前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的遥感遥测技术主题范文,仅供参考,欢迎阅读并收藏。
关键词:地理检测;测绘遥感;技术;应用分析
地理检测技术在地质工程中,已经得到了广泛的应用,随着矿质勘探和生物科学的发展,对地理检测技术有了更高的要求,地理检测技术要想很好的发挥其应有的作用,就必须对检测的技术和方法进行更新,测绘遥感技术就是在这种背景下产生的,遥感技术是利用远距离的电磁波等手段,向需要探测的目标发射信号,然后通过返回的信号,就可以计算出目标的形状和组成等,目前已经有很多公司开发了相应的测绘遥感系统,在实际的检测过程中,只需要把相关的设备安放到指定位置即可,然后通过对设备进行简单的设置,设备就会自行的进行目标的测绘,极大的改善了传统地理检测的难度。
1 测绘遥感技术简述
1.1 测绘遥感技术的概念
遥感英文名为Remote Sensing,简称RS,顾名思义,遥感就是指通过非接触式的手段,通过一些必要的传感器,进行远距离检测的方法,然后就可以根据对目标探测的数据,对目标物体的特性和性质等进行深入的分析,从广义上来说,遥感是指所有远距离探测的方式,而狭义上的遥感技术就是通过具体的设备,收集探测目标的相关数据,然后对这些数据进行分析,在实际的应用中,通常都会采用一些对电磁波反应灵敏的设备,然后向探测的地区发射电磁波,电磁波在接触到物体时,会进行反射和散射等,同时目标物体自身会进行辐射,而探测的设备就是将这些与目标相关的电磁波都收集起来,通过计算机的特定运算,就可以得出物体的相关属性,测绘遥感技术的最初应用是在空中拍摄,在上世纪中期时,由于遥感技术可以迅速的获取某个地区的地形地貌,开始被人们所重视,到了第一颗卫星发射时,遥感技术开始走向成熟,经过了多年的不断完善,现在的遥感技术在地理检测中得到了广泛的应用。
1.2 测绘遥感技术的特点
从遥感的发展历程中可以看出,遥感从最初的航空拍摄,发展到现在的地质测绘,其每个阶段的进步都是根据实际的需要来的,因此其具有很高的实用性,现在的遥感技术都是利用卫星进行的,卫星在高空进行拍摄时,可以对很大的空间同时进行探测,而传统的地理检测方式,通常都需要人工的参与,这种方式每次检测的范围非常小,获取的数据有很大的局限性,而要想完成大面积的检测工作,就需要大量的人力和时间,而卫星遥感的这种测绘方式,可以同时收集到一个地区大量的数据,对数据的处理也都是由计算机进行,由于卫星绕地球的周期都比较短,对同一地区进行遥感的时间间隔也比较短,尤其是地球同步卫星,始终保持在地球上空的同一个位置,就可以不断的对这一地区进行遥感,那么收集到的数据都是最新的,如果这一地区发生了地质变化,也能够很快的通过测绘遥感,收集到变化后的地理护具,这是传统的地理检测技术无法相比的,从检测成本的角度上考虑,卫星遥感技术也要好很多,由于不需要人员进行实地的检查,就能够节省人员和设备的相关费用,而卫星的存在,遥感通常都是其功能的一部分,同时对一些沙漠等荒凉地区的地理检测,地面的检测很难进行,如果采用卫星遥感的方式,就可以非常简单的解决。
2 地理检测中测绘遥感的技术应用
2.1 获取相关的地理数据
从某种意义上来说,在地理检测中使用遥感技术,极大的促进了地理学的发展,由于遥感技术可以获取到地区表面的图像,而且随着摄像相关技术的发展,卫星上所带的拍摄设备分辨率越来越高,获取到的图像也越来越清晰,测绘遥感技术的这个功能是地理检测的基本功能,已经在很多地理领域得到了应用,尤其是地图的绘制中,目前大多数地图都是通过这种方式获取的,由于这种卫星遥感测绘出来的地图,能够真实的表现出建筑物等的实际情况,受到了用户的广泛称赞,除了对地球表面进行拍照意外,遥感技术还能够利用波普获取到更多的地理信息,通过这种卫星的光谱遥感,对地下的情况也能够进行信息的获取,目前我国的一些卫星就配备了最新的高光谱设备,利用这个设备能够获取到很多地理资源的信息,这些信息对水利和矿产等领域有很重要的作用。
2.2 测绘遥感技术在地质灾害中的应用
由于卫星遥感技术是在高空对地理信息的收集,那么在一些地质灾害中,对地理检测工作也可以顺利的进行,例如某一地区发生地震后,地形地质都有了较大的变化,要想很好的完成救灾工作,首先就需要一个地震发生地区的最新地图,这时卫星遥感技术不仅能够很快的获取到相关的地图信息,甚至对某一地区的地质灾害情况,也能够做出评估,从而使救灾工作能够很好的进行下去,同时测绘遥感也是地理信息系统收集数据的重要组成,由于该系统需要大量地理信息的检测和收集工作,而测绘遥感技术能够很好的完成,随着该系统自身不断的发展和完善,对相关数据的准确性和有效性要求越来越高,这就要求相关数据在保证精确的同时,还要进行及时的更新,而测绘遥感技术刚好符合这点,随着遥感相关设备的发展,收集的数据精确性越来越高,而卫星对数据的收集本来就有很好的时效性,这可以保证地理信息系统的有效运行。
3 结语
通过全文的分析可以知道,遥感技术已经是现代地理检测中的主要方式,与传统的一些检测技术相比,遥感技术的对地理检测的空间上增大了,检测的时间上却缩短了,能够有效的保证相关地理信息数据的准确性和有效性,而且随着遥感技术使用设备的更新,对地理检测将变得更加精确,相信随着时间的推移,测绘遥感的技术将会在地理检测中得到更好的应用。
参考文献
关键词:遥感技术地籍测绘应用
引言:地藉测绘总体来说是一项政府行为上的技术工作,是政府行使土地管理职能并且具有法律意义的行政技术手段,其主要工作是调查土地及其附着物的位置、界线、质量、权属和利用现状等基本情况来测绘其几何形状与面积。数字地籍测绘包括数据采集和成图成果数字化两方面,即应用全站仪等测量仪器实地采集数据、编辑地籍图、生成宗地图、建立地籍数据库、输出面积汇总表、进行地籍数据动态管理等,直接为土地、城建、规划等部门提供权威数据。随着遥感技术以及计算机技术的发展,越来越多的人开始研究遥感技术在地籍测绘中的应用,并取得了显著效果,大大提高了经济和社会效益。
一、遥感技术概述
遥感技术,是测绘技术的一种,指的是通过传感装置,不直接跟被检测对象进行直接的接触,从而获得被检测对象的相关详细的信息,对这些信息进行分析加工描绘,遥感技术是21世纪一项新的测绘科学技术。我们利用遥感技术,能够对土地利用的现状和水土流失的现状进行大范围的核查和更新,能够对全国的土地利用现状和信息进行全面的了解,这些都能对每一季度和每一年的土地利用及变更数据进行更新、管理、分析、查询、备案。
遥感技术是基与卫星或者飞机以及其他的飞行装置为其技术释放的依托,来收集地面或者研究目标相关电磁信息,以此来判断整个地球局部土地环境以及地藉等相关资料的技术手段。遥感技术最早起源于上世纪60年代,是把航空摄影技术和计算机技术结合并得到了发展,从而形成了现在的遥感技术。可以这么说,将遥感装置设ing置在高空飞行器中,进行相关测量,这种方式成为航空遥感。随着科学技术的进步,以及计算机技术的飞速发展,当前的遥感技术应用越来越广泛,在我国地籍测绘领域中,利用遥感技术对土地相关信息进行全面的分析,记录大量可行性以及科学性数据,并依此判断和识别地籍的相关资料。
二、现代地籍测绘与“数字国土”的关系
现代地籍测绘、地籍信息系统与“数字国土”三者有着密切的关系。现代地籍测绘为建立地籍信息系统提供基础数据,但为了有效管理和共享大量的地籍测绘成果,需要建立一个地籍信息系统,进而就可以存放各种图形和属性等信息,并对国土资源部门进行从“部”到“厅”到“局”的各种行政级别上的空间应用分析。“数字国土”包括广泛的数据和信息,高分辨率影像和数字地图是其中的重要数据之一,地籍测绘正是地籍信息系统建设及其网络体系建设即“数字国土”的重要内容。现代地籍测绘、地籍信息系统和“数字国土”的关系。
现代测绘技术是运用地籍测量中的一些先进技术和方法,它是融地籍测量外业、内业于一体的综合性作业系统。其最大优点就是在完成地籍测量的同时可建立地籍数据库,并通过一定的途径建立地籍管理系统,为完成“数字国土”工程、实现电子政务和现代地籍管理奠定基础。现代地籍测绘主要是采用自动采集地籍要素的方式,利用全站仪、计算机或PDA采集地籍要素,传输到计算机上,运用专用的地籍数据处理软件,对其进行分析、整理、编辑和入库。其基本流程为:
(1)资料分析:对测区已有的地籍数据进行分析,熟悉测区地形,根据本身已有的设备和最终建立地籍数据库的要求确定采用何种测量技术。在资料分析过程中,可以考虑能否使用“准地籍测量”。
(2)数据获取:数据获取途径包括两种:第一种是通过上述分析,直接利用已有的资料,如原始的正确的地籍档案资料等;第二种是野外直接采集与收集。数据采集必须根据建立数据库的要求,得到适宜的数据格式。数据获取的内容,包括全要素地形数据、地籍数据、地类数据、控制数据。
(3)数据编辑、整理、入库:对于获取的各种数据。按照数据库建库技术要求进行编辑、整理、人库,并进行各种统计、分析、汇总,最终建市地籍数据库,形成地籍管理系统
三、遥感技术在地藉测绘中的应用
动态监测应用 随着计算机和遥感技术的进步、发展,越来越成熟的技术已融进地籍测绘中,比如遥感结合地理信息系统,以及GPS等定位技术,给土地测绘带来了更多的方便。遥感技术在地籍测绘中的应用,最直接的一点便是其动态监测。地籍测绘相互资料便于核查土地利用总体规划,为国家整体规划以及相关决策提供可靠、可行的理论资料。应用数字摄影测量与遥感模式进行地籍测量前景非常广阔。由于地籍测量的精度要求较高,数字摄影测量主要以大比例尺航空像片为数据采集对象,利用该技术在航片上采集地籍数据,其控制点和目标点主要采用航测区域网法和光束法进行平差,即所谓的空三加密,进而通过专有数字摄影测量的数据处理软件,完成地籍测量的内外业。
数字摄影测量与模式得到的地籍图信息丰富,实时性强,既具有线划地图的几何特征,又具有数字直观、易读的特性;地籍图上的界址点完善。不受通视条件的限制;除要用GPS像控和地籍权属调查外,大部分工作均是在内业中完成,既减轻了劳动强度,又提高了工作效率,是一种广有前途的地籍测量模式。
四、内业扫描数字化测量模式
用扫描数字化方法对已有地形图或地籍图采集数字化地籍要素数据,而界址点的坐标数据则由之前所述的两种模式测出和计算得到,或把已有界址点的坐标数据输入计算机,然后将这两部分数据叠加,并在数据处理软件的控制下得到各种地籍图和表册。
“准地籍测量”就是近年来出现的内业扫描数字化模式,即在已有的地形图上根据地籍台账实地标绘宗地界址线,划分街道、街坊、调查区及编号,调查宗地座落、地名、门牌号码、房屋结构及层数,标示不清或精度不符时,可待日后做地籍调查和变更填补;这种地籍测量模式的前提条件是要求测区内的地形图或地籍图现时性强,并且具有完备的控制点和目标点。
关键词:遥感技术 土地利用 地籍图
中图分类号:TN919.6 文献标识码:A 文章编号:1007-9416(2012)01-0150-01
近年来,随着遥感技术的广泛应用,其在地籍调查与测量工作中的应用也在不断深化。2009年,应用遥感技术保障土地调查数据现势性、服务国土资源批后监管的系统工程全国遥感监测“一张图”工程建设正式开始,目的是结合第二次全国土地调查统一时点底图生产,在生产覆盖全国遥感正射影像图的基础上,首次实现全国全覆盖遥感监测。“一张图”工程建设是国土资源管理尤其是地籍管理的一次重大变革,每年实现最新遥感影像的全覆盖和全面的土地利用变化信息的提取,为今后变更调查和核查提供了最新最好的基础,对于保证土地数据的现势性和真实性,维护调查成果的生命力,完善国土资源监管系统建设具有重大意义。由此可见,遥感技术在地籍调查与测量工作中正发挥着重要的作用。
1、遥感技术概述
遥感技术是20世纪60年代兴起的一种探测技术,是根据电磁波的理论,应用各种传感仪器对远距离目标所辐射和反射的电磁波信息,进行收集、处理,并最后成像,从而对地面各种景物进行探测和识别的一种综合技术。
遥感系统由遥感器、遥感平台、信息传输设备、接收装置以及图像处理设备等组成。遥感器装在遥感平台上,它是遥感系统的重要设备,它可以是照相机、多光谱扫描仪、微波辐射计或合成孔径雷达等。信息传输设备是飞行器和地面间传递信息的工具。图像处理设备对地面接收到的遥感图像信息进行处理,以获取反映地物性质和状态的信息。判读和成图设备是把经过处理的图像信息提供给判释人员直接判释,或进一步用光学仪器或计算机进行分析,找出特征,与典型地物特征进行比较,以识别目标。
由于遥感技术具有探测范围大、获取资料的速度快、周期短、受地面条件限制少、手段多、获取的信息量大以及全天候工作的能力的特点,目前,遥感技术已广泛应用于军事、地质矿产勘探、自然资源调查、地图测绘、环境监测以及城市建设和管理等领域。
2、遥感技术在地籍调查与测量中的应用
2.1 土地资源遥感调查
土地资源遥感调查是利用遥感技术,对一定区域内的土地资源的数量、质量、分布和利用状况及变化规律的调查。遥感影像最能够直接反映的是土地覆盖,因此,遥感技术大部分被用于土地覆盖/利用状况调查。
常规的土地利用调查是通过实地测绘的方法来进行,工作量大,调查周期长。而迅速发展的遥感技术,为土地资源类型及其变化信息的获取提供了及时、有效的技术手段,由于遥感技术具有宏观性、及时性、动态性以及多波段性等优点,结合计算机迅速处理的特点,是常规土地调查技术所无法比拟的。例如,上海市中心区的土地利用调查,90年代曾用常规方法花了2年多的时间才完成,但完成后的图件已不能反映2年后的情况;1995年初利用航空遥感方法,只花了2个多月就完成了调查,并且比常规方法更加详细。遥感技术的引用,大大节省了调查成本和时间,从而提高了工作效率。
2.2 土地利用动态遥感监测
利用遥感技术进行土地利用变更调查和动态监测称作土地利用动态遥感监测。土地利用动态遥感监测是以土地利用调查的数据及图件为基础,用遥感图像处理与识别技术,从遥感图像上提取变化信息,从而达到对土地利用变化情况进行及时的、直接的、客观的定期监测。
和其他监测手段相比,遥感监测具有速度快、精度高、范围广等特点,并能为国土资源管理工作提供基于事实影像的、可精确测量的、可作为基础信息的土地利用动态监测结果。近年来,随着遥感技术的不断发展,影像分辨率的不断提高,计算机技术和信息处理技术的不断增强,使得土地利用动态遥感监测的技术不断完善,并得到越来越广泛地应用。
2.3 利用遥感技术制作地籍图
所谓遥感地籍图的制作,即在计算机制图的环境下利用遥感资料编制出所需的地籍图,这是遥感信息在地理研究和测绘制图中的重要应用之一。利用遥感技术制作地籍图的技术流程主要体现为:首先需要选择合适的影像源,不同的数据源有不同的特性,所以提取信息的方法也不尽相同,目前常用的遥感影像有Landsat-TM、SPOT、QuickBird等。其次需要选择某种遥感软件进行影像的几何纠正和影像的配准,目前常用的遥感软件有ERDAS、ENVI、PCI GEOMATICA等。然后是遥感影像的融合,通过影像融合,希望既突出其中较高的空间分辨率,又能保持良好的光谱特征。还可对融合后的影像进行线性拉伸、灰度变换等增强处理,以提高图像的对比度和清晰度,突出图像的细节部分,利于影像判读和量测。最后通过目视解译和实地踏勘相结合的方法,将不同地物的形状和各个区域的范围从遥感影像上提取出来,即形成矢量文件,提取过程中,地物类型可参照地籍调查中的土地利用现状分类标准进行。
3、结语
遥感信息是地表各种地物要素的真实反映,能清晰地显示各种土地利用类型的特征与分布。与传统的地籍调查方法相比,遥感技术具有精度更高、效率更高、更经济实用、更直观实时等较多优势。随着遥感技术的不断发展,如遥感器分辨率的提高及综合利用信息能力的增强等,它将越来越多地被应用在我们的日常地籍工作中。
参考文献
[1]张晏.2009年全国遥感监测“一张图”工程建设将启动.中国国土资源报.
[2]詹长根.现代地籍技术 (第四讲)遥感技术在地籍中的应用,测绘信息与工程,2004年8月.
关键词: 遥感技术;测绘技术;遥感监测
中图分类号:TP7 文献标识码:A 文章编号:1671-7597(2012)1020114-01
0 引言
随着经济的快速发展,人类生存环境的变化和日益激烈的国际竞争,对自然和太空资源的开发和争夺利用已成为影响人类发展进程的重要因素。遥感正是为满足这样的需求而产生的一门综合性技术。数字化测绘技术是伴随着计算机和网络技术的发展以及测量仪器的智能化而发展起来的的一门新兴的技术。它标志着我国测绘技术的进一步发展与壮大。本文围绕遥感技术在数字化测量中的特点进行了简要的探讨。
1 遥感技术概述
遥感技术应用于数字化测绘,可以快速制作高质量地图,满足社会各方面需求。遥感技术的涵义遥感,顾名思义,就是从遥远处感知,泛指各种非接触的、远距离的探测技术。也就是利用地面上空的飞机、飞船、卫星等飞行物上的遥感器收集地面数据资料,并从中获取信息,经记录、传送、分析和判读来识别地物。遥感由空基系统、地基系统和研究技术支持系统组成。获取数据资料范围大,获取信息速度快、周期短,获取信息受条件限制少,获取信息的手段多,信息量大等都是遥感技术所具有的特点。
2 遥感技术的发展
遥感包括卫星遥感和航空遥感,航空遥感作为地形图测量的重要手段已在实践中得到了广泛的应用,卫星遥感用于测图也正在研究之中并取得一些意义重大的成果,基于遥感资料建立数字地面模型进而应用于测绘工作已获得了较多的应用。自20世纪初莱特兄弟发明人类历史上第一架飞机起,航空遥感就开始了它在军事上的应用,从1972年第一颗地球资源卫星发射升空以来,美国、法国、俄罗斯、欧空局、日本、印度、中国等国家都相继发射了众多对地观测卫星。遥感信息获取技术已从可见光发展到红外、微波:从单波段发展到多波段、多角度、多极化;从空间维扩展到时空维;从低分辨率发展到高分辨率甚至超高分辨率。遥感平台有地球同步轨道卫星、太阳同步卫星、太空飞船、航天飞机、探空火箭,并且还有高、中、低空飞机、升空气球和无人飞机等:传感器有框幅式光学相机,缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计、雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。
3 数字化测量技术的优势
1)通过计算机模拟的方式,在屏幕上生动直观地反映出地貌、地形特征及地籍等要素,图像清晰明了,基本可弥补、甚至改变传统产品符号、线条、文字、数字、等非具一定专业知识才能认知的不足和缺陷。
2)数字化测量产品在使用、维护甚至更新方面都体现出了方便快捷的特点,能随时保持产品信息的现势性,可随时补充完善,随时出提供使用新图。
3)按照用户的需要的不同,可对产品的各种要素数据进行再加工,得到图件的用途也就不同,并且还可以任意对图形进行缩放和拼接,使用起来更加广泛。
4)利用地形、地籍等数字化的测量成果,作为底图在计算机上进行各种设计与规划,在进行许多方案的设计与比较时显得非常方便,对各种要素的汇总统计及叠加分析也做到了准确方便。计算机的合理使用也大大提高了测绘作业的效率,且规范化程度、自动化程度、科学化程度、数字化测绘产品的应用水平也将得到提高。由此不难看出,数字化测绘符合现代社信息会的要求,是现代测绘的重要发展方向。因此,以传统测绘为主的专业测绘单位要以发展数字化测绘技术作为单位发展的方向与目标。
4 遥感技术在数字化测量中的应用
4.1 土地利用动态遥感监测
在2009年,我国所应用的遥感技术主要是确保在调查土地数据过程当中的现势性问题。一般情况下,国土资源在审批以后所负责监管的工程,也就是在遥感监测一张图的建设工程开始时,主要是为了结合第二次的全国统一土地调查时点底图的生产,一般在生产覆盖所有遥感正射影像图的基本条件下,最为重要的就是要达到全国统一覆盖的监测系统。所谓建设的遥感监测工程则是在每年都必须要达到先进的遥感影像全覆盖建设以及土地变化信息的重要提取功能,从而在日后进行调查变更与核查时提供了较为便利的条件基础,此外还可以确保实现土地数据达到一定的真实性与现势性的目的,进一步提高建设土地资源监管系统的重要作用。
现在所应用的遥感技术主要是针对变更土地的调查以及动态监测等,所以他们可以统称为土地利用动态遥感监测。这种监测一般主是对利用土地的调查数据和图件作为调查的基础,再通过处理遥感图像以及它的识别技术,并且在遥感图像所显示的图面上再进行提取变动的具体信息,以实现对土地变化可以及时地进行监测,也可以对其进行客观和直接的定期监测。这种监测手段是不同于其它监测的,由于遥感监测的精度较高,并且速度快,所监测的范围也较广,因此它可以精确的测量出国土资源管理的事实影像的,并且也最为基础的信息管理做出动态监测的结果。在现阶段,由于遥感技术在随着不断的进步发展,而影像的分辨率也在跟随不断的有所提高,在计算机技术以及处理信息技术等方面的技术与日俱增,从而也就促使了土地利用动态遥感监测的技术有所提高,在应用方面也得到了较为广泛的推广。
4.2 应用遥感技术的方法制地籍图
制作遥感地籍图,主要就是在利用计算机的制图环境,通过应用遥感所编制的资料再制作出所需要的地籍图,同时,这也是利用遥感信息在研究地理以及测绘制图过程当中最为重要的一个应用。在应用遥感技术用来制图的主要流程一般表现在几个方面:1)必须要选用较为合适的影像源,因为在不同数据源的表现下会体现出不同的特征。当前,我们普遍应用的遥感影像大概分为SPOT、QuickBird、Landsat-TM等。2)应选用某一种遥感软件对其影像进行分析,并且纠正影像的配准问题。3)融合于遥感影像当中,主要是通过与影像的融合技术,突出当中应用较高的分辨率,从而确保光谱的主要特征。此外,还可以对融合以后的影像对其做线性拉伸以及灰度变换等一些增强的处理,用以加强图像的清晰度和对比度,出更为突出细节部分。第四,在应用目视解译以及踏勘实地二者相结合的方法,可以把不同地物的不同形状以及在不同区域范围上可以从影像当中进行提取,也就是形成一定的矢量文件。
5 结语
数字化的测绘工作是极其繁琐的,只有采取一定的科技手段才能提高工作效率,及时完成任务。随着遥感技术的发展,给测绘工作带来了不少便利,随着计算机技术以及GPS等技术的日臻完善,遥感技术应用于测绘领域也日趋成熟,相信随着科学技术的发展与进步,遥感技术的应用水平将步入一个全新的台阶。
参考文献:
一、遥感技术的发展
1.1遥感的工作原理
“遥感”,顾名思义,就是遥远地感知。人类通过大量的实践,发现地球上每一个物体都在不停地吸收、发射信息和能量,其中有一种人类已经认识到的形式――电磁波,并且发现不同物体的电磁波特性是不同的。遥感就是根据这个原理来探测地表物体对电磁波的反射和其发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。遥感的实现还需要遥感平台,像卫星、飞机、气球等,它们的作用就是稳定地运载传感器。当在地面试验时,还会用到像三角架这样简单的遥感平台。针对不同的应用和波段范围,人们已经研究出很多种传感器,探测和接收物体在可见光、红外线和微波范围内的电磁辐射。传感器会把这些电磁辐射按照一定的规律转换为原始图像。原始图像被地面站接收后,要经过一系列复杂的处理,才能提供给不同的用户使用。
1.2遥感技术的发展
遥感包括卫星遥感和航空遥感,航空遥感作为地形图测量的重要手段已在实践中得到了广泛的应用,卫星遥感用于测图也正在研究之中并取得一些意义重大的成果,基于遥感资料建立数字地面模型进而应用于测绘工作已获得了较多的应用。自20世纪初菜特兄弟发明人类历史上第一架飞机起,航空遥感就开始了它在军事上的应用,从1972年第一颗地球资源卫星发射升空以来,美国、法国、俄罗斯、欧空局、日本、印度、中国等国家都相继发射了众多对地观测卫星。遥感信息获取技术已从可见光发展到红外、微波:从单波段发展到多波段、多角度、多极化;从空间维扩展到时空维;从低分辨率发展到高分辨率甚至超高分辨率。遥感平台有地球同步轨道卫星、太阳同步卫星、太空飞船、航天飞机、探空火箭,并且还有高、中、低空飞机、升空气球和无人飞机等:传感器有框幅式光学相机,缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计、雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。
二、卫星遥感在测绘领域的应用
2.1测绘的发展
测绘,顾名思义就是测量并绘制地图。测绘成果在一般人眼里基本上就是纸质地形图,不过这只是对早期测绘的理解。随着计算机技术及测绘技术的发展,目前的测绘已经远远超脱出传统模拟产品的固有模式,向多品种(模拟及数字产品)、多用途、多种成果形式及高度集成化的方向迈进。当然,对卫星遥感影像资料的应用面也就日益广泛。
90年代中,国家测绘局根据国内外发展状况,在原有测绘产品的基础上,提出增加新的测绘产品模式,即4D产品(数字线划地图DLG、数字高程模型DEM、数字栅格地图DRG、数字正射影像图DOM)。航空摄影资料与卫星遥感资料的互补是4D特别是数字正射影像图制作的资料源。利用现有的遥感影像资料可以制作多种比例尺的数字正射影像图,如利用TM影像可制作30m分辨率的数字正射影像图,利用陆地―7影像可制作15m分辨率的数字正射影像图,利用斯波特影像可制作10m分辨率的数字正射影像图,利用依科诺斯影像可制作4m和1m分辨率的数字正射影像图等,从而极大地丰富了4D产品,为影像数据库建设提供了多分辨率、多层次的影像资源。同时,影像数据可作为GIS(地理信息系统)的背景地图,对GIS的深层次研究与应用提供了更直观的影像信息资源,从而也充实和发展了数据库本身,为规划、管理等部门的科学化决策提供了基础数据资料。
2.2卫星遥感在测绘领域的应用
利用卫星遥感影像更新数据库的过程,从某种意义上讲,就是监测并发现变化的过程。因此,各国均利用卫星遥感影像的优势,对各种感兴趣要素进行监测,如我国进行的土地利用调查及监测、城市变迁、灾情监测等。这些工作的开展,一定程度上为我国可持续发展战略的逐步实施提供了基础保证。
2.3应用的常规方法
利用遥感技术获取地面三维信息,常规的方法是立体摄影测量。由于雷达卫星具有全天时、全天候、不受云雾等恶劣天气和夜暗影响的特性,故随着雷达遥感的发展,合成孔径雷达(SAR)也被用作立体摄影测量。由于斑点噪声的存在,其使用也一度受到影响。近年发展起来的干涉合成孔径雷达技术(INSAR),提供了获取地面三维信息的全新方法,即利用干涉雷达提取地形数字高程模型(DEM)。该方法将大大改进数字高程模型(DEM)获取的传统模式,这是雷达遥感的最新领域,是遥感和摄影测量科学的前沿,目前还只处在进一步的研究之中,相信在几年内可以大规模应用在测绘及其他领域。
2.4遥感图像全数字测绘系统
遥感图像全数字测绘系统是利用航空、航天遥感图像提取战场地理环境和军事目标空间信息,进行全数字测绘作业的智能化综合信息处理系统,是我军首次自行设计与研制、具有自主版权的第一代全数字遥感测绘装备。该系统的研制成功实现了遥感测绘技术进入全数字阶段的跨越性和革命性转变,为我军数字化测绘保障提供了新型的换代技术装备,对于改变100多年来摄影测量基于硬拷贝图像的生产作业方式有重要意义。
与以往的测绘系统相比,该系统在影像匹配方面,能成功用于数字空中三角测量,提高了算法的速度和可靠性,有效地解决了卫星遥感影像匹配的技术难题;在微机环境下能实现单像和立体方式下的地形半自动测绘;在数字图像处理方面,能实现正射影像镶嵌中几何纠正和无缝辐射拼接的自动化;在地形三维可视化方面,实现了三维地形图的空间查询及分析和大区域地形数据、高分辨率遥感纹理图像的三维可视化;在数字城市三维景观方面,开发了基于多源遥感图像的数字城市三维显示实用技术;在航天影像摄影测量方面,还开发了三线阵推扫式影像的处理软件。
该系统配置合理、实用化程度高,总体技术水平已达到同类产品的国际先进水平,经进一步集成装备部队,将极大地改善我军作战测绘保障的网络化作业环境。
三、测绘新技术的发展
测绘新技术除了遥感技术以外,不可不提的便是GPS、GIS技术,下面对此进行简单论述:
3.1GPS的发展
全球定位系统(GPS)是美国从20世纪70年代开始研制,于1994年全面建成的利用导航卫星进行测时和测距,具有在海、陆、空进行全方位实时三维导航与定位能力的新一代卫星导航与定位系统。随着全球定位系统的不断改进,硬、软件的不断完善,GPS的应用领域正在不断地开拓,目前,各种类型的GPS接收机体积越来越小,重量越来越轻,便于野外观测。GPS已遍及国民经济各种部门,并开始逐步深入人们的日常生活。GPS作为一项引起传统测绘观念重大变革的技术,已经成为大地测量的主要技术手段,也是最具潜力的全能型技术。GPS定位技术与常规地面测量定位相比,除具有对测站选择更灵活、更适应不利条件、全天候连续作业外。还具有比任何地面常规技术供数量更多、精度更高的数据信息。
3.2GIS的发展
地理信息系统作为多个学科、多种技术交叉融合的产物,至今只有40多年的历史。地理信息系统起源于20世纪60年代加拿大和美国学者的在土地和交通方面的地理信息研究。1998年1月31日美国前副总统戈尔在加利福尼亚科学中心的一次讲演,在该讲演中戈尔正式提出数字地球的概念。地理信息系统作为对空间地理分布有关的数据进行采集、处理、管理、分析的计算机技术系统,其发展和应用对测绘科学的发展意义重大,是现代测绘技术的重大技术支撑。
四、结语
现代科学技术发展的综合化整体方向极大地影响着现代测绘科学的发展趋势,这种趋势表现在现代测绘新理论的概括性增强,测绘新技术的技术综合程度提高,各专业学科之间的相互交叉与渗透,测绘学与其它门类科学的联系增强加大,测绘学吸收和移植其它学科成果的速度加快,这种学科内外的综合化发展,将使现代测绘学不断开拓出新的领域。
参考文献:
[1] 钱乐祥. 遥感数字图像处理与地理特征提取[M]. 北京:科学出版社,2004
[2]魏建华,张展,许月光.工程地质测绘中的几个研究对象[J].黑龙江水利科技,1999,(4).
【关键词】航测;遥感;装备;技术;发展
引言
随着科学技术的不断推进与发展,航空摄影测量学也历经多重变革,其中航测制图的技术分为三个发展阶段分别是模拟、解析与数字化。在不断的变革中航空摄影测量仪器、相关设备、生产形式、构造理论、使用方法都在不断革新。
1 航测装备与技术
1.1 新型航测传感器
1.1.1 面阵传感器DMC
主要产品有Z/I公司的DMC和VEXCEL公司的UCD(U1traCAM-D)。以下是二者的特点优势:
(1)Z/I Imaging与Carl Zeiss二者合作,提供镜头部分零件,其自身独特的性能是畸变小、分辨率高以及匀质响应。
(2)DMC在部分零件尺寸限制上,采用了新的技术,将八台CCD连接安置于光学光架结构内,这样能够有效的减少干扰,从而提高了影响的成像质量。
(3)DMC具有FMC功能,能够在较少的光照环境中保持高分辨率,在飞机航拍的使用中不会因为速度的变化影响到成像的质量。
(4)分辨率高达12bit、彩色模型采用四频段,在此基础上DMC能够完成一次性排设,同时能够存储影像两千张。
1.1.2 不线阵和多线阵传感器
瑞士LH公司与德国宇航中心DLR共同合作制成的、最具代表性的一款传感器为ADS40,其中结构是航天传感器材,全色波段三条、彩色波段三条以及CCD阵列传感器,具有红外线波段,在操作过程中能够获取三点影响,分别是前视、底点以及后视,其成像的特点是百分之六十的三度重叠以及连续性的立体成像。自身的储存器是MM40,存储能力非常雄厚,而且能够在航测过程中记录四个小时的数据影响信息。
1.1.3 航空三维激光扫描与成像技术(LIDAR )
LIDAR技术中综合了GPS、IMS以及激光测高计这三中技术,在操作过程中使用激光测距以及航空摄影测量的技术原理,在飞机上安置航空摄像机以及三维激光扫描仪器,这样能够保证在航测过程中尽可能多的获取地球表面的三位信息以及影像数据。
1.2 低空航测平台
1.2.1 超轻型飞机低空遥感平台
超轻型飞机中安置低空数码遥感系统时,是要满足遥感系统操作基本要求的,超轻型飞机自身必须轻便灵活、操作简单、运行稳定、可以不使用专用飞机机场,能够满足在公路、草地以及任何空旷场地降落的要求。这种遥感系统在操作过程中能够保持航测工作连续进行三个小时,而且运输性能非常好,遥感系统的投入成本与后期的检修维护费用非常低廉,在操作过程中支持无遮挡垂直摄影,同时可以忽略振动以及油烟的影响。
1.2.2 无人飞行器低空遥感系统
无人飞机设备的特点:投入成本低廉、运行安全、行动敏捷、维护简单。应用范围:以一种理想的平台模式被应用在军事与民事中。新型传感器的特点:设备体积较小、整体机具重量较轻、操作精准度较高。
1.2.3 GPS/IMU辅助航空摄影测量
GPS/IMU技术中有机融合了DGPS ( Differential GPS)以及Inertial Navigation System技术,在航测过程中能够对移动物体进行监测,并及时获取其空间位置以及三轴姿态的数据信息。于航空影像技术来说,这是一种更加快捷、方便的测量方式。
2 高分辨率遥感
表1列举了几种载有高分辨率光学传感器的遥感卫星系统
卫星类别 EROS-l ARS-1D IKONOS-2 QuickBird-2 SPOT-5 OrbVIew3 Cartosat-1 ALOS
发射时间 2000-12- OS 1997-09-30 1999-09-24 2001一10-18 2002-OS-04 2003-06 2005-OS-OS 2006-01-24
国家 以色列 印度 美国 美国 法国 美国 印度 日本
主遥感器 CCD PAN+LISS DI 全色/多光谱 CCD 全色l多 光谱
CCD HRG/ HRS 全色l多光谱 CCD 2台全色
CCD PRIS-MAVNIR-2 PAISAR
Pan波段
Ms波段Swir波段 /m 0.50-0.90 0.50-0.75
0.52-0.59
0.62-0.68 0.77-.0.86
1.55-1.75 0.44-0.90
0.450.52
0.520.60
0.60-0.69
0.760.90 0.44-.0.90
0.45-0.52
0.52-.0.60
0.600.69
0.76-0.90 0.51-0.73
0.50--0.59
0.61~ 0.68
0.79-0.89
1.581.75 0.45-0.90
0.45-0.52
0.52-0.60
0.6250.695
0.76 -0.90 0.50-0.85
0.520.77
0.42-0.5
0.52-0.69
0.61~ 0.69
0.76-0.89
量化等级/bit 11 7 11 11 8 11 10 8 8 5/3
地面 分辨率//m 1.8( Pan)
5.8 (Pan ) 23(Ms) 70( Swir ) 1.0(Pan ) 4.0(Ms) 0.61( Pan )
2.44( Ms ) 2.5/5.0( Pan )
10(HRS) 10(Ms) 20( Swir ) 1(pan) 4(Ms) (8) 20 2.5 2.5
幅宽/km 12.5 142 13 16.5 60(HRG) 120( HRS ) 8
8 30 70/35
自主定位精度水平 100 m 10 m 12 m
10 m 23 m 10-15 m
10m 小于220 m
平面/ 立体成像 前后倾摆
扫描洞轨
立体成像 左右侧摆
扫描/异轨
立体成像 左右侧摆
扫描/异轨
立体成像 左右侧摆
扫描/异轨
立体成像 左右侧摆
扫描洞轨
立体成像 左右侧摆
扫描/同轨
立体成像 同轨
立体成像 同轨
立体成像
高分辨率遥感卫星的技术主要分为以下几点:
(1)高分辨率遥感卫星中光学传感器在操作中的分辨率升至一米之内,测绘选用比例尺可以是1:10000。
(2)在遥感技术中被广泛使用得是传感器类型是线阵列扫描式的,这种设备自身能够发挥较强的指向功能。
(3)技术中立体成像能力被强化,同归立体能够凭借单一传感器进行获取。
(4)操作过程中影像的精准度被提高。
3 微波遥感与高光谱遥感
微波遥感技术在操作过程中可以分为主动与被动两种形式。高光谱的形式是由电磁光谱范围内多窄波段传感器获取的图像而构成的。在监测过程中,这种技术带来的信息不仅仅是信息量与光谱空间信息的增加,同时对于地面环境的监测提供了更多的数据信息,也就是实现了遥感监测目标质量上的升华。
4 结论
综上所述,是集中对新型航测遥感技术与装备的分析,不断发展这种检测技术、完善设备质量与功能,用以获取我国社会经济可持续发展所需要的时空信息,从而为航测与遥感工作人员提供更缜密的工作环境,使之有效发挥科学技术能力。
参考文献:
关键词:遥感监测技术;环境保护;应用
1遥感监测技术的概述
遥感监测技术(remotesensingmonitoring)是基于空间技术,现代物理学和数学方法基础上建立和发展的科学技术,其作为一种实用和先进的检测技术,及时快速的提供了更多种类的测量数据方法,实现对地监测的新阶段。根据专业领域的划分,遥感平台在根据监测高度的不同可以分为三种类型:航空遥感,航天遥感和地面遥感。根据电磁波中使用的光谱段,微波遥感和反射红外遥感是其主要的类型。大部分的遥感都是采取的直接从地面上的高空监视事物,这种方式,可以充分利用时空和频谱方面的独特优势,避免大量信息由于地面限制条件的而产生遗漏或错误。遥感监测技术和全球定位系统(GPRS)与地理信息系统相结合统称为“3S”综合监测系统,除常规监测分析系统外,还加大了重大灾害事件的快速评估综合能力,形成了时间和空间整合的完整监控技术体系。
2遥感监测技术在水体污染以及土壤污染的综合应用解析
遥感监测技术在水体污染以及土壤污染的综合应用上,可以利用地面、航空、航天等遥感平台对河流、湖泊以及水库进行监测,诊断水体的状况变化,从而实现快速确定水污染的分布状况。常见的水污染探测仪器包括红外扫描仪以及微波系统等。监测对象主要是水中悬浮物以及污水排放。而植被的反演,土壤监测,是遥感监测技术中土壤污染研究方式主要的两个方面。土壤重金属含量可以由植被光谱数据检索,从而间接的去评估重金属污染程度。另外,可以通过重金属对土壤的波特特征和评价,判定土壤光谱数据监测重金属的含量和特征。
3遥感监测技术在水污染监测的应用
3.1水体富营养化现象
一般来说,当水体富营养化发生时,由于“陡坡效应”,即浮游植物叶绿素对红外光具有明显的反应,水中植物和水分的光谱特征都在紫外或红棕色的谱段上更加明显。遥感监测技术中可以选择针对长江口特点的叶绿素浓度遥感破译方法,选择总磷,总氮,叶绿素相关的技术特征,获得适合长江河口特征的富营养化评价结果。
3.2水体热污染以及废水污染
由于废水和悬浮物在水色和性状上存在较大差异,因此反射峰的位置和强度在特征曲线上会出现较大的差别。我们可以通过多光谱合成图像对废水污染进行检测,也可以使用热红外法根据温差进行测量。大多数热污染是由工厂排放的废水造成的,不仅不利于作物的生长,也威胁着水中的生物的安全。热红外传感器可以轻松监控热污染程度。利用多光谱合成图像可以显示热污染的流动方向,排放强度以及温度分布等情况。
4遥感监测技术在土壤污染的应用情况解析
4.1地面污染监测
遥感技术的应用不仅可以预防地面污染,还可以检测到在煤炭污染区中的地面污染分布,对其进行圈定或预防。现在已经有了遥感技术在煤炭自燃隐火监测中的先例。煤的自燃不仅浪费了大量的煤,还造成了大面积的空气污染,水质污染等。而红外线扫描仪和红外线温度计就针对这种污染类型工作,从隐藏区域的微妙差异的表面温度对污染区进行圈定,并分析了蔓延的规律以及方向,为解决煤炭隐患提供新的经验和方法。
4.2遥感监测技术在土壤污染监测中的应用
有机物污染和重金属污染是土壤污染最重要的两个方面。农药和化肥的滥用极有可能造成的农田污染叫做有机物污染,而重金属污染则集中在由于工业废水灌溉和工业垃圾的排放所造成的污染环节上。土地污染指数是今天城市可持续发展程度和区域环境质量的重要参照数据,因此利用新兴的技术对土壤污染的治理显得尤为重要。通过分析和比较土壤光谱信息,分析土壤光谱信息的差异,不仅可以确定土壤污染的时空分布,也可以确定和分析土壤污染的时空分布趋势、特征和污染水平,起到传统的地面采样分析难以发挥时空监测的作用。我们在利用遥感监测技术对土壤污染进行监测时,有以下两种主要的方法,一是可以直接测量土壤中出的固体废物的数量,金属的分布情况以及难分解的重金属影响范围,并且分析潜在的污染物和污染程度。二是经受污染土壤的土壤环境复杂,其生长的作物和正常种植的作物相比,具有不同的光谱表现。可以利用光谱确定作物的土壤污染分布情况,分析污染评估的程度。由于土壤污染监测的机制主要集中在不同的物体具有不同的反射和辐射的光谱特性上,所以当光谱范围越窄时,不同特征之间的区别就越有效。因此,高光谱遥感监测就可以在土壤污染监测中发挥最大的作用。高光谱遥感监测将传统图像尺寸和光谱信息组合成整体,在获取地表空间图像的时候,也得到了每个地物的连续光谱信息。该监测技术在土壤污染监测中的应用,就是利用农作物的光谱响应来识别土壤污染的程度。
5感监测技术在环境保护方面的前景
遥感技术的应用表明,未来的环境监测观测系统应由航天,航空和陆地三方位观测站等一系列子系统组成,充分发挥定性,定向和定量数据的能力技术系统的巨大优势,让全球定位系统可以提供更准确的实时定位系统和地面高程模型。
参考文献
[1]万余庆,张凤丽,闫永忠.高光谱遥感技术在水环境监测中的应用研究[J].国土资源遥感,2003(3):10-14.
【关键词】遥感技术;灾害;安全;影响
中图分类号:TP7 文献标识码:A 文章编号:
一、前言
我国是一个幅员辽阔的大国,地貌地势复杂多变,因此会出现很多的自然灾害。尤其是最近几年,由于气候的变化异常,生态环境一度恶化,灾害问题也愈演愈烈。而如何预防灾害,遥感技术于是成为了最好的武器。
二、遥感技术在灾害调查中的优势及作用
1、获取范围广、速度快
遥感技术能从空中大面积地对灾害进行宏观监测研究,对于大范围的监测区域,能最大的发挥出遥感技术的优势。近年来,无人机低空遥感系统的快速发展,使无人机可快速到达监测区域,通过机载高精度遥感设备及时获得遥感监测结果,为抢险救灾提供快速可靠的应急保障,是遥感技术的应用得到了进一步的延伸。
2、获取信息量大、效率高
遥感技术可以快速地传导、接收、处理和提取大量与灾害相关的信息。通过各种手段,可以识别地物类型、性质、空间位置、形状、大小等属性。这不仅给灾害监测赢得了大量时间,而且及时获得了丰富的灾情背景资料,为高效数据模型的建立创造了先决条件。
3、获取信息受自然环境影响小
遥感技术无需接触地物即可获得所需信息,在遭遇灾害的情况下,遥感影像使我们能够方便立刻获取的地理信息。在自然环境极端恶劣的地区,遥感影像甚至是我们能够获取的唯一信息。在5.12汶川地震中,遥感影像在灾情信息获取、救灾决策和灾害重建中发挥了重要作用。
4、获取数据具有时效性、可比性
遥感影像具有自身的周期性,可以通过技术手段获得所需要时间的影像数据,从而通过各个时段的数据进行对比,获得感兴趣区域所发生的变化,以及发展趋势、规律。
三、遥感技术在灾害防治过程中的作用
遥感技术具有视域大的宏观特性,它的探测波段从可见向微波和红外延伸,使人们对地物的观察和研究具有全天候和全天时的可能;另外,它还能周期成像,有利于动态监测和研究。遥感技术以其独特的对地观测视角及特性,在灾害的防治过程中起了如下作用:
1、动态监测与指挥救灾
通过卫星影像获得的遥感数据,具有一定的周期性,可以通过对某区域长时间的监测,获得某一灾害事件的发展趋势,实现动态监测,提前预警。也可通过航空手段,得到短期的监测数据,提供应急保障。这样可实现实时、现场指挥救灾。
2、灾情评估
把灾前、灾中、灾后卫星数据的融合,根据相关部门提供的专业数据库可以获得较为客观的灾情评估,为政府部门救灾制定部署方案,也可为其它单位、企业提供必要的参考数据。
3、防治规划
通过遥感数据结合其它数据库系统,获得一定的致灾因子,评估灾害防治措施是否具有可行性,为灾害的防治规划提供专业的、可靠的依据。
4、实施监督
可通过遥感数据的对比,对灾害区域防治前与防治后进行监测对比,使管理部门及时获得实施情况,保证防治措施按时、按质、按量的完成。
四、遥感技术在灾害监测中的应用范围
1、遥感技术在地质灾害监测中的应用
我国的地质灾害遥感调查技术是为大型工程的可行性研究提供地质灾害分布、潜在危害及环境基础资料。实践证明,遥感技术在识别滑坡、泥石流,制作区域滑坡、泥石流分布图,评价滑坡、泥石流对大型工程施工及运行的影响等方面发挥了巨大的作用。
当前,地质灾害遥感解译是根据地质灾害及其要素、后壁、滑体、前缘、物源区、流通区、堆积区等的形态特征,在航空像片或卫星图像上以目视方法进行了解的识别能力。这对于自然灾害发生前后的遥感图像变化与现场验证相结合,同时结合其它非遥感资料,并通过研究影响地质灾害发育的环境地质条件、自然环境条件以及社会经济环境条件等因素来间接地推断研究区域内地质灾害发生的可能性。
目前,直接通过遥感图像发现并研究地质灾害的发生和发展还存在很大困难。因此,现有的滑坡、泥石流遥感调查只能提供区域宏观的、定性的解译成果,不能提供比较精确、定量的地质灾害信息,也没有形成有效的地质灾害演化评价模型,无法对地质灾害的发生进行预警。所以,当前的地质灾害遥感调查技术方法迫切需要进一步改进和提高,以满足地质灾害防治工作的需要。
2、遥感技术在农业灾害监测中的应用
我国一直是一个传统的农业大国,也是世界上遭受农业灾害最严重的国家之一。 农业灾害不仅使广大人民的生产、生活质量和生命财产的安全受到影响,而且还间接地影响了其它产业的发展,给经济、社会等领域带来不可估量的影响,是构建和谐社会、保障人民安居乐业的极其不利的因素。因此,及时、客观的了解我国农业灾害发展情况,并采取一定的防治措施,对于社会的安定团结、经济的可持续性发展具有十分重要的意义。农业灾害的传统监测方法主要采取田间定点监测和随机调查等方法,在具体操作上表现为费事、费力、效率低下等缺点,而且有些农业灾害(如病虫害等)在发生早期并不能靠肉眼识别,这就造成了传统的农业灾害监测方法容易造成较大的误差.
通过遥感手段,依据植物的光谱特性,可以对农作物旱灾监测、冻害监测、虫害监测等方面获得快速、大范围的数据,具有经济、快速、准确的优势。
应用遥感信息进行灾害监测的问题
1、当前遥感数据的获取相对较高昂,在既保障时相,又保障精度的情况下,数据获得需要更高昂的代价,因此需要国家大力发展遥感卫星应用产业,重视遥感技术在灾害监测中的应用,让遥感技术高效、经济的为灾害监测服务,给广大人民的生命、财产提供安全保障,为经济发展、社会稳定提供强有力的支持。
2、遥感技术需要结合其它相关部门的专业数据库,才能发挥出它最大的效力,具备更多的行业应用。因此需要多部门协作,制定统一、有效的应用机制,长期观测、积累数据,为灾害监测与防治提供科学的数据支撑。
3、遥感技术要与地理信息技术、人工智能技术、图像处理技术等技术领域结合,才能在灾害监测与防治中,获得更加稳定、可靠、真实、客观的数据,而如何将这些技术结合在一起,还需要进一步的攻关、研究。
六、结束语
遥感技术是目前新式的监测灾害的手段,科学的运用此项技术可以很好的监测灾害的发生,而且是重要的、可行的。随着相关技术不断地完善和提高,遥感技术一定会成为地质灾害监测的重要手段之一。但是就目前现状而言,遥感技术在灾害监测中还是存在一些局限和问题,仍需有关的科技人员不断地探索和完善。
【参考文献】
[1]黄小雪遥感技术在灾害监测中的应用[J]遥感应用技术2005
[2]马蔼乃遥感概论与应用[J]测绘学科2000
1.1使用数据情况
本文所使用的数据为天津市1995年二季度1.0m分辨率的航空摄影影像、2007年二季度SPORT卫星遥感影像和2011年二季度WorldView20.46m卫星遥感影像,研究区域的GoogleEarth影像及天津市市内六区和新四区的基础地形图资料等。
1.2技术方法
(1)遥感影像预处理采用Erdas2011数据处理软件,对获取的原始遥感影像进行投影变换、几何校正、边界裁定、影像增强等数据预处理工作。(2)面向对象遥感影像分类流程采用Erdas2011数据处理软件的面向对象遥感影像分类流程主要包括:影像分割、属性计算、特征提取和对象分类等步骤。主要流程如图1所示。(3)影像分割影像分割是基于同质性或异质性准则将一幅图像划分为若干有意义的子区域的过程[7,8]。分割所得的图像区域应同时满足以下条件:①图像区域中的所有像元要都满足某种相似性准则且任意两点之间连通。②相邻图像区域之间针对某选定特性具有显著差异性。③区域边界应该规整且能够保证边缘的空间定位精度。遥感影像分割目的是将影像中具有某种地物特征的区域分开并使得每个区域都满足一定的同质性条件,如灰度、光谱、纹理等。分割分两步骤:首先确定分割范围,对影像进行初始化分割,后确定归并尺度。在保证定分割精细程度及具有较小破碎性的情况下,选择合适的归并尺寸对图像进行归并。分割尺度范围为0%~100%,值越大分割越细,分割后影像破碎化程度越高;归并尺度范围为0%~100%,值越大,归并后得到的对象数量越少,内部同质性越低。归并尺度一般依据归并的目视效果反复实验,以确定最佳组合。本项目中,通过多次试验,最终选定天津市市内六区及新四区的影像分割尺度和归并尺度分别为60%和70%的参数水平,如此分割后,分割影像的内部同质性较高,边界轮廓清晰,具备较好的可分离性。该操作是通过RasterObjectCreators(ROC)来实现的。分割之后,产生的结果既包含空间的基于区域增长的种子点,又包含光谱的每个栅格对象像素概率属性,这个过程将改善处理结果的可靠性。(4)属性计算完成影像分割后,采用合适的参数定义和计算对象的特征空间,是面向对象分类的关键技术问题。Erdas2011能够计算对象的光谱、空间、纹理、色彩空间与波段比等四类空间属性,光谱属性可计算对象各波段上的相元灰度值的均值和标准差;空间属性可计算对象的几何特征(如长度、面积等);纹理计算相元灰度值变化范围;色彩空间与波段比可计算对象的色调、亮度和饱和度等特征。对光谱、空间和纹理三种属性,选择全部指标参数参与属性运算,色彩空间选择3个RGB波段转换为HIS色彩空间来构筑对象的特征空间。(5)样本选取与对象分类采用对象训练样本选取方法提取经过定义和计算的属性特征,并以此来建立判别规则[9]。与监督分类方法不同,面向对象提取的样本是一个个经过分割和重新定义的“对象”,对象与对象之间的形状、大小、数量相互差异很大[10]。结合相关资料并结合目视解译,选取天津市中心城区和新四区水域特征明显,内部同质性强的样本数量20个进行训练学习。通过RasterPixelProcessor(RPP)操作从原始影像上通过取样和训练水域像素区分水域和非水域像素,通过该步骤操作将产生含有水域像素值概率的影像。利用Erdas2011附带的RasterObjectOperator(ROO)栅格对象算子操作所有可能水域的栅格对象,利用概率过滤器(ProbabilityFilter)滤掉所有水域对象低概率的栅格对象,同时用一个ROO中心线转换器(ROOCenterlineConvert)将所有可能的道路栅格对象转换为只含有单一的像素宽度的线性栅格对象。最后用RastertoVectorConversion(RVC)模块完成栅格到矢量的转换,并用VectorObjectOperators(VOO)矢量对象操作器中的Generalizeoperator、LineLinkopera-tor、LineSnap、LineRemove等算子完成矢量数据的最终编辑。
2监测实例采用
利用上述方法和过程对天津市中心城区和新四区1995年,2007年和2011年的水域进行监测,得到的分类统计精度为92.38%,Kap-pa系数为0.9167,得到的面向对象的分类结果如图2所示。通过统计和实地调查发现:2007年的水域面积比1995年减少约84.5km2,主要是由于城镇化建设和工业化发展占用大量土地,小型湖泊和池塘面积不断减少;2011年的水域面积比2007年增加了约4.1km2,增加幅度较小,这说明了从2007年到2011年该时间段内天津市中心城区和新四区的水域保持较好,三个年份的水域面积详细统计情况如表1所示。
3结论