公务员期刊网 精选范文 数学建模的具体应用范文

数学建模的具体应用精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的数学建模的具体应用主题范文,仅供参考,欢迎阅读并收藏。

数学建模的具体应用

第1篇:数学建模的具体应用范文

关键词:数学建模;创新能力;大学数学主干课程

中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2012)07-0158-03

大学生数学建模竞赛不仅能培养出具有创新能力的学生,也能一定程度上提高教师的教学和科研水平,而且最重要的是它能直接推动大学数学的教学改革。教育部高教司对我国大学生数学建模竞赛活动的主要指导思想之一就是“扩大受益面、推动教育改革”。开展数学建模教育,可以推动大学数学教育改革。开展“在大学数学教学融入数学建模、数学实验的思想和方法,培养学生的创新能力”课题的研究和实践,就是扩大数学建模受益面的一个重要探索。本文研究对在大学数学教学融入数学建模、数学实验的思想和方法的必要性,相应的融入手段,以及在融入过程中可能遇到的困难和解决办法等进行了论述。

一、数学建模思想融入大学数学的教学中的必要性

1.数学建模几乎是一切应用科学的基础。数学在科学中的一个重要作用就是能够使人们对事实上是相当混乱的东西进行适当的理想化,抽象出概念与模型,从而解决实际问题。在解决复杂科学技术问题时,数学建模的方法能使人们设计出最佳和可行的新技术方法、手段,以及预测新的现象等。数学建模及相应的计算也正在成为工厂里常用的主要工具。Charlies R. Mischke指出:学生一般都并不确信大学所开设的所有课程是否真能培养他们的创新能力。他们对学习渐渐失去兴趣,原因之一就是缺乏让学生了解大学教育进程安排的合理性。工程专业课程强调的基本都是专业方面的问题。而实际用来进行教学、组织和应用的工具却是数学模型。但不幸的是,专业教师很少花时间来讲授不涉及专业方面的建模过程本身。所以将数学建模的思想和方法融入大学主干数学课程教学中是具有现实的必要性。

2.当前数学教学的问题。传统的数学教学和考试可以很好地检查学生对所学数学知识的概念、定理和方法等的掌握情况,但缺乏对学生的应用数学的能力和创新能力进行考察。因此,在大学数学教学和考试中融入数学建模思想和方法非常必要。传统的大学数学教育已不能有效地激发广大学生的求知欲和激情,不能有效地培养学生的创新意识和创新能力。在现实的大学数学教学活动中,学生常常陷入前所未有的困惑之中,投入大量的精力,做了大量的习题,却丝毫感受不到“数学”有何作用,老师也拿不出鲜活的例子来使学生信服数学的用处。一大半学生认为大学数学的教学内容是没意义的,并且认为无意义的最大原因是和实际没有联系,学生最常问老师的问题就是“高等数学有什么用?”“线性代数有什么用?”等问题。

二、数学建模思想融入大学数学的教学中的具体措施

在大学数学的教学中融入数学建模思想主要是要让学生明白大学教育进程安排的合理性,以及数学的重要性和广泛应用性。但还是必须明确要以数学主干课程为主,建模思想培养为辅的指导思想,最主要的目的还是促进学生更好地学习和掌握大学数学主要内容、思想和方法。要建立一套恰当的数学建模思想融入大学数学教学的具体措施。首先必须弄清楚数学建模的具体过程以及我们大学数学教学的内容和思想。数学建模过程一般分为下面几步:①对实际问题进行观察、分析,进行必要的抽象、简化(抓住要点),确定模型建立中的变量和参数;②根据已知的各学科中的定律,甚至是经验等建立变量和参数之间的数学关系,这实际上就得到了明确的数学问题;③求解该数学问题。大部分情况是没有办法得到解析解,而只能得到近似解。这往往涉及复杂的数学思想、理论和方法,以及近似方法和算法;④得到的数学结果是否能解释或预测实际问题中出现的现象,或用历史数据、实验数据或现场测试数据等来验证模型是否恰当;如果模型是恰当的,那么就可以试用;如果是否定的,那就要进行仔细分析,重复上述建模过程,不断调整、最终得到恰当的数学模型。大学数学的特点是的抽象的思想、严谨的逻辑推理和广泛的应用,也正是由于它的抽象和严谨,使得其成为我们将其他学科量化的一个有效的工具。它与许多其他学科的本质区别在于它抽象地反映了现实世界里各种对象及其变化在数量方面的一般规律,它能够把一个学科的思想经过抽象、推理和提炼得到的结果用到别的学科,从而具有广泛的应用性。将数学建模思想融入大学数学的教学的具体方法。

1.具体的切入点。①经验建模——在所收集数据中提炼事物发展的趋势;②讲授一些实际问题及相关数学模型:人口模型、管理模型、抵押贷款模型、传染病模型、减肥模型等等。在现有教材中已经讲解了所涉及的数学内容,但如果从分析具体问题到建立数学建模的过程来学习的话,不仅能激发学生的学习兴趣和积极性,而且还能使其能在学、做而后知不足,从而诱导学生进一步学习数学。

第2篇:数学建模的具体应用范文

【关键词】数学建模思想;高职;数学教学

将数学建模思想融入高职数学教学中具有重要的实际意义.高职数学老师将数学建模的思想引入数学教学中,可以用来培养学生的数学建模意识和数学建模能力以及运用数学建模的方法解决现实生活问题的能力.高职教育在人才培养过程中具有工具性和基础性的作用,因此,在教学的过程中应该坚持适度地融入数学建模思想,培养学生的建模意识,提升建模能力,在指引学生进行实际应用的过程之中,重视对能力的培养,将实际生活中的问题作为载体,对传统使用的教材进行改革.教师在对公式、原理和概念教学的过程中,应该向学生渗透相关的数学建模思想和数学建模方法,尤其是在对导数、极限和积分等概念进行阐述的时候,应该将新的数学问题向以往解决过的问题进行转化.

一、数学建模思想的阐述和意义

我们通常所说的“数学建模”就是在解决现实世界中的问题时,运用数学理论及工具构建出一个数学的模型,这个模型的本质是一种数学结构,可以是若干数学式子,还可以是某种图形表格,能够用来解释现实对象的特性和状态,推测对象事物的未来状况,提供人们处理事物的决定策略以及控制方案.数学建模的思想就是对数学的应用思想,将其融入高职数学教学中,充分体现了数学的真正价值——从现实出发再应用于现实.

在高职数学教学中融入建模思想,有利于激发学生的数学学习兴趣,让学生在解决问题的同时,发现自己数学知识的欠缺,从而回到课堂寻求数学知识,这样循环反复不仅促进了数学教学,更提升了学生的实际应用能力和动手能力.数学建模中涉及的问题往往是多种多样的,解决方法也是新奇个性的,将其思想融入数学教学是对学生的创新能力的锻炼与激发,使得课堂更加丰富多彩,教学更加热情积极.

二、建模思想的培养策略

1丰富数学教学内容,突出数学思想

对于高职院校的数学教学要融入数学建模思想,就要对教学的具体内容作出必要的变通,在教学数学的理论时,转变以往重视推导证明的教学过程,在推导的过程中不必追求过高的完整性和严密性,将教学的重点移向基本概念的深入理解,熟练掌握和应用技术、技巧与方法.针对各个专业的特征,设置有侧重点的数学课程.如理科方面的电子电气专业,就可以多重视学生的微分、极限、重积分变换等教学;在经济方面的专业应强调如数理统计学、线性代数学以及线性规划学的教学内容,而且在微积分方面最好简略;计算机类型的专业就可以适当增加像离散数学的教学内容.总体上强调实际应用价值高的教学部分,同时增添教学素材,融入新的技术来开阔学生的观念.

2培养建模意识,用建模的思想指导课程

高职数学教学的数学建模思想要从灌输意识开始,和以往教学略有不同的是,要在教导学生学习基本数学知识技巧时,用数学建模的思想指导他们理解概念,认识本源.很多问题都可以用建模去讲解,比如最优化、最值问题、导数问题、极限问题、微分方程问题、线性规划问题等.

这就要求我们高职数学老师要精心设计课程教学方案,充分发挥数学建模的思想,培养学生的建模意识.如老师在讲解《函数》一章时,不能按照以前的方法只讲解函数是一种关系,而要在其基础上赋予它更新的内容,以数学建模的思想,将函数公式应用到实际问题中,这样让学生能够有更深的理解,开阔学生的思维.举例如下:

给出一个函数式子:s=12gt2.

这是一个描述不同变量之间的联系而建立起来的函数关系,我们在教学中就可以构建具体的数学模型,这就是自由落体在整个运动过程中的下降距离s和时间t之间存在的函数关系,经过这样的简单设计之后再讲解给学生,会使教学的积极性有很大改善,也会使这种建模思想慢慢植入学生以后的学习之中.

3提升建模能力,将建模的思想融入学生的习题

注重培养学生“数学模型的应用能力”和“数学模型的建立能力”.能力培养重点放在平时学生的数学习题设计上,可以使用“双向翻译”的培养方式,这就要在讲解习题之前做好准备工作,在课堂上为学生讲解清楚概念的来源、公式的实际内涵和可用的几何模型,举例说明它们之间可以转换,从而布置“翻译”习题,培养建模能力.例如,可以出类似下面的习题:

函数关系式f(x,y)=(x-2)2+y2+x2+(y-1)2,请说明函数所能表示的具体含义,并求其最小值.在做具体解答的时候学生会寻找课堂所学,找出答案.这就是通过翻译激发其建模能力,对于这个问题就是求算一动点与两定点之间的距离之和,学生自然在求算最小值时联系实际寻找到两定点的中点就是最小的值所在点,从而简单地解决问题.也可以给出实际问题而不是公式,让学生去求解,以达到“双向翻译”,增强数学建模能力.

4增设数学实验的教学,将数学软件纳入学习之中

高职数学教学中大部分都是微积分,具有抽象性和复杂性的特征,不容易求算和解决,学生在课堂上学习到的知识和方法的所用之处少之又少.作为高职院校,学生学习数学的目的是应用所学去处理实际问题数学软件在微积分的学习中可以起到很大的作用.对于一些微积分中的问题,教师可以运用实验来指导教学,这样既可以使实践大为缩减,更能使学生学习理解的程度加深,还能应用数学软件Matlab及Mathematica使复杂的求算不再困扰学生,在数学教学上是很大的进步,充分体现数学建模思想的重要作用.

第3篇:数学建模的具体应用范文

一、精拟建模问题

问题是数学建模教与学的基本载体,所选拟问题的优劣在很大程度上影响数学建模教学目标能否实现,并影响学生对数学建模学习的态度、兴趣和信念。因此,精心选拟数学建模问题是数学建模教学的基本策略。鉴于高中学生的心理特点和认知规律,结合建模课程的目标和要求,选拟的建模问题应贴近学生经验、源自有趣题材、力求难易适度。

1.贴近学生经验

所选拟的问题应当是源于学生周围环境、贴近学生生活经验的现实问题。此类问题的现实情境为学生所熟悉,易于为学生所理解,并易于激发学生兴奋点。因而,有助于消除学生对数学建模的神秘感与疏离感,增进对数学建模的亲近感;有助于激发学生的探索热情,感悟数学建模的价值与魅力。

2.源自有趣题材

所选拟的问题应当源自富有趣味的题材。此类问题易于激起学生的好奇心,有助于维护和增强学生对数学建模课程的学习兴趣与探索动机。为此,教师应关注学生感兴趣的热点话题,并从独到的视角挖掘和提炼其中所蕴含的数学建模问题,选取学生习以为常而又未曾深思但结论却又出乎意料的问题。

3.力求难易适度

所选拟的问题应力求难易适度,应能使学生运用其已具备的知识与方法即可解决。如此,有助于消除学生对数学建模的畏惧心理,平抑学生源于数学建模的学习压力,增强学生对数学建模的学习信心,优化学生对数学建模的学习态度,维护学生对数学建模的学习兴趣。为此,教师在选拟问题时,应考虑多数学生的知识基础、生活背景及理解水平。所选拟的问题要尽量避免出现不为学生所熟悉的专业术语,避免问题过度专业化,要为学生理解问题提供必要的背景材料、信息与知识。

二、聚焦建模方法

数学建模方法是指运用数学工具建立数学模型进而解决现实问题的方法,它是数学建模教与学的核心,具有重要的教学功能。掌握一定的数学建模方法是实现数学建模课程目标的有效途径。为此,数学建模教学应聚焦于数学建模方法。

1.注重建模步骤

数学建模方法包含诸如问题表征、简化假设、模型构建、模型求解、模型检验、模型修正、模型解释、模型应用等多个步骤。数学建模教学中,教师应通过数学建模案例,注重对各步骤的基本内涵、实施技巧及各步骤之间的内在联系和协同方式进行阐释和分析,这是使学生从整体上把握建模方法的必要手段。有助于学生掌握数学建模的基本过程,有助于为学生模仿建模提供操作性依据,进而为学生独立建模提供原则性指导。

2.突出普适方法

不同的数学建模方法,其作用大小和应用范围也不同,譬如,关系分析方法、平衡原理方法、数据分析方法、图形(表)分析方法以及类比分析方法等均为具有统摄性和普适性的建模方法。教师应侧重对这些普适性的建模方法进行教学,使学生重点理解、掌握和应用。此外,分属于几何、代数、三角、微积分、概率与统计、线性规划等数学分支领域的建模方法等,尽管其普适性程度稍逊,但其对解决具有领域特征的现实问题却具重要应用价值,因而,教师也应结合相应数学领域内容的教学,使学生通过把握其领域特性及其所运用的问题情境特征而熟练掌握并灵活应用。

3.加强方法关联

许多现实问题的解决往往需要综合运用多种数学建模方法,因此,在数学建模教学中,应加强数学建模方法之间的关联,注重多种建模方法的综合运用。为此,应在加强各建模步骤之间联系与协调运用基础上,综合贯通处于不同层次、分属不同领域的数学建模方法,在建模各步骤之间、具体的建模方法之间、不同领域的数学建模方法之间进行多维联结,建立数学建模方法网络图,以使学生掌握数学建模方法体系,形成综合运用数学建模方法解决现实问题的能力。

三、强化建模策略

数学建模策略是指在数学建模过程中理解问题、选择方法、采取步骤的指导方针,是选择、组合、改变或操作与当前数学建模问题解决有关的事实、概念和原理的规则。数学建模策略对数学建模的过程、结果与效率均具有重要作用。学生掌握有效的数学建模策略,既是数学建模课程的重要教学目标,也是学生形成数学建模能力的重要步骤。因此,应强化数学建模策略的教与学。

1.基于建模案例

策略通常具有抽象性、概括性等特点,往往需要借助实例运用获得具体经验,才能被真正领悟与有效掌握。因此,数学建模策略的教学应基于对建模案例的示范与解析,使学生在现实问题情境中感受所要习得的建模策略的具体运用。为此,一方面,针对某特定建模策略的案例应尽可能涵盖丰富的现实问题,并在相应的案例中揭示该建模策略的不同方面,以为该建模策略提供多样化的情境与经验支持;另一方面,应对某特定建模案例中所涉及的多种建模策略的运用进行多角度的审视与解析,以厘清各种建模策略之间的内在联系。基于案例把握建模策略,将抽象的建模策略与鲜活的现实问题密切联系,有助于积累建模策略的背景性经验,有助于丰富建模策略的应用模式,有助于促进建模策略的条件化与经验化,进而实现建模策略的灵活应用与广泛迁移。

2.寓于建模方法

建模策略从层次上高于建模方法,是建模方法应用的指导性方针,它通过建模方法影响建模的过程、结果与效率。离开建模方法而获得的建模策略势必停留于表面与形式,难以对数学建模发挥作用。因此,应寓于建模方法获得建模策略。为此,应通过数学建模案例,解析与阐释所用策略与方法之间的内在联系与协同规律,使学生掌握如何运用建模方法,知晓何以运用建模方法,从而获得具有“实用”价值的数学建模策略。

3.联结思维策略

思维策略是指问题解决思维活动过程中具有普适性作用的策略。譬如,解题时,先准确理解题意,而非匆忙解答;从整体上把握题意,理清复杂关系,挖掘蕴涵的深层关系,把握问题的深层结构;在理解问题整体意义基础上判断解题的思路方向;充分利用已知条件信息;注意运用双向推理;克服思维定势,进行扩散性思维;解题后总结解题思路,举一反三等,均为问题解决中的思维策略。思维策略是数学建模不可或缺的认知工具,对数学建模具有重要指导作用。思维策略从层次上高于建模策略,它通过建模策略对建模活动产生影响。离开思维策略的指导,建模策略的作用将受到很大制约。因此,在建模策略教学中,应结合建模案例,将所用建模策略与所用思维策略相联结,以使学生充分感悟思维策略对建模策略运用的指引作用,增强建模策略运用的弹性。

四、注重图式教学

数学建模图式是指由与数学建模有关的原理、概念、关系、规则和操作程序构成的知识综合体。具有如下基本内涵:是与数学建模有关的知识组块;是已有数学建模成功案例的概括和抽象;可被当前数学建模问题情境的某些线索激活。数学建模图式在建模中具有重要作用,影响数学建模的模式识别与表征、策略搜索与选择、迁移评估与预测。因此,应注重数学建模图式的教与学,为此,数学建模教学应实施样例学习、开展变式练习、强化开放训练。

1.实施样例学习

样例学习是向学生书面呈现一批解答完好的例题(样例),学生解决问题遇到障碍或出现错误时,可以自学这些样例,再尝试去解决问题。样例学习要求从具有详细解答步骤的样例中归纳出隐含其中的抽象知识与方法来解决当前问题。在数学建模教学中实施样例学习,学习和研究别人的已建模型及建模过程中的思维模式,有助于使学生更多地关注数学建模问题的深层结构特征,更好地关注在何种情况下使用和如何使用原理、规则与算法等,从而有助于其建模图式的形成。在实施样例学习时,应注重透过建模问题的表面特征提炼和归纳其所蕴含的关系、原理、规则和类别等深层结构。

2.开展变式练习

通过样例学习而形成的建模图式往往并不稳固,且难以灵活迁移至新的情境。为此,应在样例学习基础上开展变式练习,通过多种变式情境的分析和比较,排除具体问题情境中非本质性的细节,逐步从表层向深层概括规则和建构模式,不断地将初步形成的建模图式和提炼过的规则和模式内化,以形成清晰而稳固的建模图式。开展变式练习时,应注重洞察构成现实情境问题的“数学结构框架”,从“变化”的外在特征中鉴别和抽象出“不变”的内在结构。

3.强化开放训练

数学建模具有结构不良问题解决的特性。譬如,条件和目标不明确;“简化”假设时需要高度灵活的技巧;模型构建需要基于对问题的深邃洞察与合理判断并灵活运用建模方法;所建模型及其形式表达缺乏统一标准,需要检验、修正并不断推广以适应更复杂的情境;有并非唯一正确的多种结果和答案等等。鉴于此,数学建模教学中应强化开放训练,以促进学生形成概括性强、迁移范围广、丰富多样的建模图式。为此,应通过改变问题的情境、条件、要求及方法来拓展问题。即对简化假设、建模思路、建模结果、模型应用等建模环节进行多种可能性分析;将问题原型恰当地转变到某一特定模型;将一个领域内的模型灵活地转移到另一领域;将一个具体、形象的模型创造性地转换成综合、抽象的模型。在上述操作基础上,对建模问题进行抽象、概括和归类,从一种问题情境进行辐射,并以此网罗建模的不同操作模式,从而使学生形成关于建模图式的体系化认知,进而提升建模图式的灵活性和可迁移性。

五、活化教学方式

鉴于数学建模具有综合性、实践性和活动性特征,因而其教学应体现以学生为认知主体,以运用数学知识与方法解决现实问题为运行主线,以培养学生数学建模能力为核心目标。为此,应灵活采取激励独立探究、引导对比反思、寻求优化选择等密切协同的教学方式。

1.激励独立探究

数学建模教学中,教师应首先激发学生独立思考、自主探索,力求学生找到各自富有个性的建模思路与方案。诚然,教师和教材的思路与方案可能更为简约而成熟,然而,学生是学习的主体,其获得的思路与方案更贴近学生自身的认知水平。因此,教师应给予学生独立思考的机会,激励学生个体自主探索,尊重学生的个性化思考,允许不同的学生从不同的角度认识问题,以不同的方式表征问题,用不同的方法探索问题,并尽力找到自己的建模思路与方案,以培养学生独立思考的习惯和探究能力。

2.引导对比分析

在激励学生探寻个性化的建模思路与方案基础上,教师应及时引导学生对比分析,归纳出多样化的建模思路与方案。为此,应将提出不同建模方案的学生组成“异质”的讨论小组,聆听其他同学的分析与解释,对比分析探索过程、评价探索结果、分享探索成果,以使学生认识从不同角度与层次获得的多样化方案。引导学生对比分析,既展现了学生自主探索的成果,又发挥了教师组织引导的职能,还使学生获得了多元化的数学建模思维方式。

3.寻求优化选择

在获得多样化的建模方案基础上,教师应继续引导全班学生对多样化的建模方案进行观察与辨析,使学生在思维的交流与碰撞中,感受与认知其它方案的优点和局限,反思与改进自己的方案,相互纠正、补充与完善,寻求方案的优化选择。引导学生寻求优化选择,不仅仅是求得最优化的结果,还是发展学生数学思维、培养学生创新意识的有效方式。在此过程中,教师应与学生有效互动,深度交流,汲取不同方案的可取之点与合理之处,以做出优化选择。

上述数学建模教学策略之间存在密切联系。精拟建模问题是有效实施数学建模教学的载体;聚焦建模方法是有效实施数学建模教学的核心;强化建模策略是有效实施数学建模教学的灵魂;注重图式教学是有效实施数学建模教学的依据;活化教学方式是有效实施数学建模教学的保障。在数学建模教学中,诸策略应有机结合,协同运用,以求取得最佳效果。

参考文献

[1] Werner Blum Peter L.Galbraith Hans-Wolfgang Henn.Mogens Niss.Modeling and Applications in Mathema-tics Education.New ICMI Study Series VOL.10.Published under the auspices of the International Com-mission on Mathematical Instruction under the general editorship of Michele Artigue,President Bernard,R.Hodgson,Secretary General. 2006.

[2] 中华人民共和国教育部.普通高中数学课程标准.北京师范大学出版社,2003.

[3] 李明振,喻平.高中数学建模课程实施的背景、问题与策略.数学通报,2008,47(11).

[4] 李明振.数学建模认知研究.南京:江苏教育出版社,2013.

[5] Mingzhen Li,Qinhua Fang,Zhong Cai, Xinbing Wang.A Study ofInfluential Factors in MathematicalMod-eling of Academic Achievement of High School Students.Journal of Mathematics Education.Vol4 No.1.June,2011.

[6] Mingzhen,,Hu Yuting,Li,Yu Ping,Zhong Cai.A Comparative Study on High School Students’ Mathematical Modeling Cognitive Features.Research in Mathematical Education. June,2012.

第4篇:数学建模的具体应用范文

关键词:数学建模;数学模型方法;数学建模意识;创新思维

加强中学数学建模教学正是在这种教学现状下提出来的。“无论从教育、科学的观点来看,还是从社会和文化的观点来看,这些方面(数学应用、模型和建模)都已被广泛地认为是决定性的、重要的。”我国普通高中新的数学教学大纲中也明确提出要“切实培养学生解决实际问题的能力”要求“增强用数学的意识,能初步运用数学模型解决实际问题,逐步学会把实际问题归结为数学模型,然后运用数学方法进行探索、猜测、判断、证明、运算、检验使问题得到解决。”这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因为我们的数学教学不仅要使学生获得新的知识而且要提高学生的思维能力,要培养学生自觉地运用数学知识去考虑和处理日常生活、生产中所遇到的问题,从而形成良好的思维品质,造就一代具有探索新知识,新方法的创造性思维能力的新人。

一、数学建模与数学建模意识

所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题都可以转化为二次函数来解决。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。

具体的讲数学模型方法的操作程序大致上为:

实际问题分析抽象建立模型数学问题

检验 实际解 释译 数学解

由此,我们可以看到,培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。

二、构建数学建模意识的基本途径

(1)为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。这不仅意味着我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。北京大学附中张思明老师对此提供了非常典型的事例:他在大街上看到一则广告:“本店承接A1型号影印。”什么是A1型号?在弄清了各种型号的比例关系后,他便把这一材料引入到初中“相似形”部分的教学中。这是一般人所忽略的事,却是数学教师运用数学建模进行教学的良好机会。

(2)数学建模教学还应与现行教材结合起来研究。教师应研究在各个教学章节中可引入哪些模型问题,如讲立体几何时可引入正方体模型或长方体模型把相关问题放入到这些模型中来解决;又如在解几中讲了两点间的距离公式后,可引入两点间的距离模型解决一些具体问题,而储蓄问题、信用贷款问题则可结合在数列教学中。要经常渗透建模意识,这样通过教师的潜移默化,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

(3)注意与其它相关学科的关系。由于数学是学生学习其它自然科学以至社会科学的工具而且其它学科与数学的联系是相当密切的。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。

(4)在教学中还要结合专题讨论与建模法研究。我们可以选择适当的建模专题,如“代数法建模”、“图解法建模”、“直(曲)线拟合法建模”,通过讨论、分析和研究,熟悉并理解数学建模的一些重要思想,掌握建模的基本方法。甚至可以引导学生通过对日常生活的观察,自己选择实际问题进行建模练习,从而让学生尝到数学建模成功的“甜”和难于解决的“苦”借亦拓宽视野、增长知识、积累经验。这亦符合玻利亚的“主动学习原则”,也正所谓“学问之道,问而得,不如求而得之深固也”。

三、总结

综上所述,在数学教学中构建学生的数学建模意识与素质教学所要求的培养学生的创造性思维能力是相辅相成,密不可分的。要真正培养学生的创新能力,光凭传授知识是远远不够的,重要的是在教学中必须坚持以学生为主体,不能脱离学生搞一些不切实际的建模教学,我们的一切教学活动必须以调动学生的主观能动性,培养学生的创新思维为出发点,引导学生自主活动,自觉的在学习过程中构建数学建模意识,只有这样才能使学生分析和解决问题的能力得到长足的进步,也只有这样才能真正提高学生的创新能力,使学生学到有用的数学。我们相信,在开展“目标教学”的同时,大力渗透“建模教学”必将为中学数学课堂教学改革提供一条新路,也必将为培养更多更好的“创造型”人才提供一个全新的舞台。

参考文献:

[1]胡炯涛、张凡编著.《中学数学教学纵横谈》山东教育出版社,1997年12月第1版

第5篇:数学建模的具体应用范文

关键词:数学建模 思想 小学数学 建构

中图分类号:G623.5 文献标识码:C 文章编号:1672-1578(2016)12-0242-01

在小学数学新课程改革的背景下,注重发展学生的数感、符号意识、空间观念、推理运算能力和模型思想,它在数学教学课程的设计思路之下,注重学生已有的知识和经验,根据现实世界的实际问题,将其进行概括和抽象化,从而构建数学模型并对其进行分析,最终寻求问题的结果,实现问题的解决,因而,在小学数学教学中,要渗透数学建模思想,提升小学生的数学建模能力。

1 小学数学建模现状及问题分析

1.1 数学建模思想的目标定位模糊

在小学数学实践教学过程中,大多注重数学知识与技能目标维度的教学,而缺乏生活原型的渗透和引导,使学生在数学学习中缺乏生活的原型,缺乏探索数学规律的激情,无法与现实相联系,生成对数学思想的深入体验和数学方法的把握。在小学数学教学中,更多的是对于数学知识之间的演绎设计过程,而对于学生的数学应用意识和能力较少关注,对于数学建模思想的目标定位也较为模糊。

1.2 数学实践应用的深度不够

在小学数学的生活化学习中,数学与生活的联系大多是浅表性的,缺少对多样化算法的共性分析、提炼和优化过程,缺乏稳定性的一般算法模型引领和指导,只是一种单纯的技能训练和机械的反复过程,而没有建模和“用模”的应用实践。

1.3 数学评价创新度不够

由于一些数学教师的建模意识较为淡薄,在对小学数学的评价之上,基本注重对知识深度的考量,难以培养学生的建模意识,也没有检测到学生的建模能力,因而,对于小学数学的教学评价还有待创新和完善。

2 数学建模思想在小学数学教学中的知识建构策略

2.1 精心创设问题情境,引发学生的建模兴趣

教师要让学生基于现实生活情境为背景,进行数学模型的建构,并以解决现实实际问题为出发点,精心选择适宜的问题,创设相关的情境,从而激发学生的数学建模兴趣和激情。例如,在苏教版小学数学《平均数》教学设计中,可以建构相关的数学模型,创设相关的问题情境,即:组织四名男生为一组,五名女生为另外一组,分别进行套圈游戏,并比较哪个组套圈的数量最多?水平更高?学生纷纷发表自己的看法,有的提出比较各组的总分,有的提出比较每组中的最好成绩,然而这些都不是最佳的选择,于是便催生出“平均数”的数学概念,产生构建“平均数”的数学模型的需求,引发学生的建模意识和兴趣,进入数学内容的学习之中。

2.2 引领学生感知生活实践内容,奠定数学建模基础

对于数学模型的构建的关键在于提炼事物的共同普遍性规律,为了更为全面的揭示和提炼出现实生活的共同普遍性规律,首先需要学生对各类生活素材进行充分而全面的感知,教师要引导学生对生活中的数学问题进行多维度、多方位的感知和体会,要明晰相关事物的数量依存关系及其重要特征,从而为数学模型的建构奠定基础。

2.3 增进对数学知识的抽象提炼,实现数学模型建构的跃进

在实际生活内容向抽象数学模型建构的过渡过程中,需要注重由具体生动的问题情境向抽象数学模型的跃进教学,如果一味地传授生活化内容,而没有将具体的生活化内容加以抽象化和提炼,则无法进行数学模型的有效建构。例如:在苏教版小学数学的“平行与相交”教学内容中,如果只是限于让学生感知具体生活中的火车铁轨、跑道线、双杠等具体而形象的生活题材,则只是一种浅表性的认知,而缺乏对具体生活内容的抽象化提炼过程,因而,教师要根据学生地生活化内容的感知,将其现象中的本质抽离出来,使学生意识到“平行线”的数学模型并不是具有一般意义的数学模型,它可以呈现出多种具体形态,其数学本质可以提炼归纳为“同一平面内两条直线间距离保持不变”,教师要将学生的注意力由具体形态上升为两条直线间的宽度上来,并提出相关的问题情境:这两条直线为什么会永远不相交呢?并让学生动手在两条平行线之间作垂直线段,将平行线的本质剥离出来,完成由物理模型向数学模型的建构转变。

2.4 注重数学建模思想的渗透,提炼数学建模优化方法

在小学数学的数学模型建构过程中,对于数学建模思想的渗透是重要的内容,而在数学模型建构的过程中,数学思维方法的树立是灵魂,教师要在教学中引导学生树立数学思维方法,渗透数学建模思想和方法,提炼和优化学习方法。例如:在苏教版小学数学《圆柱的体积》教学中,构建体积公式的数学建模,要突出数学思想和方法,要运用数学转化思想、数学极限思想,将一个圆形转化为一个类似的长方形,催生出“圆柱的体积”模型的建构,要用高度概括的数学思想方法,逐渐提升数学建构的理性思维。

3 结语

总而言之,小学数学知识应用性较强,在这门基础性学科之中,需要引入数学知识的核心内容――数学建模思想和方法,教师要在教学中精心设计现实问题情境,在数学问题采集的过程中,将具体形象的实际问题数学化、抽象化,对其进行提炼和归纳,建构数学模型,从而增强学生解决现实实际问题的意识和能力,培养学生的数学建模意识,简化数学知识的各种数量关系,使他们在实践和思考过程中,建构起知识的内在联系,增强数学素养。

参考文献:

[1] 陈蕾.小学数学建模教学的三个关注点[J].上海教育科研,

第6篇:数学建模的具体应用范文

【论文摘要】数学建模不仅能培养学生的数学能力,而且有利于提高学生的创新能力;有利于培养学生应用计算机的能力;有利于培养学生的实践能力和综合素质。本文对在培养技术应用型本科人才的高等学校开展数学建模的重要性和具体措施作了一些探讨。

近几年来,越来越多的新建本科院校将自己的发展目标定位于开展应用型本科教育、 培养应用型本科人才,我们称这类普通高校为应用型本科院校。在我国高教法中对本科教育的学业标准有明确的规定:“应当使学生比较系统地掌握本专业必需的基础理论、基础知识,掌握本专业必需的基本技能、方法及相关知识,具有从事本专业实际工作和研究工作的初步能力。”从这一规定看,我国工科专业培养的其实都是应用型人才,但从培养目标的内涵上说,可分为三类:

一为工程研究型人才。主要由研究型和教学研究型高校培养,其培养目标是:培养能够将发现的一般自然规律转换为应用成果的桥梁性人才。

二为技术应用型人才。主要由教学型地方本科院校培养,其培养目标是:能在生产第一线解决实际问题、保证产品质量和性能,属于使研究开发的成果转化为产品的人才。定位为技术工程师。

三为技能应用型人才。主要由高职类院校培养。其特点为:突出应用性、实践性,有较强的操作技能和解决实际问题的能力。

上海电机学院是2004年9月经上海市人民政府批准, 在原上海电机技术高等专科学校的基础上建立的以实施本科教育为主的全日制普通高等院校。其定位在培养技术应用型本科人才的教学型院校。技术应用型本科人才学习数学的目的在于应用数学。这就要求他们在学习数学的同时,不断提高应用数学的意识、兴趣和能力。数学建模是数学知识和应用能力共同提高的最佳结合点;是启迪创新意识和创新思维、锻炼创新能力、培养技术应用型本科人才的一条重要途径。

1 数学建模的发展历程

近几十年来,数学迅速向自然科学和社会科学的各个领域渗透,在工程技术、经济建设及金融管理等各方面发挥着越来越重要的作用,并在很多情况下起着举足轻重,甚至决定性的影响。数学与计算机技术相结合,已经形成了一种普遍的,可以实现的关键技术——数学技术,并已成为当代高新技术的一个重要组成部分。用数学方法解决各类问题或实施数学技术,首先要求将所考虑的问题数学化,即通过对复杂的实际问题进行分析,发现其中可以用数学语言来描述的关系或规律,将之构建成一个数学问题,再利用计算机进行解决,这就是数学建模。数学建模日益显示其关键的作用,并已成为现代应用数学的一个重要领域。

为培养大学生的数学建模能力,国外较早地经常举办大学生数学建模竞赛。1989年我国大学生开始参加美国大学生数学建模竞赛(MCM),从1992年开始,教育部高教司和中国工业与应用数学学会每年主办一次全国大学生数学建模竞赛,至今已经举办了16届,参赛队伍每年都不断增长,在竞赛过程中,大学生的聪明才智和创造得到了充分的发挥,提交了不少出色的答卷,涌现了一批优秀的参赛队伍,同时,有力地促进了高等院校的数学教学改革,充分显示了数学建模竞赛活动的强大生命力。举办大学数模竞赛,已造成一种氛围,推动了培养大学生数学建模能力的工作。

2 数学建模在创新技术应用型本科人才培养中的意义

数学建模是对人的数学知识,实际知识的拥有量和灵活运用程度,逻辑推理能力,直觉、想象和洞察能力,计算机使用能力等的全面检验,最能反映出创新精神。“科学技术是第一生产力”。每年的工科大学毕业生是科技战线的生力军,他们要出科技成果,并且“千方百计促进科技成果在生产实践中得到广泛应用”,“加速科技成果转化”,数学建模能力对他们是必不可少的。

数学建模是对传统教育的一个挑战,它强调怎样利用先进的计算机工具来解决数学问题。学生参加数学模型的研究,参加全国大学生建模竞赛,是将以前的“做练习”改为现在的“做问题”,将生活变成数学,将问题实际解决。数学建模是对学生创新精神的培养,是学生时代的第一次科研训练,是一个向实际负责的任务书,是对学生适应社会、服务于社会的锻炼与挑战。基于以上的重要性,许多高校对学生的数学建模能力越来越重视,我校也不例外。

3 提高我校学生数学建模能力的具体措施

为了提高我校学生的数学建模能力,我们可在高等数学的教学中溶入数学建模,并开设创新系列课程:数学建模系列课程。系列课程中除设置了数学建模理论课外,还设置数学建模实验课、数学建模集训和数学建模竞赛等任选课。

(1)在高等数学教学中,融入数学建模:高等数学是工科大学本科学生的一门必修课程,也是学习其它技术基础课和专业课的必要基础课程,无论学生和教师都非常重视这门课程的教学。从工科应用型本科人才培养的各专业教学序列上讲,高等数学处于龙头地位,它不但对后续课程产生影响,更对学生的思维习惯和学习方法产生深刻、持久的影响,因此,有着其它课程所不可替代的作用。但是现在的高等数学教材,多数只注重理论和计算,对应用性不够重视,即使有个别的应用也是限于较少的物理方面的简单应用。很多高年级大学生和已毕业的大学生都有这样的认识:高等数学很重要,但很枯燥,学了半天除了知道能在物理上应用外,不知道还能有什么用,但又不得不学。学生学习高等数学的目的不明确、缺少自觉学习的动力。归于一点,就是学生不知道学了高等数学有什么用。在今后的学习和工作中高等数学到底有什么作用呢?学生很茫然,但高等数学又是非常重要的课程。因此,很多学生都是怀着不得不学的态度来学习高等数学的,缺乏自觉学习的动力。这就要求我们数学教师进行课程内容和教学方法的大胆改革,让学生明白高等数学除了在物理上应用以外,还有很多用处,可以说我们的生活中、工作中无时无刻充满着数学,只是你没有认识它,不知道该怎样用它。由于数学建模中的例子来源于社会和生活中的实际问题,会使学生感到数学无处不在,数学思想无所不能。让学生切实领悟到高等数学课程与实际问题以及专业课学习的紧密联系。在额定课时内,在保证完成教学大纲内容讲授前提下,教师根据各专业的特点和需要,有目的的挑选、设计和重点细致的讲解与所学专业相关的数学模型,如电气专业的学生,对引力、流量、环流量、通量与散度、梯度场应是重点,机械类专业应偏重在变力沿直线作功、转动惯量、付里叶级数上。这样就会使学生既获得了数学建模的基本训练,又调动学生应用数学知识解决实际问题的热情,激发学生学习高等数学的兴趣。

(2)在全校开设数学建模公选课:继本科生高等数学、工程数学之后,为了进一步提高学生运用数学知识解决实际问题,培育和训练综合能力在全校开设数学建模公选课。通过具体实例引入使学生掌握数学建模基本思想、基本方法、基本类型。学会进行科学研究的一般过程,并能进入一个实际操作的状态。通过数学模型有关的概念、特征的学习和数学模型应用实例的介绍,培养学生双向翻译能力,数学推导计算和简化分析能力,熟练运用计算机能力;培养学生联想、洞察能力、综合分析能力;培养学生应用数学解决实际问题的能力。

(3)在全校开设数学建模实验公选课,加强数学建模实验课教学,提高学生的建模能力和科学计算能力:数学建模实验是将数学方法和计算机知识结合起来,用于解决实际生活中存在问题的一门方法实验课;是继本科生在掌握了高等数学、工程数学、数学建模理论部分等基本数学理论和基本建模方法后,使用主流数学软件,通过较其它流行语言更为方便的计算机编程求解众多领域数学建模问题的计算机实践课。通过数学建模实验课的学习,可使学生将所学的数学知识和其它专业知识很好地应用到解决实际问题中去,强调利用计算机及各种资料解决实际问题动手能力的培养,增加受益面。为学生所学专业服务,给课程设计、毕业论文提供强有力的方法论指导,提高学生的综合素质。

(4)开设数学建模集训课:在数学建模理论、数学实验课结束后,开设数学建模集训课。针对数学建模竞赛从数学模型理论到计算机能力都有不同程度提高的要求,根据学生掌握的知识层次、深度,补充相关知识。通过数学模型有关知识、方法的学习和数学模型应用实例的介绍,培养学生应用数学解决实际问题的综合能力,参加一年一次的全国大学生数学建模竞赛。

近年来的研究表明提高大学生的数学建模能力是一个需要长期努力、集体参与的系统工程。作为高等学校的数学教育工作者,我们需要针对当前大学生数学建模能力的培养存在的问题进行认真研究、深入探析。随着上海电机学院技术应用型本科人才培养专业建设和教学改革而不断在实践中积累经验、深入发展、及时充实新内容,将进一步提高我校学生的数学建模能力。

参考文献

[1] 夏建国.技术应用型本科院校办学定位思考[J].高等工程教育,2006,(06).

[2] 李大潜.将数学思想融入到数学主干课程[J].中国大学教学,2006,(01).

第7篇:数学建模的具体应用范文

关键词:中学;数学建模;策略

中图分类号:G633.6 文献标识码:A 文章编号:1009-010X(2013)02-0047-03

我国的课堂教学重视对知识和技能的掌握,而忽视对学生的能力培养,特别是解决实际问题的能力。显然,这不利于学生的实践能力和创新精神的养成。突出表现在数学课堂中,数学教学异化为解题技术的教学,导致许多学生成了解题的“机器”。而“数学建模”作为“问题解决”的一个重要方面,目前在教学实践中的研究尚不够具体和深入。

本文就数学建模的策略和途径进行探析,其主要思路:一是探讨教师如何通过对问题解决的过程分解,把一些较小的数学建模问题,放到正常教学的局部环节上;二是探讨教师如何用数学模型的观点来概括数学知识,在正常教学中导入数学建模思想与方法。按《课标》要求,“中学阶段至少应为学生安排一次数学建模活动,还应将课内与课外有机地结合起来,把数学建模活动与综合实践活动有机地结合起来”。为此,笔者就中学生数学建模能力的培养途径做简要分析,以期为在数学建模教学及其研究提供参考。

一、实践问题数学化

数学建模就是在一定假设条件下找出解决所研究问题的数学框架,求出模型的解,并对它进行验证的全过程。简而言之,数学模建就是实际问题的一种数学表述。各种数学公式、方程式、数学理论体系等,都是一些具体的数学模型。由于实际问题的复杂性,在解决此类问题时,教师应从“数学化”的角度入手,建立数学模型,再根据模型解决问题。

例:一个长为13m 的梯子斜靠在墙上,梯子的顶端距地面垂直距离为12m,如果梯子的顶端下滑1m ,那么底端滑动的距离比1m大还是小?

对于这样的一道初中数学平面几何问题,我们应该怎么引导学生运用数学建模去分解呢?首先应让学生仔细观察理解题意:梯子斜靠在墙上,与墙和地面构成一直角三角形,梯子是斜边,墙和地板是两直角边,这明显是一道勾股题。梯子下滑,则斜边的长度没变,一直角边从12m变成了11m,另一边即梯子下端与墙脚的距离原来是多少,现在又是多少?模型是一个对象的客观规律的“量化”表达,引导学生利用勾股定理建立一元二次方程模型,即可“量化”梯子底端滑动的距离。

从这道题的解决过程可以看出,用数学建模“解决”现实问题时,其具体的操作程序(数学模型方法)大致上为:

实际问题分析抽象建立模型数学问题

实践检验实际解决数学解释数学解决

现实问题中表现形式为实际的现实问题或虚拟的现实问题,该问题属于虚拟的现实问题。解决该问题本质上就是实现两个“转化”――数学建模。第一个转化是从纷乱的实际问题中获得有用的信息,抽象成数学问题;第二个转化是分析其中的数量关系,运用数学的方法解决问题。现行的课标教材比较注重第一个转化,经常提供生活具体情境,让学生收集、整理、选择,并提出数学问题。在中学阶段,数学建模解决的实际问题多是虚拟的现实问题即中学应用题。但是通过此类问题的学习,可以“使学生学会综合运用所学知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。”这里也体现了数学建模思想在中学教学中的重要性。

二、数学问题生活化

由于教材中大多问题都是完全“数学化”之后的问题。因此,针对这样“纯而又纯”的数学问题教学,需要设置与学生密切相关的生活情境,才易引起学生关注。让学生亲身体会到数学与自然及人类社会的密切关系,体会数学的应用价值。学生看到能用自己所学的知识切实解决生活中的问题,势必增强进一步学习的信心和持续学习的兴趣。

例:已知a,b,m∈R+,且a

这是教材中不等式章节的一道例题。如果在课堂中采取平铺直叙、就事论事的方法进行授课的话,那就显得过于单调、乏味,学生也不会感兴趣,更不会完全投入到课堂中来。为了体现出这个所证的不等式在现实生活中的应用,以提高学生的学习兴趣并培养学生对解决实际问题的能力,我们不妨从以下材料中建模引入。

建筑学上规定:民用建筑的采光度等于窗户面积与房间地面的面积之比,但窗户面积必须小于地面面积,采光度越大说明采光条件越好。现在问增加同样的窗户面积与地面面积后,采光条件是变好了,还是变坏了,说明理由(设窗户面积为a,地面面积为b,增加面积为m)。这不就轻轻松松提高了学生求知的欲望,达到我们培养学生用数学知识去观察、分析、提出和解决问题的能力,通过解决实际问题(建模过程)去理解相应的数学知识的目的了吗?因此,数学课堂中建模能力培养必须与相应的数学知识学习结合起来。徐利治教授把数学模型法划分为3个步骤:分析现实原型关系结构的本质属性,确定数学模型的类别;确定所研究的系统的主要矛盾、选择主要因素;用数学语言表述对象及其关系[1]。

数学问题“生活化”,能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用已有的知识解决问题能力的培养。

三、应用问题模型化

应用问题是培养学生建模能力的极好的载体,对这类问题的解决应该给予充分重视。现行教材内容,中学数学应用题主要有:勾股定理的应用,根判别式的应用,完全平方的应用,集合交、并、补的应用,不等式的应用,函数的应用,指数函数和对数函数的应用,三角函数的应用,向量的应用等。实践表明,数学建模思想对培养中学生观察力、想象力、逻辑思维能力、解决实际问题的能力起到了很好的作用。因此,必须在平时的数学教学中配合教材适时渗透数学建模能力的培养。

例:墙上挂一幅画,画的下底距离地面a米,上底距离地面b米,则人站在地面多远处看这幅画最清楚?

这道题我们可以追溯到教材中一道课后习题:点A(0,a),B(0,b)分别在y轴的正半轴上,C点在x轴正半轴上,则当C在何处时,∠ACB所成的角最大?

这类问题的解决,应该尝试给出这类问题的一般建模策略,即强调“通性通法”。

在让学生完成问题的基础上,通过推广和拓展问题,引导学生如果题目进行条件或结论“变式”后,又应该如何去建立模型,让学生举一反三,避免“读死书”,培养学生掌握思维方法,提高思维品质,能够把静止的知识转化为运动的能力。如

变式一:甲、乙两支球队进行足球比赛,已知足球场长90米,宽47米,球门位于底边的正中位置,甲方球员从己方底边开始沿边线带球向对方进攻,则该球员在何处射门,进球的可能性最大?

变式二:某人在一山坡P处观看对面山顶上的一座铁塔,如图l所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l.且点P在直线l上,l与水平地面的夹角为α,tanα=■,试问此人距水平地面多高时.观看塔的视角∠ACB最大(不计此人的身高)。

该问题的解法在现实生活中有广泛的体现,教学中应加强举例,拓展其方法和思想的应用价值。建模是数学有效教学的起点,在数学教学过程中,让学生积极参与数学模型的创建过程,能有效地促进学生数学知识和数学能力的发展,体会到数学的价值,享受到学习数学的乐趣。

四、模型问题实践化

《全日制义务教育数学课程标准(实验稿)》和《普通高中数学课程标准(实验)》中均强调“从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学的理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。”因此,培养中学生数学建模能力就不能局限于课堂教学,而应该把建模和生活实践联系起来,这样更能够体现建模思想的实用价值。由于问题模型与现实客观事物相比,其优点是简单、经济、便于操作和试验,通过对模型的试验,可以对实际问题做出客观的分析。数学建模正是“通过应用已有的数学知识于数学模型,解决现实问题,证实自身的价值和真理性”[2]。

例 (红绿灯时间配比问题)城市的交通通畅依赖于交通管理方案,这种管理方案包括:(1)每个交叉路口设置红绿灯;(2)每个交叉路口红绿灯间的同步。如果控制不好,可能造成一个或多个交叉路口出现交通堵塞,试给出红绿灯最佳的时间配比。

此类问题由于其复杂性,教师在课堂上可以讨论问题的价值、讲解思路,让学生利用课外时间带着兴趣和好奇心在实践中去思考和解决,把课堂中的问题延伸至课外,而使得学生体会生活中数学建模的过程和方法的广泛的应用性,与单纯的“exercise”(练习)相比,学生乐于探索而不会感到枯燥。

这类问题,并不能通过直接套用书本上的公式来解决,而是通过对已掌握的知识和方法的重新组合并生成新的策略和方法才能实现问题的解决。因此,数学建模的过程也是一个创新的过程,它不仅使得学生在建模实践中获取解决问题所需要的知识和方法,还可以让学生养成团队合作的意识和创新的思维习惯,从而为今后实现更高层次的创新奠定良好的基础。

其实抽象的数学问题,教师均可以通过引导学生结合生活的认识去建立数学模型,只要精心设计,课本中的“exercise”大都可挖掘出生活模型,发展为“problem”(问题),这对于学生正确的数学观乃至人生观养成具有不可低估的影响。

总之,数学建模在中学数学课堂教学中能够很好地突出学生的主体地位,调动学生的探索欲望和学习兴趣,全方位、深层次地把数学建模的思想渗透到学生的数学学习中去,使学生始终处于乐于参与、主动参与、主动探索的积极状态,不再成为只会死板的解题 “机器”,数学建模已经在数学观、教学观、学生观等方面产生了深刻的影响,对于课程改革起着推动作用。数学建模中强调合作学习和团队精神、推理的意识和习惯、独立自主的解决问题能力等的培养,有利于学生掌握“学会做事”、“与他人共同生活”、思辨能力等,从而更好地适应未来社会对人才的要求。

参考文献:

第8篇:数学建模的具体应用范文

【关键词】小学数学 “数学建模” 教学模式

【中图分类号】G623.5 【文献标识码】A 【文章编号】2095-3089(2016)09-0121-01

前言:在我国传统的小学数学教学中,数学教师往往较为重视对学生解题能力的培养,这种培养虽然提高了学生的数学分数,但对于学生本身的数学思维能力的提高稍显不足,而如果能够在小学数学教学中较好的应用“数学建模”教学模式,就能够有效提高小学数学的教学效果,切实提高学生的数学素养,对于小学生的未来数学学习有着不俗的推动作用。

一、小学“数学建模”教学模式的内涵

所谓的“数学建模”教学模式,指的是学生在数学教师预设的数学相关教学情境中,通过一定活动建立、解释以及应用数学模型,以此完成具体数学知识学习的过程。在小学“数学建模”的教学模式中,引导学生在这种教学模式下理解新知识、发展新能力以及形成新思想成为了主要目的,所以数学教师需要在应用数学建模这一模式时,创建出“问题-模型-应用-问题”这一循环往复的教学过程,并以此切实提高学生的自主学习意识与问题探究能力。

二、小学“数学建模”的教学模式

数学建模一般由现实问题、假设简化、建立模型、模型求解以及结果检验几个步骤构成。对认知发展水平处于具体运算阶段的小学生而言,建模教学的开展除了遵循以上几个步骤,还在操作形式上需要具备适当的灵活性。

(一)创建数学模型情境

在小学“数学建模”教学模式提出现实问题这一环节中,教师需要根据实际数学教学内容,设计出用于数学建模的数学问题,这一问题需要同时保证贴近学生生活且符合教学内容,在确定问题后,教师就需要结合问题创建数学模型情境。

(二)探索数学模型问题

在小学“数学建模”教学模式假设简化这一环节中,突出了学生的主体地位,只有学生将教师创建出的数学模型情境转化为实际数学问题,才能保证小学“数学建模”教学模式的顺利进行。值得注意的是,如果上一步中教师创建的数学模型情境不能得到学生的正确解读,就无法充分展现这一模式的优势,因此教师需要在此过程中对学生进行不着痕迹的引导。

(三)揭示数学模型本质

学生从数学模型情境中解读出数学问题后,就可以在建立模型这一步骤中通过模型的建立,对刚刚解读出的问题进行解决,这种模型的建立本质上属于一种思维方法,关系着学生在这一教学模式中自身数学思维能力的提升。

(四)理解数学模型含义

在完成上一步骤中的解题模型建立后,学生就可以进行具体的模型求解,以此实现学生真正理解数学模型含义,切实提高自身数学思维能力。这里指的理解数学模型含义,也就是指学生需要切实理解本节课中所涉及的数学知识,切实提高学生的数学知识掌握。

(五)体验数学模型价值

在完成上述一系列步骤后,我们需要对小学“数学建模”教学模式应用后的结果进行检验,在这一过程中,每一次对数学模型的应用都是对这一教学模式的检验,为此教师可以灵活的运用小学“数学建模”教学模式,不必拘泥于流程,这样就能够较好的进行体验数学模型价值检验,切实提高学生的数学思维能力。

三、小学“数学建模”教学模式的应用实例

在小学“数学建模”教学模式中,结合教学实际进行数学建模是这一教学模式最重要的内容,数学中的“相遇问题”就是应用该模式的典型案例:在提出现实问题环节中,教师可以提出“甲、乙两车同时从A、B两地出发相向而行,两车在距离A地80千米处相遇并继续行驶,并在到达A、B两地后返程,最终在距离甲地60千米处再次相遇,求甲乙两地间路程”这一问题,并在假设简化环节中引导学生将这一问题转变为数学模型。在建立模型这一环节中,学生需要设第一次相遇地点距离A地位S1,第二次相遇地点距离A地位S2,这样学生就可以得出AB两地距离为150千米的答案,学生在理解数学模型含义环节中能够总结出■=■=■?圯x=3S1-S2这一解题公式。最后教师可以在结果检验环节中通过提出同类型问题的方式,确定学生的这一知识掌握情况。

结论:在我国当下的小学数学教学中,“数学建模”这一教学模式可以很好地实现教学目标,并有效的提高数学教学效果,在培养学生的数学思维能力方面,也有一定的促进作用。如果该模式能够在小学数学部分教学内容中得到拓展和应用,将有利于小学数学教师教学水平的提高。

参考文献:

第9篇:数学建模的具体应用范文

【关键词】数学建模;实际问题;问题设计

从定量的角度分析和研究一个实际问题,在充分了解事物信息、内在发展规律的基础上,运用数学符号和数学语言表述出来,再通过计算得到的结果解决问题并接受实际的检验,这一过程即为数学建模。数学建模思维是在人们长期的探索过程中得到的一种比较有效的解决实际问题的方法,是数学学科与其他学科相互融合的结果,具有灵活性、实用性的特点,即其建模方法并不是一成不变的,而是根据实际问题有所不同。因此,在运用数学建模思维解决实际问题的时候,不能固守一种方法,而要具备敏锐的观察力、想象力和创造力才能更好地将建模思维运用到解决实际问题当中。

一、大学数学教学中数学建模思维应用的现实意义

大学数学教学中数学建模思维应用的现实意义主要有以下三点:弥补当前大学数学教学存在的缺陷;激发学生的学习兴趣;培养复合型人才。大学数学教学中建模思维的应用可以弥补当前大学数学教学存在的弊端,由于大学教材内容的不足,我国大学数学教师在开展教学活动时,根据教材内容制定教学计划与教学目标,对于数学模型与数学建模方面的知识很少涉及到,局限于几何物理方面的知识,使学生的数学建模思想缺乏。教师以灌输式为主要的教学方法,向学生传授太多的理论知识与解题技巧,学生独立思考问题的机会太少,运用数学建模思维解决实际问题的能力严重不足。大学数学教学中建模思维的应用可以激发学生的学习兴趣,偏理论的教学内容让学生失去学习数学兴趣,或认为大学数学学习没有多大意义,通过应用建模思维将实际问题引入到课堂中来,可以在很大程度上激发学生的学习兴趣,使学生参与到课堂教学当中。大学数学教学中数学建模思维的应用可以提高学生的综合素质,为社会培养一批高素质的复合型人才。数学建模思维主要是培养学生将数学建模与实际问题相结合、数学语言的标的、思维方式和创造力等方面的能力。

二、建模思维在大学数学教学中的具体应用

(一)联系生活中的数学应用案例

当前,在针对数学这类的应用性比较强的学科当中,都需要联系生活中的具体案例来对某一个知识点进行讲解,数学建模思维的最终目的是为了解决实际生活中的问题,因此,联系生活的实际案例与建模思维相互是增强学生建模思维的重要手段。教师应当寻找知识点与现实生活的联系,将实际案例融入到课堂教学当中,让学生明白现实生活中的哪些问题可以通过建模来解决,不仅可以强化学生对数学建模思维的应用能力,还可以加深学生对知识的理解能力。以某产品销售为例,首先要提出问题,比如产品的销售速度与销售量,其次要建立一个能够反映产品销售速度与销售量的数学模型,最后通过模型计算得出产品的销售速度与销售量,指导产品的销售行为。

(二)问题设计精益求精

建模思维应用的目的之一就是培养学生的思维能力、创造力和想象力,而要想实现这一目标,首先要设计合适的问题让学生通过建模来进行解答。问题设计应当遵循精益求精、循序渐进的原则,根据学生的实际水平设计出不同难度的问题,避免出现问题太难活太简单的情况,使建模思维无法收到应有的成效。教师要对建材内容进行筛选,选择性地融入建模思维,分阶段完成教学任务,由易到难地对每一个阶段进行问题设计,引导学生逐步解决问题。

(三)与其他学科的相互融合

在引用建模思维的时候,如果能够与其他学科相互融合,避免在数学课堂上的纯数学问题,将有利于激发学生的学习兴趣,加深对两个学科的知识理解能力,有效提高学生对知识的综合运用能力。以物理学科为例,在讲授微分方程时,可以穿插“材料拉升过程的δ―ε图”这一知识点,使用LRC回路方程求解,可以降低学生在学习与电路分析有关的知识时的难度。

三、结束语

数学建模思维在大学数学教学中的充分应用需要相关的教学工作者长期努力,才能有效培养学生的建模思维,达到理想的教学目标。在实际的教学活动中,教师应当运用多种方法将数学建模思维运用到课堂中来,并结合实际的案例充分培养学生解决实际问题的能力,这是长时间内相关的教学工作者应当不断努力的方向。

参考文献:

[1]张仕清. 在大学数学教学中渗透数学建模思想的思考[J]. 廊坊师范学院学报(自然科学版),2012,01:103-106.

[2]袁月定. 在大学数学教学中渗透数学建模思想的策略研究[J]. 考试周刊,2012,69:55-57.

[3]崔丽英. 浅谈在大学数学教学中渗透数学建模思想的途径[J]. 科技信息,2013,26:126-127.