的作用。

例1:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?

解:[简化假设]

(1)每间客房最高定价为160元;

(2)设随着房价的下降,住房率呈线性增长;

(3)设旅馆每间客房定价相等。

[建立模型]

设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加10%÷20=0.005。因此y=150×(160-x) ×(0.55+0.005x)

由0.55+0.005x≤1可知0≤x≤90.

于是问题转化为:当0≤x≤90.时,y的最大值是多少?

[求解模型]

利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元)。

[讨论与验证]

(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。

(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。

2.数学建模推进数学知识在实际应用的力度,同时让学生在建模中感受到数学的应用,激发数学学习的自主性与创新性

建模能力是一个解题者各种能力的综合运用,它涉及文字理解能力,对实际问题的熟练程度,最重要的是对相关数学知识的掌握程度。模型在表达问题的本质方面具有最突出的的作用,它将无序状态转化为明确的数学问题,然后构建数学模型,解决实际问题,增加学生对数学的学习兴趣,以及激发学生的创新能力。下面通过用数学建模方法解实际问题来进一步阐述数学建模在激发学生数学学习的自主性与创新性的作用。

例2:一奶制品加工厂用牛奶生产A1,A2两种奶制品,1桶牛奶可以在设备甲上用12小时加工成3公斤A1,或者在设备乙上用8小时加工成4公斤A2。根据市场需求,生产的A1,A2全部能售出,且每公斤A1获利24元,每公斤A2获利16元。现在加工厂每天能得到50桶牛奶的供应,每天工人总的劳动时间为480小时,并且设备甲每天至多能加工100公斤A1,设备乙的加工能力没有限制。(1)试为该厂制订一个生产计划,使每天获利最大。(2)33元可买到1桶牛奶,买吗?(3)若买,每天最多买多少?(4)可聘用临时工人,付出的工资最多是每小时几元? (5)A1的获利增加到30元/公斤,应否改变生产计划?

加工每桶牛奶的信息表:

解:设:每天生产将x桶牛奶加工成A1,y桶牛奶加工成A2,所获得的收益为Z元

(1)优化条件为:

x+y≤50

12x+8y=480

0≤3x≤100

Z=24×3x+16×4y=72x+64y

解得, 当 x=20,y=30时, Zmax=3360元

则此时,生产生产计划为20桶牛奶生产A1,30桶牛奶生产A2。

(2)设:纯利润为W元。

W=Z-33×(x+y)=39x+31y=3360-33×50=1710(元)>0

则,牛奶33元/桶 可以买。

(3)若不限定牛奶的供应量,则其优化条件变为:

12x+8y≤480

0≤3x≤100

w=39x+31y

解得,当x=0,y=60时,Wmax=1860元

则最多购买60桶牛奶。

(4) 若将全部的利润用来支付工人工资,设工资最高为n元。

n=Wmax/480=3.875(元)

(5)若A1的获利为30元,则其优化条件不变。

Z1=90x+64y

第5篇:数学建模优化问题范文

1.数学建模竞赛有利于学生创新思维的培养。数学建模是对现实问题进行合理假设,适当简化,借助数学知识对实际问题进行科学化处理的过程。数学建模竞赛的选题都是源于真实的,受社会关注的热点问题[2]。例如:小区开放对道路通行的影响(2016年赛题),2010上海世博会影响力的定量评估(2010年赛题),题目有着明确的背景和要求,鼓励参赛者选择不同的角度和指标来说明问题,整个数学建模的过程力求合理,鼓励创新,没有标准答案,没有固定方法,没有指定参考书,甚至没有现成数学工具,这就要求学生在具备一定基本知识的基础上,独立的思考,相互讨论,反复推敲,最后形成一个好的解决方案,参赛作品好坏的评判标准是模型的思路和方法的合理性、创新性,模型结论的科学性。同一个实际问题从不同的侧面、角度去思考或用不同的数学知识去解决就会得到不尽相同的数学模型。数学建模竞赛不仅是培养和提高学生创新能力和综合素质的新途径,也是将数学理论知识广泛应用于各科学领域和经济领域的有效切入点和生长点。

2.数学建模竞赛有利于促进学生知识结构的完善。高校的理工科专业都开设很多基础数学课,例如:高等数学、线性代数、概率统计、运筹学、微分方程等,目前这些课程基本上还是理论教学,主要以考试、考研为主要目标。由于缺少实际问题的应用,知识点相对分散,很多学生不知道学了有什么用,怎么用。那么如何将所学的基础知识高效的立体组装起来,并有针对性拓展和延伸,是一个重要的研究课题[3]。实践表明:数学建模竞赛对于促进大学生知识结构完善是一个极好的载体。例如在解决2009年赛题———眼科病床的合理安排的问题时,学生不仅要借助数理统计方法,找到医院安排不同疾病手术时间的不合理性,还要结合运筹学给出新的病床安排方案,并结合实际情况评估新方案合理性;2014年赛题嫦娥三号软着陆轨道设计与控制策略,参赛学生首先根据受力分析和数据,判断出可能的变轨位置,再结合微分方程和控制论构建模型,并借助计算机软件求解,找到较好的轨道设计方案。整个数学建模过程中,参赛学生将所学分散的数学知识点拼装集成化,在知识体系上,数学建模实现了知识性、实践性、创造性、综合性、应用性为一体的过程;在知识结构上,数学建模实现了学生知识结构从单一型、集中型向复合型的转变。

3.数学建模竞赛有利于培养学生的团队协作精神,提高沟通能力。现代社会竞争日趋激烈,具备良好的团队协作和沟通能力的优秀人才越来越受到社会的青睐。数学建模竞赛也需要三个队员组成一个团队,因为要在规定的时间内完成确定选题,分析问题、建立模型、求解模型,结果分析,单靠一个人是很难完成的,这就必须要由团队成员之间相互尊重、相互信任、互补互助,并且发挥团队协作精神,才能让团队的工作效率发挥到最大。同时,数学建模作为一种创造性脑力活动,不仅要求团队成员之间学会倾听别人意见,还要善于提出自己的想法和见解,并清晰、准确地表达出来。团队成员间良好的沟通能力,不仅可激发团队成员的竞赛热情和动力,还可以形成更加默契、紧密的关系,从而使竞赛团队效益达到最大化。

二、依托数学建模竞赛,提升大学生创新实践能力的对策

1.以数学建模竞赛为抓手,构建分层的数学建模教学体系,拓宽学生受益面。不同专业和年级学生的学习基础、学习能力和培养的侧重点都存在较大差异,构建数学建模层次化教学课程体系有利于增强学生学习和使用数学的兴趣,让更多的学生了解数学建模以及竞赛,通过自己动手解决实际问题,更加真切感觉到数学的应用价值,切实增强数学的影响力,扩大学生的受益面。南京邮电大学、华南农业大学、重庆大学和南京理工大学等高校这些方面相关工作和经验值得借鉴。因此,构建数学建模分层课程体系,在课程内容设置上,结合专业特色,有针对性设置教学方案和内容,逐步完善具有不同专业特色的数学建模教材,讲义和数据库、并保持定期更新,不断深入推进创新教学理念[4];在课程时间的安排上,遵循循序渐进的基本思路,一、二年级大学生开设数学建模选修课,介绍数学建模的基本理论和一些基本建模方法,三年级、四年级和研究生阶段开设创新性数学实验课程,重点训练学生应用数学知识解决实际问题的动手能力,并通过参加建模培训、数学建模竞赛以及课外科研活动,培养学生学习解决实际问题的能力;在课程目标的定位上,数学建模有别于其他的数学课程,集中体现在数学的应用、实践与创新,因此,数学建模不仅是一门课程,同时也是一门集成各种技术来解决实际问题的工具[6]。

2.以数学建模竞赛为载体,搭建横纵向科技服务平台,扩大数学建模影响力。数学建模竞赛的理念是“一次参赛,终身受益”,这就要求数学建模活动要立足高远,不断向纵深推进与发展,将数学建模应用融入服务国计民生。因此,选择优秀本科学生、研究生和毕业生,结合大学生创新创业计划,科研课题以及企事业单位关注的问题等,让他们自己动手去调查数据,查阅相关建模问题的文献资料,建立数学模型,借助软件进行模型求解,最后独立撰写出建模科技论文或决策咨询报告。全程参与“课外实习与科技活动”的方式,不仅实现了因需施教、因材施教的目标,还搭建了连接企业和学生的桥梁,不仅让大学生创新创业落到实处,为企事业单位提供了智力支撑,真正实现所学知识服务社会。

3.以数学建模竞赛为平台,加强教师的队伍建设,提升教师教育教学能力。数学建模授课和指导教师的教育教学能力直接影响着学生的创新能力。教育教学能力是指教师从事教学活动、完成教学任务、指导学生学习所需要的各种能力和素质的总和。数学建模的教学与传统数学教学相比,对教师的动手能力、教学内容驾驭能力、教学研究和创新能力等有较高的要求,因此,数学建模指导教师可以通过自主研修,网络研修,参与集体备课、听评课、教学研讨等方式提高自身业务水平,同时积极参与赛区、全国组织的学习和培训,加强交流,开阔视野,不断地提高自我认知、认识水平。只有建成一支高素质、实力雄厚、结构合理、富有创新能力和协作精神的学科梯队,数学建模整体水平才能有较大提升,才能适应数学建模发展的现实需要,切实有利于学生创新实践能力的提高[6,7]。

三、我校数学建模教学和竞赛改革的实践

1.构建模块化教学体系。针对我校轻工特色,结合专业培养需求,构建模块化教学体系。针对食品、生工、医药、化工和轻化等实验科学为主的专业,重点将实验设计、数据处理、数据分析和预测分析等内容模块化;针对数学基础较好的物联网、计算机、信息计算和自动化等专业,构建微分方程,运筹优化和控制论等内容模块化;偏于社科类的管理、会计、金融和国贸等专业,重点将概率模型、优化等内容模块化。再结合数学建模竞赛和大学生创新创业计划,构建“专业基础模块+知识拓展模块+竞赛需求模块+科研论文写作模块”的实践教学体系。

第6篇:数学建模优化问题范文

一、前言

自党的“十”以及十八届三中全会召开以来,我国经济、教育等各项事业的发展迈入了一个崭新的历史时期。面对经济体制转轨、政治体制改革、国际国内形势复杂多变等环境,大学生作为社会新技术、新思想的前沿群体、国家培养的高级专业人才,在一定层面上代表着国家未来的发展与创新潜力,这就要求大学生在参加社会主义建设之前需要具备自我决策能力、适应社会能力、创新与实践能力、社交与团队协作能力等。尤其是随着互联网技术的快速发展,社会各领域极需具有逻辑思维能力强、演绎能力突出以及能够将数学方法与计算机技术相结合的创新性人才。众所周知,任何来自于自然科学与工程实践的问题都可以归结为数学问题,而数学建模就是通过计算得到的结果来解释实际问题,并接受检验,来建立数学模型的全过程,这也是利用数学方法解决实际问题的一种实践。因此,培养与提高大学生的数学建模能力,对于提高大学生的抽象思维能力、分析与解决实际问题能力、创新与实践能力以及计算机应用能力等方面具有十分重要的意义。根据当前大学生数学建模教学的发展趋势,结合笔者自身指导大学生参加数学建模竞赛的经历,本文提出了大学生数学建模能力差异化培养以及开展模块化教学实践的探索。

二、数学建模的特点与作用

1.数学建模的特点。为了激发大学生对数学建模的兴趣以及培养与提高大学生的数学建模能力,必须要大学生首先认识数学建模的特点。数学建模就是通过抽象、简化、假设、引入变量等方式将实际问题用一定的数学方式进行表达,从而建立一定的数学模型,并用优化后的数学方法及计算机技术进行求解的全过程。因此,从数学模型建立的实践中,我们可以归纳出数学模型主要存在以下特点:(1)目的性。数学建模的目的是利用数学模型来分析特定对象的有关现象及其规律,对事物的运行与发展趋势进行一定的预测与分析判断,然后做出控制与决策。(2)多样性。对于相同的实际问题,出于不同目的,使用不同的方法与假设,可以建立出不同的数学模型。因此,判断数学模型好坏的唯一标准是看其能否解决实际问题。(3)逼真性与可行性。数学模型的建立需要尽可能与实际问题接近,也就是数学模型的逼真性。而一个逼真的模型往往达不到预期的建模目的,即不可行。因此,数学建模只要达到预期的应用目的,可行就够了,不必追求完全逼真。(4)渐近性与强健性。对于较为复杂的实际问题,往往需要多次由简到繁、由繁到简的反复迭代才能建立可行的数学模型。同时,随着科技的发展与人们实践能力的提高,数学建模也是一个不断完善与更新的过程。另外,模型的结构与参数随着观测数据的微小改变也会表现出微小的变化,从而表现出数学建模的强健性。(5)可移性。数学模型是在原型的基础上进行理想化、简化与抽象化处理之后的结果,它也可以从一个研究对象转移到另一个其他的研究对象。(6)局限性。①数学建模过程中常常会忽略一些次要因素,因此数学模型得出结论的精确性是近似的,通用性也是相对的。②由于人们认识与技术的局限性以及数学发展本身的限制,导致大量实际问题很难得到有实用价值的数学模型。③还存在一些特殊领域的实际问题至今未能建立有效的数学模型进行解决。

2.数学建模的作用。大学生对需要解决的实际问题的认识与理解,可以直接通过大学生的数学模型能力来加以体现。因此,大学生需要有很强的数学逻辑思维力、数学观念以及对数学模型的把控与构建能力,才能运用可行的数学语言表达客观事物或需要解决问题的本质特征。所以,数学建模在很大程度上反映了大学生的数学观念、意识和能力。

随着互联网、云计算以及智能制造等技术的快速发展,提出了许多需要用数学方法解决的新问题,同时也使过去一些即便有了数学模型也无法求解的课题(如天气预报、大型水坝应力计算等问题)迎刃而解;建立在数学模型和计算机模拟基础上的计算机辅助设计技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。尤其是将数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中。因此,数学建模在许多高新技术领域,如电子与信息技术、生物工程与新医药技术、先进制造技术、空间科学与航空航天技术、海洋工程技术等领域具有十分广阔的应用前景。

此外,随着数学向其他学科领域的逐渐渗透,尤其是用数学方法研究这些学科领域中的各种定量关系时,数学建模就成为首要的、关键的步骤以及这些学科发展与应用的动力。因此,一些交叉学科,如计量经济学、人口控制论、数学生态学、数学地质学等得了快速发展,在经济社会发展的各个领域正发挥着越来越重要的作用,同时也为数学建模的发展及应用提供了无限的空间。因此,数学建模必将与其他学科相互渗透与融合,迎来快速发展的新时期。

目前,大学工科教学中普遍存在内容多、学时少的情况,导致教学中重理论轻应用,使学生对数学的重要性认识不够,使得很多学生在进入到专业课学习阶段时,不能有效地理解与学习专业课程里的基本原理与数学推导过程,以致其看到繁杂的数学公式而望而生畏,造成其理论水平停滞不前,为其以后的进一步学习、知识更新与创新能力的突破留下了极大隐患。而指导大学生参加数学建模竞赛就是使大学生亲自参加与体会社会、经济与生产实践中经过适当简化的实际数学问题,不仅体现了数学应用的广泛性,而且也使大学生感受到数学的魅力与力量,激发了他们学习数学的兴趣,同时也提高了他们运用数学方法进行分析、推演与计算的能力,为其后续的进一步学习打下了夯实的基础。

三、大?W生数学建模能力差异化培养

《国家中长期教育改革和发展规划纲要(2010―2020)》对高校人才培养工作明确指出:关心每个学生,促进每个学生主动地、生动活泼地发展,尊重教育规律和学生身心发展规律,为每个学生提供适合的教育。所以,在大学生培养过程中,必须牢固树立“以人为本与以学生为中心”的意识。实际上,人的思维与认识世界的方式是多元的,人类至少拥有包括语言、数学、音乐、绘画、运动等多种天赋秉性,每个人都有自己的优势潜能。大学如果能根据学生的个性差异及能力差异,遵循教育规律,根据大学生的学习需求及学习效果,设计出多元化的培养方案与教育模式,发掘出每个大学生的优势潜能,将极大地提高教育效率与人才培养质量,真正做到人尽其才。大学生数学建模能力差异化培养就是结合数学建模的特点,根据大学生个体的优势潜能,有针对性地对其开展多样化的教育教学工作的一种教育模式,势必打破千人一面的标准化、规模化教育模式,其最终目的是发掘大学生的学习潜能,培养大学生的数学逻辑思维能力,提高大学生分析问题与解决实际问题的能力以及实践动手能力与科技创新能力。那么,该如何实现大学生数学建模能力差异化培养呢?下面笔者主要从两个方面展开论述。

1.以学生为中心,为其选择合适的数学建模课程与授课教师,实现课程与教师的差异化。数学建模课程的差异化,就是以学生自身的素质与能力等为基础,根据学生的个性差异及能力差异设计数学建模课程教学方案与评价标准的一种教学模式。该模式的优点如下:在数学建模教学过程中,能够最大限度地进行因材施教,提高数学建模的教学效率与教学质量,最终促进数学建模人才培养质量及学校办学水平的整体提高。此外,教师是各种教育理念与培养方案的直接执行者。执行者的学术能力与个人素养决定了目标实现的质量差异。根据大学生差异化的专业背景与数学基础,设定差异化的培养目标与课程,并选择与之相配套的教师队伍。根据差异化教学的需要,就是把有意愿、有能力的教师组织起来,引导学生自发地从事数学建模的学习及开展创新实践活动,以达到个性化、多元化数学建模的目的。

2.在数学建模教学过程中,教师应根据学生自身的学习基础、学习能力以及学生的创新能力等方面的差异,制定出不同层次的教学任务,使大学生的潜力得到最大程度地提高,笔者主要是从以下几方面着手:(1)学生分层。教师要对学生的学习情况十分了解,这样教师就可以把学生进行一定的分层。例如,将班里的学生以4人为一组,每组要包括学习能力好、中、差的学生,或者由学生个人进行自行分组。之所以采取将学生分组进行数学建模教学,主要是因为学习的过程是一个对话交流、相互帮助与相互竞争的过程,采取分组教学的形式能更快、更好地激发大学生对数学建模的学习兴趣和学习积极性。同时,这个分层是动态的,教师可以根据学生平时完成数学建模的任务情况进行实时调整。(2)任务分层。教师在实际的教学过程中,应考虑到学生的个体差异,兼顾整体和弱、优势群体的发展。针对不同层次的学生,教师可以设置不同难度的任务,如基础类、提高类和创新类,由学生个人根据其自身的能力与水平,自主选择相应的数学建模任务。(3)学生反馈。每次数学建模课结束前,教师要求学生提交一份数学建模报告。提交数学建模报告是教学过程中非常重要的一个环节,数学建模报告显示了学生对任务的完成情况、对知识点和方法的学习情况等。教师要求学生下课之前提交数学建模报告,一方面提高了学生学习数学建模的积极性,保证了数学建模报告的质量;另一方面提高了学生课余时间参与数学建模课的热情,没有完成数学建模报告的学生,可以利用自习课等课余时间到实验室继续进行数学建模的学习。(4)教师分层解答。教师根据辅导过程中遇到的问题和学生在数学建模报告中提出的问题,进行分类归纳总结。对出现同样或相似知识点疑问的学生,单独召集学生进行讲解;对有不同疑问的学生,教师要分别给他们进行讲解。

四、数学建模模块化教学实践

数学建模需要依靠功能强大的Matlab与SAS等软件来实现,因此学习自己设计程序与熟练应用这些软件对于提高大学生的数学建模能力具有十分重要的意义。传统数学建模软件的教学,都是教学基本菜单和常用工具的使用,这种方法和使用环境相脱节,导致学生在具体实践中,面对大量的菜单和工具,不知如何下手、如何运用,教学效果并不理想。如果追求大而全,要求学生掌握数学建模软件所有的基本菜单和常用工具的使用方法,是不可能做到的。那么怎样把这样一个功能强大的数学建模软件教给学生,并让学生灵活应用呢?笔者结合自己多年的教学实践,提出了数学建模方法的模块化与典型案例相结合的教学方法。

1.数学建模方法的模块化。数学建模方法总体而言可以分为六大模块:综合评价、预测与预报、分类与判别、关联与因果分析、优化与控制、实验设计。其中,综合评价又可以分为三个小模块:方案选择、类别分析、排序。预测可分为三个小模块:灰色系统、ARIMA时间序列分析、回归预测;预报可分为三个小模块:按样本关联性分类、按距离分类、按动态聚类分类。分类与判别可分为两个小模块:模糊识别与贝叶斯判别。关联与因果分析可以分为三个小模块:两个变量的关联性、一个对多个变量的关联性、多个对多个变量的关联性。优化与控制则可以分为四个小模块:线性规划、非线性规划、目标规划、网络优化。实验设计在方法方面则可以分为三个小模块:方差分析、LOGISTIC回归、正交设计。数学建模方法众多,通过对数学建模方法的模块化进行分类,有助于学生面对具体实际问题时,做到脑中有法、心中不乱,快捷地建立出数学模型并解决实际问题。

2.典型案例教学。科学实践中的数学问题形形、无以穷尽。如何让大学生在有限的学习时间内,学好数学建模,为他们今后在科研实践中用数学建模解决实际问题打下良好的基础,这就对教师的数学建模教学方法提出了更高的要求。例如:假设某校基金得到了一笔数额为M=5000万元的基金,打算将其存入银行,校基金会计划在5年内每年用部分本息奖励优秀学生,要求每年的奖金额相同,且在5年末仍保留原基金数额,其中,收益比a=(本金+利息)/本金,银行存款税后年利息与各存款年限对应的最优收益比如表1与表2所示。

若??M分成5+1份,xi表示每年的份额,S表示每年用于奖励优秀学生的奖金额,ai表示第i年的最优收益比,建立数学模型的过程如下:

max S,

s.t.a■x■=S,i=1,2,…,5■x■=Ma■x■=M

运用LINGO编程如下:

?MAX=S;

?1.018*x1=S;

?1.0432*x2=S;

?1.07776*x3=S;

?1.07776*1.018*x4=S;

?1.144*x5=S;

?1.144*x6=M;

?M=5000;

?x1+x2+x3+x4+x5+x6=M.

程序运行结果如下:

该例子充分体现了数学建模的三大步骤:第一步,把实际问题通过一定的方法处理成数学问题;第二步,学习数学软件,用计算机语言来解释数学问题;第三步,结果分析,把整个数学建模的过程用实验报告的形式阐述出来,即写作过程。通过这个典型案例(基金的使用)的教学,有助于学生了解与认识数学建模的基本步骤,为其后续数学建模的学习打下了夯实的基础。古人云:“授人以鱼,不如授人以渔”。在数学建模的教学过程中,针对某一个具体数学建模的案例,结合实际问题由现象的直观描述到数学的抽象提炼,教师除了要讲解数学概念和求解方法这些基本知识之外,还需要组织学生就该案例中使用的数学思想展开讨论。同时,教师自身也需要有扎实的科研能力以及丰富的科研实践,真正做到结合案例讲基础,依托基础讲应用,使学生在实践中认识到数学建模的强大功能与魅力,在实践中培养大学生学习数学建模的兴趣,充分调动学生与教师的主观能动性,变满堂灌为主动学,真正做到“教学相长”。

第7篇:数学建模优化问题范文

[关键词]明胶 浓度 软测量技术 建模方法

中图分类号:TP274 文献标识码:A 文章编号:1009-914X(2016)24-0132-01

胶液浓度的确定是明胶生产过程中的一个重要工作,直接影响着明胶提胶工序的顺利开展,为此,必须针对胶液浓度控制进行有效研究,确定工艺参数。目前,我国的明胶生产企业受到生产线自动化程度、受检测设备等方面的限制一直未有比较可靠的检测方法。鉴于这种情况,本文提出了一种基于软测量技术的胶液浓度测量模型,实现对明胶胶液浓度在线测量。本文对软测量技术概念入手,简述了明胶浓度软测量建模及参数优化。

一、软测量技术

软测量技术又被称为软仪表技术,其中心思想是利用易测过程变量来估计难测变量。易测变量常被称为辅助变量或二次变量(Secondary Variable)。例如在工业生产过程中易获得的流量、压力、温度等参数,难以测量的过程变量被称为主导变量(Primary Variable)[1],通常在条件限制下不能在线监测或者检测成本较高。利用软测量技术,就是依据主导变量和辅助变量之间的数学模型(软测量模型),通过各种数学计算和估计方法,用计算机软件来实现待测量过程变量的测量。

二、软测量的建模方法

建立软测量模型是软测量技术的核心部分,建模方法可分为机理建模、回归分析、状态估计、模式识别、人工神经网络、模糊数学、过程层析成像、相关分析和现代非线性信息处理技术等。

1.基于机理的软测量建模方法

基于机理的建模,就是从过程对象的内在物理或化学的研究出发,通过物料平衡和动量平衡等原理,找出主导变量和辅助变量之间的关系,建立机理模型来实现对主导变量的软测量。通过机理分析建立的软测量模型,只要把主导和辅助变量作相应的调整就可以活得新的模型。对于较简单的工业过程,可以采用解析法建模。而对于复杂过程,特别是输入变量变化范围较大的情况下,则采用仿真方法。

2.基于线性回归分析软测量建模理论

回归分析是统计数学的一个重要分支,在实验数据处理中又称为“曲线拟和”。回归分析可分为多种形式按因变量和自变量之间是否存在线性关系可分为线性回归和非线性回归按自变量的个数又可分为一元回归和多元回归。回归分析作为一种经典的建模方法,它是通过机理分析建立模型结构,然后通过收集大量过程参数运用统计方法估计模型参数。典型的回归建模方法首推经典的最小二乘法。为了避免矩阵求逆运算可以采用递推最小二乘法,为了防止数据饱和还可以采用带遗忘因子的最小二乘法。另外,主元分析和主元回归都是统计学中较为成熟的方法。基于回归分析的软测量的简单实用,但在建模和校正过程中需要大量的样本,而且对样本数据的误差较为敏感。虽然如此,基于线性回归的技术仍然是目前应用最多的软测量技术,市场上一些成熟的软测量商品软件都是以此为基础的。

3.人工神经网络法

人工神经网络,适用于解决高度非线性以及严重不确定性系统的控制问题,是当前工业领域中的热点。使用该方法的建立模型不需要具备过程对象的先验知识,可以根据输入输出数据直接建模,将辅助变量和主导变量分别作为人工神经网络的输入和输出,通过网络的学习来估测主导变量。人工神经元网络的基本原理是模仿人类脑神经活动的一种人工智能技术,给一些样本,通过自学习可以掌握样本规律,在输入新的数据和状态信息时,可用进行自动推理和控制。

4.基于模糊数学的方法

模糊数学是研究和处理模糊性现象的一种数学理论和方法,具有模仿人脑逻辑的特点,可以处理复杂系统,因此在软测量技术中也得到了大量应用。基于模糊数学的方法建立的软测量模型是一种知识性模型。该种软测量方法很适合应用于复杂工业过程中被测对象呈现亦此亦彼的不确定性,难以用常规数学定量描述的场合。实际应用中,可以采用模糊技术和其他人工智能技术相结合的建模方法,取长补短以提高软测量模型的预测效果。例如由模糊数学和人工神经网络结合构成的模糊神经网络,模糊数学和模式识别一起构成模糊模式识别等。模糊控制器依照人工操作思维程序来工作。首先,把测量的输出进行模糊化,变为模糊语言变量,由模糊控制规则进行模糊决策,再把模糊决策量清晰化转变为精确量去控制被控过程。

5.多模型的软测量建模方法

连接多个模型以改进模型预测能力的方法是由于年提出的。多摸型建模就是把多个子模型对未知样品的预测结合起来,这种建模方法与传统的单建模方法不同。传统单建模方法的一般过程为在反复分析测量数据过程中,建立一系列的预测模型,最后,从中选出一个预测性能最好的模型来预测未知样品。多模型数据建模则是通过某种方法建立多个子模型,并把多个成员模型对未知样品的预测用某种方法结合起来,形成一个共识的结果,以提高模型的预测精度和可靠性。多模型的模型结构如图1所示:

该方法在时间序列分析中得到较广泛的研究,近年来在神经网络的研究中也备受关注。当用系统输入输出数据建立非线性对象的神经网络模型时,采用单个神经网络建立的模型往往只是系统的一种近似模型,而且不同网络在不同输入空间中的预测性能会有所不同。而且多个神经网络通过一定方式将这些单个网络进行连接,构成对象的整个输入空间模型,模型的预测精确度得到了增强。

三、 软测量模型的参数优化

在本次研究中,仅针对LSSVM的软测量模型的主要参数是正则化参数c和和核参数α进行优化,并力求选择最佳的参数组行优化处理,让模型的泛化能力和精确度更好。合是一个最佳模型的选择问题,在很大程度上决定了模型的学习和泛化能力。采用留一交验证法选择最优模型参数费时费力,在本次研究中采用采用粒子群算法和K均值聚类算法相结合对模型参数进行优化。经过优化后,模型的精度和泛化能力均有显著提升。

参考文献:

第8篇:数学建模优化问题范文

1.1 数学建模教学的现状调查

目前,高中的生源一部分是统招的初中毕业生,一部分是外地的借读生。这些学生大部分对学习数学建模的兴趣和积极性不高,这里一个主要的原因是他们的数学计算基础比较薄弱,知识结构非常不健全。笔者对青岛胶南一中5个班级的学生进行问卷调查,发现有59.2%的学生认为数学建模中计算不重要;仅有25.3%的学生对数学建模中的计算方法感兴趣;有53.6%的学生认为进行数学建模运算目的是应付考试;55.7%的学生认为所学的数学计算方法内容太多、太难。

1.2 目前数学建模教学存在的问题

目前高中数学教育受传统数学教学的影响较为深刻,传统数学课程设置、教学内容、思想和方法手段在高中教师的教学理论中根深蒂固,与数学建模的教学特点和目标要求相差较远。

1)教学内容偏重于理论,对应用不够重视,喜欢传统的推理和古典的方法,对于现代的前沿方法却简而代之。

2)多媒体教学手段没有充分应用,粉笔加黑板仍是教师主要的授课工具,使数学建模教学缺乏直观性、趣味性,体现不出数学建模教学生动活泼、贴近现实的特点。

3)数学建模教学没有和计算机软件教学结合起来,就算数学模型建立起来,也因计算机软件不会操作而导致不能得到精确的求解和计算。这种问题大大削弱了数学建模解决实际问题的优越性,不利于培养应用型人才。这都说明数学建模教学存在严重问题,教改已经迫在眉睫。

1.3 数学建模教学中迫切需要加入计算机技术

由前面关于数学建模教学中存在的问题可以看出,在数学建模教学中,缺乏现代化的教学手段和计算方法是导致数学建模教学不能广泛开展的重要原因。这就需要在数学建模教学中融入计算机教学,通过多媒体教学的直观特点,提高学生分析问题、建立模型的能力,通过MATLAB等计算软件的学习,减少对模型求解的繁琐计算,有利于提高学生学习数学建模的兴趣,提高建立模型、求解模型的能力。因此,在数学建模教学中融入计算机技术是必要的。

2 在高中数学建模教学中融入计算机教学的方法与途径

在高中采用计算机技术对学生进行数学建模思想与方法的训练,有三种途径。

2.1 数学建模课程中加入计算机软件的内容。

数学建模课程所包含的模型,可以跟许多计算软件联系起来,因为许多模型,如线性规划模型、回归模型、微分方程模型、概率统计模型等,建立模型后用MATLAB或LINGO就可以进行计算。所以在高中数学建模教学内容中融入软件计算的内容,有着非常重要的作用。

2.2 将数学建模与软件计算融合的方法有机地贯穿到传统的数学课程中去

这种途径使学生在学习数学基础理论知识的同时,初步获得数学建模的知识和技能,获得用计算机软件求解模型的能力,为他们日后用所学的知识解决实际问题打下基础。那么,在实际的数学教学中,教师如何将这种思想渗透到教学内容中去呢?

1)高中数学的基本概念如函数、导数、三角、向量、积分等都是数学模型,因此,每引入一个新概念或开始一个新内容,都应通过多媒体课件教学展示一些直观的、丰富的,能提高学生学习兴趣的实例,向学生展示该概念或内容的应用性。

2)建立函数关系在数学建模中非常重要,因为用数学建模的方法解决实际问题的许多实例首先都是建立目标函数,将实际问题转化为数学问题。然后借助计算机语言,将模型转化为程序,为模型的求解做准备。

3)利用一阶导数求解函数的极值问题,可以引导学生建立线性规划模型,转化成无条件极值或者条件极值问题,在此插入拉格朗日乘数法,让学生掌握求解条件极值的方法,及如何运用数学软件来进行计算。

4)概率统计模块当中,一些统计量的计算,公式较为繁琐,如果用数学软件,或者用Excel,都可以很方便地对数据进行处理,求出想要的各个统计量,甚至可以画出统计量的图,直观形象,使用便捷。

2.3 在数学建模教学中融入计算机教学应注意的问题

首先,采用由简到繁、由易到难的循序渐进思想,逐步将软件计算渗透到数学建模教学中。其次,在教学中选取的教学实例应该来源于生产或生活,让学生透过实例来理解概念和模型,从而逐步掌握建立这种模型的方法。实例中所用到的模型应该体现数学建模的初级方法和思想,在教学中的举例应具有代表性,切忌泛泛的一堆实例的堆积,却不能提炼出数学的内涵来,毕竟建模的根本目的是用数学和计算机来解决实际问题。最后,应注重计算机与课堂教学的整合。用MATLAB、LINGO等软件计算出的结果、描绘的图形精确而可信,让学生更加体会到利用建模和计算机结合解决实际问题的优越性,也可以提高学生的学习兴趣,感觉课堂内容充实生动,这样可以取得很好的教学效果。

3 胶南一中数学建模教学与计算机教学融合的实践研究

随着数学建模教学越来越深入到高中数学教育中,胶南一中也逐步对数学建模教学增加了认识,在所承教的班级中进行了询问式调查,发现有20%以上的学生对数学建模有浓厚的兴趣。于是,2009年初,教师开始在学生中利用课余时间开展公开课,请有兴趣的学生报名参加,并在公开课上讲解一些数学建模实例和计算机软件的使用。通过小测验,让学生对某个实际问题建立模型求解,找出答案比较新颖的学生,指导他们建立和求解数学模型。

比如,以2006年的考题“易拉罐的最优设计”为例,请学生想办法设计出自己认为最合理、最优的易拉罐来。学生对这个问题表现出浓厚的钻研兴趣,大家纷纷讨论起来,有的画出了图形,有的在测量和演算,不久,就有不少学生提出较为优秀的方案。但是,学生对线性规划、运筹学、最优化等课程很陌生,也不懂MATLAB等数学软件的操作,所以他们对自己的方案只能有个大致构架,却不会进行精密的演算和论证。这样,教师把这些学生组成兴趣小组,对他们进行培训,主要是讲解一些最优设计、线性规划等课程中的基本方法以及如何用数学软件来处理数据,由此一来,大家对数学建模有了深层次的认识。

2010年开始,学校组织了数学建模兴趣班,采用推荐加考查的方式组成两队,利用暑假时间对学生进行培训,培训内容包括“数学建模方法及其应用”“线性规划”“非线性规划”“最优化”等和MATLAB等数学软件。

在高中数学建模教学中,融入计算机软件教学,不仅可以培养学生的跨学科应用的能力,还让学生学会了如何分析和解决问题。而高中数学教师学历层次普遍较高,专业知识较为扎实,在讲授知识内容的同时能够注意数学建模思想的渗透,能够把利用计算机软件培养学生具有应用数学方法解决实际问题的意识和能力放在首位,因此在高中数学建模教学中融入计算机教学是可行的,是符合社会发展和人才需求形势的。

参考文献

[1]徐茂良.在传统数学课中渗透数学建模思想[J].数学的实践与认识,

2002(4).

[2]尚寿亭,等.数学建模和数学实验的教学研究与素质教育实践[J].数学的实践与认识,2002(31).

[3]韩中庚.数学建模方法及其应用[M].北京:高等教育出版社,2009.

第9篇:数学建模优化问题范文

【关键词】 计算机 数学建模 应用

前言

数学的研究是对模式的研究,而数学建模即是通过数学方法对现实规律进行抽象概括从而求解的过程。在自然科学领域,数学建模利用逻辑严密、体系完整的数学语言求解出了更为精确的方案。

而近年来,交叉学科的发展使得数学建模技术逐渐运用到了金融、经济、环境等多个领域,重要性日益凸显。而计算机本身强大的计算能力使得复杂的数学建模成为了可能,逐渐成为建模过程中必不可少的重要工具。

一、数学建模的主要特点

数学建模的分析流程包括:通^调查分析了解现实对象,做出研究假设,用数学语言构建约束条件,得出实际问题的解决方案。而数学建模与数学研究相比,有着自身的显著特点。

1.数学建模与数学研究不同,更侧重于解决实际问题。以2016年全国大学生数学建模竞赛为例,四道题目分别为:系泊系统的设计、小区开放对道路通行的影响、电池剩余放电时间预测、风电场运行状况分析及优化。可以看出,数学建模主要研究工业与公共事业规划等应用问题,比纯粹数学研究更为实际,更讲究可操作性。

2.数学建模中的模型设定具有主观性,合理修缮模型能够得出更为精确的解决方案。对于同一现实问题,不同的模型设定者的思路、角度、约束条件等参数都有所不同,因而数学建模中的模型设定是具有主观性的。在实际运用中,完美的模型很难建立,模型的多次修改与完善才能够更好地达到预期的效果。

3.数学建模涉及的学科领域更为宽泛,一般需要运用海量数据和复杂计算。数学建模的运用领域涉及到工业规划、环境保护、经济管理等交叉学科,数据的种类与数量往往十分庞大,运算过程较为复杂,一般需要重复引用并多次计算。以全国大学生数学建模竞赛2015年B题“互联网+时代出租车资源配置”为例,涉及学科包括交通规划、公共服务、人口学等领域,在建模求解中很可能将处理出行周转量、出租车数量、人口数等大量数据。

二、计算机技术在数学建模运用中的主要功能

1.计算机为数学建模提供了海量计算与存储的强大支持。自1946年2月世界上第一台电子数字计算机ENIAC诞生开始,计算机的存储与计算能力迎来了飞速发展。超级计算机的出现,更是使计算机的运行能力达到了新的量级。现如今,计算机的大容量智能存储与超高速的计算能力,使得气象分析、航空航天与国防军工等尖端研究课题的数学建模成为了可能。

2.计算机为数学建模提供了更为直观全面的多媒体显示。目前,以计算机为载体的文字、图像、图形、动画、音频、视频等数字化的存储与显示方式被大量运用,使得交互式的信息交流和传播变得更加顺畅。在数学建模中,多学科的涉及使得建模过程中的显示、推断与监测变得尤为重要,而计算机的出现大幅提高了信息传递、显示、交互的效率。

3.计算机自动化、智能化的属性与数学建模相辅相成,互相促进。在计算机的辅助下,程序能够智能化地进行模型建立、模型漏洞的修缮,避免了低效率的计算过程。例如,某个关键数据或参数的修改,对于整个模型是“牵一发而动全身”的,计算机不仅能够保存多个版本的计算结果,它的智能引用还能够使得各项计算自动引用修改后的新数据,从而使整个模型时刻保持统一。

4.计算机模拟能在不确定的条件下模拟现实生活中难以重复的试验,大幅降低了实验成本,缩短了辅助决策的时间。由于在实际问题中,我们所需参数的值通常是不确定的,无法用数学分析的方法分析和建立数学模型,且通过大量实验来确定参数的过程从时间、人力、物力等因素都要付出昂贵的代价,甚至从客观上无法进行。而计算机通过历史数据或者特定函数或概率关系能够建立预测模型,得到目标值的概率分布从而辅助决策过程。

下面我们以经济管理中的项目决策为例,简要分析计算机模拟的强大功能。

假设我们要启动某大型商场的建造,目标是利润最大化,但项目成本与项目收益都是不确定的,我们便可以建立数学模型,辅助我们的投资决策过程。

(1)模型建立

建立基本的函数关系,构建目标变量。在本案例中,收入减去支出等于利润为最基本的关系,而利润最大化即为目标。

(2)具体参数输入

分析每项变量的影响因素,收集相关数据。在收入中,决定因素包括了消费人数和人均消费额,这两项参数又可由商圈人流量、地理位置、居民的人均收入、商场的档次定位几项参数决定。在成本中,商品成本、以广告费用为主的销售费用、管理费用、财务费用和非经常性项目构成了主要成本。值得注意的是,有些指标之间是具有相关性的,例如商圈地理位置将影响到租金,商场的定位将影响所售商品的成本,而销售费用除了直接影响支出以外,在一般情况下也与收入成正相关关系。这些复杂相关关系的运算量很大,使用计算机能够高效地实现计算和模拟。

(3)具体参数预测

分析每项细分参数的概率分布,控制输入。可以通过静态模拟和动态模拟进行预测。例如人流量、人均收入等都是不可控变量,可通过不断的实时数据输入进行预测,而销售费用等变量可通过内部管理进行调控,可以使用特定比例等方式直接进行静态预测。

(4)结果分析

根据各项变量的概率分布,我们可以根据不同变量的特定值进行组合,从而得到特定组合下的利润值,最终得到利润在其值域上的概率分布,从而辅助我们的决策过程。例如,在利润为负(即亏损)的概率超过某个百分比时不启动项目,在利润超过某个值的概率超过某个百分比时启动项目。

笔者认为,计算机模拟集合了海量存储与计算、仿真与模拟等功能,是数学建模中最为强大的运用,大幅提高了决策过程的效率。现如今,计算机模拟已经在经济管理决策、自然预测等方面起到了重要作用。

三、计算机技术在数学建模中的主要运用工具

3.1数学软件

MATLAB和Mathematica、Maple并称为三大数学软件,是数值分析计算、数据可视化等领域的高级计算语言,不仅能够对微积分、代数、概率统计等领域进行常规求解,还在符号、矩阵计算方面各有特长。这些软件是数学建模中运用最为广泛的工具。

3.2图像处理

(1)Photoshop:著名的图像处理软件,主要运用于平面O计与图像的后期修饰。

(2)CAD:可视化的图像处理软件,能够实现三维绘图,广泛运用于工程设计领域。图像处理软件能够满足部分建模问题中精确构图显示的要求,例如工程设计等问题,CAD的三维建模能够有效协助决策分析。

3.3统计软件

(1)R语言:免费开源的统计软件,程序包可以实现强大的统计分析功能。

(2)SPSS:入门级统计软件,能够完成描述性统计、相关分析、回归分析等基础的统计功能。

(3)SAS:专业的数据存储与分析软件,具备强大的数据库管理功能,广泛运用于工业界。统计软件能够满足数学建模中对于海量数据存储与分析的要求,是建模分析中最为重要的工具。

3.4专业编程软件

(1)C++:严谨、精确的程序设计语言,因其通用性与全面性被广泛运用。

(2)Lingo语言:“交互式的线性和通用优化求解器”,是一种求解线性与非线性规划问题的强大工具。专业的编程语言能够结合、辅助其他类软件进行程序编写,完成特定情况下的建模、规划等问题。例如Lingo语言,便能实现在规划类问题中优化分析、模型求解等强大功能。

四、结束语

数学作为研究数量关系和空间形式的基础科学,已经成为了解决众多实际问题的重要指导思想之一。而计算机作为规模化、智能化、自动化的计算工具,将进一步扩展数学思想在众多领域的基础实践。可以预见的是,广泛运用计算机技术的数学建模理论,将不断运用到社会发展各个方面,协助人类攻坚克难,在追求真理的道路上坚定前行、永不止步。

参 考 文 献

[1]高瑾,林园. 浅谈计算机技术在数学建模中的重要应用[J]. 深圳信息职业技术学院学报,2016,(03):54-57.