公务员期刊网 精选范文 数学建模的一般过程范文

数学建模的一般过程精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学建模的一般过程主题范文,仅供参考,欢迎阅读并收藏。

数学建模的一般过程

第1篇:数学建模的一般过程范文

关键词:高中数学建模;思考

数学建模被认为是数学区别于其他学科的重要特征之一,对数学及其教学有点研究的人基本都知道数学建模这个概念. 在课程改革之前,数学建模就受到高中数学教学界的普遍重视,包括数学建模在内的学科建模丛书成为当时教师的热门选择. 进入课程改革之后,尽管课程标准中仍然保留着数学建模的教学要求,但由于人们更热衷于讨论教学方式的转变、教学理念的更新等,数学建模相对显得有些被冷落了. 但事实上,作为数学教学的核心内容,数学建模是数学教学中的重要基础,也是学生提升数学学习能力和数学素养的重要方式. 一言以蔽之,“凡是有数学的地方就有数学建模”.

在高中数学教学中,由于数学内容的循序渐进性,很多数学概念、定理、法则的形成都具有一些共同点,也就是说不同的数学概念的得出有时仿佛是走的同一条道路,因此“历史总是惊人地相似”这句话有时竟也非常适用于数学概念、定理或法则的形成;又由于不同数学知识之间的相互联系性,很多数学问题又都具有类似的解题思路,也就是说看起来不是同一领域的数学问题,但在分析解决的思路上却又是相同的,看似殊途,实则同归.

事实上,正是因为这些共同点的存在,才形成了高中数学教学中进行数学建模的内容基础和方法基础.同时从减轻学生的学习负担,提升学生的数学能力,提高高中数学教学效率等角度来看,数学建模也担负着相当重要的作用. 因为一个数学模型的建立,用到大量的数学知识和数学思想,它具有极强的综合性. 在教学实际中,笔者根据自身的观点,认为要想成功地建立、理解、运用数学模型,可以从以下几个方面来进行.

[?] 什么是数学建模

从字面上来看,建模就是建立模型.只是数学建模与一般意义上的建立模型不同,因为其一般不是建立实际的模型,如长方形、立方体等,而是指基于数学特质,建立一套适合于数学思考的思维模型,这种模型既然是思维的结果,自然也就以一种抽象的形态存在于数学研究者的思维当中,至于具体的实物模型一般是没有的,就算是有,也是数学研究者思维结果的物质体现.

具体地说,就是数学研究者通过思维活动,将生活中的事物进行抽象――去掉其中非关键的要素,保留其中关键的要素,最终建立起一套利用数学语言描述现实中的数量关系与空间形式的过程. 这个过程中,由于抽象思维的参与,因此与数学无关的因素都被忽略,而与数学有关的因素都被保留了下来. 而这样的抽象结果在得到了验证之后,就可以得到一个稳定的数学结构. 又因为这个数学结构在一定范围内具有较强的代表性,所以其将成为其他数学问题解决的重要载体. 我们有时候说数学具有简洁的特点,就是因为众多数学现象背后有着共同的数学模型.

数学建模作为思维的结果,其一般存在于学生的思维当中,存在形式就是思维表象,或者说是某种数学图景. 那么,这个数学图景的形成需要经历怎样的抽象过程呢?研究相关理论我们可以发现,作为一种数学学习方法,高中数学建模的过程应当包括这样几个方面:一是学生根据学习内容和建模需要,分析其中的主要数学因素与非数学因素并进行取舍,在头脑中初步构建模型,这是模型构思阶段;二是根据初步构建的数学模型,选择适当的数学工具在选择出来的数学因素之间建立起数学关系,并通过关系的梳理建构数学结构,这是模型的建立阶段;三是将模型初步应用于新的情境当中,看建立的模型能否接受新的数学问题的检验,如果有问题则需要经历前面一个循环过程,如果没有问题则说明模型建立得相对成功.这是模型的验证阶段;四是将模型正式迁移到其他数学问题当中,用于对新问题进行解释,这是模型的应用阶段.

值得注意的是,不同领域的数学知识需要建立不同的数学模型,建立模型的方法也不尽相同,但大体思路一致. 且严格来说,任何一个数学模型都有异于其他数学模型的地方,因此在数学建模当中要具有现象学的观点,因材而异. 有人说,数学模型的独立性与一致性是一个问题的两个方面,相当于一个硬币具有的正面与反面.

[?] 高中数学建模对学生数学能力发展的思考

数学建模的意义是不言而喻的,在高中数学教学中建立模型自然也是必要的. 笔者这两年对数学建模有所思考并不断地将自己的想法通过教学实施来验证,应该说带给我们的思考还是非常多的,具体说来有这样几个方面.

首先,数学建模能够有效地培养学生的应用意识. 应用意识是高中数学的一个重要目标指向,也是数学学以致用的价值体现. 具有应用意识与能力的学生,往往能够在实际问题与数学知识之间迅速地建立一种联系,有助于学生巩固所学数学知识,有助于提高学生的数学问题解决能力. 在这种意识形成过程中,数学建模能够起到非常明显的作用. 例如,大家所熟知的最短路径问题,包括两个位置之间最短距离的问题(具体的实际问题情境一般高中数学同行都是烂熟于心的,这里就不赘述了,下同;可以建立成两点之间直线最短的模型),三个位置之间的最短距离问题(可以建立成三点之间距离之和最短的模型),两个位置到一条道路或河流的距离之和最短的问题(可以建立成两点到一线的距离模型),蚂蚁爬圆柱问题(可以建立成寻找圆柱上下底面两点间的最短距离问题),淋雨多少与速度是否有关问题(可以建立成矢量三角形模型)……通过将这些实际问题或类实际问题进行抽象加工,使之成为数学模型. 通过这一个过程深化与丰富,可以有效地培养学生数学建模的能力,而在这个能力形成的过程中,当然也就培养了学生的数学应用意识和问题解决能力.

其次,数学建模能够培养学生的数学语言运用能力. 数学本身是一个符号世界,其抽象性也就体现在这个方面. 而数学建模的过程一般都是一个比较复杂的思维过程,在建模过程中往往靠个体的力量不容易成功,这个时候就需要学生之间进行合作学习,而合作学习的基础就是学生间的有效交流. 在数学建模过程中,为了将自己的思考表述出来,就需要通过语言组织将自己的数学思考与他人分享,在这个过程中学生会经历一个即时、迅速、复杂的数学思维语言化的过程. 根据我们的教学经验,学生在这个过程中往往会表现出非常复杂的思维过程,这里所说的复杂主要是指学生的表达总是从生疏走向熟练、从不准确走向准确,而这个过程又是小组内学生共同促进的结果. 同时,对于数学模型的解释、解读,以及运用过程中必然也会涉及表述等问题,因此数学语言将是围绕数学模型展开的一个重要内容,因此笔者总体感觉到这样的过程能够促进学生对数学语言掌握的熟练化.

再次,数学建模能够培养学生良好的直觉思维能力. 思维能力是数学教学的核心,我们的数学教学如果说超越知识层面来培养学生的话,那就是培养学生的思维能力. 而根据对心理学的相关知识的学习,我们可以说人的思维可以分为形象思维(小学、初中阶段的主要思维方式)、抽象思维(高中阶段的主要思维方式)和直觉思维三种阶段与形式. 其中直觉思维被认为是最高形式的思维方式,其具体表现是学生能够在即时状态下对新事物迅速做出反应――反应速度越快,说明这位学生的直觉思维能力越强. 在高中数学教学中,培养学生良好的直觉思维是必需的任务,而我们认为数学建模是能够发挥这样的作用的. 翻开数学史,我们可以看到很多经典的数学发现,如笛卡儿坐标系等,都是直觉思维的产物. 而在教学实践中,我们也发现现在的高中学生能够依托抽象思维建立出比较理想的数学模型,而经过坚持不懈的训练之后,就有可能形成良好的数学直觉.

[?] 高中数学建模的实施细节注意点

数学建模作为一项数学思维高度参与的活动,在具体的教学中要想真正做得很好是一件不容易的事情. 除了对于数学建模的四个阶段要比较熟悉之外,在具体的实施中还有一些细节需要注意.

一是要充分运用好问题驱动. 根据皮亚杰发生认识论的有关观点,只有在学生的认知平衡被打破时学生才会产生强烈的学习内驱力,而数学建模由于思维量大,因此必须以问题驱动才能保证整个过程的顺利实施. 值得注意的是,这个问题必须是符合学生需要的问题,不一定是学生自己提出来的,但一定要保证提出之后学生是感兴趣的.

二是要充分增强学生的体验感. 数学建模本质上是对实际事物或实际问题的抽象,而这就需要学生有充分的经验作为基础,经验来源于生活和体验,对于高中数学学习而言,更多的经验可以通过体验来生成. 而这就需要我们在课堂上多创设能够让学生体验的情境,以生成相应的经验供数学建模中使用.

第2篇:数学建模的一般过程范文

[关健词] 创新人才 经济数学 创新意识

一、数学建模及其发展

数学建模是用数学的语言方法去近似地刻划一个实际问题,这种刻画的数学表述就是数学模型。数学模型不仅可以用来描述自然科学中的许多现象,还可以用来探讨社会科学中的一些问题。在建立和完善社会主义市场经济体制的过程中会出现各种各样的新问题,每时每刻都对经济的发展产生着重大影响。通过建立数学模型,可以研究一个国家、地区或一个城市经济均衡增长的最佳速度及最佳经济结构等问题。因此,数学建模在国民经济中有着重要的应用。早在二千多年前,中国古人就开始使用数学模型方法,秦汉时期的数学名著《九章算术》是在总结前人经验的基础上著写的。它的每一章都是在大量的实际问题中选择具有典型性的现实原型然后再通过“术“(即算法)转化为数学模型。而有些章(如“勾股”、“方程”等)就是探讨某种数学模型的应用的。近代的意大利科学家伽利略于1604年建立著名的自由落体运动的数学模型,开创了数学建模的新时代,使数学模型方法成为各门学科中极其重要的方法,并成为和其他学科共同发展的连接点。从17世纪开始,经济学家就开始把数学模型方法应用于经济领域,用数学公式来表达经济理论(如著名的道格拉斯生产函数的形式在1896年威克赛尔的《财政理论的探索》一书中就已提及。当前许多获得诺贝尔经济学奖的经济学家就是因开创性地建立了经济数学模型而获此殊荣。当前,数学建模教育和竞赛已作为各院校数学教学改革和培养高层次人才的一个重要方面。尤其是随着计算机的普及和计算机技术的发展,以往只有数学家才能求解计算的一些问题,现在的一般科技人员也能完成,这将使得数学模型的应用得以普及。数学模型在经济领域中的应用也随之具有更广阔的前景。因此,对经济类院校培养的人才应用数学知识,解决实际问题的能力的要求也日益提高。

二、加强数学建模教学的意义

由于历史的原因,我国经济类院校以招收文科生为主,对数学学习持消极态度的现象较为普遍。因此,数学建模严重制约和影响着学生今后的发展。不仅如此,传统的教学方式也存在着很大的局限性:由于授课时的限制,教学内容较多。同时,由于学生数学基础薄弱,在经济数学的教学过程中往往为了赶进度,而被迫牺牲许多方面的应用和计算,致使学生缺乏数学建模的初步训练,导致学生对数学的学习提不起兴趣,进而丧失对数学学习的积极性和主动性;教学思维模式陈旧,片面强调数学的严格思维训练和逻辑思维培养,缺乏从具体现象到数学的一般抽象和将一般结论应用到具体情况的思维训练,容易使学生形成呆板的思维习惯。与现代化生产实践和科学技术的飞速发展相比,教师的教学手段多数仍停留在粉笔加黑板阶段,学生做题答案标准唯一,没有任何供学生发挥其聪明才智和创造精神的余地。

三、开展经济数学建模教学的对策

发展学生的创造性思维能力,必须要有计划、有目的地增设以数学解决问题为特征的数学建模教育模式。以数学建模为载体,可以全面激发学生的创造性思维,培养学生提出问题和解决问题的能力。在教学中,要积极创设“学”数学、“用”数学、“做”数学的环境,使学生在“做”数学中“学”数学,使创造性思维在数学建模中找到一个切入点,以吸引教师和学生进一步探索和研究。经济数学建模教学在人才培养的过程中,特别是在人才的创新意识、实践能力方面发挥着非常积极的作用。经济数学建模教学又是经济数学课程教学改革的突破口和切入点,通过数学建模,我们可以认识到深奥的数学知识与实际生活的紧密联系,认识到数学的思想方法、数学的概念、教学的公式等在解决实际问题中所发挥的巨大作用。

从某种意义上说数学建模就是科研活动的缩影,其价值在于经济数学是在已有的基础上有所创造。我们面对的需要建模的问题千差万别,因此,数学建模总是在不断的创新过程中发展。提高主动性,探索积极创新能力,便成为数学建模教育的一大特色。实践证明,通过数学建模教育后学生的素质都有不同程度的提高。

为了提高学生数学建模能力,培养学生创新意识,我国每年都要举办一次大学生建模竞赛活动,近年来,这项活动的规模逐年增大,目前已成为我国高等院校中规模最大的学生课外科技活动。数学建模竞赛的开展,促进了数学建模的教学。实践证明,数学建模教育培养学生的基本素质可归纳为如下几方面:能把实际问题用数学语言来描述,再把数学结果用生活语言来解释,实现生活语言与数学语言的相互“翻译”;进行综合分析和综合应用的能力;创新意识和创新的能力;再学习的意识和通过学习或查阅使用各种资料不断获取新知识的能力;使用计算机及应用数学软件包的能力;团结合作、交流表达的能力;撰写论文的能力。总之,这些能力的具备是作为高素质管理人才所必备的。因此,经济类高职院校开展数学建模教育,将有利于提高学生素质,也有利于培养高层次的经济管理人才。

数学教学过程融入模型化的思想,除了给学生直观的感受外,更重要的是让学生能自主思考,自行运用建模的方法解决实际问题,逐步培养用数学进行分析,推理和计算的能力,培养和发展学生的创造力、想像力和洞察力,培养和发展学生熟练运用计算机和各种数学软件的能力,使数学在手中真正变成一个有力的工具。数学建模教育在更为广泛的领域开展“教”和“学”,改变了旧的教育观念和教育模式,在培养学生创新意识、创新能力等方面,数学建模教育都能发挥其独特的作用。

参考文献:

[1]李 明:经济数学建模与市场经济体制下创新人才的培养[J]. 商场现代化,2008(11)

[2]黄伯棠:关于数学建模的创新问题[J]. 长江大学学报(自科版),2005(4)

第3篇:数学建模的一般过程范文

严格来说,数学建模需要经历一个严密的过程.这个过程往往分为多个步骤,下面结合具体实例来说明.实例:某物体做简谐振动,点O为其平衡位置,取向右为正方向.已知振幅为5厘米,周期为4秒,从右边距离平衡位置最大距离处开始计时.

(1)求物体相对于平衡位置的位移与时间的函数关系;

(2)求经过12秒后物体所在的位置及运动方向.(三角函数知识的应用问题)第一步:模型准备.这一步的关键在于了解数学问题(应用)的背景,寻找其实际意义及其中的有用信息.该实例中的问题背景是一个简谐振动,这是学生在物理学习中熟悉的内容(本问题属于跨学科的数学应用问题).其中有用的信息可以根据学习经验去猜想与判断,像平衡位置、正方向、振幅、周期等、计时位置等,一般都会成为有用信息.第二步:模型假设与建立.根据模型准备经过假设的过程并建立模型,这一步需要用到一些重要的数学工具(公式定理等),最终目标是建立一个合理的数学结构,即数学模型.根据实例中的信息可以发现,简谐振动可以让学生生成一个基本的函数关系即简谐振动方程而这些信息的提取需要学生在物理数学知识的学习中形成良好的记忆,同时又需要将该方程与原来的实例信息进行对应,如振动频率与实例中的周期对应,初相位与计时位置对应等.这一步是数学建模的核心步骤,在本实例中应当说模型的建立一般不会出现太大的问题,因此在后面的模型检验中就不需要花费太多的精力,如果遇到更为复杂的应用问题,不像本实例这样一目了然,比如说本实例中可以将一些具体的数据省略,或者让简谐振动变得更隐蔽一些,那在模型假设与建立时就需要更多的精力与智慧.第三步:模型求解与分析.这一步的关键是将实例中的信息(参数)代入模型当中去.关于这一点,上述步骤中已经有所描述,此处不再赘述.第四步:模型检验.即将模型的分析结果与实际情形进行比较,以此判断模型建立的合理性.检验的重要途径是看根据目前建立的模型所得到的结果是否具有实例角度的实际意义,如果吻合度好,则说明模型建立成功,否则失败,一旦模型建立失败,就进入循环的阶段.如本实例中,由于学生有一定的物理与数学知识基础,因此在模型假设与建立阶段就有较大的信心,毕竟实例说明了是“简谐振动”,因此基本可以判断模型是正确的.事实上如果题目不说明是简谐振动,而说是一个振动且不计能量损耗,那学生的判断就需要多走几个步骤了.第五步:模型应用.这是一个与具体实例相关的步骤,一般没有固定的描述.在本实例中,模型应用主要体现在对第二问的回答上,事实上第二问可以无限延伸,任何一个时刻时物体的位置都可以由建立的数学模型计算出来.以上是数学模型及其建立的一般过程.需要强调的是,数学建模不只是一个利用数学知识生成数学模型的过程,严格来说它还是一种数学思想方法,是学生将学得的数学知识学以致用的一个重要的工具.尽管实际数学应用的过程中并不刻意追求以上步骤的完整性,但基于这样的思路去培养学生的建模能力却是必要的.另外,需要注意的是,数学模型的建立往往不是一个纯粹的数学问题,其与实际生活的关系,与其他学科的关系,都是需要数学教师高度关注的,而关注的具体方式就是充分地了解学生的原有认知基础.也就是说,数学建模实际上是一个综合性的过程,不是仅凭数学知识的建立就能完成的,生活应用性、跨学科性是其本质特征.

二、数学建模的教学与反思

第4篇:数学建模的一般过程范文

【关键词】数学建模;数学教学;过程当前,教育改革

以“素质教育”为目标,培养学生的自主学习能力和自我发展能力.在此前提下,数学教育不仅要教给学生数学理论知识,更重要的是要引导学生用数学思维去观察、分析、解决实际问题.传统的数学教学中更多强调让学生掌握数学概念、定理和公式,让学生训练各类题型,而忽视如何从实际问题出发,通过抽象概括建立数学模型,再通过对模型的分析研究返回实际问题中取得认识问题和解决问题的训练.融入数学建模思想,可以提高学生应用数学的意识,数学建模体现了学生学和用的统一.

一、数学建模简介及一般求解流程

数学建模是一种思考方法,是对实际问题的抽象、简化、确定变量和参数,应用相关规律建立了变量与参数之间的数学关系,再求解这个数学关系,并通过解析和验证所得到的结果,从而形成解决实际问题的一种强有力的数学手段.建模过程需要经过哪些步骤没有固定的模式,通常情况下与问题特征、建模目的等相关联,但数学建模一般求解流程大致如图所示.模型准备是指深入调研问题的实际背景,搜集与问题相关的信息,明确建模的目的,进一步确定问题用哪一类模型,做到情况明才能方法对.模型假设是指以问题的特征和建模目的为基础,忽略次要因素,抓住问题的本质,做出必要的、合理的简化假设.影响模型假设的合理性的因素包括读者想象力、洞察力、判断力以及经验.模型建立是指在模型假设的基础上,组织数学的语言、符号描述问题的内在规律,建立包含常量、变量的数学模型.模型建立原则:尽量用简单的数学工具;发挥想象力,用类比法,分析问题与熟悉问题的共性;借用熟悉的模型.模型求解是指针对建立的数学模型给出求解的过程.模型求解过程中可以尝试采用各种数学方法,特别注重结合数学软件和计算机技术.模型分析检验是指对求解结果进行分析并返回实际问题进行比较、检验,确定模型的合理性.模型分析检验的过程是对模型假设的再次验证.模型应用是指此类模型可以适用解决的相似问题.利用建模解决实际问题时,不要拘泥于求解流程,在建模时灵活运用,注重问题的实际意义,合理进行模型假设,选择合适的数学模型,对求解结果进行分析检验.

二、在数学教学中融入数学建模思想

对数学问题进行建模,就是从应用的角度来处理数学问题、阐述数学、呈现数学.如二元一次方程组的教学,重点在于让学生熟悉并掌握建立数学模型的一般过程.教学过程设计如下:(一)实际问题A、B两地相距900公里,船从A地到B地顺水航行需要30小时,从B地到A地逆水航行需要50小时,问船速、水速各多少?(二)模型假设中学数学航行问题的背景是匀速运动状态下,根据匀速运动的距离等于速度乘以时间这一物理规律,假设航行中船速和水速为常数,设船速为x,水速为y.(三)模型建立建立数学模型要善于利用有效的信息,将文字语言转为数学表达式,就是把实际问题转为数学问题,如“顺水航行”表示船速加水速,“逆水航行”表示船速减水速,将其用数学符号表示.结合假设所给的建模信息以及实际问题的特征,利用二元一次方程组建立起最简单的数学模型.船在顺水航行的距离数学表达式为(x+y)×30=900;船在逆水航行的距离数学表达式为(x-y)×50=900.(四)模型求解利用代入消元法解此二元一次方程组:x=24km/h,y=6km/h,求得船速和水速.(五)模型检验将求解的船速和水速代入实际问题比较,计算出航行问题的距离,从而检验模型的正确性.顺水航行距离为(船速加水速)乘以时间,数学表达式为(24+6)km/h×30h=900km;逆水航行距离为(船速减水速)乘以时间,数学表达式为(24-6)km/h×50h=900km;顺水航行和逆水航行所得距离结论与实际问题所给数据一致,说明该模型建立合理,对模型假设没有异议.(六)模型应用航行问题是用二元一次方程组解决实际问题的经典案例.解决问题的过程是模型求解流程的体现.

三、总结

第5篇:数学建模的一般过程范文

关键词:数学建模;数学能力;数学素质

一、数学建模的过程

所谓数学建模是指对于现实世界的某一特定研究对象,为了某个特定的目的在作了一些必要的简化假设、运用适当的数学工具,并通过数学语言表述出来的一个数学结构。数学中的各种基本概念。都以各自相应的现实原型作为背景而抽象出来的数学概念。马克思曾说过:“一门科学只有成功地运用数学时。才算达到了完善的进步。”可以认为,数学在各门科学中被应用的水平标志着这门科学发展的水平。一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报等方面的结果时,往往都离不开数学。而建立数学模型则是这个过程的关键环节。那么,数学建模的一般步骤可以表示为

由此可见,数学建模是一个多次循环的验证过程。是应用数学语言和方法解决实际问题的过程,是一个创造性工作和培养创新能力的过程。

二、培养数学建模能力的基本途径

培养学生的数学建模能力,首先,应该培养学生的建模兴趣。数学建模的特点是有很多问题与生活息息相关,大部分来源于生活,应用于实践,这无疑能提高学生的学习兴趣。其次,要培养学生对其他学科知识的积累。数学建模中交叉渗透着多种学科的知识,具有多样性、复杂性、综合性。只有掌握了丰富的知识。在解题过程中根据客观条件的发展和变化才能灵活地找到解决问题的方法。

三、数学建模对培养学生数学能力的作用

1、数学建模有利于提高学生的创新能力

创新能力是人的各种能力的综合和最高形式,创新能力不仅仅是智力活动,他不仅表现为对知识的摄取、改组和应用,而且是一种追求创新意识,是一种发现问题、积极探索的心理取向,是一种善于把握机会的敏锐性,是一种积极改变自己并改变环境的应变能力。而“建模”实质上就是构造模型,但模型的构造并不是一件容易的事,需要有足够强的构造能力,而学生的构造能力的提高则是学生创造性思维和创新能力的基础:创造性地使用已知条件,创造性地应用数学知识。例如:讨论椅子能在不平的地面放稳吗?这样的一个问题来源于日常生活中一件普通的事实:把椅子往不平的地面上一放,通常只有三只脚着地放不稳。然而,只需稍微挪动几次,就可以使四只脚同时着地放稳。

分析:解决这个问题首先要做模型假设:椅子的四条腿一样长,椅脚与地面接触处可视为一个点,四脚的连线成正方形;地面高度是连续变化的,沿着任何方向都不会出现间断,即地面可以看作数学上的连续曲线;对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子的任何位置至少有三支脚同时着地。其次构造模型:这个问题的中心问题是用数学语言把椅子四只脚同时着地的条件和结论表示出来。先用变量表示椅子的位置,再把椅脚着地用数学符号表示出来,进而建立了这个实际问题的数学模型。

2、数学建模有利于培养学生应用计算机的能力

与数学建模有密切关系的数学模拟,主要是运用数字式计算机的计算机模拟。它根据实际系统或过程的特性,按照一定的数学规律,用计算机程序语言模拟实际运行状况,并根据大量模拟结果对系统和过程进行定量分析。在应用数学建模的方法解决实际问题时,往往需要较大的计算量。这就要用到计算机来处理。计算机模拟以其成本低、时间短、重复性高、灵活性强等特点,被人们称为是建立数学模型的重要手段之一,我们也从中看出数学建模对提高学生计算机的应用能力是不言而喻的。

3、数学建模过程有利于培养学生的实践能力

数学建模的重要特点是多次循环的验证过程。多次修改模型使之不断完善的过程。例如和人们的生活息息相关的一个事实:在十字路口设置了红绿灯,为了使那些正行驶在交叉口或离交叉口太近而无法停下的车辆通过,红绿灯转换中间还要亮一段时间的黄灯,那么黄灯要亮多长时间才算合理呢?我们在建立模型以后要验证模型是否合理,这就要求我们在实践中反复思考,反复检验,这样才能得出合理的结论。

4、数学建模有利于学生综合素质的培养

随着科学技术的迅速发展,数学建模已经越来越多地出现在人们的生产、工作和社会活动的各个领域中。在新课程改革中,增加了“数学建模、探究性问题、数学文化”这三个模块式的内容,这些内容的增设,其主要目的是培养学生的综合素质。对于数学专业的学生来说,数学知识比较熟悉,但对实际问题涉及的相关领域的知识及背景却不是很了解。当面对一个从未接触过的实际问题,要运用数学知识来分析、解决,就必须开拓思路,充分发挥想象力和创造力,这一过程正好培养了学生的综合素质。

四、数学建模教学过程中存在的问题和思考。

第6篇:数学建模的一般过程范文

【关键词】数学建模;数学语言;思维创新

数学的方法和应用不只表现在理科方面,已经渗透到各学科各领域中.数学建模教育不能仅限于高等院校,也应拓展到中小学数学教学方面,小学同样可以开展数学建模的教学活动.

一、开展小学数学建模教学活动的意义

数学模型是指用数学符号、公式或图表等语言来刻画某种事物的本质属性与内在规律,一般表现为数学概念、定律、定理、公式、性质、数量关系等.数学模型是数学基础知识与数学应用之间的桥梁,建立和处理数学模型的过程,就是将数学理论知识应用于实际问题的过程;是复杂问题的简化过程;是通过观察和分析实际对象的特征和规律,抓住问题的关键,由数学语言来反映问题的数量关系,然后,利用数学的理论和方法去分析和解决问题的过程.

学生学习数学知识的过程,实际上就是对基本数学模型的学习,是建立数学模型解决实际问题的开始.学生对数学模型的理解、掌握及构建的能力,很大程度上反映了学生的数学思维能力及数学应用能力.

二、开展小学数学建模活动的教学方法

(一)培养学生应用数学知识去分析解决问题的能力

以学习生活中的实际的应用价值出发,选择较感兴趣的问题参与基础知识的教学,把数学建模渗透到数学教学中,可以使学生体会到数学知识与实际问题之间的关系;体会到理论与实践之间的相互作用;体会到数学在学习生活中的地位.小学数学中的计算、整除知识就是广泛被应用的数学知识,教师应多举事例来结合教学,如,学校里班容评分、分组搞游戏、卫生包干区的划分等等的方案设计都可以由学生利用各种不同的运算去构建完成,这样可以直观地为学生阐明了数学的应用价值,从而提高学生学习数学的自觉性.

我们应该改变这种教学观念,充分考虑学生的身心发展特点,对原有的教材内容应进行加工处理,选择与日常生活有关的数学知识作为教学内容,以联系学生的生活实践为基础,使学生体会到数学就在身边,感受到数学的趣味和作用,对数学产生亲切感,吸引学生在学习中主动地去寻找问题和解决问题.

(二)培养学生的数学建模能力

目前小学数学教学的内容较为形式、抽象,只讲概念、定律、推导、计算等,很少讲数学与我们周围世界以及日常生活的密切联系.也许这些教学方法对培养少数数学尖子生还是可以的,但对培养大多数的学生来说欠缺兴趣、欠缺对数学应用的认识,学习确实会有难度,这正是当今的数学教育改革中关键的问题.

适当开设数学建模课,介绍建模活动的过程,通过一些有趣例子来向学生讲授建模的基本方法、步骤.例如,“七桥问题”.

图1哥尼斯堡七桥18世纪,普鲁士哥尼斯堡镇上有一个小岛,岛旁流过一条河的两条支流,七座桥跨在河的两支流上(图1).

假设A表示岛,B表示河的左岸,C表示右岸,D为两支流间地区,a,b,c,d,e,f,g分别表示七座桥(图1).

问一个人能否经过每座桥一次且恰好经过每座桥一次并且最后回到原出发点?

图论中最早的问题之一就是“哥尼斯堡七桥问题”.此问题在1736年被欧拉解决之前一直是这个普鲁士城镇中的居民很感兴趣问题.

欧拉解决七桥问题采用了“数学模型”法.

图2七桥模拟图建模既然岛与陆地无非是桥梁连接的,那么就不妨把4处地点缩小(抽象)成4个点,并把7座桥表示(抽象)成7条边,便得到了七桥问题的模拟图(图2),这样当然并未改变问题的实质,于是人们试图一次无重复地走过7座桥的问题就等价于一笔画出上述图形的问题(每条边必须且只需经过一次),此图2就是七桥问题的数学模型.

欧拉解决七桥问题是先考虑一般化问题:如果给定任意一个河道图与任意多座桥,可否判断每座桥能否恰好走过一次呢?一般化的问题就要有一个一般解法,才有更实际的意义,考查一笔画的结构特征,有个起点和终点(若起点和终点重合时即为欧拉图).除起点与终点处,一笔画中出现在交点处的边总是一进一出的,故交点的度数总和为偶数,由此欧拉给出一般结论:

(1)连接奇数个桥的陆地仅有一个或超过两个以上,不能实现一笔画.

(2)连接奇数个桥的陆地仅有两个时,则从两者任一陆地出发,可以实现一笔画而停在另一陆地.

著名的七桥问题彻底解决了,进一步可知,对于任意一个河道图和任意多座桥的问题都解决了.

【参考文献】

第7篇:数学建模的一般过程范文

关键词:新课程;高中数学;建模教学

一、引言

高中数学新课程标准强调培养学生的数学应用意识,力求让学生深切体会到数学在解决实际问题中的作用以及与其他学科之间的关系。加强高中数学的教学研究,不仅仅是社会发展的一个重要需求,更是新课程改革中数学教学目标的要求,是探索素质教育的一条途径。而“数学建模”教学方式能很好地满足新课改的要求,能够成为课程教学改革的重要突破点。

二、数学建模教学的概述

1.数学模型的内涵

数学模型是指借助于数学语言对现实世界进行的一种描述,具体而言,就是针对现实世界的某一个特定对象,采用抽象且简化的数学结构进行表现。其中,数学结构可能是各种概念、公式以及算法等。从狭义上分析,数学模型只是反映特定问题的结构。

而数学模型的特征主要有抽象性、准确性以及演绎性等。其中抽象性是指数学模型对原则进行了要素形式化处理,对本质进行了概括性简化;而准确性是指借助于数学语言的严密性对演绎推理奠定基础。

2.数学建模的内涵

数学建模是数学的一种思考方法,主要是借助心智活动明确现象特征,常以符号加以表示。本文研究的数学建模主要涉及七个阶段,分别是:模型准备、模型假设、模型建立、模型求解、模型分析、模型检验以及模型应用。

数学建模的基本原则是:具备较高的精度,一定要将现象本质的关系以及规律均加以充分描述;注重简化,避免因为繁琐而造成求解困难;数学理论依据要充分,涉及的公式以及图表必须合理;模型所描述的系统应具备很好的操控性,这样可以方便对数学模型进行检验以及修改。

三、新课程背景下高中数学建模教学的开展

高中数学建模必须要与高中数学知识相同步,同时应充分考虑到高中生的特点。只有选择了合适的数学建模型课题才能更好地完成教学过程,并进一步提高教学质量。下面重点探讨一下高中数学建模教学的开展流程。

1.简单建模教学

简单建模环节主要是针对高一学生,目的是为了激发学生的学习兴趣,并不断增强学生的数学应用意识。这一环节中,教师可以针对具体的教学内容,注重学生分析及推理能力的培养,可以选择一些典型实例,指导学生共同参与数学建模的建立,该环节可能使用的教学知识点有:集合、函数、等差数列、不等式、指数函数以及三角函数等。

2.典型案例建模教学

典型案例建模教学主要是针对高二学生。因为高二学生已经对数学基本知识点有了一定的掌握,可以独立解决一些简单的数学应用问题,需进一步渗透学习的知识点有:圆锥曲线、导数、坐标系以及概念等。

3.综合建模教学

综合建模教学环节主要针对高二下学期以及高三的学生。一般情况下,教师只需要给出问题的一般情景以及基本要求,要求学生根据这些情况及基本要求收集信息,甚至需要自行假定与设计一些已知条件,提出多种多样的解决方案,进而得出或繁或简的结论。学生可分小组或独立进行设计和建模活动。就某一问题的建模展开充分的讨论。

四、总结

高中数学建模课并不是传统意义上的数学课,而是引导学生“学着用数学”。目前,对于数学模型还不存在现成的普遍适用的准则以及方法,需要通过教师的经验见解以及有效措施,才能建立并优化数学建模教学流程。对于高中生而言,有效的数学建模思想可以帮助他们学会用数学方法解决实际相关问题,这也为他们今后进一步学习打下良好的基础。

总之,高中学生蕴藏着极为丰富和巨大的创造力,关键是我们的教育能否为他们提供适合他们发展的氛围环境和舞台,能否为他们提供更多发挥其创造性的机会。随着课程改革的进一步深化及高考选拔制度的改进,形成和发展学生的数学应用意识必将成为全社会的共识,数学建模教学在培养学生动手实践能力、合作交流能力、探究能力、微型科研能力方面的作用也越来越明显。

参考文献:

第8篇:数学建模的一般过程范文

一、建模思想在概念讲授中的渗透

我们知道,广义上看,学习数学分析的基础知识与一些基本概念其实都是数学建模的过程,这是由于我们看到的函数、极限、导数、积分、级数等概念都是从实际事物以及关系中抽象出来的数学模型。正因为如此,我们就应当在教学讲授这些关键性基本概念的时候,主动引导学生从概念的实际来源来深刻理解概念与定理,这个过程也是学生真正体会建模思想、建模方法的好的体验。教师在讲授有关概念时,应尽量结合实际,设置适宜的问题情境,提供观察、实验、操作、猜想、归纳、验证等方面的丰富直观的背景材料,引导学生参与教学活动。而教师引导学生进行的数学建模活动一般是这样的:学生运用模型方法对实际问题做出解答后,往往还要回到实际当中去,判断所得的解答是否与基础概念相符合,如果不相符合的话就必须进行检查,看看究竟是数学推理有误,还是选择的数学模型不恰当。有时所建立的模型与原模型差距较大,这时就要建立全新的数学模型。

二、建模思想在定理证明中的渗透

笔者在讲授数学分析的时候,往往能碰到这样的情形,就是上课讲过的定理以及证明学生上课时能够听得懂,但是课下学生会常常说基本上都不懂了,其实这样的情况也是可以理解的,毕竟对于低年级的大学生来讲,真正掌握数学分析并且学好用好数学分析是比较难的事情,是需要一定时间积累的过程。

针对上述情况,教师在讲授新课的时候,应当着重注意授课的方式,应当先介绍定理形成的背景,让学生大概对定理的形成有一个形象的大致的了解,然后介绍定理产生的时代原因,即这个定理之所以产生是为了解决什么问题,让学生在心理上对所讲的定理感兴趣,在做好这些准备工作后,就开始讲解定理的内容定理的证明以及定理的几何意义等。这样教学的方式,让学生感受到学习定理的过程正如定理的形成过程一样,是数学问题存在进而建立数学模型解决问题的过程。著名数学教育家波利亚指出,一个长的证明常常取决于一个中心思想,而这个思想本身却是直观的和简单的。因此,对于一些定理的证明也可采取“淡化形式、注重实质”的方式进行,往往可直观易懂且收到事半功倍的教学效果,这正是体现出数学建模并没有标准模式方法和思路灵活多样的特点。

三、建模思想在考试命题中的渗透

当前数学分析课程的考试命题一般以课本中的例题和习题的形式为主,学生平时只注重盲目做题,机械地学习,而不重视对概念的深刻理解,也不注意在知识的学习中体会和提炼数学思想和方法,数学建模对数学学习有促进作用,另一方面,数学学习是也是数学建模的基础。只有掌握了一定的数学基础知识,才能在遇到实际问题时用数学建模的方法简化假设,建立模型和分析解决模型。因此,数学建模与数学学习之间相辅相成,不可分割。只有将数学建模与数学学习结合在一起,才能在学好数学的同时解决实际问题。

采取与传统考试不同的考核方式,为考查学生对所学内容的理解程度,可通过命题小论文等方式,让学生对所学的知识进行重新整理,归纳和组织,写出自己的学习体会及见解,从而使学生在反复的读书过程中,加深了对所学知识的理解,初步锻炼了学生的写作能力,是建模思想的渗透与升华。

当代高等数学教育的首要任务之一就是提高大学生的素质,其中就包括提升学生的数学应用意识,培养学生运用数学思维来解决实际问题。其实,目前无论是国家还是各个大学都比较重视这方面的工作,全国每年会举行大学生数学建模竞赛,这对于推动大学生数学专业或者其他非数学专业的学生的数学建模能力有很大的促进作用。为尽早让大学生接受数学建模思想的训练,把建模思想方法渗透到数学分析的教学环节中去,无疑是教学改革的一项积极举措。

第9篇:数学建模的一般过程范文

关键词:数学建模 数学应用意识 数学建模教学

一、数学建模是从现实问题中建立数学模型的过程。

在对实际问题本质属性进行抽象提炼后,用简洁的数学符号、表达式或图形,形成便于研究的数学问题,并通过数学结论解释某些客观现象,预测发展规律,或者提供最优策略.它的灵魂是数学的运用并侧重于来自于非数学领域,但需要数学工具来解决的问题.这类问题要把它抽象,转化为一个相应的数学问题,一般可按这样的程序:进行对原始问题的分析、假设、抽象的数学加工.数学工具、方法、模型的选择和分析.模型的求解、验证、再分析、修改假设、再求解的迭代过程.

数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性;数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。

二、那么当前我国高中学生的数学建模意识和建模能力如何呢?

学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!

三、那么高中的数学建模教学应如何进行呢?

数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。

四、在教学的过程中,引入数学建模时还应该注意以下几点:应努力保持自己的"好奇心",开通自己的"问题源",储备相关知识.这一过程也可让学生从一开始就参与进来,使学生提高自学能力后自我探究。

将数学建模思想引入数学课堂要结合实际,这是关键.学生在课堂中解决的实际问题即建模材料必须经过一定的加工,否则有可能过于复杂,有些问题的数学结论可能偏离生活实际太多,也很正常。

数学课堂中的建模能力必须与相应的数学知识结合起来.同时还应该通过解决实际问题(建模过程)加深对相应的数学知识的理解。