前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学建模问题分析主题范文,仅供参考,欢迎阅读并收藏。
一、精拟建模问题
问题是数学建模教与学的基本载体,所选拟问题的优劣在很大程度上影响数学建模教学目标能否实现,并影响学生对数学建模学习的态度、兴趣和信念。因此,精心选拟数学建模问题是数学建模教学的基本策略。鉴于高中学生的心理特点和认知规律,结合建模课程的目标和要求,选拟的建模问题应贴近学生经验、源自有趣题材、力求难易适度。
1.贴近学生经验
所选拟的问题应当是源于学生周围环境、贴近学生生活经验的现实问题。此类问题的现实情境为学生所熟悉,易于为学生所理解,并易于激发学生兴奋点。因而,有助于消除学生对数学建模的神秘感与疏离感,增进对数学建模的亲近感;有助于激发学生的探索热情,感悟数学建模的价值与魅力。
2.源自有趣题材
所选拟的问题应当源自富有趣味的题材。此类问题易于激起学生的好奇心,有助于维护和增强学生对数学建模课程的学习兴趣与探索动机。为此,教师应关注学生感兴趣的热点话题,并从独到的视角挖掘和提炼其中所蕴含的数学建模问题,选取学生习以为常而又未曾深思但结论却又出乎意料的问题。
3.力求难易适度
所选拟的问题应力求难易适度,应能使学生运用其已具备的知识与方法即可解决。如此,有助于消除学生对数学建模的畏惧心理,平抑学生源于数学建模的学习压力,增强学生对数学建模的学习信心,优化学生对数学建模的学习态度,维护学生对数学建模的学习兴趣。为此,教师在选拟问题时,应考虑多数学生的知识基础、生活背景及理解水平。所选拟的问题要尽量避免出现不为学生所熟悉的专业术语,避免问题过度专业化,要为学生理解问题提供必要的背景材料、信息与知识。
二、聚焦建模方法
数学建模方法是指运用数学工具建立数学模型进而解决现实问题的方法,它是数学建模教与学的核心,具有重要的教学功能。掌握一定的数学建模方法是实现数学建模课程目标的有效途径。为此,数学建模教学应聚焦于数学建模方法。
1.注重建模步骤
数学建模方法包含诸如问题表征、简化假设、模型构建、模型求解、模型检验、模型修正、模型解释、模型应用等多个步骤。数学建模教学中,教师应通过数学建模案例,注重对各步骤的基本内涵、实施技巧及各步骤之间的内在联系和协同方式进行阐释和分析,这是使学生从整体上把握建模方法的必要手段。有助于学生掌握数学建模的基本过程,有助于为学生模仿建模提供操作性依据,进而为学生独立建模提供原则性指导。
2.突出普适方法
不同的数学建模方法,其作用大小和应用范围也不同,譬如,关系分析方法、平衡原理方法、数据分析方法、图形(表)分析方法以及类比分析方法等均为具有统摄性和普适性的建模方法。教师应侧重对这些普适性的建模方法进行教学,使学生重点理解、掌握和应用。此外,分属于几何、代数、三角、微积分、概率与统计、线性规划等数学分支领域的建模方法等,尽管其普适性程度稍逊,但其对解决具有领域特征的现实问题却具重要应用价值,因而,教师也应结合相应数学领域内容的教学,使学生通过把握其领域特性及其所运用的问题情境特征而熟练掌握并灵活应用。
3.加强方法关联
许多现实问题的解决往往需要综合运用多种数学建模方法,因此,在数学建模教学中,应加强数学建模方法之间的关联,注重多种建模方法的综合运用。为此,应在加强各建模步骤之间联系与协调运用基础上,综合贯通处于不同层次、分属不同领域的数学建模方法,在建模各步骤之间、具体的建模方法之间、不同领域的数学建模方法之间进行多维联结,建立数学建模方法网络图,以使学生掌握数学建模方法体系,形成综合运用数学建模方法解决现实问题的能力。
三、强化建模策略
数学建模策略是指在数学建模过程中理解问题、选择方法、采取步骤的指导方针,是选择、组合、改变或操作与当前数学建模问题解决有关的事实、概念和原理的规则。数学建模策略对数学建模的过程、结果与效率均具有重要作用。学生掌握有效的数学建模策略,既是数学建模课程的重要教学目标,也是学生形成数学建模能力的重要步骤。因此,应强化数学建模策略的教与学。
1.基于建模案例
策略通常具有抽象性、概括性等特点,往往需要借助实例运用获得具体经验,才能被真正领悟与有效掌握。因此,数学建模策略的教学应基于对建模案例的示范与解析,使学生在现实问题情境中感受所要习得的建模策略的具体运用。为此,一方面,针对某特定建模策略的案例应尽可能涵盖丰富的现实问题,并在相应的案例中揭示该建模策略的不同方面,以为该建模策略提供多样化的情境与经验支持;另一方面,应对某特定建模案例中所涉及的多种建模策略的运用进行多角度的审视与解析,以厘清各种建模策略之间的内在联系。基于案例把握建模策略,将抽象的建模策略与鲜活的现实问题密切联系,有助于积累建模策略的背景性经验,有助于丰富建模策略的应用模式,有助于促进建模策略的条件化与经验化,进而实现建模策略的灵活应用与广泛迁移。
2.寓于建模方法
建模策略从层次上高于建模方法,是建模方法应用的指导性方针,它通过建模方法影响建模的过程、结果与效率。离开建模方法而获得的建模策略势必停留于表面与形式,难以对数学建模发挥作用。因此,应寓于建模方法获得建模策略。为此,应通过数学建模案例,解析与阐释所用策略与方法之间的内在联系与协同规律,使学生掌握如何运用建模方法,知晓何以运用建模方法,从而获得具有“实用”价值的数学建模策略。
3.联结思维策略
思维策略是指问题解决思维活动过程中具有普适性作用的策略。譬如,解题时,先准确理解题意,而非匆忙解答;从整体上把握题意,理清复杂关系,挖掘蕴涵的深层关系,把握问题的深层结构;在理解问题整体意义基础上判断解题的思路方向;充分利用已知条件信息;注意运用双向推理;克服思维定势,进行扩散性思维;解题后总结解题思路,举一反三等,均为问题解决中的思维策略。思维策略是数学建模不可或缺的认知工具,对数学建模具有重要指导作用。思维策略从层次上高于建模策略,它通过建模策略对建模活动产生影响。离开思维策略的指导,建模策略的作用将受到很大制约。因此,在建模策略教学中,应结合建模案例,将所用建模策略与所用思维策略相联结,以使学生充分感悟思维策略对建模策略运用的指引作用,增强建模策略运用的弹性。
四、注重图式教学
数学建模图式是指由与数学建模有关的原理、概念、关系、规则和操作程序构成的知识综合体。具有如下基本内涵:是与数学建模有关的知识组块;是已有数学建模成功案例的概括和抽象;可被当前数学建模问题情境的某些线索激活。数学建模图式在建模中具有重要作用,影响数学建模的模式识别与表征、策略搜索与选择、迁移评估与预测。因此,应注重数学建模图式的教与学,为此,数学建模教学应实施样例学习、开展变式练习、强化开放训练。
1.实施样例学习
样例学习是向学生书面呈现一批解答完好的例题(样例),学生解决问题遇到障碍或出现错误时,可以自学这些样例,再尝试去解决问题。样例学习要求从具有详细解答步骤的样例中归纳出隐含其中的抽象知识与方法来解决当前问题。在数学建模教学中实施样例学习,学习和研究别人的已建模型及建模过程中的思维模式,有助于使学生更多地关注数学建模问题的深层结构特征,更好地关注在何种情况下使用和如何使用原理、规则与算法等,从而有助于其建模图式的形成。在实施样例学习时,应注重透过建模问题的表面特征提炼和归纳其所蕴含的关系、原理、规则和类别等深层结构。
2.开展变式练习
通过样例学习而形成的建模图式往往并不稳固,且难以灵活迁移至新的情境。为此,应在样例学习基础上开展变式练习,通过多种变式情境的分析和比较,排除具体问题情境中非本质性的细节,逐步从表层向深层概括规则和建构模式,不断地将初步形成的建模图式和提炼过的规则和模式内化,以形成清晰而稳固的建模图式。开展变式练习时,应注重洞察构成现实情境问题的“数学结构框架”,从“变化”的外在特征中鉴别和抽象出“不变”的内在结构。
3.强化开放训练
数学建模具有结构不良问题解决的特性。譬如,条件和目标不明确;“简化”假设时需要高度灵活的技巧;模型构建需要基于对问题的深邃洞察与合理判断并灵活运用建模方法;所建模型及其形式表达缺乏统一标准,需要检验、修正并不断推广以适应更复杂的情境;有并非唯一正确的多种结果和答案等等。鉴于此,数学建模教学中应强化开放训练,以促进学生形成概括性强、迁移范围广、丰富多样的建模图式。为此,应通过改变问题的情境、条件、要求及方法来拓展问题。即对简化假设、建模思路、建模结果、模型应用等建模环节进行多种可能性分析;将问题原型恰当地转变到某一特定模型;将一个领域内的模型灵活地转移到另一领域;将一个具体、形象的模型创造性地转换成综合、抽象的模型。在上述操作基础上,对建模问题进行抽象、概括和归类,从一种问题情境进行辐射,并以此网罗建模的不同操作模式,从而使学生形成关于建模图式的体系化认知,进而提升建模图式的灵活性和可迁移性。
五、活化教学方式
鉴于数学建模具有综合性、实践性和活动性特征,因而其教学应体现以学生为认知主体,以运用数学知识与方法解决现实问题为运行主线,以培养学生数学建模能力为核心目标。为此,应灵活采取激励独立探究、引导对比反思、寻求优化选择等密切协同的教学方式。
1.激励独立探究
数学建模教学中,教师应首先激发学生独立思考、自主探索,力求学生找到各自富有个性的建模思路与方案。诚然,教师和教材的思路与方案可能更为简约而成熟,然而,学生是学习的主体,其获得的思路与方案更贴近学生自身的认知水平。因此,教师应给予学生独立思考的机会,激励学生个体自主探索,尊重学生的个性化思考,允许不同的学生从不同的角度认识问题,以不同的方式表征问题,用不同的方法探索问题,并尽力找到自己的建模思路与方案,以培养学生独立思考的习惯和探究能力。
2.引导对比分析
在激励学生探寻个性化的建模思路与方案基础上,教师应及时引导学生对比分析,归纳出多样化的建模思路与方案。为此,应将提出不同建模方案的学生组成“异质”的讨论小组,聆听其他同学的分析与解释,对比分析探索过程、评价探索结果、分享探索成果,以使学生认识从不同角度与层次获得的多样化方案。引导学生对比分析,既展现了学生自主探索的成果,又发挥了教师组织引导的职能,还使学生获得了多元化的数学建模思维方式。
3.寻求优化选择
在获得多样化的建模方案基础上,教师应继续引导全班学生对多样化的建模方案进行观察与辨析,使学生在思维的交流与碰撞中,感受与认知其它方案的优点和局限,反思与改进自己的方案,相互纠正、补充与完善,寻求方案的优化选择。引导学生寻求优化选择,不仅仅是求得最优化的结果,还是发展学生数学思维、培养学生创新意识的有效方式。在此过程中,教师应与学生有效互动,深度交流,汲取不同方案的可取之点与合理之处,以做出优化选择。
上述数学建模教学策略之间存在密切联系。精拟建模问题是有效实施数学建模教学的载体;聚焦建模方法是有效实施数学建模教学的核心;强化建模策略是有效实施数学建模教学的灵魂;注重图式教学是有效实施数学建模教学的依据;活化教学方式是有效实施数学建模教学的保障。在数学建模教学中,诸策略应有机结合,协同运用,以求取得最佳效果。
参考文献
[1] Werner Blum Peter L.Galbraith Hans-Wolfgang Henn.Mogens Niss.Modeling and Applications in Mathema-tics Education.New ICMI Study Series VOL.10.Published under the auspices of the International Com-mission on Mathematical Instruction under the general editorship of Michele Artigue,President Bernard,R.Hodgson,Secretary General. 2006.
[2] 中华人民共和国教育部.普通高中数学课程标准.北京师范大学出版社,2003.
[3] 李明振,喻平.高中数学建模课程实施的背景、问题与策略.数学通报,2008,47(11).
[4] 李明振.数学建模认知研究.南京:江苏教育出版社,2013.
[5] Mingzhen Li,Qinhua Fang,Zhong Cai, Xinbing Wang.A Study ofInfluential Factors in MathematicalMod-eling of Academic Achievement of High School Students.Journal of Mathematics Education.Vol4 No.1.June,2011.
[6] Mingzhen,,Hu Yuting,Li,Yu Ping,Zhong Cai.A Comparative Study on High School Students’ Mathematical Modeling Cognitive Features.Research in Mathematical Education. June,2012.
【关键词】 数学建模 建模方法 应用
【中图分类号】 G424 【文献标识码】 A 【文章编号】 1006-5962(2012)06(b)-0035-01
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。
1 数学模型的基本概述
数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是 数学公式,算法、表格、图示等。数学模型法就是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法。教师在应用题教学中要渗透这种方法和思想,要注重并强调如何从实际问题中发现并抽象出数学问题,如何用数学模型(包括数学概念、公式、方程、不等式函数等)来表达实际问题。
2 数学建模的重要意义
电子计算机推动了数学建模的发展;电子计算机推动了数学建模的发展;数学建模在工程技术领域应用广泛。应用数学去解决各类实际问题时,建立数学模型是重要关键。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。数学建模越来越受到数学界和工程界的普遍重视,已成为现代科技工作者重要的必备能力。
3 数学建模的主要方法和步骤:
3.1 数学建模的步骤可以分为几个方面
(1)模型准备。首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。(2)模型假设。根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。(3)模型构成。根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。(4)模型求解。可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。(5)模型分析。对模型解答进行数学上的分析,特别是误差分析,数据稳定性分析。
3.2 数学建模采用的主要方法包括
a.机理分析法。根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模型。(1)比例分析法:建立变量之间函数关系的最基本最常用的方法。(2)代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。(3)逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题解决对策中得到广泛应用。(4)常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。(5)偏微分方程:解决因变量与两个以上自变量之间的变化规律。
b.数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型
可以包括四个方法:(1)回归分析法(2)时序分析法(3)回归分析法(4)时序分析法
c.其他方法:例如计算机仿真(模拟)、因子试验法和人工现实法
4 数学建模应用
数学建模应用就是将数学建模的方法从目前纯竞赛和纯科研的领域引向商业化领域,解决社会生产中的实际问题,接受市场的考验。可以涉足企业管理、市场分类、经济计量学、金融证券、数据挖掘与分析预测、物流管理、供应链、信息系统、交通运输、软件制作、数学建模培训等领域,提供数学建模及数学模型解决方案及咨询服务,是对咨询服务业和数学建模融合的一种全新的尝试。例如北京交通大学在校学生组建了国内第一支数学建模应用团队,积极地展开数学建模应用推广和应用。
5 努力倡导数学建模活动的要求
5.1 积极开展数学建模活动,鼓励大家积极参与
为了提高学生的数学建模能力,学校可以开展数学建模活动,可以是竞赛制的和非竞赛制的,应当对成绩比较优秀的学生给予一定的奖励,从而提高学生的积极性。建模活动要有规章制度,要比较正规化,否则可能会达不到预期效果,而且建模过程竞赛要保证公平、公开,保证学生不受干扰影响。
5.2 巩固数学基础,激发学生学习兴趣
首先数学建模需要扎实学生的数学基础,同时学生要具备较好的理论联系实际的能力以及抽象能力,还有就是要激发学生的学习兴趣,兴趣是学习的最好老师,假设教学课堂中过于枯燥无味,学生容易产生厌倦情绪,不利于学习。数学建模过程本质是比较有趣的过程,是对实际生活进行简化的一个过程,生动和有实际价值的。鼓励学生相互交流,促使学生用建模的思维方法去思考和解决生活中的实际问题,表现优秀的同学可以适度给予奖励评价。
总之,数学建模能力的培养应贯穿于学生的整个学习过程,积极地激发学生的潜能。数学应用与数学建模目的是要通过教师培养学生的意识,教会学生方法,让学生自己去探索?研究?创新,从而提高学生解决问题的能力。 随着学生参加数模竞赛的积极性广泛提高,赛题也越来越向实用性发展。可以说正是数学建模竞赛带动了数模一步一步走向生产和实践中的应用。所以,数学建模广泛应用必成为了社会的发展趋势。
参考文献
[1] 郑平正.浅谈数学建模在实际问题中的应用[J].考试(教研版).2007(01).
【关键词】数学;模型;建模
近几年,随着数学建模教育的运用和扩展,数学建模能够让学生的创新意识和实践能力得到提高,已经得到了大家的肯定与认可。在人教版高中数学教材中,专家就对数学模型和数学建模提出了明确的概念,并对数学建模的过程和应用提出了相应的要求。但在实际的数学教学过程当中,由于我国边远少数民族地区很多高中学生、汉语理解能力较差、社会阅历较浅,做不到把实际问题和数学原理相结合,造成许多数学题目学生无法理解题目真实意义,更不用说建模和解题了。为此,如何在教学中构建建模教学思想并以此来提高学生的数学学习兴趣和学习成绩,我认为应该做到以下几点。
一、数学建模教学就是要让学生明白数学建模的概念,数学建模思想在解决实际问题中的作用
数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解来解释现实问题。教学建模的目的是体会数学的应用价值,全面培养学生应用意识;增强学生对数学这门科学的学习兴趣,重视团队的合作,在分析问题和解决问的能力上得到有效的提升,知道数学知识的发生过程,培养学生建立良好的创新意识和能力。数学建模的具体分析方法主要有:①关系分析法,通过寻找关键量之间的数量关系的方法来建立问题的数学模型方法;②列表分析法,通过列表的方式探索问题的数学模型的方法;③图象分析法,通过对图象中的数量关系分析来建立问题的数学模型方法。在高中阶段通常利用另外一种数学模型来解应用问题:①建立几何图形模型;②建立方程或不等式模型;③建立三角函数模型;④建立函数模型。另外数学建模是数学学习的一种创新学习,这种学习让学生有了一定的自主学习空间,在学生应用数学解决实际问题的过程中获得其中的价值和作用所在,体验数学与日常生活和其他学科的联系,增强应用意识;用理论知识来解决实际问题,可以很好的增强学生的学习兴趣,使他们在创新意识和实践能力上得到有效的提升。
二、数学建模教学要从实际问题中出发并加以提炼,从而强化学生数学的应用意识和建模的应用能力
数学建模就是要理论联系实际,它主要包括;一是从实际问题中抽象出数学模型;二是利用数学模型来求解;三是结合数学模型解决实际的问题。实际问题在数学建模的教学中有非常重要的作用。例如:小明拿着20元钱去打长途电话,电信部门规定,通话前3分种内收2.4元,3分种后每分钟按1元收费,小明这20元最多能通多长的电话?这道题目知识点是考察学生对函数的概念认识及函数解析式的应用,那我们建模可以利用函数图象建模或列表建模,并利用图象模型或列表模型得出题目解,同时还可以利用图象和列表模型检验问题的解。再例如:学校要举办一次篮球比赛,如果全校共有24个班,每个班都要进行一场比赛,问:学校一共要组织多少场比赛?另外为公平期间,各年级之间每班都举行一场比赛(高三9个班级,高二7个班,高一8个班)问需要多少场比赛?这是一道排列组合题目,在第一问中我们先假设高一(一)班先和其他班级比赛,那么高一(一)班共要比赛23场[数学公式(n-1)]场那么全校要1/2x24x(24-1)[数学公式1/2*n(n-1)]场,对于这一题目我们也可以利用图像来分析演示(仍然是数形结合思想),并还可以用图像来分析判断所列代数式正确性。第二问我们同样可以用第一问中相同的数学方法来求出答案(解法略)。通过以上例题,我们可以看出数学建模教学尽量是从生活的实际需要出发,让学生在掌握知识的同时,也让学生了解为什么要学数学建模,数学建模对我们解决现实问题有何帮助,以及怎样将知识和实际相联系等。
三、数学建模教学要结合实际和有因地制宜的思想
因材施教原则是教育教学的一条基本原则,在高中数学建模教学中教师要结合实际因地制宜进行数学建模教学。首先要选择学生身边的实际问题进行数学建模,这样:一是容易使学生建立比较好的、考虑比较周全的数学模型(只有熟悉问题,才可能考虑周到);二是容易使学生真正体会到数学的应用。其次要依据学生学习过程的认识原则,数学建模教学的内容和方法需要经历一个逐渐深入、提高的过程,应该随着学生思维能力的增长,逐步提出更高的教学目标。再次要根据每个人的认识结构不同,而以不同的方法施教。
四、数学建模教学要提高认识和先行思想
数学建模教学活动是有效培养学生能力,促进应试教育向素质教育转轨的重要过程。它对提高学生的学习兴趣,培养学生应用数学进行分析、推理、证明和计算的能力,用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力都有很大的效果。为此,数学建模教学可以看作为新课程改革下教师在数学教学中的另一种模式。目前高中数学教科书中虽增加了部分利用建模来进行研究的探究问题,但实际教学中除高中数学课本中的学生“阅读材料”内容外,“现成”的数学建模内容非常少,再加上数学建模需要一定的汉语理解能力和数学思维构造能力。为此,在这种情况下教师需要具备数学建模教学的意识,这样才能在日常的教学过程中用自己的意识感染身边的每一个学生,使学生能自主利用现有的知识自主构建数学模型,在数学的王国中自由驰骋。
【参考文献】
[1]新人民教育出版社《中学数学教学课程标准》
关键词 :中学数学 数学建模 应用
1、引言
近些年的教育制度改革,高度重视中学生的素质教育,在此项教育方式的实施中,中学数学该如何变革呢?新的课程标准,着重强调了中学生必须要加强对数学的应用意识,那么该如何加强中学生的数学应用意识呢?如果将生活实际问题与数学相联系,将生活中的实际问题渗透到数学题中,让学生学会运用数学知识解决一些生活中的实际问题.
数学建模正是一个学数学、做数学、用数学、综合运用所学的知识解决实际问题的过程,它体现了学与用的统一,可以使学生掌握好数学的基础知识、基本技巧及基本思想,提高运用数学的能力.这一点也正好体现了新课程标准中对素质教育的要求内容.因此本文将着重研究数学建模在中学数学中的应用,具体内容以参考文献[1]至参考文献[14]作为参考.
2、建模的一般性理论知识
要想更好的应用建模,则首先要了解建模的一些理论知识,下面本文将从三个方面对此加以简单的介绍:(1)数学模型的概念;(2)建模的一般步骤;(3)建模应遵循的原则.
2.1 数学模型的概念
数学模型可以描述为:对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构.
2.2 数学建模的一般步骤
2.2.1 模型准备
了解问题的实际背景,明确建模的目的,搜集必要的信息,如现象、数据等
尽量弄清楚对象的主要特征,形成一个比较清晰的“问题”,由此初步确定用
一类模型.
2.2.2 模型假设
根据对象的特征和建设目的,抓住问题本质,忽略次要因素,作出必要的、合理的简化假设,选择有关键作用的变量和主要因素对建模成败起着重要的作用.
2.2.3 模型构成
根据所作的假设,用数学的语言、符号描述对象的内在规律,运用简单的数学工具,建立各个量之间的定量或定性关系,初步形成数学模型.
2.2.4 模型求解
建立数学模型是为了解决实际问题,对建立的模型可以采用解方程、画图形、优化方法、数值计算、统计分析等各种数学方法,特别是数学软件和计算机技术.
2.2.5模型分析
对模型求解得到的结果进行数学上的分析,有时根据问题的性质,分析各变量之间的依赖关系或稳定性态,有时根据所得的结果给出数学上的预测.
2.2.6 模型检验
把求解和分析结果翻译回到实际问题,与实际的现象、数据比较,来检验模型的合理性、适用性和真实性.如果与实际不符,应该对模型进行修改、补充,或是重建.一个符合现实的数学模型的构建往往需要多次反复的修改,直至完善.
2.2.7 模型应用
应用的方式与问题性质、建模目的及最终的结果有关,因此要具体问题具体分析.
2.3 建模应遵循的几个原则
2.3.1适度性原则
数学建模实际既要尊重问题的实际背景,又要使学生更容易理解信息.对中学生而言,专业术语过多、计算量过大,都会对其理解问题有很大的影响.因此,教师在选择建模题目时,必须对问题的实际背景进行加工,以达到适度并且符合学生的学习接受能力.
2.3.2 适应性原则
数学建模的设计应该与教学内容相适应,在课堂教学中建模问题要与教学目标和课堂教学进度同步,在课外活动中,建模的设计可根据实际需要进行拓宽,以开放学生的视野.
3、中学生建模的重要意义
通过上面实际问题的应用举例,可以看出数学建模在中学数学中有着不可或
缺的重要作用,所以中学生建模有着重要的意义,展开如下.
3.1 增强学生数学的应用意识
过建立数学模型,学生可以掌握用数学问题解决实际问题的方式,可以深刻的体会到现实生活中时时有数学,处处有数学.这有利于加深学生对数学应用的认识,有利于培养他们用数学的眼光观察和分析问题,增强他们应用数学的意识.
3.2 提高学生学习数学的兴趣
在中学阶段,很多学生都认为数学就是题海战术,就是大量的计算.因此培养学生学习数学的兴趣十分必要.使其认为数学不是枯燥无味的而是丰富多彩的,可以把生活中的实际问题紧密的应用到数学问题当中,慢慢培养学生学习数学的兴趣,因为兴趣是最好的老师,可以起到事半功倍的教学效果.
3.3 有利于学生数学素养的培养
数学建模渗透着重要的数学思想和数学方法.学生在建模的过程中可以掌握基本的数学方法,领悟数学思想.建模还要求学生要有丰富的想象力和敏锐的洞察力.通过建模还可以使学生养成勤学好问的好习惯,使他们具有坚持不懈的毅力、团结协作的团队精神以及认真谨慎的科研态度.这些都是学好数学必备的素养.
关键词:数学建模;力学实践;科学思维;创新能力
数学模型是解决各种实际问题的过程,是将数学应用于力学等现代自然科学的重要桥梁。数学建模不仅是数学走向力学应用的必经之路,而且也是科学思维建立的基础。通过数学建模分析力学问题,将数学应用于实际的尝试,亲历发现和创造的过程,可以取得在课堂里和书本上无法获得的宝贵经验和亲身感受,不断深化科学思维,培养学生的创新意识和实践能力。数学建模对力学教学思维的建立具有重要的指导作用。
一、数学建模与数学建模教学的发展
数学建模最早出现于公元前3世纪,欧几里得所写的《几何原本》为现实世界的空间形式构建了数学模型。可以说,数学模型与数学是同时产生的。数学建模的发展贯穿近代力学的发展过程,两者互相促进,相互推动。开普勒总结的行星运动三大规律、牛顿的万有引力公式、电动力学中的Maxwell方程、流体力学中的Navier-Stokes方程与Euler方程以及量子力学中的Schrodinger方程等等,无不是经典的数学建模。
1985年,美国开始举办国际大学生数学建模竞赛,至此数学建模的教育开始引起广泛的重视。数学建模在我国兴起并被广泛使用是近三十年的事。从1982年起我国开设“数学建模”课程,1992年起举办全国大学生数学建模竞赛,现在已经成为我国高校规模最大的课外科技活动。2002年,开展“将数学建模的思想与方法融入数学类主干课程”的教改实践,2012年,《数学建模及其应用》杂志创办。
二、数学建模对力学教学的指导作用
1.数学建模是将数学应用于力学实践的必要过程
数学建模(Mathematical Modeling)是通过对实际问题的抽象、简化,建立起变量和参数间的数学模型,求解该数学问题并验证解,从而确定能否用于解决问题多次循环、不断深化的过程。数学模型(Mathematical Model)是指为了一个特定目的,对于一个现实问题,发掘其内在规律,通过积极主动的思维,提出适当的假设,运用数学工具得到的一个数学结构。
数学建模几乎是一切应用科学的基础,用数学来解决的实际问题,都是通过数学建模的过程来进行的。而力学是应用科学的一个重要分支,一种力学理论往往和相应的一个数学分支相伴产生,如:运动基本定律和微积分,运动方程的求解和常微分方程,弹性力学及流体力学和数学分析理论,天体力学中运动稳定性和微分方程定性理论等。因此,有人甚至认为力学应该也是一门应用数学。
2.数学建模是培养科学思维的基础
科学思维是以科学知识为基础的科学化、最优化的思维,是科学家适应现代实践活动方式和现代科技革命而创立的方法体系。科学思维的其他重要研究者Dunbar立足心理学视角指出,科学思维过程是建构理论、实验设计、假设检验、数据解释和科学发现等阶段中的认知过程。这个过程与数学建模完全吻合,因此数学建模是培养科学思维的基础。
许多的力学家同时也是数学家,他们在力学研究工作中总是善于从复杂的现象中洞察问题本质,又能寻找合适的解决问题的数学模型,逐渐形成一套特有的思维与方法。数学建模不单单是对某个问题或是某类问题的研究和解决,更重要的是一种思维的培养。科学思维的培养是科学素养的重要组成,是科学教学的核心内容。
3.数学建模对培养学生的创新能力具有重要作用
数学建模是一个分析问题和解决实际问题的过程,从数学理论到应用数学,再到应用科学,它为培养学生从实践到理论再从理论回到实践的能力,创造了十分有利的条件。数学建模的过程是一个不断探索的过程,因此,数学建模竞赛是培养学生综合能力和发挥创新能力的有效途径。
创新可以是前所未有的创造,也可以是在原有基础上的发展改进,即包含创造、改造和重组等意思。数学模型来源于错综复杂的客观实际,没有现成的答案和固定的模式,因此学生在建立和求解这类模型时,从貌似不同的问题中抓住其本质,常常需要打破常规、突破传统。可以说,培养学生的创造能力始终贯穿在数学建模的整个过程。在数学建模的过程中体现了知识的创新、方法的创新、结果的创新和应用的创新。
三、数学建模在力学教学中的现状
数学建模教育在我国取得了长足的发展,越来越多的本科、专科和高职学院开设了数学建模课程,但普及率并不高,并且大部分学校只针对特殊专业开设,如中南大学物理升华班,湖南师范大学数学与应用数学专业等。
在学习力学之前,学生对数学建模的了解主要来自于高校对数模竞赛的宣传,所知有限。教师应在本科第一堂力学课上帮助学生树立正确的数学建模概念,将数学建模贯穿整个教学过程。在教学过程中重视数学建模思维的培养,联系实际力学问题培养学生的创新能力。
参考文献:
[1]孙琳.浅析数学建模[J].大学数学,2007,23(05):129-134.
[2]米广春.科学思维培养的实证研究:MBD教学模式的建构及其影响[D].华东师范大学,2011:28-35.
[3]晁增福,邢小宁,周保平.数学建模对大学数学教学的影响[J].大众科技,2011(06):179-182.
[4]李大潜.从数学建模到问题驱动的应用数学[J].数学建模及其应用,2014,3(03):1-9.
[5]杨四香.浅析高等数学教学中数学建模思想的渗透[J].长春教育学院学报,2014,30(03):89-95.
[6]刘唐伟,熊思灿,乐励华.大学生数学建模竞赛与创新能力培养[J].东华理工大学学报:社会科学版,2008,27(01):77-79.
同时,其他地区性和专业性的数学建模竞赛也蓬勃地开展起来,其中影响较为广泛的有研究生数学建模竞赛、美国大学生数学建模国际竞赛等。为了提高大学生运用数学工具分析解决实际问题的能力,借助于数学建模竞赛的推动,目前,数学建模课程几乎在我国所有的高等院校都在开设,成为我国高校发展速度最快的课程之一。西南科技大学作为传统的工科院校,工科数学课程教学在不同的工科专业课程教学中具有基础性的作用,所以,把数学建模的思想和学校工科数学课程教学结合在一起,既能促进学生对数学及应用的进一步认识,又更能培养学生的实践创新能力。
一、数学建模思想的作用与意义
(一)数学建模对工科数学课程教学改革的促进传统的工科数学教学在课程内容的设置上主要分三个部分:高等数学,概率统计和线性代数。这三门课程都存在着重经典,轻现代;重连续,轻离散;重分析,轻数值计算;重运算技巧,轻数学思想方法;重理论,轻应用的倾向。各个不同数学课程之间又自成体系,过分强调各自的系统性和完整性,忽视了在实际工程中的应用,不利于培养学生运用数学知识解决实际问题的能力,造成学生所学不知所用,并且影响到后续专业课程的学习。作为教师,面临着学生提出的“学数学到底有什么用?”这类问题。为了解决学生普遍的疑惑,首先可在工科数学课程教学中渗透数学建模思想。许多新的数学定义在引出的时候都会提供或多或少的引例,比如极限中的化圆为方问题、导数的瞬时速度问题以及定积分中的曲边梯形面积问题等等。在对基本数学概念进行讲述时,一方面让学生从具体的引例去掌握抽象的数学定义,另一方面更要学生理解数学建模思想的应用。
在课后进一步提供与之相关的生物、社会、经济等方面的数学模型,不但加大了课程的信息量,丰富了教学内容,而且拓宽了学生的思路,激发学生学习数学的积极性,初步培养学生数学建模的思想。其次,开设数学建模的必修和选修课程,以数学建模竞赛为导向,系统地向学生介绍数学建模方法,引导学生将数学建模思想和自己的专业课程相结合,组织丰富的数学建模和专业课程交叉结合实践活动,将其所学的数学基础知识进行整合,增强学生对数学的应用意识及能力,为其专业课程的学习打下坚实的数学基础。
(二)数学建模对工科大学生素质教育的推动
目前,数学建模课程作为全校的素质选修课程对全校学生开设,为数学建模思想在不同学科、不同专业中的渗透提供了更好的条件。由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题。高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解。无论是传统的机械、材料、生物等工科专业,还是通讯、航天、微电子、自动化等高新技术,或者将高新技术用于传统工业去创造新工艺、开发新产品,数学不再仅仅作为一门科学,它成为许多技术的基础,而且直接走向了技术的前台。技术经济来临,对工科大学生来说,既是机会,更是挑战。而学生素质能力的拓展,数学建模成为一个不可或缺的重要手段。数学建模课程内容的设置,由于面对的是全校学生,所以涉及面多为非专业性的社会、经济中的数学应用问题,看似数学建模对专业教育培养目标并没有起到很大的促进作用,其实不然。一方面,在课程教学中,针对具体的建模案例,补充一些优化理论、微分方程及差分方程理论、模糊评价方法和决策分析等相关的数学知识,可扩展学生的数学知识面。同时,数学建模的实践活动,可增强学生数学意识,提高数学应用等各方面的综合能力。因此当学生具备对问题一定的分析、抽象、简化能力之后,加之其丰富的联想能力,大胆使用数学建模中的类比法,不难将所学数学建模方法应用于本专业问题的分析与数学建模之中。
二、数学建模与工科数学相结合的探讨
(一)数学建模思想与高等数学课程的结合
长期以来,高等数学在高校工科专业的教学计划中是一门重要的基础理论必修课,主要内容是函数极限、连续、微积分、向量代数与空间解析几何、级数理论、微分方程等方面的基本概念,基本理论及基本运算技能,其目的是使学生对数学的思想和方法产生更深刻的认识并使学生的抽象思维与逻辑推理能力、分析问题、解决问题得到培养、锻炼和提高。
传统的高等数学教学主要是讲解定义、定理证明、公式推导和大量的计算方法与技巧等,在课堂中,填鸭式教学法仍占主要地位,在表达方法上一直采用“粉笔+PPT”的讲授法,教师在课堂上把所有知识系统而又完整地讲授给学生,教学内容还是比较单调,这种教学方式会使学生越来越觉得数学枯燥无味;再加上目前的学生深受应试教育的影响,学习主动性还不够,缺乏应用数学知识解决实际问题的意识和能力。教师如果能随时随处将数学建模思想渗透在讲课内容中,使学生对概念产生的历史背景有所了解,让学生在学习数学时,体会到知识的整体性、综合性及应用性,这样学生才能通过理解把新知识消化吸收并熟练运用。比如,在学习函数连续性的时候,可以介绍“椅子能否在不平的地面上放稳”这一简单的模型,让学生体会到抽象的介值定理在生活中的小应用;在学习利用函数形态描绘函数图形的时候,适当引入Matlab软件的介绍以及绘图功能,让学生掌握复杂的二维及三维图形的描绘;在微分方程一章,淡化物理模型,从人口计划生育的基本国策出发,提出人口增长的Malthus模型及Logistic模型,从数学角度阐述控制人口增长的必要性。
(二)数学建模思想与概率统计课程的结合
概率及统计学的应用在现实生活中更是随处可见,课程一般在高校大学二年级开设。在概率统计课堂教学中融入数学建模思想方法有利于培养应用型人才,特别是对管理类和经济类的人才,有利于提高低年级学生运用随机方法分析解决身边实际问题的能力。严格的说,概率论的理论推导比较繁琐,学生相关的理论基础也不具备,因此基本理论的讲授不过分强调全面性,讲清楚条件与结论,留给学生更多的问题让他们自己思考,讨论,培养自己利用概率统计建模解决问题的良好习惯。在每一个单元的教学中,可以适当安排几个例子让学生思考。如在随机事件与概率部分,从简单的摸球问题和硬币正反面问题,延伸到生活处处可见的彩票销售;在学习概率分布的时候,重点列举正态分布和泊松分布在现实生活中的常见例子,并提出简单的排队论问题让学生进一步讨论;在随机变量的数字特征部分,可以学习报童的收益问题以及航空公司的预定票策略。#p#分页标题#e#
而统计学的应用在各个学科更为常见,认真讲好实用统计方法,重点讲解回归分析法,选用一些没有标准答案的开放性统计建模问题给学生研讨,培养学生的建模能力。课堂讲授中介绍SPSS统计软件以及Matlab中的统计工具箱,引导学生利用计算机处理和分析数据,解决实际问题。课堂讲授时注意知识性与趣味性相结合,以数学建模例子为载体,培养学生的数学建模思想,提高学生的学习兴趣,创造培养学生创新精神与创新能力的环境。
(三)数学建模思想与线性代数课程的结合
线性代数课程内容包括矩阵运算、行列式、线性方程组、向量线性关系、矩阵的特征值和特征向量、二次型。虽然该课程的教学内容并不多,但它的教学仍然难以摆脱过于实用的“工具”思想。教学方式大都还是先由教师在课堂上讲清楚各类概念和算法,然后学生通过做作业来巩固掌握这些方法。基于线性代数的数学模型没有高等数学和概率统计课程里面的丰富,但是,在学习线性代数的同时,可以强化数学建模的计算机求解能力。强大的科学计算软件Matlab就是基于矩阵论的,线性代数里面的计算在Matlab中都已经实现。因此,在教学过程中,不断尝试用数学软件求解线性代数问题,可以让学生接触到先进的数据处理方式和科学计算方法,为数学建模思想的具体实现提供有力的支撑。
三、建议
为了促进学生的素质教育,配合学校教学“质量工程”的展开,全面提高以工科为主的学生数学知识的应用和拓宽专业实际应用的能力。针对数学建模教学研究中存在的问题,特提出以下建议:
第一,从学校以及学院两个层面加大对数学建模课程的宣传以及选课指导,让学生充分认识了解课程作用与意义,鼓励工科学生以及其它专业学生选修数学建模课程,扩大必修面,增加选修人数。
第二,加强数学建模课程体系建设,引进具有高学历或高职称同时具有课程教学和竞赛培训丰富经验的教师充实课程师资力量,并积极鼓励现有教师进行进修提高,继续推进精品课程数学模型的后续建设,大力推进数学建模题库及数学建模实践基地建设。
【关键词】高中数学;教学
数学建模就是应用数学知识解决实际问题。在新课程学习的背景下,加强数学建模意识,开展各种课型的数学建模教学,培养学生运用数学建模解决实际问题的能力,让学生体会数学在实际生活和生产中的应用,引导其在学中用,在用中学,培养其理论联系实际的能力,激发学生学习数学的兴趣。高中数学本身就是一门理论联系实际的课程,包含了许多数学教学建模的方法,如函数关系式、导数法、微分方程法、多变量积分法等。在教学中教师应注意培养学生的教学建模能力。
一、数学建模的概念
数学建模,旨在培养学生解决实际生活问题的能力。它的实际性和创造性被越来越多的教师所接受。数学建模不仅可以让学生能够运用所学数学知识解释生活难题,而且可以通过实际生活的案例来提高学生接受数学学习的兴趣,从而提高数学教学效果。因此,数学建模教学应被大力推广。
二、高中数学建模教学的现状
1.数学建模中的情感问题:教师对数学建模的感情淡漠,课程标准的出台和新课标的培训使得培训过的教师教师认识了数学建模,也明白数学建模对学生将来生活的作用,但是教师在受教育期间是在题海战术中培养出来的,只重视严谨的逻辑思维,没有接触的数学建模或者在生活中的应用,毕业以后从事工作,时间忙碌,整天和高考题打交道,更是无暇顾及身边的生活,更别说再从非学校生活中发现问题。数学建模要求教师充分尊重学生,发挥学生的创造性和积极性。数学建模由于其特殊性,在建模的过程中学生处于主体地位,教师只是学生的顾问。
2.学生建模能力低:学生有一定的数学应用意识,能在现实生活中识别出一些数学问题;学生有一定的电脑基础,可以使用常用的软件;了解数学建模的意图,认识到数学建模就是用数学知识解决实际问题;愿意参加数学建模活动。这些为我们在学校顺利的开展数学建模活动奠定基础。但是学生不能将数学问题与实际问题恰当的互相翻译,这些是建模活动的一个障碍,在活动中应特别的指导;并且男女生思维方式不同,可在分组时合理安排;学生有用数学去解决问题的热情,但是没有具体的指导和方法,无从下手。
3.应试教育对建模教学的影响:改革开放以来高考一直是老师和学生的指挥棒,确实这种“一考定终身”的制度无法不让人重视,数学建模虽说在课标中得到重视,在将来的社会中也大有用处,但是在高考的评价体制中没有得到有力的体现,高考中虽说有体现数学建模的数学应用题,但是应用题只是数学建模的一个片段,没有让学生经历相对完整的数学过程,而且应用题也可以在平时的练习中掌握做题的技巧,无需真正的去做数学建模。高考评价体制中没有中重视,就很难调动教师的积极性。目前高中实行学分制,但是由于学生评价体系和教师评价体系仍然以高考为标准,所以大家仍是唯高考马首是瞻。希望这种学分制,或者说数学建模有过程性评价的同时,也有结果性评价,或者这种过程性评价在高考中有一定的作用,才能刺激教师对数学建模的重视。
三、加强高中数学教学中建模能力的具体培养方法
1.重视每章前问题的教学,让学生明白建立数学模型的实际意义。在每一章的数学教学之初,都用一个实际问题引入,这样可以使学生明白,学了本章的教学内容之后,这个实际问题就可以用数学模型来解决,如此,学生就会产生创新意识与实践意识。其次,运用引入一个现实的应用问题,以突出知识的实际背景,激发学生的学习欲望,增加教学内容的趣味性。这样,通过对章前问题的启发与引导,就会使学生明白数学就是学习、研究和应用数学模型,同时培养学生对解决问题的新方法的追求意识,以及参与实践的意识。因此,要对章前的问题突出重视,另外,还可以根据市场经济的建设与发展的实际需要及学生实际活动中发现的问题做一些实例补充,强化这方面的教学,使学生在日常生活和学习中重视数学,培养学生建立数学建模的意识。
2.通过几何、解三角形问题及列方程解应用题的教学过程渗透教学建模的思想和思维过程。几何和三角形测量问题的学习使学生可以多方位地感受数学建模思想,让学生更多地认识和运用数学模型,巩固数学建模的思维全过程。在教学过程中,对学生展示建立数学模型的以下过程:数学模型、数学抽象、简化原则、演算推理、现实原形问题的解、数学模型的解,反映性原则,返回解释。列方程解应用题体现了数学模型的思维过程,要根据所掌握的信息和资料对问题加以变形,使问题简单化,以利于解答的思想。解题过程中的重要步骤是根据题意列出方程,教学过程中,可以让学生明白,数学建模过程的重点及难点就是根据实际问题的特点对现实信息进行观察、类比、归纳、分析及概括,建立数学模型或变换问题构造新的数学模型来解决问题。
关键词: 数学建模 必要性 教学实践 评价
生活中,学生自主创业活动必定涉及到各方面的知识,而创业中的现实问题的提出与解决,反映在数学中就是数学应用问题的创设和解决(数学建模),目前,数学建模是世界各国数学教育界共同关注的问题,如何培养中职生的数学建模能力为他在实际生活中真正创业时,做到条件的分析无误、设计的合情合理呢?,现阶段必须在教学中大力培养和提高中学生的数学应用意识,使学生掌握提出、分析和解决 带有实际意义的数学问题,准确而灵活地运用数学语言研究和表述问题,是职高数学教学的迫切要求,在职高数学教学过程的始终都应注重学生应用意识的培养,加大应用问题的教学力度。如果没有分析问题,抽象问题的基本功,就谈不上数学建模 ,更谈不上今后如何指导自己创业,因此,对中职生的数学建模能力进行探讨、研究是十分必要的。
一、什么是数学建模
数学模型:对于现实中的原型,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。也可以说,数学建模是利用数学语言(符号、式子与图象)模拟现实的模型。把现实模型抽象、简化为某种数学结构是数学模型的基本特征。它或者能解释特定现象的现实状态,或者能预测到对象的未来状况,或者能提供处理对象的最优决策或控制。
数学建模:(Mathematical Modelling)把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模。
二、数学建模的目的:
(1)体会数学的应用价值,培养数学的实际中的创业应用意识;
(2)增强数学学习兴趣,学会团结合作,提高现实生活中分析和解决问题的能力;
(3)知道数学知识的发生过程,培养数学创造能力
三、数学建模的过程:
模型准备 :了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
模型假设 :根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
模型建立 :在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。(尽量用简单的数学工具)
模型求解 :利用获取的数据资料,对模型的所有参数做出计算(估计)。
模型分析 :对所得的结果进行数学上的分析。
模型检验 :将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,在次重复建模过程。
模型应用 :应用方式因问题的性质和建模的目的而异
四、提高中职生数学建模能力的教学实践
1、重视基本方法和基本解题思想的渗透与训练。
中职生数学建模能力的培养最重要的是要求教学内容的选择要有开放性和关联性。为此,我们在教学中补充和拓展教学内外的典型事件和案例,培养学生的应用意识,提高学生分析问题解决问题的能力,首先应结合具体问题,教给学生解答应用题的基本方法、步骤和建模过程,建模思想。 教学实际应用题的常规思路是:将实际问题抽象、概括、转化 --数学问题解决数学问题 回答实际问题。具体可按以下程序进行:
(1)审题:由于数学应用的广泛性及实际问题非数学情景的多样性,往往需要在陌生的情景中去理解、分析给出的问题,舍弃与数学无关的因素,抽象转化成数学问 题,分清条件和结论,理顺数量关系。为此,引导学生从粗读到细研,冷静、慎密的阅读题目,明确问题中所含的量及相关量的数学关系。对学生生疏情景、名词、 概念作必要的解释和提示,以帮助学生将实际问题数学化。
(2)建模:明白题意后,再进一步引导学生分析题目中各量的特点,哪些是已知的,哪些是未知的。是否可用字母或字母的代数式表示,它们之间存在着怎样的联系?将文字语言转化成数学语言或图形语言,找到与此相联系的数学知识,建成数学模型。
(3)求解数学问题,得出数学结论
(4)还原:将得到的结论,根据实际意义适当增删,还原为实际问题。
例:某城市现有人口总数 100 万人,如果年自然增长率为 1.2 %,写出该城市人口总数 y( 人 ) 与年份 x( 年 ) 的函数关系式
这是一道人口增长率问题,教学时为帮助学生审题,,可以提出以下要求:
a找出有用量,题目中涉及到哪些关键语句,哪些有用信息?解释“年自然增长率”的词义,指出:城市现有人口、年份、增长率,城市变化后的人口数等关键量。
b理解量的关系,问题中各量哪些是已知的,那些是未知的,存在怎样的关系?
c建模,启发学生分析这道题与学过的、见过的哪些问题有联系,它们是如何解决的?对此有何帮助?
学生讨论后,从特殊的 1 年、 2 年…抽象归纳,寻找规律,探讨 x 年的城市总人口问题: y=100(1+1.2%) x .
通过这个故事让学生知道,创业过程中有大量的现实问题可以抽象到数学的应用中来,同时让学生发现大量的引人入胜的研究方向,比如这道题分析下去,其中就可以扩展到人口,存款付息,房屋按揭等方面的应用。
数学建模,旨在培养学生解决实际生活问题的能力.它的实际性和创造性被越来越多的教师所接受.数学建模不仅可以让学生能够运用所学数学知识解释生活难题,而且可以通过实际生活的案例来提高学生接受数学学习的兴趣,从而提高数学教学效果.因此,数学建模教学应被大力推广.
2高中数学建模教学出现的问题
目前许多高中数学课本中将有关数学建模的内容都分散于各个教学单元中,使其内容失去了连贯性,学生不能灵活运用数学知识,大大降低了数学建模教学的优势和目的.另外许多高中生在学习数学建模的过程中存在或多或少的障碍.高中生由于地区或者其他原因,对于现实问题的洞察能力和数据的处理能力均有限,导致数学建模教学不能顺利地进行.另外,许多教师对于建模的教育理念存在偏差,不重视数学建模,因此,教学效果也就可想而知.
3加强高中数学建模教学的对策
1)重视各章前问题教学高中数学课本在每章前面均有一个关于本章教学内容的实际问题,而通过重视各章前问题教学,可以引发学生对于数学建模的兴趣,从而使得学生明白数学建模教学的意义.例如,某公园有个大型摩天轮,该摩天轮可以吊起78个客舱,一次能运载350个乘客.坐该摩天轮从开始到最后需要耗时30min,转速为5m•min-1.问,乘客乘坐该摩天轮时,从摩天轮的最低点开始计时,他所处的高度h与所坐的时间t的关系,并用数学模型解释.这个章前问题就是典型的运用数学模型来解决生活中的问题,因此,高中数学教学应加强章前问题教学,培养学生重视数学建模的意识.
2)加强数学开放题教学高中数学教师可以通过加强数学开放题的教学提高数学建模教学效果.因为数学开放题可以锻炼学生开放性思维和创造性思维.开放题可以接近生活中的现实问题,例如,随着科技的发展和能源的消耗过剩,现今市场上出现3种汽车类型,一是传统的以汽油为原料的汽车,二是以蓄电池为动力的车,三是用天然气作为原料的汽车.通过对这3种类型的车使用原料成本进行分析比较,并建立数学模型,分析汽油价格的变化对这3种车所占市场份额的影响.这种开放性的试题,没有具体的答案,只要学生所建的数学模型能够将问题说得通,都算是成功的数学建模.
3)注重案例式教学注重案例式教学是值得教师学习的提高教学效果最有效的方法.通过分析典型的数学案例理解建模的优势,提高数学建模的教学效率.例如,甲、乙2人相约到某地相遇,该地距离出发点为20km,他们约定一个人跑步,而另外一个人步行,当跑步者到达某个地方后改为步行,接着步行的人换成跑步,再步行,如此反复转换,已知跑步的速度是10km•h-1,步行的速度是5km•h-1,问至少花多少时间2人都可以到达目的地.这种相遇问题在数学教学中应该经常见到,这是一种典型的案例题,通过典型案例的数学建模教学,不仅可以让学生对问题更加印象深刻,而且可以使得学生更容易接受数学建模教学的方式,从而提高数学建模教学的效果.