公务员期刊网 精选范文 数学建模层次分析范文

数学建模层次分析精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学建模层次分析主题范文,仅供参考,欢迎阅读并收藏。

数学建模层次分析

第1篇:数学建模层次分析范文

(北京农学院,北京 102206)

摘 要:本研究运用层次聚类法,建立了一套大学生数学建模能力评价方法,使评价工作变得更科学、合理、公正.最后通过实例验证了此种方法的可行性.此种方法可以公正客观地评价大学生数学建模能力,有助于教育研究机构对学生数学建模能力的调查和研究,既能对学生的个人发展提出改进措施和努力方向,又能为教育科研工作者开展数学建模培训提供更全面具体的指导,为数学建模竞赛选拔更优秀的人才.

关键词 :层次聚类法;数学建模能力;评价;模型

中图分类号:O242.1 文献标识码:A 文章编号:1673-260X(2015)04-0001-03

基金项目:北京农学院教改立项(5046516450)

目前,随着数学建模在各个领域的广泛应用,许多学校开始把数学建模能力作为一个重要的研究方向.数学建模能力是综合运用知识解决实际问题的数学能力,是一个比较模糊的难以简单量化的能力.因此,要更好地对大学生数学建模能力进行评价,并因材施教,扬长避短的培养数学建模能力,需要一个科学的评价体系来对大学生的数学建模能力进行科学准确的评价.

积极有效地开展大学生数学建模竞赛,提高大学生的数学建模能力,亟需建立一套完备的大学生数学建模能力评价指标体系.目前,对大学生数学建模能力的研究主要集中在:(1)对大学生数学建模能力培养的研究[1-3],主要是从教育工作者的角度对大学生数学建模能力培养提出若干对策与建议,这方面研究较多,但这些建议往往是由工作经验或感想得出,没有理论依据,说服力不强;(2)对大学生数学建模能力评价的研究[4,5],有层析分析法和主成分分析法.这些研究虽然简单地列举了评价指标,但形不成体系,由于忽略了数学模型的应用,因此主观因素较大,客观性和准确性受到质疑.针对以上问题,笔者通过搜集整理众多学者的理论和观点,建立一套适用于大学生的数学建模能力评价体系,采用层次聚类法,并通过我校学生的实例验证评价体系的实用性和可行性.

1 基于层次聚类法的大学生数学建模能力评价模型

层次聚类法又称为分层聚类法,是研究样品(或指标)分类问题的一种多元统计方法.所谓“类”是指相似元素的集合.聚类分析能将样品(或指标)按其在性质上的“亲疏程度”进行分类,产生多个分类结果.

假设研究对象为n个学生,记为A={x1,x2,…,xn},学生的m个分类特征记为B={y1,y2,…,ym}.每个对象相应于这些指标所取数值的向量记为

X={xi1,xi2,…,xim} (i=1,2,…,n),

其中xik表示第i个学生的第k个指标,于是得到m×n矩阵,称为原始矩阵,记为

层次聚类法的基本步骤如下:

(1)首先将数据各自作为一类,每个类只包含一个数据,此时类间距离就是数据间的距离,这时有n类,计算n个数据两两间的距离,得到数据间的距离阵;

(2)合并类间距离最小的两类为一新类,这时类的个数减少一个;

(3)计算新类与其它各旧类间的距离矩阵.若合并后类的个数等于“1”,转到(5),否则回到(2);

(4)画谱类聚类图;

(5)决定分类的个数和各类的成员.

本文采用马氏距离法定义类与类之间的距离,dij2(M)=(Xi-Xj)’∑-1(Xi-Xj)其中,∑表示指标的协方差矩阵,即:

马氏距离不但排除了各指标之间相关性的干扰,并且还不受各指标量纲的影响.除此之外,它还有一些优点,例如,可以证明将原始数据做一些线性变换后,马氏距离仍不变.若在某一步,第i类和第j类合并成第r类,则新类其它旧类之间的距离公式为drk=max{dik,djk},(k≠i,j),其中dik,djk分别表示新类中所包含的第i类和第j类与没有被合并到新类中的某个k类的类之间的距离.

2 实例分析

2.1 确立数学建模能力评价指标体系

建立科学准确的评价指标体系,是评价工作最基本、最关键的一步,必须遵循一定的原则,这些原则包括:(1)具有普遍性.指建立的指标体系面向的是全体学生,因此在设计量化方案的时候,必须具有普遍性,符合学生的知识结构和认知规律.(2)具有科学性.指设立的指标体系要符合科学发展规律,反映学生的数学建模能力,指标要素之间要避免重叠,并具有整体完备性.(3)具有指导性.能正确体现教学指导思想、教学改革与发展方向,并能反映数学建模能力的正确导向作用.(4)具有可测性.要求指标可通过实际观察对事物某一方面的情况, 能加以度量并获得量化的结果.

按照上述原则,分析和吸取大多数学者的观点和共同之处, 经课题组共同讨论后,确定了以下指标体系:(1)创新能力,包括创新思维能力和创新实践能力,是对已有的知识和理论,进行不同程度的再组合、再创造,从而获得新颖、独特、有价值的新观念、新思想和新方法的能力;(2)协作能力,指能综合地运用各种交流和沟通的方法进行合作,尊重理解他人的观点与处境,评价和约束自己的行为,共同确立目标并努力去实现目标;(3)基础知识掌握程度,用数学建模选修课的分数来衡量;(4)分析解决问题能力,指能阅读、理解对问题进行陈述的材料,通过分析、比较、综合、抽象与概括,运用类比、归纳和演绎进行推理,能合乎逻辑的、准确地加以表述并解决问题.分析能力强的人,往往学术有专攻,技能有专长,在自己擅长的领域内,有着独到的见解和成就.看似非常复杂的问题,经过梳理之后,变得简单化、规律化,从而轻松求解,这就是分析解决问题的魅力;(5)计算机应用能力,指利用计算机软件的强大数据处理功能和网络巨大的信息量,通过编程和查找资料,对数学模型进行求解的能力.

最后,通过构造比较矩阵,计算比较矩阵的特征值和特征向量,并对其进行一致性检验,一致性比例指标符合要求,说明构造合理.数学建模能力评价体系如表1.

2.2 大学生数学建模能力评价

现以我校2013届学生为例,调查时抽取一定数量的学生,考察学生的五项数学建模能力,即创新能力、协作能力、基础知识掌握程度、分析解决问题能力和计算机应用能力.每项能力采取百分制记分,通过被试者做一组试题或问题解决的方式,主对学生在各组问题上的完成程度和表现出的个人能力进行量化评价,采取定性和定量相结合的方式,客观问题定量评价,主观问题由老师定性进行打分,评价数据如表2.通过spss软件得到聚类结果表3和使用平均联接的树状图表4.

2.3 评价结果分析

表2所示显示了系统聚类法的聚类结果,可以看到聚类结果分为以下几类.第一类:学生1、2、4、8、9、10、12、13、15;第二类:学生3、5、7、11、14;第三类:学生6.其中第三类学生6非常优秀,在协作能力,基础知识掌握程度,计算机应用能力方面有显著优势,具备良好的创新能力和分析解决问题能力,是数学建模的一流学员;第二类学生良好,有一定的数学基础,具备良好的创新能力和计算机应用能力.如学生7在基础知识掌握程度方面有显著优势,学生11在协作能力和分析解决问题方面表现突出,是数学建模的优势学员;第一类学生创新能力不足,思维有些僵化,虽然具备一定的建模思想,有良好的分析解决问题能力,能与人进行交流和合作,但个人素质相对平均.如学生1、2、12、13对数学建模的思路和方法还停留在简单模式中,不能多角度多侧面地看问题,没有思考和创新,不能在条件相同的情况下提出较多的观点和意见,发散思维能力较差.究其原因,是因为学生还没有从高中阶段的学习状态调整过来,思维模式单一,创新能力不够,对于数学建模的模式不习惯,这类学生对数学建模有一定的兴趣,但能力不够,需要多加培养,是数学建模的潜在学员.

3 结束语

本文运用层次聚类法对大学生数学建模能力进行评价,力求评价更具科学性,为数学建模人才的选拔提供参考.与其它评价方法相比,本方法具有以下优点:(1)融合了定性分析和定量分析的双重优势;(2)操作简单,只需输入数据即可得出结果.(3)评价体系适用面广,方法具有普遍性,可作为学院内部选拔学生,也可作学院之间的比较,聚类结果科学合理,较符合实际.评价结果表明,该模型可以科学公正客观的评价大学生数学建模能力,使学生了解自己的实际水平,找到自己的优势和劣势,既可以对学生个人发展提供改进措施和努力方向,又能为教育科研工作者开展数学建模教育和辅导提供更全面具体的指导,有助于教育研究机构对大学生数学建模能力的调查和研究,为数学建模竞赛选拔更优秀的人才.

参考文献:

〔1〕朱建青,谷建胜.数学建模能力与大学生综合素质的培养[J].大学数学,2013,29(6):83-86.

〔2〕郎淑雷.关于提高学生数学建模能力的思考[J].中国科技信息,2007(24):243.

〔3〕刘大本.浅谈学生数学建模能力的培养[J],江西教育,2006(22):34.

〔4〕张明成,沙旭东,张鑫.专科学生数学建模能力的分析及评价研究[J].淄博师专学报,2009(4):60-64.

〔5〕刘贵龙.模糊聚类分析在文本分类中的应用[J].计算机工程与应用,2003,12(6):17-23.

第2篇:数学建模层次分析范文

一、精拟建模问题

问题是数学建模教与学的基本载体,所选拟问题的优劣在很大程度上影响数学建模教学目标能否实现,并影响学生对数学建模学习的态度、兴趣和信念。因此,精心选拟数学建模问题是数学建模教学的基本策略。鉴于高中学生的心理特点和认知规律,结合建模课程的目标和要求,选拟的建模问题应贴近学生经验、源自有趣题材、力求难易适度。

1.贴近学生经验

所选拟的问题应当是源于学生周围环境、贴近学生生活经验的现实问题。此类问题的现实情境为学生所熟悉,易于为学生所理解,并易于激发学生兴奋点。因而,有助于消除学生对数学建模的神秘感与疏离感,增进对数学建模的亲近感;有助于激发学生的探索热情,感悟数学建模的价值与魅力。

2.源自有趣题材

所选拟的问题应当源自富有趣味的题材。此类问题易于激起学生的好奇心,有助于维护和增强学生对数学建模课程的学习兴趣与探索动机。为此,教师应关注学生感兴趣的热点话题,并从独到的视角挖掘和提炼其中所蕴含的数学建模问题,选取学生习以为常而又未曾深思但结论却又出乎意料的问题。

3.力求难易适度

所选拟的问题应力求难易适度,应能使学生运用其已具备的知识与方法即可解决。如此,有助于消除学生对数学建模的畏惧心理,平抑学生源于数学建模的学习压力,增强学生对数学建模的学习信心,优化学生对数学建模的学习态度,维护学生对数学建模的学习兴趣。为此,教师在选拟问题时,应考虑多数学生的知识基础、生活背景及理解水平。所选拟的问题要尽量避免出现不为学生所熟悉的专业术语,避免问题过度专业化,要为学生理解问题提供必要的背景材料、信息与知识。

二、聚焦建模方法

数学建模方法是指运用数学工具建立数学模型进而解决现实问题的方法,它是数学建模教与学的核心,具有重要的教学功能。掌握一定的数学建模方法是实现数学建模课程目标的有效途径。为此,数学建模教学应聚焦于数学建模方法。

1.注重建模步骤

数学建模方法包含诸如问题表征、简化假设、模型构建、模型求解、模型检验、模型修正、模型解释、模型应用等多个步骤。数学建模教学中,教师应通过数学建模案例,注重对各步骤的基本内涵、实施技巧及各步骤之间的内在联系和协同方式进行阐释和分析,这是使学生从整体上把握建模方法的必要手段。有助于学生掌握数学建模的基本过程,有助于为学生模仿建模提供操作性依据,进而为学生独立建模提供原则性指导。

2.突出普适方法

不同的数学建模方法,其作用大小和应用范围也不同,譬如,关系分析方法、平衡原理方法、数据分析方法、图形(表)分析方法以及类比分析方法等均为具有统摄性和普适性的建模方法。教师应侧重对这些普适性的建模方法进行教学,使学生重点理解、掌握和应用。此外,分属于几何、代数、三角、微积分、概率与统计、线性规划等数学分支领域的建模方法等,尽管其普适性程度稍逊,但其对解决具有领域特征的现实问题却具重要应用价值,因而,教师也应结合相应数学领域内容的教学,使学生通过把握其领域特性及其所运用的问题情境特征而熟练掌握并灵活应用。

3.加强方法关联

许多现实问题的解决往往需要综合运用多种数学建模方法,因此,在数学建模教学中,应加强数学建模方法之间的关联,注重多种建模方法的综合运用。为此,应在加强各建模步骤之间联系与协调运用基础上,综合贯通处于不同层次、分属不同领域的数学建模方法,在建模各步骤之间、具体的建模方法之间、不同领域的数学建模方法之间进行多维联结,建立数学建模方法网络图,以使学生掌握数学建模方法体系,形成综合运用数学建模方法解决现实问题的能力。

三、强化建模策略

数学建模策略是指在数学建模过程中理解问题、选择方法、采取步骤的指导方针,是选择、组合、改变或操作与当前数学建模问题解决有关的事实、概念和原理的规则。数学建模策略对数学建模的过程、结果与效率均具有重要作用。学生掌握有效的数学建模策略,既是数学建模课程的重要教学目标,也是学生形成数学建模能力的重要步骤。因此,应强化数学建模策略的教与学。

1.基于建模案例

策略通常具有抽象性、概括性等特点,往往需要借助实例运用获得具体经验,才能被真正领悟与有效掌握。因此,数学建模策略的教学应基于对建模案例的示范与解析,使学生在现实问题情境中感受所要习得的建模策略的具体运用。为此,一方面,针对某特定建模策略的案例应尽可能涵盖丰富的现实问题,并在相应的案例中揭示该建模策略的不同方面,以为该建模策略提供多样化的情境与经验支持;另一方面,应对某特定建模案例中所涉及的多种建模策略的运用进行多角度的审视与解析,以厘清各种建模策略之间的内在联系。基于案例把握建模策略,将抽象的建模策略与鲜活的现实问题密切联系,有助于积累建模策略的背景性经验,有助于丰富建模策略的应用模式,有助于促进建模策略的条件化与经验化,进而实现建模策略的灵活应用与广泛迁移。

2.寓于建模方法

建模策略从层次上高于建模方法,是建模方法应用的指导性方针,它通过建模方法影响建模的过程、结果与效率。离开建模方法而获得的建模策略势必停留于表面与形式,难以对数学建模发挥作用。因此,应寓于建模方法获得建模策略。为此,应通过数学建模案例,解析与阐释所用策略与方法之间的内在联系与协同规律,使学生掌握如何运用建模方法,知晓何以运用建模方法,从而获得具有“实用”价值的数学建模策略。

3.联结思维策略

思维策略是指问题解决思维活动过程中具有普适性作用的策略。譬如,解题时,先准确理解题意,而非匆忙解答;从整体上把握题意,理清复杂关系,挖掘蕴涵的深层关系,把握问题的深层结构;在理解问题整体意义基础上判断解题的思路方向;充分利用已知条件信息;注意运用双向推理;克服思维定势,进行扩散性思维;解题后总结解题思路,举一反三等,均为问题解决中的思维策略。思维策略是数学建模不可或缺的认知工具,对数学建模具有重要指导作用。思维策略从层次上高于建模策略,它通过建模策略对建模活动产生影响。离开思维策略的指导,建模策略的作用将受到很大制约。因此,在建模策略教学中,应结合建模案例,将所用建模策略与所用思维策略相联结,以使学生充分感悟思维策略对建模策略运用的指引作用,增强建模策略运用的弹性。

四、注重图式教学

数学建模图式是指由与数学建模有关的原理、概念、关系、规则和操作程序构成的知识综合体。具有如下基本内涵:是与数学建模有关的知识组块;是已有数学建模成功案例的概括和抽象;可被当前数学建模问题情境的某些线索激活。数学建模图式在建模中具有重要作用,影响数学建模的模式识别与表征、策略搜索与选择、迁移评估与预测。因此,应注重数学建模图式的教与学,为此,数学建模教学应实施样例学习、开展变式练习、强化开放训练。

1.实施样例学习

样例学习是向学生书面呈现一批解答完好的例题(样例),学生解决问题遇到障碍或出现错误时,可以自学这些样例,再尝试去解决问题。样例学习要求从具有详细解答步骤的样例中归纳出隐含其中的抽象知识与方法来解决当前问题。在数学建模教学中实施样例学习,学习和研究别人的已建模型及建模过程中的思维模式,有助于使学生更多地关注数学建模问题的深层结构特征,更好地关注在何种情况下使用和如何使用原理、规则与算法等,从而有助于其建模图式的形成。在实施样例学习时,应注重透过建模问题的表面特征提炼和归纳其所蕴含的关系、原理、规则和类别等深层结构。

2.开展变式练习

通过样例学习而形成的建模图式往往并不稳固,且难以灵活迁移至新的情境。为此,应在样例学习基础上开展变式练习,通过多种变式情境的分析和比较,排除具体问题情境中非本质性的细节,逐步从表层向深层概括规则和建构模式,不断地将初步形成的建模图式和提炼过的规则和模式内化,以形成清晰而稳固的建模图式。开展变式练习时,应注重洞察构成现实情境问题的“数学结构框架”,从“变化”的外在特征中鉴别和抽象出“不变”的内在结构。

3.强化开放训练

数学建模具有结构不良问题解决的特性。譬如,条件和目标不明确;“简化”假设时需要高度灵活的技巧;模型构建需要基于对问题的深邃洞察与合理判断并灵活运用建模方法;所建模型及其形式表达缺乏统一标准,需要检验、修正并不断推广以适应更复杂的情境;有并非唯一正确的多种结果和答案等等。鉴于此,数学建模教学中应强化开放训练,以促进学生形成概括性强、迁移范围广、丰富多样的建模图式。为此,应通过改变问题的情境、条件、要求及方法来拓展问题。即对简化假设、建模思路、建模结果、模型应用等建模环节进行多种可能性分析;将问题原型恰当地转变到某一特定模型;将一个领域内的模型灵活地转移到另一领域;将一个具体、形象的模型创造性地转换成综合、抽象的模型。在上述操作基础上,对建模问题进行抽象、概括和归类,从一种问题情境进行辐射,并以此网罗建模的不同操作模式,从而使学生形成关于建模图式的体系化认知,进而提升建模图式的灵活性和可迁移性。

五、活化教学方式

鉴于数学建模具有综合性、实践性和活动性特征,因而其教学应体现以学生为认知主体,以运用数学知识与方法解决现实问题为运行主线,以培养学生数学建模能力为核心目标。为此,应灵活采取激励独立探究、引导对比反思、寻求优化选择等密切协同的教学方式。

1.激励独立探究

数学建模教学中,教师应首先激发学生独立思考、自主探索,力求学生找到各自富有个性的建模思路与方案。诚然,教师和教材的思路与方案可能更为简约而成熟,然而,学生是学习的主体,其获得的思路与方案更贴近学生自身的认知水平。因此,教师应给予学生独立思考的机会,激励学生个体自主探索,尊重学生的个性化思考,允许不同的学生从不同的角度认识问题,以不同的方式表征问题,用不同的方法探索问题,并尽力找到自己的建模思路与方案,以培养学生独立思考的习惯和探究能力。

2.引导对比分析

在激励学生探寻个性化的建模思路与方案基础上,教师应及时引导学生对比分析,归纳出多样化的建模思路与方案。为此,应将提出不同建模方案的学生组成“异质”的讨论小组,聆听其他同学的分析与解释,对比分析探索过程、评价探索结果、分享探索成果,以使学生认识从不同角度与层次获得的多样化方案。引导学生对比分析,既展现了学生自主探索的成果,又发挥了教师组织引导的职能,还使学生获得了多元化的数学建模思维方式。

3.寻求优化选择

在获得多样化的建模方案基础上,教师应继续引导全班学生对多样化的建模方案进行观察与辨析,使学生在思维的交流与碰撞中,感受与认知其它方案的优点和局限,反思与改进自己的方案,相互纠正、补充与完善,寻求方案的优化选择。引导学生寻求优化选择,不仅仅是求得最优化的结果,还是发展学生数学思维、培养学生创新意识的有效方式。在此过程中,教师应与学生有效互动,深度交流,汲取不同方案的可取之点与合理之处,以做出优化选择。

上述数学建模教学策略之间存在密切联系。精拟建模问题是有效实施数学建模教学的载体;聚焦建模方法是有效实施数学建模教学的核心;强化建模策略是有效实施数学建模教学的灵魂;注重图式教学是有效实施数学建模教学的依据;活化教学方式是有效实施数学建模教学的保障。在数学建模教学中,诸策略应有机结合,协同运用,以求取得最佳效果。

参考文献

[1] Werner Blum Peter L.Galbraith Hans-Wolfgang Henn.Mogens Niss.Modeling and Applications in Mathema-tics Education.New ICMI Study Series VOL.10.Published under the auspices of the International Com-mission on Mathematical Instruction under the general editorship of Michele Artigue,President Bernard,R.Hodgson,Secretary General. 2006.

[2] 中华人民共和国教育部.普通高中数学课程标准.北京师范大学出版社,2003.

[3] 李明振,喻平.高中数学建模课程实施的背景、问题与策略.数学通报,2008,47(11).

[4] 李明振.数学建模认知研究.南京:江苏教育出版社,2013.

[5] Mingzhen Li,Qinhua Fang,Zhong Cai, Xinbing Wang.A Study ofInfluential Factors in MathematicalMod-eling of Academic Achievement of High School Students.Journal of Mathematics Education.Vol4 No.1.June,2011.

[6] Mingzhen,,Hu Yuting,Li,Yu Ping,Zhong Cai.A Comparative Study on High School Students’ Mathematical Modeling Cognitive Features.Research in Mathematical Education. June,2012.

第3篇:数学建模层次分析范文

1.数学建模竞赛有利于学生创新思维的培养。数学建模是对现实问题进行合理假设,适当简化,借助数学知识对实际问题进行科学化处理的过程。数学建模竞赛的选题都是源于真实的,受社会关注的热点问题[2]。例如:小区开放对道路通行的影响(2016年赛题),2010上海世博会影响力的定量评估(2010年赛题),题目有着明确的背景和要求,鼓励参赛者选择不同的角度和指标来说明问题,整个数学建模的过程力求合理,鼓励创新,没有标准答案,没有固定方法,没有指定参考书,甚至没有现成数学工具,这就要求学生在具备一定基本知识的基础上,独立的思考,相互讨论,反复推敲,最后形成一个好的解决方案,参赛作品好坏的评判标准是模型的思路和方法的合理性、创新性,模型结论的科学性。同一个实际问题从不同的侧面、角度去思考或用不同的数学知识去解决就会得到不尽相同的数学模型。数学建模竞赛不仅是培养和提高学生创新能力和综合素质的新途径,也是将数学理论知识广泛应用于各科学领域和经济领域的有效切入点和生长点。

2.数学建模竞赛有利于促进学生知识结构的完善。高校的理工科专业都开设很多基础数学课,例如:高等数学、线性代数、概率统计、运筹学、微分方程等,目前这些课程基本上还是理论教学,主要以考试、考研为主要目标。由于缺少实际问题的应用,知识点相对分散,很多学生不知道学了有什么用,怎么用。那么如何将所学的基础知识高效的立体组装起来,并有针对性拓展和延伸,是一个重要的研究课题[3]。实践表明:数学建模竞赛对于促进大学生知识结构完善是一个极好的载体。例如在解决2009年赛题———眼科病床的合理安排的问题时,学生不仅要借助数理统计方法,找到医院安排不同疾病手术时间的不合理性,还要结合运筹学给出新的病床安排方案,并结合实际情况评估新方案合理性;2014年赛题嫦娥三号软着陆轨道设计与控制策略,参赛学生首先根据受力分析和数据,判断出可能的变轨位置,再结合微分方程和控制论构建模型,并借助计算机软件求解,找到较好的轨道设计方案。整个数学建模过程中,参赛学生将所学分散的数学知识点拼装集成化,在知识体系上,数学建模实现了知识性、实践性、创造性、综合性、应用性为一体的过程;在知识结构上,数学建模实现了学生知识结构从单一型、集中型向复合型的转变。

3.数学建模竞赛有利于培养学生的团队协作精神,提高沟通能力。现代社会竞争日趋激烈,具备良好的团队协作和沟通能力的优秀人才越来越受到社会的青睐。数学建模竞赛也需要三个队员组成一个团队,因为要在规定的时间内完成确定选题,分析问题、建立模型、求解模型,结果分析,单靠一个人是很难完成的,这就必须要由团队成员之间相互尊重、相互信任、互补互助,并且发挥团队协作精神,才能让团队的工作效率发挥到最大。同时,数学建模作为一种创造性脑力活动,不仅要求团队成员之间学会倾听别人意见,还要善于提出自己的想法和见解,并清晰、准确地表达出来。团队成员间良好的沟通能力,不仅可激发团队成员的竞赛热情和动力,还可以形成更加默契、紧密的关系,从而使竞赛团队效益达到最大化。

二、依托数学建模竞赛,提升大学生创新实践能力的对策

1.以数学建模竞赛为抓手,构建分层的数学建模教学体系,拓宽学生受益面。不同专业和年级学生的学习基础、学习能力和培养的侧重点都存在较大差异,构建数学建模层次化教学课程体系有利于增强学生学习和使用数学的兴趣,让更多的学生了解数学建模以及竞赛,通过自己动手解决实际问题,更加真切感觉到数学的应用价值,切实增强数学的影响力,扩大学生的受益面。南京邮电大学、华南农业大学、重庆大学和南京理工大学等高校这些方面相关工作和经验值得借鉴。因此,构建数学建模分层课程体系,在课程内容设置上,结合专业特色,有针对性设置教学方案和内容,逐步完善具有不同专业特色的数学建模教材,讲义和数据库、并保持定期更新,不断深入推进创新教学理念[4];在课程时间的安排上,遵循循序渐进的基本思路,一、二年级大学生开设数学建模选修课,介绍数学建模的基本理论和一些基本建模方法,三年级、四年级和研究生阶段开设创新性数学实验课程,重点训练学生应用数学知识解决实际问题的动手能力,并通过参加建模培训、数学建模竞赛以及课外科研活动,培养学生学习解决实际问题的能力;在课程目标的定位上,数学建模有别于其他的数学课程,集中体现在数学的应用、实践与创新,因此,数学建模不仅是一门课程,同时也是一门集成各种技术来解决实际问题的工具[6]。

2.以数学建模竞赛为载体,搭建横纵向科技服务平台,扩大数学建模影响力。数学建模竞赛的理念是“一次参赛,终身受益”,这就要求数学建模活动要立足高远,不断向纵深推进与发展,将数学建模应用融入服务国计民生。因此,选择优秀本科学生、研究生和毕业生,结合大学生创新创业计划,科研课题以及企事业单位关注的问题等,让他们自己动手去调查数据,查阅相关建模问题的文献资料,建立数学模型,借助软件进行模型求解,最后独立撰写出建模科技论文或决策咨询报告。全程参与“课外实习与科技活动”的方式,不仅实现了因需施教、因材施教的目标,还搭建了连接企业和学生的桥梁,不仅让大学生创新创业落到实处,为企事业单位提供了智力支撑,真正实现所学知识服务社会。

3.以数学建模竞赛为平台,加强教师的队伍建设,提升教师教育教学能力。数学建模授课和指导教师的教育教学能力直接影响着学生的创新能力。教育教学能力是指教师从事教学活动、完成教学任务、指导学生学习所需要的各种能力和素质的总和。数学建模的教学与传统数学教学相比,对教师的动手能力、教学内容驾驭能力、教学研究和创新能力等有较高的要求,因此,数学建模指导教师可以通过自主研修,网络研修,参与集体备课、听评课、教学研讨等方式提高自身业务水平,同时积极参与赛区、全国组织的学习和培训,加强交流,开阔视野,不断地提高自我认知、认识水平。只有建成一支高素质、实力雄厚、结构合理、富有创新能力和协作精神的学科梯队,数学建模整体水平才能有较大提升,才能适应数学建模发展的现实需要,切实有利于学生创新实践能力的提高[6,7]。

三、我校数学建模教学和竞赛改革的实践

1.构建模块化教学体系。针对我校轻工特色,结合专业培养需求,构建模块化教学体系。针对食品、生工、医药、化工和轻化等实验科学为主的专业,重点将实验设计、数据处理、数据分析和预测分析等内容模块化;针对数学基础较好的物联网、计算机、信息计算和自动化等专业,构建微分方程,运筹优化和控制论等内容模块化;偏于社科类的管理、会计、金融和国贸等专业,重点将概率模型、优化等内容模块化。再结合数学建模竞赛和大学生创新创业计划,构建“专业基础模块+知识拓展模块+竞赛需求模块+科研论文写作模块”的实践教学体系。

第4篇:数学建模层次分析范文

Abstract: In order to make the mathematical modeling teaching would be able to transit from college to university, the article analyzes the mathematical modeling teaching difference of university and college from the student administrative level, training goal, knowledge requirement. Based on the analysis of situation, it puts forward the strategies of optimizing teaching materials, changing the classroom teaching mode, updating teaching ideas and leading the students to do research together, providing reference for mathematical modeling teaching of the newly upgraded undergraduate colleges.

关键词: 数学建模;教学;专升本;对策

Key words: mathematical modeling;teaching;top-up;countermeasures

中图分类号:G424 文献标识码:A 文章编号:1006-4311(2013)33-0217-02

0 引言

学校作为培养人才的基地,广大的教育工作者面临的一项重要的任务就是围绕加快培养创新型人才这个主题,积极探索教学改革之路。数学建模和数学建模竞赛在这种形势下作为我国教育史上的新生事物,一经出现便得到了各级教育管理部门的关心和重视,同时也得到了科技界和教育界的普遍关注。由于数学建模教学和竞赛活动有利于培养人才,特别是培养人才的综合能力、创新意识以及科研素质,因此,在实际工作中发挥着积极的作用。作为刚升格的高等院校,只有加强建设师资队伍以及提高教学质量,才能实现专科向本科的转变并且在教育领域具有较强的竞争力。作为一名数学建模竞赛的指导教师,想通过分析本专科数学建模的差异以及教学对策,探讨我院如何快速实现专科向本科的转型,希望对我院的发展具有重要的现实意义。

1 数学建模本科与专科教学差异

1.1 学生层次不同 在进入大学时,专科生的总分就大大低于本科,而数学差是其中的主要原因之一。由于很多专科生认为自己基础薄弱而产生自卑心理,从而排斥学习,学习的主动性和数学各项基本技能普遍较弱。所以对于专科生不宜讲太过理论化的数学建模知识,尽量从简单的例子出发提高他们的学习积极性。[1]本科生的数学水平相对较为整齐,入学时的数学基础较扎实,学习的主动性强,他们已具备比较扎实的数学基本功,讲得太浅,反而提不起学习积极性。所以对于本科生应适当加大难度,让学生懂得从不同方面去思考和解决问题。

1.2 培养目标不同 高等专科学校的教育应以培养应用型人才为目标,人才的知识能力结构是应用型,而不是学术型,主要强调理论知识的应用和实践动手能力的培养。而本科教育的培养目标是培养“具有创新精神和实践能力的高级专门人才”。对于本科学生,不仅需要介绍数学建模在实际中的应用,更重要的是通过数学建模培养学生抽象、归纳、演绎、类比、模拟、移植等思维方法,从而培养学生的创新能力。[2]

1.3 掌握知识要求的差异 从广度上看,专科学生主要考察微积分的积分知识,解析几何以及基本统计分析方法的使用等。而本科学生要求有一个比较完整的数学体系,不仅需要掌握以上内容,还需要掌握概率论、线性代数、复变函数、微分方程等方面的数学知识,甚至大学物理、大学化学等各个方面的知识。从深度上看,专科学生只需要了解一些基本的概念和简单的应用,而本科要求对数学知识深入理解和综合应用。结合近几年本科赛题与专科赛题进行分析。

2 教学对策

怎样才能将教学目标转化成调整自己教学的方向和方法,不仅是摆在数学建模指导教师面前一个现实而紧迫的问题,更是真正实现专转本的关键。根据以上对于数学建模本科与专科教学差异的分析,主要从以下几个方面来思考教学对策:

2.1 分析专科数学建模教学特色及优势,在继承中寻求发展 虽然本专科的数学建模存在很大差异,但不能对专科的教学全盘否定,而应在继承中寻求发展。我校是一所百年老校,拥有丰厚的积累和传承,在专科层次已经取得非常优秀的成绩,对于专科数学建模教学的特色和优势应继续保持。

①理论课和实训课有机结合。

理论课以教材为主线,教师围绕教材章节归纳讲解不同类型数学和常用的思维方法以及建模的步骤。而实训课则是注重培养学生建模的实战能力,将三个学生分为一个小组活动,教师在理论课上提前布置与本节相关的数学建模题目,课后小组成员共同查资料,通过互相启发、讨论最终写出论文。[3]然后,由各组学生演示自己的成果,这样既可以提高学习兴趣和增加学习信心,还可以增强学生思维能力,更能增加各组的配合。最后,由教师点评,总结各组学生优点和不足之处。

②开辟数学建模的第二课堂,带领学生一起进行科学研究。

每年在全校范围内吸收各个专业的学生参加数学建模的培训。一方面进行日常的培训学习,另一方面,安排优秀的学生到数学建模实验室进行研究工作,让学生也进行高水平的数学建模实践演习。例如机械系的学生研究机器人避障、模具使用寿命等课题,机电系的学生研究线切割机、示波器等课题,计算机系的学生研究排课系统、搜索算法等课题。这样,学生不仅开阔了视野,扩展了知识面,同时也激发了他们探索研究的兴趣,并提高了分析和解决问题的能力。

2.2 优选教材,提高学生的知识面 教材作为教学工具和教师完成教学任务的依据,在教学活动中具有十分重要的作用。专科选用以韩中庚教授主编的《应用数学建模》和颜文勇教授主编的《数学建模》。这两本教材以实用为主,为学生比较容易进入建模状态,更为他们提供了解决常见问题的方法和范本。而对于本科,由于涉及的深度和广度比较宽,不可能教会学生每一种方法,更重要的是教会学生数学建模的思维模式和创新思维的能力。一般选用以当今比较有名的几本教材分析姜启源教授主编的《数学建模》和吴孟达教授主编的《数学建模》。当然“尽信书则不如无书”,如果教师认为教材内容及其编排对学生不适合时,也可以根据学生的具体需要采取删除、替代、补充等方法来解决。

2.3 转变课堂教学的模式,提高教学效率 数学建模过程具有鲜明的创造性、综合性以及实践性。数学建模十分注重培养学生的创造性思维和创新意识,并将实践放在最重要的位置,此外,提高学生从事现代科研和工程技术的开发能力是其最重要的目标。数学建模教学尤其是数学建模竞赛的培训是一条很好的培养高质量创新型人才的途径[4] ,多年来,我们对数学建模的教学模式做了如下探索:

2.3.1 充分再现数学发现的思维过程

在各门课程中融入数学建模的思想和方法,除了一定程度上改变数学理论教学和实践脱节的现象,还培养了学生的创新思维能力。尽管学习的是前人创新性思维的成果,但是在建模过程中同样也展示了数学发现的思维过程,实质也是培养学生创新思维的过程。但是这一点经常被教师所忽视,他们往往隐去了发现数学知识的过程而注重传授数学知识,这些无形中扼制了学生的创新思维。而数学建模能让学生在建模过程中体会数学发现的创造性乐趣从而培养了创新思维,从而弥补了基础数学教学的缺陷。在教学中,教师应当遵循认识规律引导学生多分析、多思考以及多提问,鼓励学生通过不断的模仿而深入学习,将掌握的知识与实际应用问题联系起来而逐渐形成自己的建模能力。为了充分发掘和调动学生的各种潜能,教师还应当通过设计小课题让学生课外动手动脑以发挥各种能力。

2.3.2 更新教学形式

满堂灌、填鸭式以及保姆式等传统的课堂教学形式养成了学生依赖教师的心理,这样在调动学生主观能动性以及激发学生创造性思维方面就显得比较困难。因此,为了在创新能力方面有所突破,必须打破传统单一的教学模式,即探索和尝试一些行之有效的新的教学形式。近几年以来,我们根据教学建模的要求,有意识的尝试了很多不同于传统的教学模式以求充分调动学生的主观能动性、思维积极性、创新意识以及创新能力。

2.4 更新教师教学观念,提高教学水平 教师的教学水平取决于两个方面:一方面,他自己对知识的熟练程度;另一方面,他在教学方法和技巧方面的知识和经验。作为数学建模教师,仅仅拥有精神的专业知识和广博的科学文化知识还是不够的,具有一定的科研能力是必不可少的一部分。广大数学建模教师为了不断的提高自身的素质和专业教学水平,必须自觉的刻苦学习,勇敢探索和实践,最终实现以教学带动科研,以科研促进教学。

作为本科院校的教师不能只停留在按部就班按照教材完成每学期的教课任务上面。要想成为一名称职的高校教师,仅仅具有全面的专业知识和课堂组织能力外,还应当是一位从理论到实践的教学理论的学习者、研讨者以及探索者,应当能够有效的帮助学生树立新的学习理念并培养学生获得终身学生的能力。首先,要更新教师自身的教学观念,立足于培养具有良好人文素养和科学精神、独立自主的学习能力、基础扎实、知识全面、适应力强的高素质人才。例如采取多种形式进行教师研讨,以一个问题为起点,讨论研究该问题的方法,以及方法的应用领域,一般情况下的使用以及各种算法的讨论。

3 结语

综上所述,笔者认为要想真正从专科走向本科数学建模教学,关键是协调好教师、学生、教材以及教学环境之间的关系;通过合理配置资源,使有限的投入产生较大的效益;将教学目标作为调整自己的教学方向和方法。通过分析专本数学建模课程的差异性,将创新实践和能力培养作为教学目标,通过合理的教学方式和方法,使学生通过学习数学建模,除了调动学习积极性外,还能有效提高利用数学和计算机解决问题的能力。[5]学校由专科升为本科,教师也应该升格自己的教育观念,只有提高自身素质,明确见血目标,并且立足于教学实际改革原来专科数学建模教学的现状,才能使“专升本”院校的大学生数学建模教学跨上一个新台阶。

参考文献:

[1]颜文勇.数学建模[J].高等教育出版社,2011年6月.

[2]沈文选,杨清桃.数学建模导引[M].哈尔滨工业大学出版社,2008年1月.

[3]池春姬.高职专科院校数学建模教学的探索与实践[J].齐齐哈尔医学院学报,2007,28(2):210-211.

第5篇:数学建模层次分析范文

关键词:初中数学建模活动;内容设计;组织原则;数学建模能力

在初中课程内容中,数学建模活动既没有明确的课程定位、目标要求,也未设置专题活动内容,更没有明确的教学要求、实施策略等,致使很多一线教师对初中数学建模活动的内涵、内容设计和组织原则等认识模糊,甚至将应用题教学与数学建模活动简单地画上等号。因而,正确理解初中数学建模活动的内涵,明确建模活动内容,掌握组织原则,才能取得预期的活动成效。

一、初中数学建模活动的内涵

数学建模活动由数学、建模、活动三个关键词构成。“数学”凸显数学学科本质属性,蕴含着数学眼光、数学思维、数学语言等诸多含义,最终指向用数学知识分析和解决实际问题;“建模”是指运用数学符号系统建立数学模型;“活动”是指为实现学习目标而采取的行动。初中数学建模活动是指初中生(以下简称“学生”)在实际情境(生活情境、社会情境、科学情境和数学情境)中,从数学的视角发现和提出问题,用数学的方法分析问题,简化、假设、抽象出数学问题,建构数学模型,确定参数、求解验证,最终解决实际问题的学习活动。2011年版义务教育数学课程标准中使用了“模型思想”的表述,将数学建模活动看成是一种思想,包括从现实问题到数学问题、从数学问题到数学模型,数学模型求解及结果验证三个过程。2017年版高中课程标准指出数学建模活动是一种过程,分为现实问题的数学抽象(实际模型)、数学表达(数学问题)、建构模型求解问题三个阶段。从建立和求解模型的过程与形态可以看出,模型思想的建立过程与数学建模活动过程的本质是一致的,都包含对现实问题进行数学抽象,用数学语言表达形成数学问题,用数学方法建构数学模型,计算求解模型并解释现实问题的活动过程。事实上,模型思想必然形成于数学建模活动的过程中。

二、初中数学建模活动的内容设计

1.构建数学模型活动

数学建模中的“建模”是指建构数学模型[1]。数学知识本身就是一种数学模型,从数学知识属性维度看,数学模型一般分为概念模型、方法模型和结构模型。因此,学生对数学知识的学习本质是一种构建数学模型的学习活动,构建数学模型是学生习得数学知识的基本途径。从初中数学建模活动(以下简称“数学建模活动”)的过程看,构建数学模型活动本身不是严格意义上的数学建模活动,而是数学建模活动过程的某个阶段或某个环节。在这类建模活动中,活动重点是渗透模型思想,使学生学会建构数学模型,为完成完整的数学建模活动奠基。

2.应用数学模型活动

数学建模活动更强调的是建立模型和解决问题的过程[2]。数学模型的价值在于将现实世界与数学的壁垒打通,通过数学模型连接现实世界与数学世界,使学生体悟数学建模的现实意义。现行初中数学教材注重数学与现实世界的联系,设置了大量的应用类问题,为学生应用数学模型解决实际问题提供了良好的载体。比如苏科版初中数学教材中勾股定理的简单应用、用一次函数解决问题、锐角三角函数的简单应用、收取多少保险费才合理等属于应用数学模型活动。虽然这些应用类问题具有封闭的、数据清楚、信息正好、结果唯一等特点,不同于真正的数学建模问题,但应用数学模型活动也属于数学建模过程的重要阶段,解决应用类问题所考查的能力往往正是数学建模过程中某些环节所需要的能力[3]。教师要利用好这些素材,开展有意义的数学模型应用活动,在活动中渗透数学建模思想,重点提升学生建构数学模型解决应用题的能力。

3.主题综合实践活动

主题综合实践活动是指以现实世界中实际问题为研究对象,明确具体研究主题,综合应用学科知识(不限于数学知识)解决实际问题的实践活动。在初中阶段,主题综合实践活动是数学建模活动的主要形式,是学生参与完整的数学建模活动,培养学生数学建模能力的重要途径。主题综合实践活动内容源于杂乱无序的现实世界,学生需从“原生态”的现实情境中抽象出数学问题,我们一般将其称为数学化能力。数学化能力是数学建模的关键成分,在主题综合实践活动设计中应予以重点关注。每个学期开展1~2次主题综合实践活动,有利于促进学生经历完整的数学建模活动过程,培养数学建模能力。综合实践主题的选题源自学生熟悉的现实生活,符合学生的生活经验和认知水平。综合实践活动有利于激发学生的学习兴趣,培养应用意识和数学建模能力,具有积极的现实意义。比如在分析问题环节,先梳理影响出租车收费的相关因素,再确定主要因素(里程数),调查收集燃油附加费的收费标准。在提出假设环节,假设出租车收费只受里程数影响,不存在乘客主观因素的影响;假设打车策略以费用为唯一标准,不考虑顾客的主观感受,也不考虑出租车公司的有关优惠活动。主题综合实践活动任务给学生提供了“原生态”的问题情境,能有效驱动学生从现实世界中发现和提出有意义的实际问题,运用数学知识建立数学模型,从而解决实际问题。从主题综合实践活动的整个流程看,学生经历了相对完整的数学建模活动过程,有效弥补了以上两种阶段性建模活动在培养学生数学建模能力上的不足,对培养学生数学建模能力至关重要。

三、初中数学建模活动的组织原则

1.阶段性原则

阶段性原则是指根据初中数学教学内容,参照数学建模过程将数学建模活动分为不同的阶段,发挥数学建模活动的教育价值[4]。数学建模活动是一个完整的解决实际问题的过程,具体包括现实原型———实际模型———数学模型———模型求解———检验解释等。在初中数学学习中,受数学知识与数学能力所限,我们不可能也没必要使学生经常性地经历完整的数学建模活动过程[5]。在平时数学知识的教学中,注重渗透数学模型思想,引导学生经历数学建模的某个环节或某个阶段,体现数学建模活动的阶段性原则。初中数学建模活动一般分为三个阶段:标准数学模型学习阶段、用数学模型解决实际问题(应用题)阶段、主题建模实践阶段。三个阶段由低到高、层层递进,教学中应根据数学建模活动的内容特点,对建模活动目标精准定位,分阶段、分层次培养学生的数学建模能力。

2.适切性原则

适切性原则是指数学建模活动内容应源于学生熟悉的、真实的实际情境,符合学生的认知基础、智力水平和心理特点,注意学生解决问题能力上的差异[6]。从实际情境的视角看,选用的问题情境要符合实际情况,是学生熟悉的情境。对于综合性实际情境,应具备一定的挑战性,有利于促进学生主动学习数学、物理等相关学科知识,但建立数学模型时涉及的数学及跨学科知识应符合其认知水平,不能随意提高数学建模活动的要求。从数学建模的教育价值看,数学建模活动应在学生解决实际问题能力的基础上,运用数学知识又不限于数学知识主动连接现实世界,感受数学建模的应用价值。

3.发展性原则

发展性原则是指组织的数学建模活动应能驱动学生积极主动参与建模活动,发展学生的数学建模能力。发展性原则属于数学建模活动的目标范畴,即为什么组织、为谁组织数学建模活动?发展学生的数学建模能力是数学建模活动的出发点和落脚点,在组织不同类型的数学建模活动时,都应遵循发展性原则,提高数学建模活动立意,将活动目标落到实处。比如在构建数学模型的活动中,活动的内容设计应有利于引导学生经历现实问题到数学问题再到数学模型的抽象过程,特别是对数学对象的第二次抽象时,教师应将教学重心放在引导学生用数学符号建构数学结构(数学模型)上,分阶段发展学生数学建模能力水平。

参考文献

[1]孙凯.从问题类属谈初中生数学建模能力培养[J].数学通报,2020,59(12):30-33.

[2]张景斌,王尚志.中学数学建模活动为中学生创造发展空间[J].数学教育学报,2001,10(01):11-15.

[3]张艳娇.谈“数学建模活动与数学探究活动”如何在教科书中落实[J].中学数学杂志,2020(09):1-7.

[4]刘伟.初中生数学建模能力培养研究[D].曲阜:曲阜师范大学,2020:132.

[5]温建红,邓宏伟.“综合与实践”教学中渗透模型思想的策略与建议[J].中学数学月刊,2021(03):52-55.

第6篇:数学建模层次分析范文

【关键词】数学建模;数学建模思维;试题类型

全国大学生数学建模竞赛创办于1992年,目前已成为全国高校规模最大的基础性学科竞赛,受到大学生的广泛关注.笔者在对比了近十多年来专科组大学生数学建模竞赛的试题变化特点,在竞赛对学生的综合数学素质要求不断变化的情况下,探讨了高职数学教学中所面临的困境与改革创新.

一、高职数学建模教学效果与参赛能力差距

(一)数学建模竞赛试题变化特点分析

1.试题类型涉及范围从单一学科向多知识学科转变.如1999年C题、2000年C题等只是单纯的数学或物理问题,试题涉及的学科范围窄,就像一个稍复杂的几何学或物理学习题,解题思路相对固定,没有要求学生有任何创造性地提出设计方案.近几年的试题逐步发展成为多学科、多知识背景的类型,甚至近年有部分试题出现了所属学科不明显的情况.

2.试题附带的数据量不断增大.在早期的试题中数据量不大,注重解决问题方法的选择,所以在早期的试题中有一种“非真实感”.而近年来的试题出现了大量的原始数据,如2005年C题等,这就要求必须借助工具软件进行处理,否则无法完成.

综合以上,试题会越来越“真实”,同时数据也会越来越大,这对于没有太多生活经验、专业性不够突出的大学生来说,是一种挑战,笔者和很多学生交流后,有学生提出感觉试题越来越难了.这同样对指导教师来说也是一种挑战,教师很难有针对性地给学生提前预备具体知识.

(二)高职学生的数学素质与竞赛要求素质差距

1.认知能力差.数学建模竞赛需要的是一种综合能力,如洞察力、创造力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代新科技新成果的能力.这些都与个人认知力有关,这就基本决定了高职类学生与本科生有一定的差距.

2.理论知识缺失.进入大学后很少高职院校会单独开设数学建模课程,更不用说要培养学生的数学建模思维.以我院学生为例,大部分学生(除少数理工科类外)只涉及两门课程与数学建模有关:数学与管理和统计学原理.仅仅只有这两门课程作为理论基础参加数学建模竞赛是远远不够的.

3.计算机工具应用能力弱.以我院学生为例,数学与管理中学习Mathematics软件,统计学原理中涉及SPSS和EXCEL.而最常见的建模工具,如MATLAB、LINGO,由于专业性质差别,几乎没有机会接触到,这是高职类学生的薄弱环节.

二、高职数学建模思维培养教育创新改革设想

(一) 改革的基本出发点

抛弃以竞赛为目的的功利思想,以提高学生的数学建模思维为出发点.在很多高职院校,由于学生的数学素质与竞赛素质相差太远,导致指导教师出现了消极心理,甚至有些教师认为到竞赛的时候主要是看指导老师的能力.这是绝对错误的思想,有这样思想的教学团队即使在某些年份可能会取得较好的成绩,但这绝对没有长久保持这种成绩的能力.因为教学团队就没有找到一种正确的培养模式,把这种胜利从偶然性变为必然性.而正确的培养模式的基本方针就是要培养学生的数学建模思维,这比给学生多设几门课程、多上几节培训课更为重要.

(二)改革的理念

由于高职院校性质特点,基本上都是应用型专业,给学生专门开设几门与数学建模有关的课程不太现实,而且即使开设了,教学效果也不会理想.所以笔者认为应该把数学建模思维的培养与具体专业相结合,在专业问题上如果碰到有关的建模问题,就相应在该部分增加数学建模内容.例如金融学专业在某些课程中可以加入最优化模型、投资组合模型等,把这些模型融入到具体的专业中,使得应用性更强,学生也更易接受,教学效果好.

(三)具体实践的几点经验

1.教学中注重引入数学模型.在各个学科中都有些问题涉及数学,或可以用数学的原理说明实际问题.例如统计学中最小二乘法在各领域都有广泛的应用,解最小二乘法的拉格朗日法是常见求极值的方法.可见数学模型结构也是有层次的,一个复杂的数学模型包含了几个简单的模型,教师可以根据学生特点和课程性质选择模型层次.

2.强调利用计算机工具处理数据过程.很多教师只强调了模型的原理讲解,并没有把模型理论与学生动手能力相结合,缺少实践环节.例如,时间序列分析中的线性回归模型,模型的原理复杂,但利用软件操作反而十分简单,教师可以多介绍几种软件工具,让学生加深理解该模型的使用范围及结果意义.

三、结束语

本文通过对专科组试题的总结分析,勾勒了数学建模对学生综合数学素质要求的发展趋势,提出要注重学生的数学建模思维培养,以实际应用为前提,与具体专业相结合,注重专业中真实数据处理的教学改革设想.

【参考文献】

第7篇:数学建模层次分析范文

【关键词】数学建模教学;教学方法;数学建模竞赛;教学效果

1研究生数学建模培训教学在我校深入开展

我校自2007年6月开始组织研究生参加数学建模竞赛,培养研究生200余人,教师们利用双修日、暑期授课,给参加培训的研究生讲解数学方法的应用,从实际问题出发的建模能力,模型求解与数学软件的编程等。研究生数学建模培训教学的深入开展,有力地推动了研究生数学基础课程的教学改革。

2研究生数学建模培训教学方法

为了改变以往课堂教学“填鸭式、注入式”的教学方法,研究生数学建模培训教学更多地采用自学指导法与研讨探索法进行教学。

2.1自学指导法

自学指导法是由教师根据教学目的和教学内容,研究生已掌握的知识和智能发展水平制定授课方案,课前向研究生讲明教学的目标,再根据研究生心理活动的逻辑规律,创造良好的教学环境,促使研究生的思维处于积极活动状态,使他们在积极的思维活动中自我阅读教学内容,掌握新知识,发展智能和创造力。自学指导法的基本步骤一般是:确定目的、自学、指导、练习。(1)确定目标。教师讲课前,向研究生讲明学习的目的和达到目的的方法与途径,并提出学习中要思考的问题,为实现学习目标做好心理准备,引起研究生积极的心理活动。(2)自学。研究生有目的地阅读教学材料,初步掌握新课的基本内容,并记录阅读中出现的疑难问题,在这一教学环节中,教师应启发研究生提出问题。(3)指导。教师启发、引导研究生利用已掌握的知识和积累的经验,主动地研讨、学习新的知识,找出规律,发展智能和创造力。在这一教学环节中,教师要注意在方法上指导研究生学习,及时解答研究生学习中遇到的各种疑难问题。(4)练习。布置作业由研究生独立完成,教师及时检查研究生作业情况,了解作业中出现的问题,研究生完成练习后,教师及时组织讲评。

2.2研讨探索法

研讨探索法就是开始上课时,教师提出某一课题,让研究生3个人一组去分析研究该课题,研究生可以查阅文献资料,从而获得对问题的感性认识,初步了解该问题的内部机理;然后组织研究生课堂讨论,让研究生讲出自己在分析研究过程中的发现和形成的观点,互相交流,互相启发,互相质疑,进行必要的争论,促使研究生尽快由感性认识上升到理性认识,形成一定层次水平的科学概念,建立数学模型,解决实际问题。研讨探索法的基本步骤:(1)提出课题。教师提出一个开放性题目,由3个研究生一组共同去分析题意,了解问题背景。(2)分析研究。每一个研究生小组围绕教师给出的课题,查阅文献资料,分析实际问题中的数量关系,如应用处理连续量、离散量、随机量的数学方法,建立数学模型,通过计算机求解,回答有关问题,写出论文初稿。(3)课堂讨论。将研究生小组集中起来,组织研究生在课堂上开展讨论,研究生可以自愿上讲台讲授自己的观点、模型、解决问题的思路等。每个研究生小组都有一个代表首先上讲台讲授自己小组的论文,回答课题中的有关问题,然后研究生自由发言,不同的解法、思路要充分表达出来。教师参加讨论,主要是对需要拓展的知识进行补充讲解。(4)总结。教师对讨论的问题进行讲评,研究生根据讨论情况及自身对问题的分析和理解写出科技论文,解决所提出的问题。在近几年来研究生数学建模培训教学工作中,我们采用了自学指导法和研讨探索法教学。研究生通过学习掌握了新知识,智能和创造力得到发展,也培养了他们的自学能力。

3研究生数学建模培训教学安排

我校研究生数学建模培训每年11月份启动,次年5月组织研究生参加江西省研究生数学建模竞赛,9月组织研究生参加全国研究生数学建模竞赛。首先由研究生院组织各学院有关专业的研究生自愿报名参加数学建模培训班;其次信息工程学院数学建模教练组根据研究生报名情况组建数学建模培训班,必要时组织报名研究生进行选拔考试,选拔优秀的研究生参加数学建模培训班;再次由数学建模教练组根据有关数学建模竞赛要求,制订研究生数学建模培训班教学方案,确定培训内容,选择讲课教师,开展培训教学;最后组织研究生参加江西省研究生数学建模竞赛及全国研究生数学建模竞赛,根据参加竞赛、获奖情况,及时总结培训教学与竞赛效果,对教学内容、教学方法、教学手段进行改进,为下一轮的培训教学与组织参赛打下坚实的基础。

第8篇:数学建模层次分析范文

关键词:数学建模 数学教学改革 高职高专 可行性分析

1. 引言

在当今科技高速发展的时代,高职院校的教育应以培养应用型人才为目标,人才的知识能力结构是应用型,而不是学术型;要按照应用型能力结构,重新构建理论和实践教学的体系,培养的应用能力应为创造性。数学建模活动极大地激发了学生学习数学的积极性,培养了学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,拓展知识面,培养了创新精神和合作意识。因此,参加组织学生参加数学建模竞赛对促进高校数学与计算机教学改革都起着积极的推动作用,从而推动数学教学思想、内容和体系、方法和手段的改革。所以在高职高专院校开展数学建模课程与活动势在必行。

2. 现状分析

从20世纪80年代数学建模课程进入我国高等院校,开设该课程的刚开始只是少数理工科大学和综合大学。但自1992年由中国工业与应用数学学会举办全国大学生数学建模竞赛(94年起由国家教委高教司和中国工业与应用数学学会共同举办)以来,大学生数学建模竞赛迅速成为作为目前全国高校中规模最大的大学生课外科技活动。为此,各个高校根据自身特点相继开设了数学建模课程,有力的促进了数学建模课程的发展。虽然我国许多高校在数学建模方面取得了一些成绩,但是,我国目前的数学建模课程还面临一系列问题,主要表现在:

1)各个高校从事数学建模课程教学的教师数量不足,水平参差不齐。由于数学建模的教学不同于纯粹的数学理论教学,需要教师花费大量精力去备课,需要掌握其它相关学科的知识,很多教师不愿从事数学建模的教学工作,使得从事数学建模教学的教师数量不足,尤其是在参加全国大学生数学建模比赛的过程中,很多学校的指导老师都是临时拼凑一起的,很难保证指导教师的水平。

2)数学建模课程的设置目的、目标与性质缺乏恰当定位与分析。目前,许多高校都以不同的形式开设了数学建模课程,但是缺乏对开设该课程的目的缺乏相关思考。

3)数学建模教学理论和方法有待进一步完善。数学建模教学不同于单纯的数学理论教学,需要教师在授课过程中根据课程特点和学生情况,采用灵活多样的授课方式。但是,实际教学过程中,由于客观条件的限制,很多讲授数学建模课程的教师还是采用传统的数学授课方式,忽视了课程本身的特点和目标,造成学生失去学习数学建模的积极性。

4)有的院校开设数学建模活动仅为参加“全围大学生数学建模竞赛”。诚然,通过组队参加“全国大学生数学建模竞赛”活动,确实促进了高校“数学建模”教与学水平的提高,教师通过辅导学生参赛提高了自己的专业素养,参赛学生通过参加建模竞赛提升了数学建模能力,也在一定程度上维持和提升了学校的地位和声誉。然而,这些竞赛成绩背后是“数学建模”课程教学中对极少数参赛学生的强化训练和对绝大多数学生的忽视与应付,失去课程本身的目的。只是跟风仿效其他大学,相当部分院校忽视自身特色、盲目向其他大学看齐,这对数学建模的发展很不利。这需要我们在高职高专院校开展数学建模活动特别留意和要加以改进的方面。

3. 可行性分析

1)教改为开展数学建模活动提供政策支持与理论向导

在国家高等职业教育培养目标教学改革精神的指导下,我们针对目前高职数学教育的特点与需求现状,将提出了针对高职教育数学建模教学的学科教育框架,强调多种教学方式、成果检验方式相结合,改变传统授课方式,以素质教育为基础,突出能力目标,以数学建模为载体,以学生为主体,以解决实际问题为训练手段,提高学生的实际能力与在社会中的竞争力。

2)软实力方面的迫切需求:

高等职业教育的培养目标是为生产服务和管理第一线培养实用型人才,高职数学课程的一个重要的任务,就是培养学生用数学原理和方法解决实际问题的能力。在我院中开展数学建模活动,以此推动高职数学课程的改革应该是一个很好的做法。开展数学建模活动的出发点就在于培养高职学生使用数学工具和运用计算机解决实际问题的意识和能力。

数学学建模活动所涉及的内容很广,用到的知识面比较宽,不但包含了较广泛的数学基础知识和各种数学方法技巧,而且联系到各种各样实际问题的背景:如生物、物理、医学、化学、生态、经济、管理等。我们认识到单靠数学系的老师担当指导教师对学生进行这些方面的知识传授可能不够深入全面。因此,学生在课下还需要自学。如建模方法与应用、线性规划、动态规划、生态数学模型、概率统计排队论、层次模型分析、图论、离散数学、计算机仿真、案例分析、Matlab,Mathematica等。这样大大丰富了学生的知识面,开拓了学生在数学方面的视野。这样充分调动了学生的学习积极性,激发学生努力自学,有利于将学生的潜能更充分地发挥,有利于培养和提高学生的自学能力和创新意识。参加数学建模培训的同学均有这种深刻体会。

3)硬实力方面的支扶齐备:

我院各类实验室、投影仪、多媒体、吸音式话筒等辅助设施都比较齐全,为数学建模活动的开展提供了全面强有力的硬件保障。

数学建模是我院计算机、经济、管理、机电、会计等专业学生都涉及到的重要应用课程,师生对该活动的开展呼声日益高涨,从主、客观上,从软、硬实力方面都基本具备了课题研究的内部环境和动力。

如果数学建模活动能在我院里得以开展,其效果定能如期实现,拓宽数学模型的应用领域,可以改变单一的纯理论教学模式,推动了我院高等数学教学模式改革。

参考文献

1. 姜启源.数学模型(第三版)[M].北京:高等教育出版社,2003.

2. 李大潜.中国大学生数学建模竞赛[M] .北京:高等教育出版社,2001.

3.杨晋浩.数学建模.北京:高等教育出版社,2003.

第9篇:数学建模层次分析范文

关键词:高中数学;建模;常见类型

1.高中数学与建模

高中阶段是一个学生学习生涯中的关键阶段,在这一阶段开展卓有成效的数学教学,对于帮助学生养成良好的思维习惯和学习习惯而言十分重要。从一个学生学习的整体发展上看来,在高中数学教学的过程中,帮助学生养成良好的学习习惯,帮助他们树立正确的数学思维方法显然十分重要。建模的思想是高中数学教学过程中每一个阶段都非常强调的思想。学生在学习的不同阶段,都能正确认识到自己需要掌握的建模思维路径,这对于学生正确理解和接受高中数学相关知识而言非常重要。从宏观上看来,学生在高中学习阶段就掌握正确的建模思想,对于他们进入到大学之后从事高等数学的学习而言,也是非常有好处的。在培养学生数学建模的有关思想的时候,高中数学老师应该占据主导地位。应该从宏观入手,给学生卓有成效的指引。为了达到这一目标,老师应该和学生密切配合,以让学生了解和领会数学建模相关知识和技能为目标,对学生开展卓有成效的数学教学。

2.高中数学建模中的几种常见类型

2.1方程模型在整个高中阶段,方程的思想一以贯之的,而从高中数学建模的角度上看,方程模型也是一个重要的数学建模模型。从方程本身的思维逻辑路径上来看,它是一种正向思维,就是利用本身题目描述的等量关系,将所需要求解的未知数当做一个等式中的已知情况进行考虑,这样做可以帮助学生跳过相对繁琐的逆向思维路径,尽量减轻解决问题过程中的思维负担,这种方式能够帮助学生用更加简便的方法来解决更加复杂的问题。事实上,随着学生学习数学内容难度的提高,很多学生和老师都不约而同的发现,他们在进行有关数学问题的求解的时候,常常已经离不开方程的方法和思想了,用传统意义上的逆向思维求解已经不能满足有关需求了。例如:张三和李四两人同时从A地出发到B地,张三的速度是5千米每小时,李四的速度是6千米每小时,最后李四比张三早到了两个小时,问A地到B地的距离是多少?分析:上述题目非常完备的体现了方程的思想,已知的条件不足以帮助学生逆向思维推出结论,因此老师在教学的过程中为了让学生更好的理解题意,也为了能够更加顺利的讲解题目,应该着重考虑引入方程的思想,让学生借助方程建模中的正向思维来理解有关知识。具体而言,应该充分认识到,上面题目中提到的已知条件可以构成两个式子,其中涉及到两个参数,一个是总距离x,一个是总时间y,题目中两个人的运动速度是不变的,由于李四一直在行走,所以第一个式子是x/y=6,第二个式子是x/(y+2)=5,由这两个关系式可以指导,总距离为60千米,李四的时间为10个小时,张三的时间为12个小时。2.2不等式模型与以往阶段的数学学习不同的是,高中阶段的数学教学往往不单纯一种想等的关系,而是要通过一些数字和逻辑关系来构建一种或者几种数量之间的关联,并且通过已知的等量关系来计算并选择真正符合实际需要的计算结果。不等式思想的建立,是一个高中生本身数学思想和数学思维形成过程中所不能绕开的一个阶段。数学这门学科描述的是数量的关系,以此为逻辑起点可以认为,在数学的世界,既然存在等量关系,就一定有不等关系,学生们如果在头脑中建立起这样的思维的话,就会从更高的程度和层次上认识数学,在面对和解决数学问题的时候,思路就会更加开阔。例如:第一次东西买了X件,花了Y元,后来商品降价,买120个的话可以省80元,消费者为此多买了10件,一共花了20元,可知第一次购物至少花了10元,求问他第一次购物最少买了几件?分析:上面题目非常清晰地体现了不等式的思想,题目中给出的已知条件并不是完全意义上的等量关系,在建模过程中,需要引入不等式的概念,教会学生从不等式中要结果。通过解析,可以得出以下两个式子:(X+10)*(Y-80/120)=20;另外还有一个是不等式,即Y≥10。同时考虑到X、Y都因该是正数,所以可以得出结论,X≥5,第一次至少买5件。2.3数列模型数列是高中数学中的重要组成部分,在高中数学建模教学的过程当中,数列建模的有关理念不应该被绕开。数列本身描述的是一组前后相继的数字之间的逻辑关系。数列理念的灌输,是为了帮助学生拓宽看待和解决问题的思路,为了帮助学生能够从更高的层次和角度上看待和解决缺乏等量关系必要条件的数学问题。应该认识到,很多时候,在解决数学问题上,学生们无法获得必要的等量条件,而数字之间的逻辑关系——例如数列,事实上提供的是一种数字之间的非等量关系,非等量关系的建立,事实上是为学生提供一种或者几种已知条件,已知条件的获得,最终能够帮助学生解决题目中的问题。例如:某地植树量每年增长的绝对数量一定,是a,已知2010年的树木的保有量是2万株,2012年是2.2万株,求问到2016年,地区的树木保有量是否会达到3万株?以上题目是非常简单的等差数列建模案例,要解答这个题目,只需要求出每年净增量为0.1万株,可知2010道2016年是6年时间,净增加为0.6万,到2016年树木的保有量一共为2.6万,因此到2016年,全地区的树木保有量不会超过3万。

3.结语

高中数学建模思想的应用应该与学生的实际学习紧密联系,高中老师应该沿着这个方向下功夫、做工作。

参考文献:

[1]李卓林:推进高中数学课程科学化开展的策略.[J].武汉教育学院学报,2013(8):15-16