公务员期刊网 精选范文 计算机视觉识别技术范文

计算机视觉识别技术精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的计算机视觉识别技术主题范文,仅供参考,欢迎阅读并收藏。

计算机视觉识别技术

第1篇:计算机视觉识别技术范文

关键词:计算机视觉技术;食品工业;分级;图像处理

中图分类号: TS207 文献标识码:A

随着微型个人计算机应用的越来越广泛,以及计算机在综合学科中应用的深入研究,现如今在工农业、军事国防、医学卫生等众多领域的使用和研究方面计算机视觉技术都起到了至关重要的作用,为了节省人力、降低成本、减少误差,该项技术在食品企业、科研院所、检测机构中的应用更加普遍。如今,在农产品药物残留检测、水果重量分级、等级筛选、质量监管等方面计算机视觉技术有众多应用。

1 计算机视觉技术概述

计算机视觉技术是利用计算机、摄像机、图像卡以及相关处理技术来模拟人的视觉,用以识别、感知和认识我们生活的世界[1]。该技术是模拟识别人工智能、心理物理学、图像处理、计算机科学及神经生物学等多领域的综合学科。计算机视觉技术用摄像机模拟人眼,用计算机模拟大脑,用计算机程序和算法来模拟人对事物的认识和思考,替代人类完成程序为其设定的工作。该技术由多个相关的图像处理系统组成,主要包括光源提供系统、图像提取系统、计算机数据运算系统等。原理是:首先通过摄像机获得所需要的图像信息,然后利用信号转换将获得的图像信息转变为数字图像以便计算机正确识别[2]。随着科学技术的发展,计算机技术在各个领域得到广泛应用,计算机视觉技术不仅在代替人类视觉上取得了重大成就,而且在很多具体工作方便超越了人的视觉功能。计算机视觉计算有如此快速的发展,是因为与人类的视觉相比该技术具有以下显著优势[3]。

1.1 自动化程度高

计算机视觉可以实现对农产品的多个外形和内在品质指标进行同时检测分析,可以进行整体识别、增强对目标识别的准确性。

1.2 实现无损检测

由于计算机视觉技术对农产品的识别是通过扫描、摄像,而不需要直接接触,可以减少对所检测食品的伤害。

1.3 稳定的检测精度

设计的运行程序确定后,计算机视觉技术的识别功能就会具有统一的识别标准,具有稳定的检测精度,避免了人工识别和检测时主观因素所造成的差异。

2 计算机视觉技术在食品检测中的应用

20世纪70年代初,学者开始研究计算机视觉技术在食品工业中的应用,近几十年电子技术得到快速发展,计算机视觉技术也越来越成熟。国内外学者在研究计算机视觉技术在食品工业中的应用方面主要集中在该技术对果蔬的外部形态(如形状、重量、外观损伤、色泽等)的识别、内部无损检测等方面。国内有关计算机视觉技术在食品业中的应用研究起始于90年代,比国外发达国家晚多达20a,但是发展很快。

2.1 计算机视觉技术在果蔬分级中的应用研究

计算机视觉技术在食品检测中的应用研究相当广泛,从外部直径、成熟度的检测到内部腐烂程度的检测都有研究。韩伟等[4]采用分割水果的拍摄图像和新的计算机算法计算水果的半径,进而得出果蔬的最大直径。研究表明,该算法不仅降低了计算量而且提高了计算精度,此方法用于水果分级的误差不超过2mm,高于国际水果分级标准所规定的5mm分类标准差,可在工业生产中很好应用。李庆中[5]也利用图像的缺陷分割算法研究了计算机视觉技术在苹果检测与分级中的应用,结果表明此算法能快速、有效地分割出苹果的表面缺陷。孙洪胜等[6]以苹果色泽特征比率的变化规律为理论基础,结合模糊聚类知识利用计算机视觉技术来检测苹果缺陷域,检测不仅快速而且结果精确。刘禾等[7]通过研究认为苹果的表面缺陷可以利用计算机视觉技术进行检测,计算机视觉技术还可以将苹果按照检测结果进行分级,把检测过的苹果分成裂果、刺伤果、碰伤果和虫伤果等类别。梨的果梗是否存在是梨类分级的重要特征之一,应义斌等[8]通过计算机视觉技术、图像处理技术、傅立叶描述子的方法来描述和识别果形以及有无果柄,其识别率达到90%。杨秀坤等[9]综合运用计算机视觉技术、遗传算法、多层前馈神经网络系统,实现了具有精确度高、灵活性强和速度快等优点的苹果成熟度自动判别。陈育彦等[10]采用半导体激光技术、计算机视觉技术和图像分析技术相结合的方法检测苹果表面的机械损伤和果实内部的腐烂情况,初步验证了计算机视觉技术检测苹果表面的损伤和内部腐烂是可行的。冯斌等[11]通过计算机视觉技术对水果图像的边缘进行检测,然后确定水果的大小用以水果分级。试验表明,该方法比传统的检测方法速度快、准确率高,适用于计算机视觉的实时检测。朱伟[12]在模糊颜色的基础上,分析西红柿损伤部分和完好部分模糊颜色的差别,用分割方法对西红柿的缺陷进行分割,结果显示准确率高达96%。曹乐平等[13]人研究了温州蜜柑的果皮颜色与果实可滴定酸含量以及糖分含量之间的相关性,然而根据相关性,样品检测的正确识别率分别只有约74%和67%。刘刚等[14]从垂直和水平两个方向获取苹果的图像,并通过计算机自动分析图像数据,对苹果的外径、体积、以及圆形度等参数进行处理,与人工检测相比,计算机视觉技术具有检测效率高,检测标准统一性好等优点。Blasco. J [15]通过计算机视觉技术分析柑橘果皮的缺陷,进而对其在线分级,正确率约为95%。赵广华等[16]人综合计算机视觉识别系统、输送转换系统、输送翻转系统、差速匀果系统和分选系统,研制出一款适于实时监测、品质动态的智能分级系统,能够很好地实现苹果分级。王江枫等[17]建立了芒果重量与摄影图像的相互关系,应用计算机视觉技术检测桂香芒果和紫花芒果的重量和果面损伤,按重量分级其准确率均为92%,按果面损伤分级的准确率分别为76%和80%。

2.2 计算机视觉技术在禽蛋检测中的应用研究

禽蛋企业在生产过程中,产品的分级、品质检测主要采用人工方法,不仅需要大量的物力人力,而且存在劳动强度大、人为误差大、工作效率低等缺点,计算机视觉技术可以很好的解决这类产品工业生产中存在的困扰。欧阳静怡等[18]利用计算机视觉技术来检测鸡蛋蛋壳裂纹,利用摄像机获取鸡蛋图像后,采用fisher、同态滤波和BET算法等优化后的图像处理技术,获得裂纹形状并判断,试验结果表明,计算机视觉技术对鸡蛋蛋壳裂纹的检测准确率高达98%。汪俊德等[19]以计算机视觉技术为基础,设计出一套双黄鸡蛋检测系统。该系统获取蛋黄指数、蛋黄特征和蛋形尺寸等特征,和设计的数学模型对比来实现双黄鸡蛋的检测和识别,检测准确率高达95%。郑丽敏等[20]人通过高分辨率的数字摄像头获取鸡蛋图像,根据图像特征建立数学模型来预测鸡蛋的新鲜度和贮藏期,结果表明,计算机视觉技术对鸡蛋的新鲜度、贮藏期进行预测的结果准确率为94%。潘磊庆等[21]通过计算机视觉技术和声学响应信息技术相结合的方法检测裂纹鸡蛋,其检测准确率达到98%。Mertens K等[22]人基于计算机视觉技术研发了鸡蛋的分级检测系统,该系统识别带污渍鸡蛋的正确率高达99%。

2.3 计算机视觉技术在检测食品中微生物含量中的应用研究

计算机技术和图像处理技术在综合学科中的应用得到快速发展,在微生物快速检测中的应用也越来越多,主要是针对微生物微菌落的处理。食品工业中计算机视觉技术在微生物检测方面的研究和应用以研究单个细胞为主,并在个体细胞的研究上取得了一定的进展。殷涌光等[23]以颜色特征分辨技术为基础,设计了一套应用计算机视觉技术快速定量检测食品中大肠杆菌的系统,该系统检测结果与传统方法的检测结果具有很好的相关性,但与传统方法相比,可以节省5d时间,检测时间在18h以内,并且能够有效提高产品品质。Lawless等[24]人等时间段测定培养基上的细胞密度,然后通过计算机技术建立时间和细胞密度之间的动态关联,利用该关联可以预测和自动检测微生物的生长情况,如通过计算机控制自动定量采集检测对象,然后分析菌落的边缘形态,根据菌落的边缘形态计算机可以显示被检测菌落的具置,并且根据动态关联计算机视觉系统可以同时处理多个不同的样品。郭培源等[25]人对计算机视觉技术用于猪肉的分级进行了研究,结果显示计算机视觉技术在识别猪肉表面微生物数量上与国标方法检测的结果显著相关,该技术可以有效地计算微生物的数量。Bayraktar. B等[26]人采用计算机视觉技术、光散射技术(BARDOT)和模式识别技术相结合的方法来快速检测李斯特菌,在获取该菌菌落中的形态特征有对图像进行分析处理达到对该菌的分类识别。殷涌光等[27]人综合利用计算机视觉、活体染色、人工神经网络、图像处理等技术,用分辨率为520万像素的数字摄像机拍摄细菌内部的染色效果,并结合新的图像处理算法,对细菌形态学的8个特征参数进行检测,检测结果与传统检测结果显著相关(相关系数R=0.9987),和传统检测方法相比该方法具有操作简单、快速、结果准确、适合现场快速检测等特点。鲁静[28]和刘侃[29]利用显微镜和图像采集仪器,获取乳制品的扫描图像,然后微生物的图像特征,识别出微生物数量,并以此作为衡量乳制品质量是否达标的依据,并对产品进行分级。

2.4计算机视觉技术在其他食品产业中的应用研究

里红杰等[30]通过提取贝类和虾类等海产品的形状、尺寸、纹理、颜色等外形特征,对照数学模型,采用数字图像处理技术、计算机识别技术实现了对贝类和虾类等海产品的无损检测和自动化分类、分级和质量评估,并通过实例详细阐述了该技术的实现方法,证实了此项技术的有效性。计算机视觉技术还可以检验玉米粒形和玉米种子质量、识别玉米品种和玉米田间杂草[31]。晁德起等[32]通过x射线照射获取毛叶枣的透视图像后,运用计算机视觉技术对图像进行分析评估,毛叶枣可食率的评估结果与运用物理方法测得的结果平均误差仅为1.47%,因此得出结论:计算机视觉技术可以应用于毛叶枣的自动分级。Gokmen,V等通用对薯片制作过程中图像像素的变化来研究薯片的褐变率,通过分析特色参数来研究薯片中丙烯酰胺的含量和褐变率也关系,结果显示两项参数相关性为0.989,从而可以应用计算机视觉技术来预测加热食品中丙烯酰胺的含量,该方法可以在加热食品行业中得到广泛应用。韩仲志等人拍摄和扫描11类花生籽粒,每类100颗不同等级的花生籽粒的正反面图像,利用计算机视觉技术对花生内部和外部采集图像,并通过图像对其外在品质和内在品质进行分析,并建立相应的数学模型,该技术在对待检样品进行分级检测时的正确率高达92%。另外,郭培源等人以国家标准为依据,通过数字摄像技术获取猪肉的细菌菌斑面积、脂肪细胞数、颜色特征值以及氨气等品质指标来实现猪肉新鲜程度的分级辨认。

3 展望

新技术的研究与应用必然伴随着坎坷,从70年代初计算机视觉技术在食品工业中进行应用开始,就遇到了很多问题。计算机视觉技术在食品工业中的研究及应用主要存在以下几方面的问题。

3.1 检测指标有限

计算机视觉技术在检测食品单一指标或者以一个指标作为分级标准进行分级时具有理想效果,但以同一食品的多个指标共同作为分级标准进行检测分级,则分级结果误差较大。例如,Davenel等通过计算机视觉对苹果的大小、重量、外观损伤进行分析,但研究结果显示,系统会把花粤和果梗标记为缺陷,还由于苹果表面碰压伤等缺陷情况复杂,造成分级误差很大,分级正确率只有69%。Nozer等以计算机视觉为主要技术手段,获取水果的图像,进而通过分析图像来确定水果的形状、大小、颜色和重量,并进行分级,其正确率仅为85.1%。

3.2 兼容性差

计算机视觉技术针对单一种类的果蔬分级检测效果显著,但是同一套系统和设备很难用于其他种类的果蔬,甚至同一种类不同品种的农产品也很难公用一套计算机视觉设备。Reyerzwiggelaar等利用计算机视觉检查杏和桃的损伤程度,发现其检测桃子的准确率显著高于杏的。Majumdar.S等利用计算机视觉技术区分不同种类的麦粒,小麦、燕麦、大麦的识别正确率有明显差异。

3.3 检测性能受环境制约

现阶段的计算机视觉技术和配套的数学模型适用于简单的环境,在复杂环境下工作时会产生较大的误差。Plebe等利用计算机视觉技术对果树上的水果进行识别定位,但研究发现由于光照条件以及周边环境的影响,水果的识别和定位精度不高,不能满足实际生产的需要。

综上所述,可看出国内外学者对计算机视觉技术在食品工业中的应用进行了大量的研究,有些研究从单一方面入手,有些研究综合了多个学科,在研究和应用的过程中,取得了较大的经济效益,也遇到了很多问题,在新的形势下,计算机视觉技术和数码拍摄、图像处理、人工神经网络,数学模型建设、微生物快速计量等高新技术相融合的综合技术逐渐成为了各个领域学者的研究热点,以计算机视觉为基础的综合技术也将在食品工业中发挥更加重要的作用。

参考文献

[1] 宁纪锋,龙满生,何东健.农业领域中的计算机视觉研究[J].计算机与农业,2001(01):1-3.

[2] 李峥.基于计算机视觉的蔬菜颜色检测系统研究[D].吉林:吉林大学,2004.

[3] 曾爱群.基于计算机视觉与神经网络的芒果等级分类研究[D].桂林:桂林工学院,2008.

[4] 韩伟,曾庆山.基于计算机视觉的水果直径检测方法的研究[J].中国农机化,2011(05):25-29.

[5] 李庆中.苹果自动分级中计算机视觉信息快速获取与处理技术的研究[D].北京:中国农业大学,2000.

[6] 孙洪胜,李宇鹏,王成,等.基于计算机视觉的苹果在线高效检测与分级系统[J].仪表技术与传感器,2011(06):62-65.

[7] 刘禾,汀慰华.水果果形判别人工神经网络专家系统的研究[J].农业工程学报,1996,12(0l):171-176.

[8] 应义斌,景寒松,马俊福.用计算机视觉进行黄花梨果梗识别的新方法[J].农业工程学报,1998,14(02):221-225.

[9] 杨秀坤,陈晓光,马成林,等.用遗传神经网络方法进行苹果颜色白动检测的研究[J].农业工程学报,1997,13(02):193-176.

[10] 陈育彦,屠康,柴丽月,等.基于激光图像分析的苹果表面损伤和内部腐烂检测[J].农业机械学报,2009,40(07):133-137.

[11] 冯斌,汪憋华.基于计算机视觉的水果大小检测方法[J].农业机械学报,2003,34(01):73-75.

[12] 朱伟,曹其新.基于模糊彩色聚类方法的西红柿缺陷分割[J].农业工程学报,2003,19(03):133-136.

[13] 曹乐平,温芝元,沈陆明.基于色调分形维数的柑橘糖度和有效酸度检测[J].农业机械学报,2009,41(03):143-148.

[14] 刘刚,王立香,柳兆君.基于计算机视觉的苹果质量检测[J].安徽农业科学,2012,40(08):5014-5016.

[15] Blasco J,Aleixos N,Molto puter vision detection of peel defects in citrus by means of a region oriented segmentation algorithm[J].Journal of Food Engineering,2007,81(03):535-543.

[16] 赵广华,飞,陆奎荣,等.智能化苹果品质实时分选系统[J].中国科技信息.

[17] 王江枫,罗锡文,洪添胜,等.计算机视觉技术在芒果重量及果面坏损检测中的应用[J].农业工程学报,1998(12):186-189.

[18] 欧阳静怡,刘木华.基于计算机视觉的鸡蛋裂纹检测方法研究[J].农机化研究,2012(03):91-93.

[19] 汪俊德,郑丽敏,徐桂云,等.基于计算机视觉技术的双黄鸡蛋检测系统研究[J].农机化研究,2012(09):195-199.

[20] 郑丽敏,杨旭,徐桂云,等.基于计算机视觉的鸡蛋新鲜度无损检测[J].农业工程学报,2009,25(03):335-339.

[21] 潘磊庆,屠康,詹歌,等.基于计算机视觉和声学响应信息融合的鸡蛋裂纹检测[J].农业工程学报,2010,26(11):332-337.

[22] Mertens K,De Ketelaere B,Kamers B,et al.Dirt detection on brown eggs by means of colorcomputer vision[J]. Poultry Science,2005,84(10):1653-1659.

[23] 殷涌光,丁筠.基于计算机视觉的食品中大肠杆菌快速定量检测[J].吉林大学学报(工学版),2009,39(02):344-348.

[24] Lawless C,Wilkinson DJ,Young A,et al.Colonyzer: automated quantification of micro-organism growth characteristics on solid agar[J].BMC Bioinformatics,2010(08):38-44.

[25] 郭培源,毕松,袁芳.猪肉新鲜度智能检测分级系统研究[J].食品科学,2010,31(15):68-72.

[26] Bayraktar B,Banada PP,Hirleman ED,et al.Feature extraction from light-scatter patterns of Listeria colonies for identification and classification [J].Journal of Biomedical Optics,2006,11(03):34- 36.

[27] 殷涌光,丁筠.基于计算机视觉的蔬菜中活菌总数的快速检测[J].农业工程学报,2009,25(07):249-254.

[28] 鲁静.乳品微生物自动检测系统的设计[J].湖北第二师范学院学报,2010,27(08):115-117.

[29] 刘侃.鲜奶含菌量快速检测系统[D].华中科技大学,2008.

[30] 里红杰,陶学恒,于晓强.计算机视觉技术在海产品质量评估中的应用[J].食品与机械,2012,28(04):154-156.

第2篇:计算机视觉识别技术范文

电力系统自动化是电力系统的发展趋势,随着计算机技术的不断成熟,应用领域不断拓展,在电力自动化系统中的信息输入、输出甚至是存储和传输中都应用了计算机技术。鉴于电力系统具有功能复杂,分布范围广,管理调度较为集中等特点,故基于计算机的视觉图像技术在电力自动化系统中具有非常广泛的应用领域和应用前景。如结合红外成像技术对线路设备进行监测、应用遥感技术和工业电视技术分担工作人员的工作压力等。

如果能够将基于图像识别和图像处理的计算机视觉技术安全合理的应用到电力系统中,可以对电力系统的智能监控和处理。目前,已有部分应用实例投入使用,如利用红外图像分析技术对电力设备进行简单识别、结合传感器等对火电厂煤粉锅炉火焰燃烧状态的判断等。

二、计算机视觉技术在电力系统自动化中的应用

计算机视觉技术是通过对采集到的数据图像进行处理和分析来模拟和研究微观或者宏观层面视觉功能的技术。具体到电力系统自动化领域,计算机视觉技术主要被应用在三个方面,分别为地区调度实时监控、设备运行负荷控制和变电站自动化监控和处理。其中,地区调度实时监控中的计算机视觉技术功能与中心调度监控系统相似,都是通过多台计算机和图像采集设备实现对电力设备运行的监控和对电力的实时调度等。而设备运行负荷控制通常需要利用工频或者声频参与控制,还无法完全脱离人的视觉参与实现自动控制。变电站自动化监控和处理是变电站自动化发展的方向,该技术是利用计算机,通过对实时状态进行视频监控和数据处理,以实现无人值守的自动化运行模式。

典型的应用领域为下述几个方面。

1.计算机视觉技术在在线监测中的应用。该应用主要是利用计算机的红外图像识别技术对电力设备进行在线监测实现的。电气设备的表面温度在一定程度上可以反映其运行的状态,利用图像采集设备对电气设备进行红外成像拍摄,可以获取设备温度的实时动态,在此基础上对红外图像进行图谱分析,并与正常运行时的参照标准进行比较,即可实现对电力设备的在线监测。同时,若设备出现故障,利用红外成像技术还能对故障位置进行定位,这就为及时进行检修提供了强力的支持。

例如,断路器触头接触不良、输电线路绝缘环境的变差、变压器少油等故障都会造成局部设备过热。若只采用传统检修方式,无法切实掌握设备运行状态,只能在故障发生后寻找故障部位,检查确认后才能进行排除处理。计算机视觉技术的应用,首先简化了检测方式,只需要将成像设备在有效范围内对电气设备进行远距离测量即可实现;其次在监测方面,一旦设备的监测数据超出正常范围的最大或最小阈值,即可认定该部位已经发生故障,实现对故障的及时处理,由于定位更为准确,且减少了传统的故障部位确认环节,故提高了系统运行与监测效率。

2.计算机视觉技术在无人值班变电站和电场环境监控中的应用。在无人值班变电站中,利用微波双鉴探测器和计算机网络等组成无人监视系统,通过该系统对变电站周边环境进行视频监控,然后利用差分图像、光流法等计算机视觉技术等对移动物体进行判断和识别,确认移动物体属性,若出现情况可以进行实时报警。实际应用表明,在适当天气条件下,该系统的识别准确率保持在较高水平。若变电站周边发生火情,还可以辅助红外图像识别对火势进行判断并报警。

3.计算机视觉技术在电力线路监测中的应用。随着经济社会的发展,为满足人们日益增长的电力需求,必须进行大量的电力线路铺设,在铺设过程中,通常需要穿越复杂的地理环境,这种情况为线路巡检员的工作带来了极大的困难,且巡检效率不高、存在巡检盲区等。此时,利用计算机视觉技术可以很好的解决该问题。对电力线路安装监测机器人,在机器人中安装控制装置,位置传感器、测距传感器和CCD视觉传感器,线路检测装置,无线图像传输设备等,通过机器人在线路中行走对线路进行温度识别和分布判断,进而完成线路的巡视工作。该方式可以减少恶劣环境对巡线工作带来的操作难度,提高工作效率,增强故障判断精度。

4.计算机视觉技术在位置判断中的应用。利用计算机视觉技术可以对电力系统中的开关刀闸位置和继电保护压板的位置进行监测。开关刀闸具有三种状态,分别为闭合、断开和异常。若开关刀闸位置不适当会影响到系统的工作状态。利用计算机视觉技术可以自动识别其工作状态,并对不正常状态进行报警。继电保护压板会随着电网或者变电站的运行方式的变化而变化。操作规范要求值班人员对压板的位置进行确认和纠正。若压板位置不正确会导致继电保护出现错误动作甚至引发事故。在压板监测方面,由于压板电信息不明辨,传统检测方式不易对其进行检测,若采用计算机视觉技术,利用成像技术对压板盘面进行图像采集,然后通过图像识别技术对独享进行识别,即可实现对压板位置的判断。

第3篇:计算机视觉识别技术范文

【关键词】计算机视觉技术 马铃薯外部品质 检测

随着计算机技术的不断发展,计算机视觉技术应运而生并在工业自动化以及农产品检验检测等领域成功应用。其中,将计算机视觉技术用于以自动化采集和品级分级为代表的果蔬商品化处理具有非常广阔的发展空间。我国政府将“农产品深加工技术与设备研究开发”列为我国“十五”重大科技攻关项目的第一项,这标志着计算机视觉技术在果蔬外部品质检测中会发挥越来越重要的作用。

马铃薯是世界上仅仅排在小麦、水稻和玉米之后的第四种主要农作物,种植区域非常广泛。马铃薯品质检测是马铃薯深加工的一个关键步骤,目前,该检验过程多数采用人工检测,不仅成本高、效率低,而且与检验员的专业素质有密切的关系,受到人为因素影响的程度较大,严重制约的马铃薯加工企业的发展。计算机视觉技术能对农产品的某些特性变化和缺陷进行识别,具有客观、无损害等特点。本文对基于计算机视觉的马铃薯外部品质检测的应用进行了研究。

1 应用计算机视觉技术对马铃薯进行外部品质检测的必要性

随着“麦当劳”、“肯德基”的餐饮服务业的快速发展,炸薯条、炸薯片已经成为一种休闲食品深受消费者的喜爱,推动了我国马铃薯产业的发展。然而,情况并不十分乐观,与国外的马铃薯企业相比,我国马铃薯加工企业生产规模小、生产产品单一、技术设备落后、产品质量不高的现象导致我国的马铃薯产品销售困难,经济效益逐渐下滑。

基于以上现状,对马铃薯的加工研究还有很长的一段路程。企业要扩大生产规模,针对中国的消费趋势与消费水平开发出新的马铃薯产品,从而提高我国马铃薯产品的竞争力。这就要求马铃薯加工企业要对马铃薯的加工技术进行创新,保证产品质量。其中,马铃薯外部品质检测对马铃薯产品的最终品质起着决定性作用。当前的人工检测方式已经不再适应社会发展的要求,利用计算机视觉检验代替人工检验成为社会发展的必然趋势,这是因为计算机视觉技术具有以下优点:

(1)精度高,能够进行定量测量。

(2)自动化程度高,一次就可完成包括大小、形状、颜色以及缺陷在内的检测和分析,并能进行综合识别。

(3)无损检测,计算机视觉检测过程不需要接触产品,是通过传感器扫面获取图像的,不会造成产品的损伤。

(4)信息量大,可对大量信息进行采集,对光谱的敏感范围也很广。

2 基于计算机视觉的马铃薯外部品质检测的应用研究

2.1 马铃薯大小的检测方法

马铃薯的大小检测不仅影响马铃薯深加工的商业价值,在在遗传和育种方面也有很高的应用价值。

利用计算机视觉技术对马铃薯大小的检测步骤如下:先从摄像机中获取马铃薯的图像信息,在图像信息的基础上对马铃薯三维空间的几何信息进行计算,并由此重建和识别马铃薯。而马铃薯物体表面某点的三维几何位置与其在图像中对应点之间的相互关系是由摄像机成像的几何模型决定的,这些几何参数成为摄像机参数。要想准确的获取这些摄像机参数,就必须将实验与计算相结合,此过程成为系统定标。

系统定标的基本步骤:根据设定好的摄像机模型和特定的实验条件包括形状、尺寸等已知的定标参照物,经过对马铃薯图像的处理,并利用一系列的数学转换和计算方法将摄像机模型的内部和外部参数计算出来,从而建立照片与实物的联系推算出马铃薯的真实尺寸。

2.2 马铃薯形状的检测方法

根据《中国马铃薯栽培学》中的知识,我们可以把马铃薯的块茎形状分为三类,分别是圆形、长筒形和椭圆形,除了这三种形状,其余都是这三种形状的变形。此次研究将马铃薯分为圆形、椭圆形和长筒形,并且采用椭圆的短长轴比来模拟马铃薯的纵横直径之间的关系。

2.2.1 马铃薯形状特征参数的提取

将马铃薯椭圆的短长轴比R作为形状特征参数,并按照R的大小将马铃薯进行分类。当R小于0.67时,称之为长筒马铃薯;当R大于0.85时,称之为圆形马铃薯;当R介于0.67到0.85之间时,称之为椭圆形马铃薯。

2.2.2 结果与分析

随机抽取114块马铃薯,对抽取的马铃薯进行正反两面拍照,挑选清晰度最高的228张图片。人工分类后进行计算机视觉分类,操作步骤具体如下:

(1)用DIPS预处理:B通道灰度化,中值滤波和Otsu分割;

(2)通过计算机视觉技术提取马铃薯图片的短长轴比R;

(3)将人工分类与计算机视觉分类进行对比,并得出正确率。

根据图表,我们可以看出在228张仅有两张图片被分类错误,正确率高达99.1%,而这两个分类错误的马铃薯的短长轴比处于0.67周围,分别为0.667604 , 0.67193和0.671887, 0.661063,又因为对马铃薯形状的分类不需要类似工业生产那样精密,所以,当正反两面短长轴比接近时都可看作是椭圆形。

2.3 马铃薯的缺陷检测

计算机视觉技术具有实时、客观、无损的检测特点,能对马铃薯的表面缺陷和某些特征要素进行快速检测。基于此,国内外很多研究学者进行了大量的实验研究,在1998年开发了利用PC机辅助的实时马铃薯检测系统,能够对马铃薯的重量、颜色以及形状进行快速检测;2000年,相关研究者在此基础上建立了计算机视觉检测系统,不仅能实现大小、形状的检测,还能对马铃薯表面的生长裂缝、机械裂缝、绿皮等表面缺陷进行检测。当前对马铃薯表面缺陷进行检测的主要计算机视觉技术包括缺陷分割法和缺陷识别法两种方法。

3 结论

本文应用计算机视觉技术对马铃薯的大小、形状和表面缺陷等外部品质进行了检测,但是还未能实现利用计算机视觉技术对马铃薯的表面缺陷进行分类这一技术。因此,相关部门要加大研究力度,争取早日完善计算机视觉技术,从而推动我国马铃薯加工企业快速高效的发展。

参考文献

[1]鲁永萍.基于机器视觉的马铃薯外部品质检测与分级.机械设计及理论[D].内蒙古农业大学.2013(学位年度).

[2]史崇升.基于高光谱成像技术的马铃薯外部品质无损检测建模及优化研究.电子与通信工程[D].宁夏大学.2014(学位年度).

作者单位

第4篇:计算机视觉识别技术范文

关键词:数字摄影测量 计算机视觉 多目立体视觉 影像匹配

引言

摄影测量学是一门古老的学科,若从1839年摄影术的发明算起,摄影测量学已有170多年的历史,而被普遍认为摄影测量学真正起点的是1851―1859年“交会摄影测量”的提出。在这漫长的发展过程中,摄影测量学经历了模拟法、解析法和数字化三个阶段。模拟摄影测量和解析摄影测量分别是以立体摄影测量的发明和计算机的发明为标志,因此很大程度上,计算机的发展决定了摄影测量学的发展。在解析摄影测量中,计算机用于大规模的空中三角测量、区域网平差、数字测图,还用于计算共线方程,在解析测图仪中起着控制相片盘的实时运动,交会空间点位的作用。而出现在数字摄影测量阶段的数字摄影测量工作站(digital photogrammetry workstation,DPW)就是一台计算机+各种功能的摄影测量软件。如果说从模拟摄影测量到解析摄影测量的发展是一次技术的进步,那么从解析摄影测量到数字摄影测量的发展则是一场技术的革命。数字摄影测量与模拟、解析摄影测量的最大区别在于:它处理的是数字影像而不再是模拟相片,更为重要的是它开始并将不断深入地利用计算机替代作业员的眼睛。[1-2]毫无疑问,摄影测量进入数字摄影测量时代已经与计算机视觉紧密联系在一起了[2]。

计算机视觉是一个相对年轻而又发展迅速的领域。其目标是使计算机具有通过二维图像认知三维环境信息的能力,这种能力将不仅使机器能感知三维环境中物体的几何信息,包括它的形状、位置、姿态、运动等,而且能对它们进行描述、存储、识别与理解[3]。数字摄影测量具有类似的目标,也面临着相同的基本问题。数字摄影测量学涉及多个学科,如图像处理、模式识别以及计算机图形学等。由于它与计算机视觉的联系十分紧密,有些专家将其看做是计算机视觉的分支。

数字摄影测量的发展已经借鉴了许多计算机视觉的研究成果[4]。数字摄影测量发展导致了实时摄影测量的出现,所谓实时摄影测量是指利用多台CCD数字摄影机对目标进行影像获取,并直接输入计算机系统中,在实时软件的帮助下,立刻获得和提取需要的信息,并用来控制对目标的操作[1]。在立体观测的过程中,其主要利用计算机视觉方法实现计算机代替人眼。随着数码相机技术的发展和应用,数字近景摄影测量已经成为必然趋势。近景摄影测量是利用近距离摄影取得的影像信息,研究物体大小形状和时空位置的一门新技术,它是一种基于数字信息和数字影像技术的数据获取手段。量测型的计算机视觉与数字近景摄影测量的学科交叉将会在计算机视觉中形成一个新的分支――摄影测量的计算机视觉,但是它不应仅仅局限于地学信息[2]。

1. 计算机视觉与数字摄影测量的差异

1.1 目的不同导致二者的坐标系和基本公式不同

摄影测量的基本任务是严格建立相片获取瞬间所存在的像点与对应物点之间的几何关系,最终实现利用摄影片上的影像信息测制各种比例尺地形图,建立地形数据库,为各种地理信息系统建立或更新提供基础数据。因此,它是在测绘领域内发展起来的一门学科。

而计算机视觉领域的突出特点是其多样性与不完善性。计算机视觉的主要任务是通过对采集的图片或视频进行处理以获得相应场景的三维信息,因此直到计算机的性能提高到足以处理大规模数据时它才得到正式的关注和发展,而这些发展往往起源于其他不同领域的需要。比如在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用计算机来替代人工视觉。

由于摄影测量是测绘地形图的重要手段之一,为了测绘某一地区而摄影的所有影像,必须建立统一的坐标系。而计算机视觉是研究怎样用计算机模拟人的眼睛,因此它是以眼睛(摄影机中心)与光轴构成的坐标系为准。因此,摄影测量与计算机视觉目的不同,导致它们对物体与影像之间关系的描述也不同。

1.2 二者处理流程不同

2. 可用于数字摄影测量领域的计算机视觉理论――立体视觉

2.1 立体视觉

立体视觉是计算机视觉中的一个重要分支,一直是计算机视觉研究的重点和热点之一,在20多年的发展过程中,逐渐形成了自己的方法和理论。立体视觉的基本原理是从两个(或多个)视点观察同一景物,以获取在不同视角下的感知图像,通过三角测量原理计算像像素间的位置偏差(即视差)来获取景物的三维信息,这一过程与人类视觉的立体感知过程是类似的。一个完整的立体视觉系统通常可分为图像获取、摄像机定标、特征提取、影像匹配、深度确定及内插等6个大部分[5]。其中影像匹配是立体视觉中最重要也是最困难的问题,也是计算机视觉和数字摄影测量的核心问题。

2.2 影像匹配

立体视觉的最终目的是为了恢复景物可视表面的完整信息。当空间三维场景被投影为二维图像时,同一景物在不同视点下的图像会有很大不同,而且场景中的诸多因素,如光照条件,景物几何形状和物理特性、噪声干扰和畸变以及摄像机特性等,都被综合成单一的图像中的灰度值。因此,要准确地对包含了如此之多不利因素的图像进行无歧义的匹配,显然是十分困难的。

在摄影测量中最基本的过程之一就是在两幅或者更多幅的重叠影像中识别并定位同名点,以产生立体影像。在模拟摄影测量和解析摄影测量中,同名点的识别是通过人工操作方式完成的;而在数字摄影测量中则利用计算机代替人工解决同名点识别的问题,即采用影像匹配的方法。

2.3 多目立体视觉

根据单张相片只能确定地面某个点的方向,不能确定地面点的三维空间位置,而有了立体像对则可构成与地面相似的立体模型,解求地面点的空间位置。双目立体视觉由不同位置的两台或者一台摄像机(CCD)经过移动或旋转拍摄同一幅场景,就像人有了两只眼睛,才能看三维立体景观一样,然后通过计算空间点在两幅图像中的视差,获得该点的三维坐标值。现在的数字摄影测量中的立体像对技术通常是在一条基线上进行的,但是由于采用计算机匹配替代人眼测定影像同名像对时存在大量的误匹配,使自动匹配的结果很不可靠。其存在的问题主要是,对存在特殊结构的景物,如平坦、缺乏纹理细节、周期性的重复特征等易产生假匹配;在摄像机基线距离增大时,遮挡严重,能重建的空间点减少。为了解决这些问题,降低双目匹配的难度,自1986年以来出现了三目立体视觉系统,即采用3个摄像机同时摄取空间景物,通过利用第三目图像提供的信息来消除匹配的歧义性[5]。采用“多目立体视觉技术”可以利用摄影测量的空中三角测量原理,对多度重叠点进行“多方向的前方交会”,既能较有效地解决随机的误匹配问题,同时又能增加交会角,提高高程测量的精度[2]。这项技术的应用,将很大程度地解决自动匹配结果的不可靠性,提高数字摄影测量系统的准确性。

第5篇:计算机视觉识别技术范文

【关键词】动态图像序列;自动扶梯;客流量;测量

视频处理技术的产生和发展使得其应用范围越来越广泛,在这之中,动态图像序列处理技术因其在监控和管理方面的智能化特点,有着非常广泛的应用前景,其在自动扶梯客流量测量分析方面的应用为保证大型场所中自动扶梯的安全性提供了保障,对其进行研究是有着非常重要的意义的。

一、自动扶梯与其客流量

自动扶梯的定义是,由一台特种结构形式的链式输送机和两台特殊结构型式的胶带输送机所组合而成的,用以在建筑物的不同层高间运载人员上下的一种连续运输机械。其主要部件包括梯级、梯级驱动装置、驱动主机、传动部件、紧张装置、扶手装置、金属结构、梯级导轨、上下盖板、梳齿板、安全装置和电气控制系统等。自动扶梯具有连续性强,运输量大的特点,在人流集中的场所有着广泛的应用,比如在商场、飞机场、火车站、地铁站以及一些大型的娱乐场所中都可以看见人们利用自动扶梯来达到移动的目的。

自动扶梯的工作流程为:自动扶梯的梯级链作为扶梯的核心部件,一系列的梯级与两根牵引链条连接在一起,在按一定线路布置的导轨上运行即形成自动扶梯的梯路。牵引链条绕过上牵引链轮、下张紧装置并通过上、下分支的若干直线、曲线区段构成闭合环路。这一环路的上分支中的各梯级(也就是梯路)应严格保持水平,以供乘客站立。上牵引链轮(也就是主轴)通过减速器等于电动机相连以获得动力。扶梯两旁装有与梯路同步运行的扶手装置,以供乘客扶手之用。扶手装置同样由上述电动机驱动。为了保证自动扶梯乘客的绝对安全,在扶梯的主要部件处还装设多种安全装置,当扶梯有发生意外的倾向时,电气系统能及时的制停扶梯。

自动扶梯作为一种凭借运输带进行人员运输的工具,在大型场所的人员运输方面发挥着不可或缺的作用。当行人在自动扶梯的任意一端踏上梯级,就能被自动带到自动扶梯的另一端。扶梯可以一直保持相同的行走方向,但是绝大多数的自动扶梯可以根据时段和人流的需求,由管理人员对其行走方向进行控制。

自动扶梯在实际应用中,由于乘客自身情况存在差异性,因此并不能保证自动扶梯的每节台阶上都能满足理论上的人数设计,另外,在自动扶梯连续运转时,也不能保证乘客都能准确站在台阶上。因此,自动扶梯的实际运送能力与理论水平还是存在一定的差距。因此,为了保证自动扶梯的安全性,就要采取一定的措施对自动扶梯的客流量进行测量和分析。

二、计算机视觉系统

随着计算机技术的发展,计算机视觉研究的技术也越发成熟,目标检查和跟踪技术作为其中一个十分重要的部分引起了人们的广泛关注。

人类通过多种感觉器官形成对外界环境的感知,而在这些感知信息中,绝大多数的信息都是通过视觉,即通过人眼获得的。视觉作为一种高清晰度的媒介,能够在外界环境中实现信息的获得,还能对获得的信息进行处理、存储和传输。而为了填补智能机器在这个领域中的空白,从而实现捕获图像并对图像的属性进行描述及理解的目的,计算机视觉这门学科便应运而生。

计算机视觉的原理就是利用成像系统来代替视觉器官作为输入手段,利用计算机来代替人脑作为处理和解释的系统,从而使计算机能够实现如人一样的功能,通过视觉上观察到的事物和状况来理解、解释当前的事项,并依据视觉系统观察到的不同状况,自动做出适合当前状况的处理。但是要想达到这个目标,是要经过长久努力的,因此,人们在实现最终目标之前,首先确立了一个中期目标,这个中期目标就是建立起一种视觉系统。此视觉系统能够达到一定程度上的智能化,依据视觉敏感度和反馈完成一定的任务。自主车辆的直觉导航系统就是计算机视觉的一个重要的应用实例,然而,截止目前,还未能实现同人一致的对于任何环境都能进行识别和理解的能力,对于自主导航系统的实现还存在一定的差距。基于此,人们又将研究目标转向了高速公路上的道路跟踪能力,从而实现视觉辅助驾驶系统的开发,避免车辆在行驶的过程中与前方车辆发生碰撞。

需要特别指出的是,在这种计算机视觉系统中,计算机在其中的作用只是代替人脑的作用,但并不代表计算机就一定要按照人类视觉方法来处理视觉信息。计算机在处理视觉信息时,还是应该依据计算机系统本身的特点来进行,但是人类视觉系统作为目前为止人们所知的、功能最为强大和完善的视觉系统,还是应该作为计算机视觉研究的指导方向和启发方向。而这种由计算机信息处理的方法来研究人类视觉并建立起人类视觉的研究,被称为计算视觉,也是计算机研究中一个重要的研究领域。

随着人们逐渐步入信息时代,计算机技术广泛渗透于各个领域。究其原因,主要是因为很多没有经过专业计算机训练的人也要使用计算机,同时,计算机随着科学技术的不断发展,其功能性也在不断地增强。然而,这也相应为计算机的使用带来了一定的弊端,比如,计算机的使用方法也变得越来越复杂,这就在一定程度上导致了人本身的灵活性与计算机使用时的死板要求形成了强烈的反差和矛盾。前者可以通过听觉、视觉等各种感官知觉与外界进行信息交换,还可以通过大脑的处理,用不同的方式传达相同的意义,而计算机却只能依照之前编写的程序语言来运行程序来实现运行的目的。因此,为了能方便更多的人应用复杂的计算机,就必须要通过一些有效的措施来改变从前计算机为主体,人去适应计算机的状况,而应该以人为本,交换主体,让计算机来适应其使用者的需求和习惯,以人的习惯为要求指向,让计算机具有听觉、视觉等能力。同时,计算机还需要具有一定的逻辑推理能力和决策能力。而这种计算机即智能计算机。智能计算机的出现,使计算机的使用更加方便和人性化,以智能计算机为基础的系统也为各个领域的发展带来了巨大的促进作用,替代了很多繁重的工作,提高了工作效率,并且保证了工作人员的作业安全。

同时,在计算机视觉研究领域,运动目标的检测识别和跟踪技术一直都是一个热点问题,其对识别精度和实时性要求更高,其算法的好坏会给结果的稳定性和精准度带来直接的影响。而这些方法的实现都是基于动态图像序列。

三、基于改进型Hausdorff距离的人体检测

自动扶梯客流量的测量工作是极具现实意义的,通过对大型场所内自动扶梯的客流量进行测量,可以有效对客流量进行控制,提高人员和建筑的安全。而测量工作的实现是基于摄像头获得的动态图像序列,并通过序列进而识别出人数和即时速度。为了能够准确识别出自动扶梯上的各个人体,可以采用Hausdorff距离识别方法。这种方法即使在有光线问题或者遮挡问题导致人体特征现象发生时,也能完成对人体的识别。而Hausdorff距离模板又具有适应性强且计算量小的优点。但是在很多应用场合中,一旦被测图像中有些边缘信息消失或者存在大大量与人体特征无关的点时,这种距离模板的匹配就不能达到令人满意的效果。

Hausdorff距离的模板匹配及其缺陷

Hausdorff距离是用来描述两组点集间相似度的量度,是一种集合之间的定义形式。若设A、B为两个有限点集,则Hausdorff距离则可表示为:

H(A,B)=max(h(A,B),h(B,A)) (1)

h(B,A)=max{mina-b} (2)

当Hausdorff距离用于二值模板与图像之间的匹配时,首先要计算这两个二值图像的距离变换。由(2)计算出有向距离,再由(1)得出Hausdorff距离的值,从而判断出匹配情况。但是需要特别指出的是,一旦图像中存在突发的噪声时,Hausdorff距离值也可能变得很大,从而造成目标物体不能被有效检测。另外,当所测目标物因为光线的问题或者遮挡问题只有部分物体特征呈现出来时,Hausdorff距离的值也可能会很大,也就是说目标物体还是得不到检测。

针对以上方法存在的缺陷,为了进一步提高此方法的稳定性,对(2)进行了改进,有相距离表示为:

从而通过对不同区域下的界定就可以有效去除二值匹配过程中干扰因素的影响。

基于滤波的目标预测跟踪

可以采用滤波器进行预测和跟踪匹配位置中心点。此处滤波器将被用于匹配中心点在下一图像中的位置,假设这两个坐标之间不相关,则就可以实现对这两个中心点的分别预测和跟踪,极大提高了算法的执行效率。而在下一帧中检测目标时,就可以缩小搜索范围。这不仅使得该算法的执行速度得到了提高,还使之更适于自动扶梯客流量状况测量的实时操作。

四、结语

自动扶梯客流量的测量对于扶梯的安全使用有着重要的意义,相信随着科学技术的不断发展和科研人员的不懈努力,在不久的将来,一定会出现更为方便、准确的测量方法,并在各个领域上得到有效应用,为计算机视觉系统的发展提供坚实的基础。

参考文献

[1]贤云得.机器视觉[M].北京:科学出版社,2004.

[2]张强.动态图像序列中目标检测与跟踪技术研究[D].华北电力大学,2012.

第6篇:计算机视觉识别技术范文

计算机视觉是一门研究如何使机器“看”的科学,更进一步地说,就是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。计算机视觉包括集成的视觉系统与真实世界视觉的应用建设。创建三维模型的过程是相当困难的,需要机械测量摄像机的位置或手动对准一个场景的局部三维视图。通过使用相应的算法,它可以通过集合中一个场景的立体图像,然后自动生成一个逼真、几何精确的三维数字化模型。

全书分为三大部分,共14章:1.引言:立体图像和深度知觉、三维视觉系统、三维视觉应用的介绍;2.视觉的研究简史;3.二维和三维视觉的形成;4.图像匹配中低层次图像处理:包括卷积滤波、离散平均、离散分化、边缘检测、结构张量、角点检测等内容;5.尺度空间的视觉:包括图像尺度、高斯尺度空间、微分尺度空间、多分辨率金字塔等内容;6.图像匹配算法:包括各种匹配措施、计算方面的匹配、立体匹配方法的多样性、基于区域、弹性、梯度的匹配等内容;空间重构及多视图集成:一般的三维重建和多视图集成方面的内容;8.具体案例:临床和兽医应用、电影重构等具体实例的分析;9.射影几何基础;10.图像处理的张量微积分基础:包括线性算子和变坐标系统的基本概念、度量张量、简单的张量代数等内容;11.图像中的失真和噪声:包括噪声模型、产生噪声的测试图片、正态分布生成随机数;12.图像变换程序:包括结构的变形系统、坐标变换模块、像素值的插值、经典实力等内容;13.编程技术,图像处理和计算机视觉:包括其设计与实现、统一的建模语言、设计模式、处理平台等内容;14.图像处理库。

作者Bogusaw Cyganek于1993年获得电子计算机科学学位,于1996年获得了赫尔辛堡科技大学博士学位。近年来,他还与许多科学中心合作,在计算机视觉系统的发展方面做出了贡献。作为一个软件开发经理和高级软件工程师,他有着多年的实际工作经验。他目前在波兰克拉科夫AGH科技大学(AGH University of Scien and Technology)电子部任研究员和讲师,研究兴趣包括计算机视觉、模式识别、以及对可编程器件和嵌入式系统的开发。他还是电子电气工程师协会(IEEE,Institute of Electrical and Electronics Engineers)、国际模式识别学会(IAPR,International Association for Pattern Recognition)、工业和应用数学学会(SIAM,Society for Industrial and Applied Mathematics)成员。

本书提供了对三维计算机视觉方法,理论和算法的全面的介绍。几乎每一个理论问题都使用C++和Matlab的伪代码或完整代码进行实现,并且提供下载的软件网站、案例研究和练习。本书是相关学者、程序员的有益参考,也适合对计算机科学、临床摄影、机器人领域、图形和数学感兴趣的学生或研究人员阅读。

李亚宁,硕士研究生

第7篇:计算机视觉识别技术范文

关键词:图像处理 计算机视觉 立体视觉

在实际工程实践中,由于受现场条件和测试技术本身的限制,结构动位移的测试往往存在一定的困难和挑战,这也使动位移并未成为结构动力性能评估中一个常见的评估指标。结构动位移响应是直接反映结构在动力荷载作用下安全性和整体性的重要参考指标。随着工程结构或构件建造得越来越柔和复杂结构模型试验研究的发展,如大跨度桥梁、高层建筑、索结构等的现场测试以及结构振动台试验、风洞试验等,结构动位移的测试显得尤为重要。

计算机视觉是研究计算机模拟生物外显或宏观视觉功能的科学与技术,是一个发展十分迅速的研究领域,其研究手段涉及甚广,如图像处理、机器视觉、医学图像分析、模式识别、计算机图形学、人工智能等。当计算机通过视觉传感器(比如相机或摄像机等)试图分析三维空间的物体时通常只能给出二维图像,通过计算机分析和处理图像信息,可以重构实物的三维几何信息,包括其形状、位置、姿态、运动等。因此,通过计算机视觉技术实现结构动位移的测量是可行的。上世纪八十年代中期以来,随着计算机软、硬件技术的不断发展,在土木工程领域,国内外很多学者尝试将计算机视觉技术用于结构的几何测试,包括结构的位移(静、动位移)、裂缝、表观外形等。Aw和Koo采用数码照相机来进行预设目标的坐标测量,经过基于计算机视觉理论的光束法优化后,其测试精度为2.24mm。Nieder?st和Maas利用数码摄像机来测试混凝土梁在脱水收缩过程中的变形情况,其在相机视场为80cm时测试精度可达0.03mm。相类似地将计算机视觉技术用于结构特性的测量例子还有很多,比如混凝土管片变形检测,梁破坏试验中的变形测量,远距离桥梁变形测量,轨道梁破损状况的检测等。相比于结构静态几何特性的测试,结构动态特性的测试应用相对不多。Olaszek利用摄像机来摄录桥梁的振动情况,并以计算机视觉技术进行结构动位移重构分析,得出的动位移测试精度为1mm左右。Yoshida等采用立体视觉技术来测试一块薄板的三维振动特性。

一、单相机标定

二、基于立体视觉的两相机立体标定

三、图像点跟踪

图像点跟踪是基于立体视觉的结构位移测试手段中的重要环节。在图像(或视频)分析过程中,点跟踪的精度会直接影响位移测试的最终结果。在实际测试中,本文采用两个黑方格组成的目标模板粘贴在所测结构的表面,方格尺寸均为30×30mm,两方格的交叉角点作为图像分析的跟踪点。

四、三维点重构

第8篇:计算机视觉识别技术范文

电力系统是我国国名经济的基石。电力系统是由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。现代社会需要的是安全可靠经济的电能。电力系统主要由发电输电变电配电及用电等5部分组成。电力系统是一个具有复杂的大系统由于用户的不断增加的需求,电网对于技术的要求水平也提出了越来越高的要求。

1 电力系统自动化的发展趋势总的发展趋势的特点研究

1.1 电力系统自动化的图形化特点

因为电力系统联网工程的正式启动,电力系统的调度管理、数据计算分析呈现出传输路径的交叉性,信息更新越来越高速这样的几种特点。在计算机技术和通信技术的快速发展下,电力系统技术整合也在蓬勃发展着。电力系统信息数据处理上已经不再使用传统的处理方式,而是使用图形化处理这样的新技术,这样看到图形,电力系统管理者就能了解电力系统的变化发展趋势,也就能对未来电力系统软件开发带来丝丝先机。

1.2 电力系统自动化的远程化特点

过去电力系统的硬件平台大部分是计算机,外加使用扩展测控法对接口电路工作开展监测。此类的设计有很多的优势,这种类型的设计的周期很长,扩展性也很好。但是这样的设计方式也具有着高成本、大体积、大功耗以及灵动性差的多种缺点。现在,正是有着网络技术的不断更新和电子技术的不断进步,远动终端设备已经变为越来越接近最优化、智能化和小型化、协调化。因此,建立在此基础之上的电力系统也具备了远程化的特点,使电力系统自动化在控制系统方面的发展更加贴近智能化。

1.3 电力系统自动化的分布化特点

发电率范围在几十兆瓦至几千瓦之间并且模型较小的发电单元,它的地点处于用户周围还有有高效和可靠特点的称为电力系统自动化技术分布化。分布式发电主要包括以液体或气体为燃料的内燃机、太阳能发电、微型燃气轮机和风力发电等等的其他一些发电方式。这种发电技术具有很好的灵活性,能够给与用户各不相同的感受。还能为边远商业区域提供可靠的电力资源,让他们使用具有再生特点的资源进行多次发电,这样的电能还具有稳定度高的特点,是具有分度化的特色。极端及技术、新材料技术和电力电子技术都要作为支柱技术被在其中使用。

2 电力系统与新技术的结合

2.1 与智能计算机的结合

计算机视觉技术就是与智能计算机的结合之一。使用计算机视觉技术能够方便的获得多种图像信息。在电力系统中应用计算机视觉技术。目前,计算/!/机视觉技术使用在电力系统中的作用是修改遥控系统在此同时提高它的性能。这主要表现在使用在线监测和开展无人操作或者环境监视,红外图像监测是电力设备在线监测常用方法中效果最好的。它既有这使用方便,又有着精准度较高的特点。红外图像识别方面主要就是使用计算机视觉技术,这样能取得较好的效果。计算机视觉技术的工作原理是在科学获取电力设备实时红外图像和电力设备正常工作时图像后,将两者开展对比。如果出现不正常。也就因此能够证明电力设备出现问题。第开展无人操作或者环境监视是使用微波双鉴探测器进行协助,将差分图像以及流光法一起使用对移动物体开展监测。如果出现不正常现象,那么系统就可以识别出来,并且警告我们。因为计算机视觉技术还处于起步阶段,其存在一定的不足之处。虽然计算机视觉技术发展迅速,但计算机视觉技术发展的并不完善,因为图像识别自身的复杂性的原因,所以现阶段还不能实现完全的无人操作。正是因为有着这些原因,在大多数情况下,计算机视觉技术只能够作为一种辅助技术。

2.2 与微机保护系统的结合

在电力系统自动化技术发展速度过快并且伴随着相关微机设备应用范围越来越普遍的情况下。人们越来越严格的要求微机保护系统。更简单的说,也就是原有的电力系统自动化技术当中的微机保护系统已经无法满足社会发展的需要。人们需要的微机保护系统应该具备更加牢靠与稳定的可以对通信进行保护的能力。这样才能够达到人们希望人机互动的效果。这样的系统在对硬件提高出高要求的同时也对软件业产生了更加具体的要求。例如,我国在上世纪末将第一套微机线路保护设备投入使用,并且该设备因为性能占据极大的优势从而获得世界各国用户的普遍认可。

在继电保护设备中,我们更加需要完善的问题就是设备的实时性。设备的实时性直接关乎电网的安全稳定,它直接受到其影响。假如设备实时性出现缺陷,会给电力系统带来难以补救损失的可能性。现阶段在我国电力系统中应用的嵌入式系统通常来说主要为C/C++语言。这是因为该系统不仅灵活性高并且可移植性也很强。同时该系统还使用了能够随时改变的模块化,目的在于处理好各种存在可能性会产生的问题但是却又不能够进行更换的难题。在提供便利的同时也能够尽最大的努力满足用户各种要求。

第9篇:计算机视觉识别技术范文

关键词:多源图像;融合技术;棉花;病虫害;识别诊断

中图分类号:TP391.43;S435.6 文献标识码:A 文章编号:0439-8114(2013)11-2555-03

随着城市化进程不断加快,从事农业劳作的劳动力总数急剧减少,农业生产与加工的逐步自动化是社会发展和进步的需求。特别是对于农作物病虫害监测从传统的根据农业部的病虫害监测调查规范进行调查,通过人工调查、人工记录,到微小昆虫自动计数技术、昆虫诱捕自动记录装置来对农作物病虫害进行监测,这些信息收集和数据管理都存在劳动量大、效率低、数据误差大的问题。随着计算机技术和传感器技术的快速发展,图像融合技术在军事、气象、医学、土地资源管理等方面得到了广泛的应用,而如何将图像融合技术应用在农作物病虫害中是极具有研究价值的课题。

1 棉花病虫害诊断技术研究意义及发展趋势

棉花作为主要的经济作物一直在中国和湖北省农业生产中占有重要地位,但由于品种、栽培制度、生态环境等变化及棉花生长环境日益恶化,病虫害有不断加重趋势。危害棉花的主要病害有炭疽病、黑斑病、枯萎病、黄萎病等,炭疽病在长江流域棉区的发生尤为严重,一般苗期发病率为20%~70%,严重时可达90%;黑斑病在阴湿多雨年份往往猖獗流行,给棉花生产造成毁灭性灾害;而枯萎病在棉区一直发生较多,死苗严重,造成的危害主要表现在产量降低,品质变劣方面;自上世纪80年代末枯萎病得到控制后,黄萎病上升为棉花第一病害。目前黄萎病发病面积达到全国棉田面积的50%以上,发病后棉苗减产30%~70%,有的甚至绝产,而且严重影响棉花品质。采用先进技术提高棉花病虫害有效防治及控制已迫在眉睫。

1.1 棉花病虫害诊断技术的研究意义

在进行植物保护和防治农作物病虫害的各类方法中,化学防治是投入少、见效快、收效大的有效方法,特别是针对在大生态区域内可能暴发成灾的重要病虫草害,化学防治迄今仍是最快速而有效的方法,一般可以挽回15%~30%的农作物产量损失。使用农药(各种杀菌剂、除草剂等)进行化学防治在世界各国一直占主导地位,它投入较少,防治迅速,特别是当大面积、暴发性病害发生时,只有化学防治才能取得较好的防治效果。同样,在棉花病虫害综合防治中,化学防治仍然是及时有效地控制病虫对棉花危害的最后一道把关防治措施。但长期大量使用农药不仅污染环境,而且这些农药会通过空气、水等途径进入人体,对人类的身体健康构成危害;又由于棉花病虫害症状的复杂性和模糊性,农业生产者受个体素质和人为主观因素的影响,往往不能正确合理地判断病情,导致滥用农药、化肥等引起更大的危害;此外,由于中国正步入老龄化社会,从事农业劳动的人口在减少,由劳动力不足带来的农业减产问题已日趋严重。所以,精确作物病虫害管理和机械化变量施药技术的研究和应用势在必行。为实现精确的棉花病虫害管理和变量施药,首先要能够准确地识别棉花病虫害种类及其危害程度。传统的方法主要依靠生产者或专家经验来判断病虫害原因及其危害程度,由于个体素质的差异以及其他因素的影响,往往很难做到对病虫害做出精确定量分析和判断,因而容易造成不合理的病虫害防治,也对生产管理者的农技水平要求较高。一些智能决策支持系统虽然能识别诊断棉花病虫害,但是过程复杂,不能进行实时处理。随着信息技术、光谱技术和计算机视觉技术的发展使基于生物信息的作物病虫害智能识别诊断成为可能。通过多源图像融合技术快速准确地获取棉花病虫害信息,对已发生病虫害的棉花区域根据病虫害程度实行定量喷施农药。这样既可大量节省农药,提高效率,降低成本,降低对劳动力的依赖,同时大幅度减轻农药对农业生态环境的污染,提高棉花病虫害防治水平。研究多源图像融合技术对农作物病虫害诊断具有重要的学术意义和经济价值。

1.2 棉花病虫害诊断技术发展趋势

纵观近几年国内对作物病虫害智能识别诊断的研究,目前对棉花作物病虫害识别诊断主要集中在以专家系统为代表的智能化信息技术和光谱技术上,应用计算机视觉技术对棉花作物病虫害识别的研究报道较少[1,2],而结合光谱技术和计算机视觉技术进行研究的则未见报道。目标的高分辨率和高识别率是对获取目标信息的基本要求,仅仅利用可见光范围或在近红外范围的计算机视觉技术进行作物病虫害识别诊断,其单一光谱不足以准确、全面反映作物病虫害的差异,还需利用其他生物信息对其补充和加强,以达到全面地反映作物病虫害的差异[3]。

为了实现对低探测性目标的探测和识别,必须大力发展先进的目标探测系统,而由多源传感器组成的光电成像系统是最为常见的目标探测系统。图像融合就是利用各种成像传感器得到的同一目标或同一场景的图像,综合这些不同图像的冗余信息和互补信息,以获得更为全面准确的图像描述。为此,针对湖北省主要经济作物棉花,综合利用光谱技术、计算机视觉技术及多源信息融合技术,基于多源图像信息(可见光和近红外视觉图像信息)融合棉花病害(炭疽病和黑斑病)识别诊断技术。深入研究作物在不同病虫害危害下的反射光谱特性及变化规律,确定光谱敏感波段及其特征表现,提取可以有效表征作物不同病虫害条件、不同危害程度下的计算机视觉图像的灰度、纹理、形态特征信息和近地光谱特征信息,探索基于多传感信息融合的病虫害识别诊断方法,构建病虫害智能识别系统,为精确作物病虫害管理和机械化变量施药技术提供理论基础。

2 多源图像融合技术

图像融合[4]是对多幅源自同一场景的图像进行综合,以获得更好的视觉效果和易于机器识别为目的,产生比单一信息源更为精确、更完善、更可靠的图像。多源传感器图像是由成像机理不同的多种传感器获得的图像。由于每种成像传感器都是为了适应某些特定的环境和使用范围而设计的,具有不同成像机理的多种传感器获得的图像之间存在信息的冗余性和互补性,通过对其进行融合,能够提高系统可靠性和图像信息的利用率。随着科学发展和技术进步,采集图像数据的手段不断完善,出现了各种新图像获取技术。如今图像融合技术广泛应用于图像处理、遥感、计算机视觉以及军事等领域[5]。利用图像融合技术可以准确地获取检测数据,如在医学图像分析中的超声成像、核磁共振、计算机层析、血液细胞自动分类计数、癌细胞识别等极大地提高了准确率[6,7];图像融合技术在遥感雷达卫星的发展后,已成为遥感图像处理和分析的重要研究热点,应用于土地资源调查、环境监测、地形测绘等[8]。图像融合技术应用在农业生产中,目前研究方向主要集中在对农产品的无损检测和农作物生长态势及产量评估方面。如采用互信息最佳阈值迭代优化分割法对可见光和近红外图像进行融合来对番茄成熟度进行无损检测研究[9];通过加权平均融合法对红外和可见光图像实现对苹果进行无损检测研究[10];采用蚁群算法的模糊C均值聚类图像分割算法的图像融合技术对作物几何参数进行测量。

多源传感器图像融合系统一般有3种类型:像素级融合、特征级融合和决策级融合。

2.1 像素级图像融合

像素级图像融合是通过对源图像进行预处理和空间配准,对处理后的图像采取适当的算法进行融合,得到融合图像后再进行显示和后续处理。简单的像素级融合方法主要有:像素灰度值平均或加权平均,像素灰度值选大,像素灰度值选小。简单的像素级融合方法结构简单、易于实现,但应用范围有限,融合结果不理想。故现在的融合方法多采用基于对源图像的多尺度分解。这种分解方法是一种多尺度、多分辨率的图像融合方法,是在不同尺度、不同空间分辨率、不同分解层上分别进行融合。这种融合方法能明显改进融合效果[11]。

2.2 特征级图像融合

特征级图像融合是从不同的成像传感器所获得的同一对象图像中提取一些特征,产生特征矢量,然后对这些特征矢量进行融合。特征级图像融合是中间层的图像融合,精度一般。其融合方法有基于假设前提及统计分析的方法和基于知识的方法。

2.3 决策级图像融合

决策级图像融合是最高层次的融合,是首先依据每一个成像传感器所获得的同一对象图像各自进行预处理、特征提取、识别和判决后,做出独立的决策,然后将这些独立的决策综合起来,给出最终决策。决策级图像融合适合于多类不同传感器图像的融合,但融合结果精度较差。其融合方法有多重逻辑推理方法、统计方法、信息论方法等都可用于决策层的图像融合。

特征级图像融合和决策级图像融合方法通常应用于某些特殊场合,像素级图像融合的应用更普及,融合所得图像更有利于人眼的判读、欣赏和机器识别。对于已经配准好的图像,像素级图像融合方法不需要显式地提取图像特征,在速度和鲁棒性上有明显优势。为此采取像素级图像融合方法对农作物病虫害的可见光和近红外图像进行融合处理,使其符合人类视觉特征,融合结果更有利于对图像作进一步分析、理解和识别。

3 多源图像融合技术对棉花病虫害诊断的方法

1)在特定栽培条件下,培育不同棉花病虫害的试验样本及正常的对比样本。

2)对棉花病虫害样品的叶片和冠层进行光谱分析。利用便捷式光谱仪测量叶片和冠层的光谱,寻找棉花病虫害种类的敏感光谱波段及其反射率特征,分析不同病虫害种类和病虫害程度的敏感光谱波段反射率特征的变化规律。

3)根据光谱分析结果,构建多源图像计算机视觉采集系统,采集棉花作物样本多光谱图像,用VC或MATLAB编写计算机图像处理软件对图像进行处理和特征提取。

4)对所获取的特征应用模糊特征优选、主成分分析(PCA)和独立分量分析(ICA)进行优化组合和筛选,通过各种统计方法寻求作物病症与特征对应关系。建立图像特征与病种、病虫害程度的关系模型,利用模式识别方法进行棉花病虫害种类及程度的模式识别检测试验[12]。

4 展望

棉花是中国和湖北省主要的经济作物,长期以来棉田病虫害对棉花生产带来极大危害,因此,对棉花病虫害防治方法与技术的研究至关重要。对棉花作物病虫害防治的各种方法中,传统的方法是依靠人们的经验确认病虫害的发生时间、区域、种类和发生程度等,且是进行手工或机械喷洒农药,这不仅劳动效率低,劳动成本高,而且常规施药技术会带来农药利用率低下、水资源浪费、环境污染、农药在作物及其产品中的残留导致对人类的危害等。所以,结合光谱技术和计算机技术开展棉花病虫害的识别诊断研究具有重要的学术意义和经济价值。

参考文献:

[1] 周小燕,史 岩,李道亮,等.棉花病虫害诊断专家系统的研究与设计[J].莱阳农学院学报,2005,22(1):9-11.

[2] 严智燕,廖桂平,高必达.植物病虫害防治中农业专家系统的研究进展[J].中国农学通报,2005,21(5): 415-417.

[3] YUTAKA S,TSUGUO O.Automatic diagnosis of plant disease recognition between healthy and diseased leaf[J].农业机械学会杂志,1999,61(2):119-126.

[4] 何 友,王国宏,陆大金,等.多传感器信息融合及应用[M].北京:电子工业出版社,2000.

[5] 王 宏,敬忠良,李建勋.多分辨率图像融合的研究与进展[J].控制理论与应用,2004,21(1):145-151.

[6] ZHENG Y F, ESSOCK E A, HANSEN B C.Advanced discrete wavelet transform fusion algorithm and its optimization by using the metric of image quality index[J].Optical Engineering,2005,44(3):1-12.

[7] 李秋华.基于红外图像信息融合的目标检测和识别技术研究[D].长沙:国防科学技术大学,2002.

[8] 吉 微.多源气象卫星图像融合技术应用研究[D].南京:南京信息工程大学,2009.

[9] 李明喜.基于多源图像融合的收获目标准确定位研究[D].江苏镇江:江苏大学,2008.

[10] 杨万利,沈明霞,严 君.红外图像处理技术在苹果早期淤伤检测中的应用[J].计算机工程与设计,2010(1):149-152.