公务员期刊网 精选范文 光纤通信的特点范文

光纤通信的特点精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的光纤通信的特点主题范文,仅供参考,欢迎阅读并收藏。

光纤通信的特点

第1篇:光纤通信的特点范文

论文摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。本文探讨了光纤通信技术的主要特征及应用。

1.光纤通信技术

光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的串绕非常小;光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听;光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

2.光纤通信技术的特点

(1)频带极宽,通信容量大。光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。

(2)损耗低,中继距离长。目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。

(3)抗电磁干扰能力强。光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。

(4)无串音干扰,保密性好。在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。

除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于光纤通信具有以上的独特优点,其不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。

3.光纤通信技术在有线电视网络中的应用

20世纪90年代以来,我国光通信产业发展极其迅速,特别是广播电视网、电力通信网、电信干线传输网等的急速扩展,促使光纤光缆用量剧增。广电综合信息网规模的扩大和系统复杂程度的增加,全网的管理和维护,设备的故障判定和排除就变得越来越困难。可以采用SDH+光纤或ATM+光纤组成宽带数字传输系统。该传输网可以采用带有保护功能的环网传输系统,链路传输系统或者组成各种形式的复合网络,可以满足各种综合信息传输。对于电视节目的广播,采用的宽带传输系统可以将主站到地方站的所需数字,通道设置成广播方式,同样的电视节目在各地都可以下载,也可以通过网络管理平台控制不同的站下载不同的电视节目

有线电视网络在全国各地已基本形成,在有线电视网络现有的基础上,比较容易地实现宽带多媒体传输网络,因此在目前的情况下,不应完全废除现有的有线电视网,而用少量的投资来完善和改造它,满足人们的目前需要。很多地区的CATV已经是光纤传输,到用户端也是同轴电缆进入千万家。但是现在建设的CATV大多是单向传输,上行信号不能在现有的有线电视网中传送。可以通过电信网PSTN中语音通道或数据通道形成上行信号的传送,也可以通过语音接入系统来完成。将电话接到各用户,这样各用户间即可以打电话,也可以利用广电自己的综合信息网中的宽带传输系统构成广电网中自己的上行信号的传送,组成了双向应用的Internet网。

现在光通信网络的容量虽然已经很大,但还有许多应用能力在闲置,今后随着社会经济的不断发展,作为经济发展先导的信息需求也必然不断增长,一定会超过现有网络能力,推动通信网络的继续发展。因此,光纤通信技术在应用需求的推动下,一定不断会有新的发展。

参考文献:

[1]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息,2006,(4)

[2]何淑贞,王晓梅.光通信技术的新飞跃[J].网络电信,2004,(2)

第2篇:光纤通信的特点范文

关键词 光纤通信技术;特点;发展趋势

中图分类号 TN929.11 文献标识码 A 文章编号 1673-9671-(2013)012-0200-01

光纤是通信网络优良的传输介质,它在通信中的应用,主要是利用高频率的广播作为载波、以光纤作为传输渠道来实现。较之电波,其光波频率要高得多,而作为传输渠道的光纤,又比同轴电缆或导波管的损耗低得多,因而,它使高速化、大容量的通信成为可能。作为现如今最主要的信息传输技术,光纤通信自问世以来,使整个通信领域发生了天翻地覆的变化,并随着科学技术的更新而不断发展,许多业内人士因它的优良特点而选用并重视。目前我国长途传输网的光纤化比例已超过80%,可见,光线通信技术不仅成为现代通信的重要支柱和世界新技术革命的重要标志,而且成为现代信息社会最坚实的基础,深刻地改变了电信网的面貌。

1 光纤通信技术的特点分析

作为现代传输的主要手段,光纤通信技术特点主要有通信容量大、传播速度快、传输距离长、技术施工成本低信息抗干扰能力强以及保密性能好等[1],除此之外,光纤通信技术还有径细、重量轻、柔软寿命长、低辐射等物理特点。这些特点使得光纤通信技术广泛应用于通信的主干线路、有线电视系统、安防系统、军事领域等,并且应用范围正在逐步地扩大。对光纤通信技术的特点具体介绍如下:

一是通信容量大,该特点很好满足了信息爆炸时代的要求,主要由于光纤通信使用高频率的光波,并且传输线路由光纤束组成的一条光缆,使得一根光纤可以同时传输1000万路电视节目和近100亿路电话(理论上)。光纤具有的传输带宽,远远比电缆、铜线大得多(大约50000GHz)。二是传播速度快、传输距离长。一方面,现阶段的光纤的传输速率一般在 2.5Gbps到10Gbps,并且尚有很大的空间扩展。光纤通信技术利用光信号在光纤中的有效传播,扭转了传统通信技术中以电信号形式传输信息慢的不足,提高了传播效率。另一方面,光纤通信系统可以减少中继站数目,实现更大的无中继距离、传输距离长,一定程度上也减少了系统成本,适应了不断加大的远距离通信需求。三是技术施工成本低,这为光线技术的有效普及提供了保障。四是信息抗干扰能力强,使得光纤通信技术传输质量较佳,满足了用户对传输质量的需求。光纤通信技术以石英为主要构成材料和传播介质,具有强大的抗腐蚀性、绝缘性好、抗电磁干扰能力强等诸多优点,不易受外部环境以及为架设的电缆等的影响。五是保密性能好,不易泄露。由于光波导结构的限制,光纤通信的光波在传输中的光信号很难出现串音干扰,改变了传统电波传输会因电磁波泄露,出现信息易被窃听的不足。

2 有关光纤通信技术的发展趋势展望

光纤通信技术的自身特点能很好满足用户对传输质量、远距离通信等的要求,但也存在质地脆、机械强度差、弯曲半径小等缺点,在信息爆炸时代的大背景下,在客观看待其特点的基础上,对光纤通信技术发展趋势的展望如下:

2.1 信息容量和距离的进一步提高

未来,光纤通信技术的承载数据量将会更大,且传播速度将要更快,才能不断适应网络通信技术的发展,超大容量、超长距离传输技术将广泛应用于光纤通信技术中,

如密集波分复用技术,在近几年来已大量商用,发展十分迅猛,具有极大的发展潜力。它很好地充分利用单模光纤低损耗区,并在一根光纤中实现多路光信号的复用传输,大大提高了传输的容量,因此带来了巨大带宽资源。另外,WDM/OTDM系统是未来光纤通信系统新的发展方向,但不同于只能有限提高光通信系统容量的WDM ,若采用光时分复用(OTDM)技术,则能提高单信道速率和传输容量,而WDM主要通过增加单根光纤中传输的信道数,来提高其传输容量。当然,为了大幅度提高传输容量,也可以把多个 OTDM 信号进行波分复用,或采用时分复用(TDM OTDM ETDM)和WDM 相结合的传输方式。

2.2 光弧子通信技术将得到更广泛应用

光孤子是一种特殊的超短光脉冲。光孤子通信的基本原理,就是光纤折射率的非线性效应导致对光脉冲的压缩,可以与群速色散引起的光脉冲展宽相平衡,在一定条件下,光孤子能够长距离、不变形地在光纤中传输。光孤子具有长距离通信、高容量信息以及抗噪声能力强等优点,它使用全光非线性通信方案,完全摆脱了光纤色散对传输速率和通信容量限制的不足,是消除色散的最佳途径,由于波形和速度在光孤子经过光纤长距离传输后仍然保持不变,在零误码的情况下,其传递的信息可传达万里,传输容量极高。未来,人们会越来越重视光弧子通信技术,并将对其不断研究和开发,总之,光孤子通信技术将具有光明的发展前景。

2.3 全光网络技术将得到全面发展

网络技术的相互融合催生了全光网络并促进其发展,全光网络是光纤通信技术的最高阶段,指的是在网络中传输和交换的过程中始终以光的形式存在,但在进出网络时才进行电/光和光/电的变换。

在这个过程中,信息的传输与交换都是以光形式进行的,这就改变了波分复用系统技术“点到点通信”中的灵活性和可靠性还不够理想的不足,并且它具有具有可扩展性、组网灵活、简单、误码率低等优点。由于电的处理并不参与全国网络的整个传输过程,因此可使用PDH、 SDH、 ATM等多种传送方式,这就有效提高了网络资源的利用率。但在全光网络技术应用中,如何将WDM技术和光交换能力的优势结合,形成吞吐量大的光网络平台是全光网络技术急需解决的一大难题,如果采用类似Internet的结构来设计光网络,很可能能够解决这一难题,但仍需要进一步研究。总之,全光网络可实现超大容量、扩展性和透明性良好的光网络,并且可以快速恢复网络(恢复时间可达 100ms)。

2.4 新一代的光纤进一步采用

随着IP业务量的爆炸式增长,新型光纤成为开发下一代网络基础设施的重要组成部分,它适应超高速长距离传送网络发展的需要兴起并成长起来,改变了传统的单模光纤的种种不足,主要

有非零色散光纤(G.655光纤)和无水吸收峰光纤(全波光纤)两种类型。

非零色散光纤(G.655 光纤)在 1550 窗口工作波长区具备的较低色散(但色散值保持非零特性),很容易支持长距离传输且无需色散补偿,这就有效节省了成本,并且满足 TDM 和 DWDM 两种发展方向的需要;全波光纤具备尽可能宽的可用波段的光纤,拥有频繁的业务量疏导管理能力,全波光纤可以开放第5个低损窗口,大大增加了可复用的波长数,容易实现高比特率长距离传输,并且大幅度降低了成本。

在上述两种主要新型光纤类型中,全波光纤是新型光纤开发的重中之重和热点。

3 结语

作为现代传输的主要手段,光纤通信技术主要有通信容量大、传播速度快、传输距离长、技术施工成本低信息抗干扰能力强以及保密性能好等特点,但也存在质地脆、机械强度差、弯曲半径小等缺点,在信息爆炸时代的大背景下,我国的光纤通信技术与国外相比还存在一定的差距,在客观看待其特点的基础上,光纤通信技术有着信息容量和距离的进一步提高、光弧子通信技术和全光网络技术等将得到广泛应用等发展趋势。可见,光纤通信技术总体朝着良好的态势发展。

参考文献

第3篇:光纤通信的特点范文

关键词:光纤通信技术;特点;应用

中图分类号:TN913.7 文献标志码:A 文章编号:2095-2945(2017)19-0164-02

引言

进入21世纪以来,随着我国科技水平的快速提升,我国光纤通信技术也在快速发展,提高了我国通信行业的便利程度。在现代社会中,光纤通信是一个主要的通信方式,其以光波为主要的信息载体,光纤为主要的传输媒介。光纤通信主要是指用光缆代替传统的电缆,并用数字交换代替传统的机电交换,并使用数字通信技术。虽然光纤通信技术只是经过几十年的发展,但是,光纤通信技术已经得到了快速发展,且在实际中得到了广泛应用。而随着我国计算机网络技术的快速发展,人们在网络时代中对光纤通信技术的要求也越来越高,在未来光纤通信技术发挥的作用也会越来越大[1]。因此,本文主要分析光纤通信的关键技术,并具体阐述光纤通信的应用。

1 光纤通信技术的概念

光纤通信技术主要是在信号传输过程中使用光导纤维,而光波也是信息传输的载体,实现信息传输的通信方式。区别于其他通信系统的主要特点,载波频率存在很大的区别,光波的载波频率要远远大于微波载波频率,通常而言,光波的载波频率可以达到100THz,而微波的只处在1GHz~10GHz之间。光纤通信系统的基本构成:发送部分、接收部分、光缆部分、中继器(图1)。

实现通信过程如下:发送端将需要发送的图像、语音等信息转换为电信号,输入电信号既可以是模拟信号(如视频信号)也可以是数字信号(如PCM信号),调制器将输入的电信号变成相应的电流信号并注入进光源(发光二极管(LED)或半导体激光器(LD)),进行直接强度调制,光源完成电/光变换,将相应的光信号送入光纤。光纤的种类主要有三种:阶跃多模光纤、梯度(渐变)多模光纤和单模光纤,目前主要采用单模光纤,它以极小的衰减和良好的性能传送已调光信号。在接收端的光电检测器(PIN光电二极管或APD雪崩二极管)对输入的光信号进行直接检波,将其转换为相应的电流信号,再通过放大、再生等手段,以弥补线路传输过程中的能量损耗和波形畸变,最后输出和原始信号一致的电信号,从而完成整个传输过程。

2 光缆通信的关键技术的特点

随着我国科技水平的快速发展,光缆通信技术也取得了快速进步,并且在实际应用中展现出了很多优势,光缆通信技术总体呈现出以下几种特点:成本低、抗磁干扰能力强、需要空间小、通讯容量大、保密性好等特点,具体分述如下。

(1)成本低。在每个行业中都需要考虑成本问题,光纤通信行业也是这样,只有不断降低成本才可以提高公司的效益。现阶段,商品石英作为传输材料,其损耗最低,而未来使用非石英传输材料也会大大降低成本,在提升光纤通信技术的同时还可以降低通讯成本。

(2)抗磁干扰能力强。目前,光纤通信技术主要使用的材料为石英,石英具有很好的绝缘性和抗腐蚀性,同时,石英还具有性价比高的特点。此外,在实际传输过程中石英还可以具有较高的抗电磁干扰的能力,可以大大提升通信过程中数据流的稳定性。

(3)需要空间小。在通信环境中需要考虑一个重要的因素就是使用空间,光纤通信使用的芯较细,同时采用光纤的通信方式,不仅可以提高环境的适应性,同时还可以降低通讯需要的空间。

(4)通讯容量大。相比于微波的通讯容量,光纤通信容量具有较大的特点,且相比于铜线和电缆宽带,光纤宽带也大很多。使用光纤通讯技术可以提高通讯的容量,同时,还可以提升通信的稳定性。

(5)保密性能好。传统电波通信中存在很多问题,如信息保密性差等特点,这样不仅会造成信息的泄漏,同时还会影响用户的安全。而使用光纤通信可以大大提高通信的保密性能。

3 光纤通信技术的应用

现阶段,随着我国光纤通信技术的快速发展,光纤通信技术在实际中也得到了很好的应用,因而分析光纤通信技术的应用就十分必要。

3.1 光纤数字传播技术

光纤数字传播技术在实际应用过程中,由于设备(DXC)有着多个信号的接口,这样可以随意控制任意信号,在这个系统中,还具有配线、恢复、保护及监管等多个功能。在光纤通信技术中,再生器作为核心部件,主要可以用来接收STM-N信号,具有分析和调整信号的功能。

3.2 光纤在接入技术的应用

光纤接入技术可以在用户宽带网络中将高保真视频和音乐、高速数据等高速信息接入。光纤接入网主要分为两个部分,无源光网络和有源光网络,其中无源光网络指的是没有有源器件,而有源光网络指的是系统SDH、ATM及太网等技术。依据光纤到达位置的不同,可以分为FTTB(光纤到大楼)、FTTH(光纤到户)、FTTO(光纤到路边)及FTTCad(光纤到交换箱)四种服务形式[4]。

3.3 光纤通信技术在电力行业中的应用

随着光纤通信技术在电力系统中的不断应用,大大提高了电力系统的安全稳定运行的效率,也提高了电力系统运行的专业性,其中电力生产、宽带及重要的数据都需要光纤通信技术完成。光纤通信技术在电力行业中的应用可以提高电力系统功能的稳定及安全。如光纤复合地线(OPGW)的运用,该技术主要是指在电路传输过程中起着通信地线的作用,主要有铝管型、钢管型及铝骨架型,都具有很好的可靠性和安全性,同时由于接地的作用,不需要经常维护,适用范围较广。同时,这种方法可以满足远距离的输送。

3.4 光纤通信技术在军事上的应用

目前,光纤通信技术在军事上也获得了广泛应用,在未来的战争中信息战会成为主要趋势,光纤通信在军事信息通讯中占据着重要的位置,不仅可以提高军事通信的安全性,同时还可以提高军队之间的交流保密性。利于未来军事战争思想的转变。

4 结束语

综上所述,随着我国光纤通信技术的快速发展,在实际中也得到了广泛应用。光纤通信具有自身独特的优势,如成本低、保密性及抗干扰能力强等特点。全文最后分析了光纤通信技术的实际应用,有利于促进我国光纤通信技术的发展。

参考文献:

[1]白爱锁.光纤通信网络技术中波分复用技术的应用与发展[J].中国科技纵横,2012(11):16.

[2]于雪飞.光纤通信技术应用分析[J].科技与生活,2012(8):158.

第4篇:光纤通信的特点范文

光纤通信系统的特点

要想对其半导体光放大器在光纤通信系统中的应用进行认真的分析研究,那么就要首先对其整个光纤通信系统具有的显著特点进行分析,这样才能基于光纤通信的基础之上来更好的对其半导体光放大器进行很好的研究。光纤通信系统是一个具有自身显著特点的通信系统,其具有的特点主要有以下六点:第一,光纤通信具有容量大的特性。光纤在通信技术中能够得到如此之快的发展主要原因就是光纤能够在通信容量方面发挥显著的优势作用,具有较大的信息传输量。比如单根光纤在单方向传输的过程中所传输的信号的容量可以达到Tb/s,最高有望可以达到10Tb/s。目前在对其光纤的容量方面各个国家还在进行着不断的研究。第二,光纤通信具有长距离输送信号的特性。光纤通信除了上述具有传输容量大显著特点之外,还具有长距离传输信号的特点。光纤通信长距离传输的功能,不仅使得进行在陆地上越州之间的通信而且还可以进行穿越海洋的通信。第三,光纤通信在光纤方面的特点。光纤通信系统中的光纤针对的是色散平坦的单模光纤来说的。在近些年的研究中已经充分的验证,要想发挥光纤的显著特点那么就要在对其长距离通信的光纤线路中选择具有足够宽度的波段以此来保证光纤在通信中的作用以及功能。第四,光纤通信的波分多路的特点。要想保证光纤通信系统在传输的过程中具有更大的信号传输容量,那么就要对其光纤的通信中的线路进行增加。因此这项技术研究对于提高信息的传输容量方面是非常有必要的。第五,光纤通信具有光放大的特点。光纤被应用到通信技术中的一个较为关键的原因就是光纤在通信的过程之中具有对其光进行放大的作用。第六,光纤通信在电的通信信号方面也具有显著的特点。

半导体光放大器在光纤通信中的具体应用

上述两节对其半导体光放大器在光纤通信系统之中应用的必要性进行分析以及为了更好的研究半导体光放大器在光纤通信系统中的应用对其光纤通信系统具有的六个显著特点进行了分析。下面将对其半导体光放大器在光纤通信系统中的具体应用进行分析研究,主要从光脉冲的放大、光脉冲的压缩与整形两个具体的应用方面进行分析。半导体光放大器应用于光纤通信系统之中主要是因为半导体光放大器具有光学线性以及非线性两个特点。同时半导体光放大器在其价格以及使用寿命方面有着显著的优势。

1.半导体光放大器在光脉冲放大方面的应用。半导体光放大器在光脉冲放大方面的应用主要是运用半导体光放大器具有的光学非线性的特点。半导体光放大器在对其光脉冲进行放大的过程之中,基于载流子浓度方面不断变化的特点,在某种程度上导致半导体光放大器在其折射率方面有所变化,正因为折射率的便面当光脉冲信号穿过半导体光放大器之后其波形就会发生变化与未通过半导体光放大器之前的波形有着本质的区别。半导体光放大器在理论方面的模拟模型是Ols-son以及Agrawal两个人最早提出来的。随着科学技术的继续向前不断发展以及人们对其认识的不断增加,那么将会在原有理论模拟模型的基础之上会对其半导体光放大器在光纤通信光脉冲放大方面的功能进行不断的改进与完善。

2.半导体光放大器在光纤通信光脉冲压缩与整形技术之中的应用。光脉冲的压缩与整形这项技术在OTDM整个系统之中起着至关重要的作用。当OTDM在对其传输速率方面有较高的要求的时候,那么光脉冲的宽度就会要求的越来越严格。但是一般情况下光脉冲信号产生的脉冲是比较宽的,显然在要求较高的时候不能很好满足要求,因此光脉冲压缩与整形技术得到了广泛的关注与应用。现阶段对其脉冲的宽度方面进行有效控制就是利用半导体光放大器这个元件进行的。当脉冲信号输入到半导体光放大器之后,从半导体光放大器出来的光信号的波长就会变窄满足一定的技术要求,并且经过半导体光放大器出来的光脉冲信号具有很好的对称性。因此这就使得半导体光放大器起到了对光脉冲信号的压缩与整形的作用。

第5篇:光纤通信的特点范文

【关键词】光纤通信技术;铁路通信;应用

光纤通信技术在现代通信中脱颖而出,在很大程度上加快了传播的速度,使其通信技术发生了质的飞跃。光纤技术在技术方面得到了提高,使其应用的范围更加广泛,应用到了很多的领域方面,其中铁路通信方面就是一个很重要的应用。铁路通信逐渐走向了通信智能化的防线,光纤通信技术在铁路通信中的应用在很大程度上满足了当展的需求。光纤通信技术广泛地应用到铁路通信当中,将提升铁路通信的能力,使铁路通信系统更加的完善,为人们的生活提供更加便利的条件。

一、光纤通信技术的概述

光纤通信技术是以高频光波为载波,光纤是以传输介质为通信媒介。在19世界60年代,曾有人提出了关于光纤传播技术,阐述了光纤将为信息传播的一种重要方式,将有可能大大降低光纤的损耗,光纤通信技术将加快通信技术的发展。美国康宁公司根据当时的学术论文研发出了世界上第一根超低损耗光纤,整个通信行业将走进光纤通信时代。光纤通信技术最主要的特点是低损耗、传导速度快、容量大、使用的体积小、有很强的抗电磁干扰能力,受到了很多专业人士的热爱,将会得到大力的发展。随着科学技术的不断发展,从19世纪60年代到21世纪,短短的二十年,光纤通信发生了巨大的改变,其容量整整提升了一万倍,传播速度也提升了几百倍,大大发展了光纤通信行业。光纤技术被广泛的应用到各个行业当中,推动了很多新技术的发展,使各行业的通信能力发生了翻天覆地的改变。

二、光纤通信技术的现状

2.1波分复用技术

波分复用技术是根据不同光波的频率不同,充分利用单模光纤低损耗区的宽带资源,将光纤的低损耗划分为不同的通道,把光波作为光纤信号的载体,在发送初始的位置应用波分复用技术,将不同频段波长信号的光波融入到同一根光纤线路当中,进而进行信号传输。在接收末端的位置,再次利用波分复用技术将不同波长承载不同信号的光纤进行分开。不同波长的光载波信号是独立存在的,可以利用一根光纤实现多个线路光纤信号的传播。

2.2光纤连接

光纤通信技术的大力发展,将能够引领国家通信行业的未来发展,光纤连接将成为信息高速中非常重要的一个标志。光纤连接技术应用到各行各业当中,能够很大程度上提高信息的传播速度和传播方式,满足人们在信息时代的大力需求。在光纤通信技术当中,宽带主干线路的传播非常的重要,用户在最后进行光纤连接的过程更加的重要。光纤通信技术将走进了千家万户,有效的提高人们上网的速度,使人们走进高速信息时代,使宽带进入到飞快发展的年代。在光纤宽带连接入口处,由于光纤线路的位置不同,有FTTB、FTTC、FTTH等不同的应用。FTTH也可以称之为光纤用户,光纤用户是光纤宽带连接最后的一个步骤,将接入到用户家中。充分的利用光纤宽带的特点,将在很大程度上为用户提供宽带上网不受到限制,充分的满足宽带连接技术的需求。

三、光纤通信技术在铁路运输通信系统中的应用

人们现在的生活水平越来越高,对于铁路运输的安全和速度要求也越来越高,对于铁路通信技术的传输速度和传播质量要求也在明显提升,光纤通信技术在铁路通信方面的应用有着非常巨大的意义。铁路通信中应用光纤通信技术历经了3个阶段,才逐渐走向成熟。这3个阶段分别是PDH光纤通信阶段、SDH光纤通信阶段和DWDM光纤通信阶段。

3.1PDH光纤通信阶段

在上个世纪80年代,我国开始逐渐研究铁路光纤通信技术,PDH光纤技术被应用到光纤通信当中,首次,在我国北京作为试验点,研发了长达15Km的光纤。这次光纤实验所铺设的是短波光纤,使二次群系统处于开启的状态。在我国首次应用PDH光纤通信技术的铁路是大秦铁路,大秦铁路的重载双线电气化中应用的是八芯单模短波光纤,在这个当中局部网络通信系统使用的设备是36Mb/sPDH的二芯;铁路沿线的车站和区域网络的通信系统设备是PCM,以及配置8Mb/sPDH的二芯,标志着我国铁路通信系统从传统的通信模式逐渐转变为光纤通信技术。大秦铁路通信系统的成功转型,将预示着铁路通信系统光纤通信技术走向了一个新的领域。PDH光纤通信系统有一个重要的功能是能在最短的时间检测铁路通信系统的安全漏洞和隐患,并且能够及时的清除,很大程度上保障了铁路通信系统的安全和正常运作。PDH光纤通信系统的功能虽然很强大,推动了铁路通信系统的发展,但是这种光纤通信系统也存在一些问题,PDH光纤通信系统具有很复杂的结构,每个区域有着不同的标准,网络管理的能力比较弱,这些都严重的制约了铁路通信系统的发展。这就要求科研人员要不断的开发出新的技术,弥补漏洞。

3.2SDH光纤通信系统

SDH光纤通信系统相对于PDH光纤通信系统更加的完善,能够有效的弥补PDH光纤通信的不足,SDH光纤通信技术促进了铁路通信技术的发展。SDH光纤光纤通信技术是一种高速发展的数字化通信技术,它将实现数字信息化的同步转播,将信号固定在特定的结构中。SDH光纤通信技术有几方面的优点:第一个优点是在简化网络中各个支路的字节复接应用;第二个优点是创造了不同厂家设备互联网之间的连接,使光纤通信采用的标准和比特率采用相同的标准;第三方面是SDH光纤通信具有很强大的网络和自我完善功能,当网络信号突然被中断,在自动恢复后,其网络信号传输仍然可以继续使用;第四方面是SDH光纤通信系统有着很强大的自我管理功能,能够为铁路通信的传输和通信的安全提供可靠的保障。SDH光纤通信技术比PDH光纤通信技术有着很强大的通信功能,在铁路通信系统中崭新出独具特色的优势。先进的SDH光纤通信技术将能够代替传统的PDH光纤通信技术,其中SDH光纤通信技术最早应用在赣韶铁路当中,在修建这条铁路过程中,为了使用到先进的SDH光纤通信技术,搭建一条新的光同步传输系统,采用了二十芯光缆。为了接入光纤通过接入层传输设备和622Mb/s光纤口,这些设备和赣韶铁路沿线的接收设备相互连接,使整条赣韶铁路沿线都实现SDH光纤铁路通信,大大推动了我国铁路通信事业的发展。SDH光纤通信技术在铁路通信系统中起着重要的作用,但随着社会经济的快速发展,SDH光纤通信技术逐渐不能满足铁路通信的需求。铁路通信的需求在数据传输方面提出了更高的需求,要想实现这一需求,需要将其速度提升百倍以上。

3.3DWDM光纤通信系统

根据铁路通信技术的需求和科学技术的发展,人们研发了DWDN光纤通信,这种先进的光纤通信技术,明显的超过了PDH光纤通信和SDH光纤通信。DWDM技术是根据单模光纤带宽和其损耗低的特点,允许多个波长载波信道同时在光纤内传输,形成一种新型的通信技术。DWDM通信系统中,发送端光发射机同时发射不同稳定度和精度的不同波长光信号,通过光波长复用器将其复用送入掺铒光纤的功率放大器当中。在经过放大后,将多路的光信号输送到光纤维中传输。在到达接收端后,经过光前置放大器放大,然后送到光波长分波器当中实现光信号的分解。该技术的主要的优势是DWDM光纤通信可以在同一光纤内承载不同波段的波长,这样就可以提高了传输的速度和增大了传输的容量;DWDM光纤通信技术可以容纳不同的协议要求,将不同的传输速度中数据在一个激光轨道中完成,这样就会在最大限度内满足网络用户的需求和网络的安全。DWDM光纤通信技术已经被用到了铁路开发当中,因该通信技术能够增大传输速度,同时增加传输容量,在铁路信息系统开发当中,被采纳应用。该技术的应用是铁路信息系统的信息传递更稳定、迅速,保证了铁路信息及时传递,为铁路信息服务提供便利。总结:综上所述,光纤通信技术广泛的应用到铁路通信当中,大力的推动了我国铁路通信的发展。尤其是光纤通信技术不断的发展,克服了在铁路通信应用方面的很多难题,一步一步追赶通信时代的发展,满足市场的需求,使铁路通信技术始终处在时代的前沿。

参考文献

[1]倪鹿明.浅谈光纤通信技术在铁路通信系统中的应用[J].信息通信,2015(3)

第6篇:光纤通信的特点范文

【关键词】光纤通信;光信息传播;通信设备

一、光纤通信的应用背景

20世纪90年代以来,我国光纤应用飞速发展,在有线电视网络、能源探测等方面都大量被用到,随着有线电视网络普及率的提升,光纤的优点使其逐渐取代电信号传播。尤其是光纤在广播电视网络中的应用,呈现出剧增的趋势。光纤通信技术有以下两种:光纤接入技术,波分复用技术。光纤接入技术即光纤到路边或用户的宽带网络接入技术,光纤通信极大的满足了家庭和企业的信息通信的要求,所以它成为了电信通信技术的重要替代,尤其光纤到户(FTTH)可以使用户不受限制的进行信息接受与反馈。我国与2003年开始FTTH的推广,到2014年已经在全国30多个城市建立了FTTH网络,遍布家庭、网吧、企业等需求地,发展成果极为显著。波分复用技术是将不同波长的信号整合在一根光纤中进行传输,到达后再区分为不同波长的信号,最终传输完毕。这一技术大大提升了光纤通信的信息传输量,受到了相关领域的广泛关注。

二、光纤通信技术原理

光纤通信利用了光的全反射原理,即当光注入角度满足一定条件时,光可以进行全反射,从而到达远距离传输。在传输过程中,首先利用电信号对光波进行调制,使其成为带有信息的已调光波,然后将已调光波发送到光纤线路中进行传输,光收信机最终将光信号转化为电信号并进行接收。在传输过程中,中继器可以补偿光纤信号的衰减和对失真波形进行正形,无源器件(包括耦合器、光纤连接器等)完成以上各部分的连接。在传输过程中,在技术功能上,分为信号发射、信号合波、信号传输和放大、信号分离、信号接收五个结构。

三、光纤通信的特点

由于光纤通信是以光为载体,用光导纤维进行信息传输,玻璃材料的特性导致其具有以下优良特性:它的频带极宽,通信容量极大,是微波通信的几十倍,满足了用户需求也降低了运输空间,解决了管道拥挤的问题;石英这一介质的损耗低,中继距离长,大大减少了中继站的数量,从而减小了系统复杂性和运输成本,且信息不易失真;由于其材料为绝缘的石英,所以其抗电磁干扰能力强,且不易被腐蚀,也不受自然界的一些电力和太阳黑子活动干扰,而且还能与电力导体进行复合,并运用于军事领域;在传输过程中,光信号只能在纤维中传输,微弱的泄露信号也被外表吸收,所以它无串音干扰,保密性极好;光纤通信的材料使用玻璃为载体,节省了很多的稀有金属材料。它同样具有一些缺点:由于其材料特性,光纤的弯曲半径不能过小;光纤的操作技术、分离、耦合较为麻烦。但它的这些特点同样随着技术发展将一步步得到改进。

四、光纤通信的发展趋势

在光纤通信技术发展上,超高速传输是其主要研究方向,速度越高,信息传输的成本降越低。未来,信息量将越来越大,大数据的发展也需要光纤通信的高速传输进行大力发展。另一方面,高性能光纤也将得到大力发展。在未来发展中,光纤产品需要满足IP业务的长距离甚至超长距离的信息传输,所以高性能光纤的开发是光纤发展的刚性需求。由于光线通信的优良特性,其逐渐取代了传统的电力通信,已经在有线电视、电力通信网络、电信干线传输等方面占据了极大的份额。从20世纪60年代开始,高锟博士的论文已经预见了光纤将取代传统电通信,到如今,光纤已有了极大进展。在21世纪中光纤将如何发展成为了备受关注的话题。光纤通信与移动设备的式结合具有巨大前景,移动设备通信已融入到每一位居民生活中。光纤通信利用其优点渗透进入其中,市场巨大,且具有理论技术支持,和客户需求;另外,光网络与毫米波如果结合成功,也是革命性的进步;再有,制造高精度的光纤陀螺也具有巨大市场,除了未来航空系统,导弹系统,部分汽车也有陀螺;光纤传感器也在一些技术精度要求较高的领域有潜在需求。21世纪以来,我国光纤通信发展迅猛,但自主知识产权的占比仍然极小,大多产品技术含量低,不具备较强的竞争力。但我国仍是光纤运用方面的世界第二大国,因此我们的自主知识产权也将越来越受到重视,知识作为第一生产力将越来越雄厚。另外,光纤通信的其他功能随着其他领域的进步与发展也将一步步被挖掘,随着更多的需求,光纤通信会展现其更多的技术功能。

五、结语

光纤通信以其优良的特性,已逐渐取代传统电信号通信,未来将渗透到生活、军事、航天等领域的方方面面,我国已在世界前列,但仍然需要加强技术研究。

参考文献

[1]吕璠.光纤通信的发展趋势及应用[J].科技信息,2009,23:431-432.

第7篇:光纤通信的特点范文

[关键词]光纤通信工程;技术传输;通信领域;应用;发展

中图分类号:TN929.11 文献标识码:A 文章编号:1009-914X(2016)17-0248-01

0. 引言

现如今核心网在一定程度上已经逐渐达到了数字化、光纤化、宽带化的目标,大部分的用户已经不需要依靠传统的语言服务,逐渐往着多媒体业务转移,光纤通信工程技术已经成为了通信领域发展的主流。

1.光纤通信工程技术传输的特点

1.1信号干扰小、保密性能好

石英是构成光纤通信最为主要的的材料之一,石英自身就是一种绝缘体,具有较强的坚固性,绝缘性能优良,较为耐用。在具体的使用过程中,受到人为或者自然界产生的电流的制约性较小,正是因为石英本身具有较强的抗干扰功能,致使其能够对电磁产生较高的免疫力。鉴于此,在之后的对资料、数据进行传输的工作中,要有效利用其优良的保密特点,大力的应用于通信、电力、军事等方面。

1.2传输距离、通信容量较为高效

一根普通光纤的潜在带宽通常情况下能够高达20THZ左右,并且在此带宽环境下,只需要1秒左右的时间,就能够把庞大的资料、数据进行传输,近几年来,在实际的商业发展中,一般应用的光纤通信的传输速度能够高达400Gbit/s上下。另一方面,由于光纤本身在传输工作中损耗的程度不大,能够实现较远的传输距离,在不需要额外进行中转的基础上,就能够传输至几十上百公里以上。

1.3传输过程损耗不大

光纤通信作为现代社会中通信网系统中最为关键的传输方式之一, 即使光纤通信的发展时间只有短短的二十年,但已经进行了三代的发展、改进。在发展的最初阶段上,光纤能够在传输工作中具有高达400分贝/千米的损耗量,如今历经了短短几年的成长,光纤传输过程的耗降量已经能够低至20分贝/千米。尤其是这两年,随着光纤通信技术的突飞猛进,掺锗石英光纤的损耗量逐渐减小了0.2分贝/千米,在一定程度上可以达到了石英光纤理论上损耗的最低极限。

1.4敷设简易

由于石英作为光纤的主要原料,这就致使光纤相对于普通金属线路而言,尺寸更小,重量更轻,有利于之后的运输、敷设工作,能够进一步强化工程的建设力度以及速度,帮助资源更加合理、有效的使用[1]。

2.在通信领域内光纤通信技术的使用

2.1波分复用技术

波分复用技术能够将光纤通信低损耗的优势进行充分的利用,最大化的合理利用带宽资源。其中波分复用技术工作的基本原理,其实就是在严格认识每一信道出现的波长、光波频率具有不一致特点的基础上,有效、合理的规划光纤的低损耗窗口,对多个单独的通信管道进行进一步的划分。另一方面,设置相应的波分复用器于信息发送部位,把不一致波长的信号有机的结合在一起,输送至单根的光纤内,接着再次传输信息。通过接收端的波分复用器展开分离,如何展开相应的应用、处理。

2.2光纤接入技术

光纤接入网技术在信息传输技术发展的过程中算是一种崭新的尝试,能够将信息传输高速化的目标快速进行实现,与此同时,与民众对信息传输速度的实际需求遥相呼应。光纤接入技术的基本工作原理其实就是在宽带主干传输网络的前提下,使用户接入端、传输终端二者间进行相应的信息传输。一般情况下,光纤到户被当作光纤宽带接入的最终部分,需要对全光的接入完成情况进行负责,给予广大的用户更加丰富的带宽资源,也被人们作为一种有效、理想的接入手段[2]。鉴于此,就有技术工作者认为,信息接入网其实即使信息高速公路发展中的末尾环节。但是因为光纤自身与众不同的特性,能够给予用户一部分不受局限的带宽资源。图1为光纤接入技术的具体功能结构。

2.3市话通信技术

市话通信工作中光纤通信技术正在被人们大力的利用,通常该技术广泛的适用于市话的中继线内,能够充分的发挥其本身的优势,在各个方面均可以得到有效的使用,在一定程度上可以取代传统的电缆。在原先的长途干线通信过程中,需要借助微波、电缆、卫星通信等,而在应用光纤通信的过程中,能够逐渐构建一个具有较大全球优势的比特传输手段,能够大力的适应于各国的公共电信网以及国际社会的通信网络中[3]。

3.光纤通信技术的发展趋势

3.1全光化

一般情况下,全光化网络其实就是指在实际的交换过程以及传输过程内,信号均是通过

光的形式来存在的。与此同时,只有在进出网络的前提下,才能够展开电、光二者的有效转换。近几年来,传统意义上的光网络已经逐渐在节点间构建成为了全光化,但是在一定程度上还是会受到设备功能的制约,并且很有可能难以真正将光纤通信的优势有效的发挥出了。鉴于此,这就需要强化信息传输的速度,对光器件的国内进行进一步的完善,有效促进全光网络的大力发展

3.2智能化

如今接入网仍然还是以利用传统较为落后的模拟系统为主,然而在网络内的广接入技术的应用中逐渐达到了全数字化目标,与此同时,进一步构建成为了一个高度集成化的的智能网络。尤其是目前的现代化网络发展的大背景下,光网络发展的必然趋势便是智能化的发展。

4.总结

综上所述,目前光通信技术还在不断的改进,光通信网络的容量已经比以前有了一个突飞猛进的改善,然而在其他使用能力方面还未得到有效的开发。光纤通信工程技术传输在通信领域中的应用作为一项科学的工作,我们简析了光纤通信工程技术传输的特点、在通信领域内光纤通信技术的使用、光纤通信技术的发展趋势,目的是为了更好维护光纤通信工程技术传输在通信领域应用的高效性。

参考文献

[1]陈家S.光纤通信技术在高速公路传输网络中的应用[J].科研,2015,23(47):200-200.

[2]张剑文.光纤通信技术在广播电视传输中的应用探讨[J].科技展望,2016,12(5):111-114.

第8篇:光纤通信的特点范文

关键词:光纤通信设备;电力通信网;应用分析;网络传输

1 前言

光纤通信的主要特点就是容量大、抗干扰能力强、功能性持久,并且还能进行大批量信息的远距离传输,这些特点使得光纤通信得到了电力通信行业的广泛应用,是电力通信行业发展的主要方向。光纤通信的主要原理就是利用光导纤维进行信号的传输,然后实现信息传递的功能,故光纤通信也成为光导纤维通信,在光纤进行通信传播的时候使用的纤维,不是一个单独的纤维,而是使用多根纤维聚集在一起的纤维束,这个纤维束也就是我们平时所讲的光缆。作为传输介质的光纤主要分为两种通用介质和传输介质,作为功能器件的光纤主要应用于光波的分频整合放大调频等工作并且经常作为某种功能性原件出现。

2 电力通信网的结构以及特点分析

光纤、微波及卫星电路组成了电力通信网的主干路,电力通信网的各个附属支线充分利用电力线载波、特殊光缆及光纤束等各种各样的通信设施,再加上远程控制交换器、总调度器等一系列的设备及元构件组成了用户广泛、功能齐全的综合的通信网络。电力通信网存在的主要形式有以下几种:光纤通信、载波通信、声频电缆及扩频通信设施等

3 电力通信网络传输的具体要求以及解决方案

电力通信网是一种专用网,它的作用不仅仅是为电力行业的生产、电力调度进行服务,还要进行信号的传送,这些信号包括远动信号、自动化办公信号和用电保护信号等,基于电力通信网络如此复杂的工作,它的可靠性。扩展性等特性都有着非常高的要求,我们来对具体的要求进行细致的分析。

首先,电力通信系统必须具备高可靠性,由于电力通信的特点决定了其在任何情况下,无论刮风下雨,春夏秋冬都不能中断服务,这就要求电力通信系统必须具备稳定性好的特点。光纤传输的质量较高,由于传输信号是通过光纤内部进行传播的,所以也几乎不受外界环境的干扰,在自身的性能方面是比较稳定的;其次,应该具备的特点是便于进行业务扩展,电力通信行业是不断发展的,所以企业对于其运营成本的变化也越来越快,所以这就需要能对成本进行灵活的调节,这就需要电力通信系统在配置方面应该充分考虑到网络系统的扩展性,这样能够大大减少在升级过程中对设备的报废率,采用先进的技术保证电力通信系统的良好操作性,最大限度的减少维护费用;还有一些特点就是要求通信的速度必须迅速,音频和视频效果必须是高清晰的,还有一点就是要注意能源的可持续发展,做到保护环境,光纤魇涞闹饕介质――光纤,其主要材料是SiO2,在自然界中储量丰富,因此,光纤通信的发展不会遭遇资源短缺的现象,因此现阶段的光纤传输技术从环保方面讲也是符合要求的。

4 光纤通信设备在电力通信网中的具体应用

4.1 地线复合光缆的应用

OPGW是地线复合光缆的的简称,又称为架空地线内含光缆,电力传输线束中底线中含有供电通信用的光纤结构,该种光缆主要有两个方面的作用,首先就是保护地线的电性能和机械性能不会由于光纤的变化而受到损坏,同时对光纤单元也有一定的保护作用,主要的类型有前骨架型、不锈钢管型及海底光缆型。

4.2 地城缠绕光缆的应用

地城缠绕光缆是利用专用设备将光缆以缠绕的方式架空在底线上,此种光缆的缺点是光纤芯数少所以极易断裂,但是优点是经济实惠,使用方便,稳定性也比较好。

4.3 介质自承式光缆

介质自承式光缆又称全介质自承式光缆,这种光缆的优点是在传输过程中损失较少、不易发生色散,并且介质自承式光缆的机械性能和环境性能都是比较好的,即使在恶劣的环境下光纤也不会自身受力发生不必要的损坏,由于光缆的质地都是非金属,所以质量较轻,有很强的抗电磁干扰,自称是架设的光缆韧性也是非常强的,受到外界环境的干扰小,同时抗弯曲能力也比较好。

5 工程实现过程以及注意事项

5.1 实现应用的具体过程

全面的通信网络包括三方面信息的传输、信息的接受和信息的交换,在整个通信网络系统中,传输平台是最重要的,传输层在通信网络系统中充当着传输平台的角色,所以传输层必须稳定、灵活、安全才能保证通信网络系统的正常运行。在光纤通信的网络系统中,工程拓扑结构设计有链形的也有环形的,根据线路之间的间距对对应的光纤进行合理的选择。在光缆的设置上,应该将电力系统输电线路的各个因素充分考虑在内,选用的光缆应该便宜且易于安装,在使用的过程中易于调整。

5.2 日常维护需要注意的事项

为了保证光纤通信设备的正常连续运行,相关的操作人员需要做到以下几点:首先,不要对光纤的接头进行直视,以免射伤眼睛,还要注意设备室的卫生,减少灰尘入侵;其次,对设备室内的温度以及湿度都要随时注意,最大限度的保证设备在规定的温度下进行工作;在对光纤的接头进行插拔时,应该特别小心,以免对光纤产生损害造成折断,在不使用时,应该用护套将光纤的连接器包好,防止灰尘入侵,影响设备的精密性和使用寿命。

6 结语

综上所述,光纤通信设备在电力通信网中得到了广泛的应用,并且满足了电力数据、音频、视频等多种传输需要,同时也提高了网络通信的实时性、速度性和稳定性,保障了电力通信网络的安全经济运行,促进了行业的健康快速发展。

参考文献

[1] 荣利.电力通信网中的同步数字体系光纤通信设备的几种典型故障处理[J].山西电力,2016

[2] 朱海龙.中压配电通信网中光纤通信技术的应用及分析[J].现代传输,2012

[3] 林琳.光纤通信字电力通信网中的应用[J].科技传播,2010

第9篇:光纤通信的特点范文

1.1数字光纤通信设备的系统数字光纤通信设备的系统主要有光接收机、光学信道、数据源以及光发送端这四种,其中光接收机主要是接收那些来自于外部传入的信号;光学信道则是光学信息需要进行传输的主要通道,通过这条通道来实现其传输的目的;数据源主要作用是将外部一些需要传输的信号进行加工并对其进行数字化的处理的方式。;而光发送端则需要将那些被加工及数字化后的信号转变成真正的光学信号,这样就方便其进行传输。

1.2数字关系通信系统当中所包含的主要设备光纤通信系统所具有的主要设备为:(1)PCM设备,PCM设备主要作用是将一些数字化的信号真实的转变成可在光信道当中进行传送的光脉冲[2]。(2)光发送端则是所具有的光发送机对接收到的信号进行码型方面的转换,通过设备将其成功的转换成适合光路传输的另外一种码型,随后将其送入到光发送的电路当中转变成光信号。(3)光继器的作用是当信号在真正进行传输的过程当中出现衰落情况时,如果不对信号进行整型放大及再定,则信号就很容易因为失真而出现误码的情况,从而严重影响了信号的后续使用。(4)光接收端这些设备的作用和光发送端设备的作用截然相反,主要是将光信号还原成相关的电信号。(5)光纤设备,光纤是在光通信网络当中的基本设备,因此需要根据不同的应用环境来设置光纤设备的各种不同的类型,同时在对光纤进行选取的过程当中也需要根据真实的应用环境来选择和分析。

二、数字光纤通信设备的管理和应用技术要点

数字光纤通信设备是整个光纤通信系统当中的重要组成部分,所以就需要对数字光纤设备进行加工、维护和管理等方面的工作,一次来加强其在技术方面的运用,同时也应当技术的进步对于数字光纤通信设备的重要性。主要目的的想要通过技术方面的手段来确保数字光纤通信设备能够真正稳定和正常的进行工作。所以,针对光纤通信设备的管理和维护工作应当结合光纤通信设备所独有的特点来开展和进行。具体需要做到以下几点(1)数字光纤通信设备在使用的过程中主要贯穿了光纤通信的全过程,所以为了保证整个光网络的正常运行,就必须做好对数字光纤通信设备的维护工作。(2)需要对数字光纤通信设备做好定期的检测工作,以保障其通信系统的的安全和流畅性,及时做好检验及维护工作。通过对相关设备的定期检查来降低设备出现故障的概率。(3)如果数字光纤通信设备出现故障时,则需要针对产生故障的设备进行及时的处理和维修的工作,而数字光纤通信设备也同样的具有一定的使用寿命,如果在使用的过程中超出了使用寿命的范围,则很容易出现故障问题。同时一些正当或者是不规范的操作,所以出现故障时就需要对全网络进行排查,以方便恢复通信。

三、结语