公务员期刊网 精选范文 初中数学数学方法范文

初中数学数学方法精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的初中数学数学方法主题范文,仅供参考,欢迎阅读并收藏。

第1篇:初中数学数学方法范文

一、了解大纲要求,把握教学方法

数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作是由一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。

1.明确基本要求,渗透“层次”教学。大纲对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”“理解”和“会应用”。在教学中,要求学生“了解”的数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。

2.从“方法”了解“思想”,用“思想”指导“方法”。关于初中数学中的数学思想和方法的内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。

二、遵循认识规律,把握教学原则,实施创新教育

要达到大纲的基本要求,教学中应遵循以下几项原则:

1.渗透“方法”,了解“思想”。由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。

2.训练“方法”,理解“思想”。数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中三个年级的教材,钻研教材,努力挖掘教材中进行数学思想、方法渗透的各种因素,对这些知识从思想方法的角度作认真分析,按照初中三个年级不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入深,由易到难分层次地贯彻数学思想、方法的教学。

3.掌握“方法”,运用“思想”。数学知识的学习要经过听讲、复习、做习题等才能掌握和巩固。数学思想、方法的形成同样有一个循序渐进的过程。只有经过反复训练才能使学生真正领会。另外,使学生形成自觉运用数学思想方法的意识,必须建立起学生自我的“数学思想方法系统”,这更需要一个反复训练、不断完善的过程。

第2篇:初中数学数学方法范文

我们又该如何进行数学思想方法的教学呢?我认为可着重从以下几个方面入手:

一 数学思想方法的教学实践体会

1.在知识发生过程中渗透数学思想 。

方法

由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱,把数学思想、方法作为一门独立的课程还缺乏应有的基础。因而只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,从而获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如华东师大版第二章《有理数》,与原来编的教材相比,它少了一节——"有理数大小的比较",而它的要求则贯穿在整章之中。在数轴教学之后,就引出了"在数轴上表示的两个数,右边的数总比左边的数大""正数都大于0,负数都小于0,正数大于一切负数"。而两个负数比较大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散;又向学生渗透了数形结合的思想,学生易于接受。

在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地、潜移默化地启发学生领悟蕴涵于数学之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等错误做法。

2.在思维教学活动过程中揭示数学思想方法 。

数学课堂教学必须充分暴露思维过程,让学生参与教学实践活动,揭示其中隐含的数学思想,才能有效地发展学生的数学思想,提高学生的数学素养,下面以"多边形内角和定理"的课堂教学为例,简要说明。教师:三角形和四边形的内角和分别为多少?四边形内角和是如何探求的?(转化思想:三角形)那么,五边形内角和你会探求吗?六边形、七边形……n边形内角和又是多少呢?教师:从四边形内角和的探求方法,能给你什么启发呢?五边形如何划归为三角形?数目是多少?六边形……n边形呢?你能否用列表的方式给出多边形内角和与它们的边数、划归为三角形的个数之间的关系?从中你能发现什么规律?猜一猜n边形内角和有何结论?(类比、归纳的思想)。让学生亲自参加与探索定理的结论及证明过程,大大激发了学生的求知兴趣,同时,他们也体验到"创造发明"的愉悦,数学思想在这一过程中得到了有效的发展。

3.在问题解决过程中强化数学思想 。

方法

在数学教学活动中,常常会出现这样的现象:学生在课堂听懂了,但课后解题,特别是遇到新题型便无所适从。究其原因就在于教师在教学中仅仅是就题论题,殊不知授之以"渔"比授之以"鱼"更为重要。因此,在数学问题的探索教学中重要的是让学生真正领悟隐含于数学问题探索中的数学思想方法。针对这种现象,教师应全面展示知识的发生发展过程,并发挥学生的主体作用,充分调动学生参与数学的全过程,让全体学生能在躬行的探索中理解知识,掌握方法,感悟数学思想。

4.及时总结以逐步内化数学思想方法 。

数学教材是采用蕴涵披露的方式将数学思想融于数学知识体系中,因此,适时对数学思想做出归纳、概括是十分必要的。概括数学思想方法要纳入教学计划,应有目的、有步骤地引导学生参与数学思想的提炼概括过程,尤其是在章节结束或单元复习中对知识复习的同时,将统摄知识的数学思想方法概括出来,可以加紧学生对数学思想方法的运用意识,也使其对运用数学思想解决问题的具体操作方式有更深刻的了解,有利于活化所学知识,形成独立分析、解决问题的能力 。

二 精心设计教学案例,把数学思想方法融入到我们的课堂

做好数学思想方法的教学,要注重教学案例的设计和选择。数学问题是数学思想方法的载体,对教学案例中数学问题进行精心的选择和设计,有利于达到数学思想方法的教学效果。

我们深刻地体会到数学思想方法的学习,不能仅仅停留在教师的口头上,要真正地把数学思想方法融入到我们的课堂设计中,融入到学生的实践、操作中,才能真正帮助学生把数学思想方法内化为自己的数学素养,这就需要我们教师善于把握教材,善于选择体现数学思想方法的数学问题,善于寻找我们的数学思想渗透方法,设计好教学案例。要求我们不断地提高自身的数学素养以及能够熟练地渗透数学思想

方法。

三 精心设计习题,把数学思想方法的学习延伸到课外

数学思想方法的学习不仅仅体现在我们的课堂活动和学生的自主学习中,还要把数学思想方法内化为学生自己的数学素养是一个长期的过程。这就需要我们教师能够精心设计习题,通过设计的习题,引导学生以自主探索、合作交流的形式在课外自主完成,习题的设计要有利于我们课堂中数学思想方法的延展,要有利于学生利用数学思想方法探索研究问题,让学生通过体验、发现、归纳、逐步积累来学习数学思想方法,进一步培养学生学会用数学的眼光看待事物,用数学思想方法解决问题,激发学生的创新思维能力。

第3篇:初中数学数学方法范文

【关键词】 初中数学;数学方法;数学思想

【中图分类号】G63 【文献标识码】B 【文章编号】2095-3089(2013)9-0-01

《数学课程标准》明确指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。这就要求我们要把数学思想和数学方法作为一个重要的基础知识来学习,作为一个优秀的数学教师,应该在数学教学中重视数学思想和方法的渗透,以下笔者就谈谈,对数学方法和数学思想的理解和认识。

一、何为数学方法和数学思想

所谓数学方法就是解决数学问题的基本步骤,它是数学思想的具体反映。在教学的初步阶段,掌握数学方法至关重要。目前初中阶段,主要数学思想方法有:数形结合思想、分类讨论思想、整体思想、化归思想、转化思想、归纳思想、类比思想、函数思想、辩证思想、方程与函数思想方法等。所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。我们在解决数学问题所使用的方法中,往往都体现着数学思想。数学思想是数学教学的内核和重中之重,而数学方法则是数学教学的更为具体的内容。如果说数学思想是数学的灵魂,那么数学方法则是数学的行为。学生在不断运用数学方法解决数学问题的过程之中所积累的经验,会逐步地抽象和升级为数学思想。在初中数学教材中集中了大量的优秀例题和习题,它们所体现的数学知识和数学方法固然重要,但其蕴涵的数学思想却更显重要,作为一个执教者,在具体的数学教学中要加强对学生进行数学思想和数学方法的训练,要善于挖掘例题、习题的潜在功能。

二、熟悉课程标准,适时渗透数学方法与数学思想

《数学课程标准》是数学教学之根本,课标中明确对数学方法和思想的教学分为三个层次,即“了解”、“理解”和“会应用”。三个层次由低到高,由简单到复杂。课标对各种数学思想和方法都提出了具体的要求层次,如要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。要求“理解”和“会应用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图像法等。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次,不能随意设置难度,否则,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致丧失学习的信心。在初中数学教学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。只是方法较具体,而思想则抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题,以致达到数学思想的境界,使得数学方法和思想相互渗透。如初中数学七年级上册课本《有理数》这一章,在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”,“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比较大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出,难点分散,又向学生渗透了数形结合的思想,学生易于接受。

三、适时提炼和概况,将数学方法与思想完美结合

在数学教学的过程中,提炼和概况非常重要,它可以引导学生对知识进行总结归纳,帮助学生梳理知识。在数学教材中数学思想、方法分散在各个不同部分,而同一问题又可以用不同的数学思想、方法来解决。因此教学时教师要有意识地培养学生自我提炼、揣摩概括数学思想方法的能力,这样才能把数学思想、方法的教学落在实处,才能让数学方法和思想完美结合。如讲“利用待定系数法确定二次函数解析式”时,可启发学生去发现确定解析式的关键是求出各项系数,可把他们看成三个“未知量”,告诉学生利用方程思想来解决,那学生就会自觉的去找三个等量关系建立方程组。在这里如果单讲解题步骤,就会显得呆板、僵硬,学生只知其然,不知其所以然。与此同时,还要注意渗透其他与方程思想有密切关系的数学思想,诸如换元、消元、降次、函数、化归、整体、分类等思想,这样可起到拨亮一盏灯,照亮一大片的作用。

总之在初中数学教学的过程中,要熟悉课程标准,把握数学方法和数学思想的三个层次,要善于捕捉时机,善于从具体的问题中提炼出具有普遍指导作用的数学思想方法,不断向学生渗透、强化,从而上升为数学思想,建构全面完整的数学知识体系,全面提升数学素养,最终有效应用数学知识,形成数学能力。

参考文献

[1]初中数学课程标准.

[2]罗连慧.《初中数学教学创新情境探索》,《中国科教创新导刊》,2009(9).

第4篇:初中数学数学方法范文

一、了解《数学新课标》要求,把握教学方法

1.新课标要求,渗透“层次”教学。《数学新课标》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次,不能随意将“了解”的层次提高到“理解”的层次、把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂、高深莫测,从而导致他们失去信心。如初中数学三年级上册中明确提出了“反证法”的教学思想,且揭示了运用“反证法”的一般步骤,但《数学新课标》只是把“反证法”定位在通过实例“体会”反证法的含义的层次上,我们在教学中应牢牢地把握住这个“度”,千万不能随意拔高。

2.从“方法”了解“思想”,用“思想”指导“方法”。关于初中数学中数学思想和方法的内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含,只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在初中数学教学中,要加强学生对数学方法的理解和应用,以达到对数学思想的了解,使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的教学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化。课本引入了许多数学方法,比如换元法、消元降次法、图象法、待定系数法、配方法等。在数学教学中,通过对具体数学方法的学习,使学生逐步领略了内含于方法的数学思想;同时,数学思想的指导又深化了数学方法的运用。这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。

二、遵循认识规律,把握教学原则,实施创新教育

要达到《数学新课标》的基本要求,教学中应遵循以下几项原则:

1.渗透“方法”,了解“思想”。如北师大版初中数学七年级上册课本《有理数》这一章,与原来部编教材相比,它少了一节──“有理数大小的比较”,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大”、“正数都大于0,负数都小于0,正数大于一切负数”。而两个负数比较大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,既使这一章节的重点突出、难点分散,又向学生渗透了数形结合的思想,学生易于接受。

在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。

2.训练“方法”,理解“思想”。如在教学同底数幂的乘法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a表示底数,用m、n表示指数的一般法则以后,再要求学生应用一般法则来指导具体的运算。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯起到了重要作用。

3.掌握“方法”,运用“思想”。比如运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握。学习一次函数的时候,我们可以用乘法公式类比;在学次函数有关性质时,我们可以和一元二次方程根与系数的性质类比。通过多次重复性的演示,能使学生真正理解、掌握类比的数学方法。

第5篇:初中数学数学方法范文

数学思想和方法是数学知识的精髓,又是知识转化为能力的桥梁。目前初中阶段,主要数学思想方法有:数形结合的思想、分类讨论的思想、整体思想、化归的思想、转化思想、归纳思想、类比的思想、函数的思想、辩证思想、方程与函数的思想方法等。提高学生的数学素质、指导学生学习数学方法,毋用置疑,必须指导学生紧紧抓住掌握数学思想方法是这一数学链条中的最重要的一环。许多数学家和教育家历来强调对中学生的数学思想教育,其目的就是要提高学生的数学思维能力和数学素养。在初中数学教材中集中了大量的优秀例题和习题,它们所体现的数学知识和数学方法固然重要,但其蕴涵的数学思想却更显重要,作为一个执教者,要善于挖掘例题、习题的潜在功能。

九年义务教育全日制初级中学数学《新课程标准》中指出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛本文由收集整理的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

1了解《大纲》要求,把握教学方法

所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。

1.1明确基本要求,渗透“层次”教学。《数学大纲》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。

教师在整个教学过程中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在《教学大纲》中要求“了解”的方法有:分类法、类经法、反证法等。要求“理解”的或“会应用”的方法有:待定系数法、消元法、降次法、配方法、换元法、图象法等。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们推动信心。如初中几何第三册中明确提出“反证法”的教学思想,且揭示了运用“反证法”的一般步骤,但《教学大纲》只是把“反证法”定位在“了解”的层次上,我们在教学中,应牢牢地把握住这个“度”,千万不能随意拔高、加深。否则,教学效果将是得不偿失。

1.2从“方法”了解“思想”,用“思想”指导“方法”。关于初中数学中的数学思想和方法内涵与外延,目前尚无公认的定义。其实,在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。只是方法较具体,是实施有关思想的技术手段,而思想是属于数学观念一类的东西,比较抽象。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,比如换元法,消元降次法、图象法、待定系数法、配方

法等。在教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想;同时,数学思想的指导,又深化了数学方法的运用。这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。

2渗透整体思想,优化解题过程

整体思想注重问题的整体结构,将题中的某些元素或组合看成一个整体,从而化繁为简,化难为易。例如 化简:1/(a+2)(a+3)+1/(a+3)(a+4)+/1(a+4)(a+5)时按常规方法进行通分,显然最简公分母比较复杂,计算量较大。若从整体观察分式的特征,可逆用分式加减法法则及规律公式1/n(n+1)=1/n-1/(n+1),将原分式分离变形。即原式=1/(a +2)-1/(a+3)+1/(a+3)-1/(a+4)+1/(a+4)-1/(a+5)=1/(a+2)-1/(a+5)=3/(a+2)(a+5),从而使问题简单化。

可见把问题放到整体结构中去考虑, 就可以开拓解题思路,优化解题过程。

3渗透数形结合思想,探究知识的奥秘

数形结合在数学中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻画与几何图形的直观描述相结合,使代数与几何问题相互转化,使抽象思维和形象思维有机结合。应用数形结合思想,就是将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。数是形的抽象概括,形是数的几何表现。通过数形结合往往可以使学生不但知其然,还能知其所以然。如在数轴教学中渗透了“数形结合”思想,在平面直角坐标系中坐标的几何意义若从图形来观察将有助于理解和应用。

例:点p在反比例函数位于第一象限的图象上,过点p作ap垂直x轴于点a,作bp垂直y轴于点b,矩形oapb的面积为6,则该反比例函数的关系式为。

通过图象观察可知,由于矩形oapb的面积等于点p的横坐标与纵坐标的绝对值的乘积,而在反比例函数的关系式y=k/x中,k=xy,因为点p在反比例函数的图象上且矩形oapb的面积为6,所以|k|=|xy|=6,再根据图象位于第一、三象限,可知k为正数,得到k=6, 该反比例函数的关系式为y=6/x.

4渗透反证法,训练缜密思维

第6篇:初中数学数学方法范文

目前我国许多教育工作者都在寻求基础学科的创新教学方式,对于基础教育中的数学来说,中学数学教学给学生的印象总是有些抽象、散乱、遥远、不可捉摸,不讲道理。现在的数学,似乎已被切割为一个又一个公式、符号、定理、习题,学习数学,似乎等同于一大堆题目, 将解题的过程当作从复习资料和参考书上拷贝答案。对这样的一门不知从哪里来,又不知往何处去的课程,学生内心的彷徨和无奈是可想而知的。出路何在?众所周知,一切科学研究,毫无例外地都要经历提出问题、分析问题、解决问题的过程。也就是说,科学研究是由问题驱动的。美国数学家哈尔莫斯(P.R.Halmos)曾经指出:“问题是数学的心脏”。著名科学方法论学者源波普尔(K.R.Popper)认为:“正是问题激发我们去学习,去发展知识,去实践,去观察”。数学家们无一不懂得问题在整个数学发展以及个人创造活动中的地位和作用,正是问题驱使数学家付出毕生的精力去追求答案。数学发展的历史使人们意识到问题是数学发展的生长点。因此,解决的关键就在于就以问题为驱动进行教育创新,运用数学被发现时的本真问题, 加以提炼、加工, 呈现给学生, 引导他们进行火热的思考,把数学教学用一系列的问题组织起来, 在数学问题驱动下呈现数学教学。

实际上,问题对于数学教学至关重要,一方面,从学科属性来看,学科数学的材料来源于科学数学,问题同样是学科数学的生长点;另一方面,从教育属性来看,根据维果斯基“最近发展区”理论,教学可以促进学生发展,从“已知区”到“最近发展区”。我们认为,促进学生发展的动因是问题驱动,问题也是数学教学的生长点。这里要强调,数学教学中的问题驱动,具体来说主要有两个核心,第一点,就是把握好问题驱动式教学中的互动引导,以问题引导学生理解知识应用的范例,进而对范例实施变换达到创造性地理解和应用知识的目的,可以引导学生尝试创新更好的知识。第二点,也是最重要的一点,即合理设计问题驱动式教学的流程,在数学教学中,学生正是通过一个一个的数学问题的提出和解决,从而认识到数学定理的发现、形成和发展过程,学会数学的思维、数学的交流、数学的推理和数学问题的解决。通过这个综合过程,激发了学生学习的兴趣,培养了学生良好的数学思想。问题驱动式教学应有以下几个流程:

1.设计一组出发问题,自主学习,构建数学知识

2.对构建的数学知识的分析与认识

3.实际运用,深化理解

而如何选取合适的问题驱动方法,才是以上流程的核心问题,下面具体谈谈设计问题驱动的方法。

(1)数形结合

数与形构成了数学研究的基本对象,数形结合是一种极富数学特点的信息转换,在数学上总是用数的抽象性质来说明形的事实,同时又用图形的性质来说明数的事实。数形结合过程中潜在地蕴含着两种主要的思维方式:一是严谨的逻辑思维,一是直觉的感知思维。数形结合是达到沟通逻辑思维与直觉思维、形成数学深度理解的一种有效途径。美国数学家斯蒂恩曾经指出:如果一个特定的问题可以被转化为一个图形,那么思想就整体地把握了问题,并且能创造性地思索问题的解法。蔡金法先生通过研究发现,中国学生在评价复杂问题解决的开发性任务方面不如美国学生,其原因是美国学生在问题解决的过程中更喜欢使用图形策略与图形表征。因此,图形表征是一种重要的思想方法,数形结合也是设计问题驱动的良好策略。

(2)搭建知识框架

关于知识的建构,建构主义及情境认知理论均认为知识的建构是在新、旧知识经验的相互作用下完成的,学习者在建构新知识时,既要围绕当前问题解决活动获取有关的信息,同时又要不断激活原有的知识经验,对当前问题作出分析和推论、综合和概括,同时新、旧经验的合理性又在问题解决过程中得到检验。在知识建构活动中,新、旧知识经验之间的相互作用得以充分展开,为知识建构提供了理想的途径。因此,知识建构教学的关键在于教师怎样在学生的新旧知识互动过程中提供必要的引导和有力的支持――搭建知识框架。根据知识结构“网络”论,教师应在学生“最近发展区”内设置问题系列,为学生搭建知识框架,建立新旧知识之间的联系,协助学生构建知识,并给学生提供实现由现有认知水平向潜在认知水平发展的机会,促进学生的认知发展。

以中学数学中的“弧度制”教学为例,有些教师上课时单刀直入给出角度制与弧度制的换算关系,然后就是反复演练,这样的教学枯燥乏味,属于典型的被动灌输和机械训练。如果按照数学知识自身的生长点设计问题驱动,展示数学知识发生、发展以及形成过程,会收到意想不到的好效果。 比如“怎样把一个角表示成实数?”这个问题,可以先让让学生自己想办法解决,根据情况点拨,发现原有知识固着点――圆周率等于圆的周长与直径的比值与新问题的联系,引用角的弧度制表示问题,然后再进入角度制与弧度制换算的知识学习。启发式的思想实质就是搭建知识框架的问题驱动。具有启发性的问题源于教师对教材的熟练应用,更源于教师对知识的深刻理解,教学创新就存在于问题设计之中。

(3)提供变式方法

数学教学的深化和发展是通过变式来完成的。变式是促进有效数学教学的中国方式。数学学习往往要历经“过程”而达成,然后转变为“概念”的认知过程。顾泠沅先生把变式分为概念性变式和过程性变式两类。概念性变式被论述为“在教学中用不同形式的直观材料或事例说明事物的本质属性,或变换同类事物的非本质特征以突出事物的本质特征。目的在于使学生理解哪些是事物的本质特征,哪些是事物的非本质特征,从而对一事物形成科学概念”。过程性变式的主要含义是,在数学活动过程中,通过有层次地推进,使学生分步解决问题,积累多种活动经验。因此,对于数学概念、命题推演和问题解决等每一类数学学习对象,均存在着概念性变式和过程性变式。 我们认为,变式教学就是问题驱动,可以运用变式策略从两个方面设计问题驱动:一是从概念性变式方面,通过直观或具体的变式引入概念,通过非标准变式突出概念的本质属性,通过非概念变式明确概念的外延,常用的有“反例变式”。二是从过程性变式方面揭示概念的形成过程,在问题解决过程中设置问题,构建特定的经验系统的变式,如一题多变、一题多解、一法多用等。例如,关于“多边形的外角和”定理的教学,可以利用定理变式设计问题驱动。

问题1:假如你从一条封闭曲线上的任一点A出发,行走方向时时在改变,当你重新回到出发点A时,所有角度的改变量之和是多少?

问题2:当你沿着多边形的任一顶点A出发,再回到出发点A时,情况又怎样?学生从中可以发现“多边形的外角和”定理。然后再探索证明结论的方法。

从问题1到问题2的变式中,把“变的部分”――闭曲线、闭折线(多边形)和“不变的部分”――外角和加以区别,从“不变”中探求本质属性,从而深刻地理解外角和定理。

第7篇:初中数学数学方法范文

一、结合初中数学课程标准,就初中数学教材进行数学思想方法的教学研究

首先,要通过对教材完整的分析和研究,理清和把握教材的体系和脉络,统揽教材全局,高屋建瓴。然后,建立各类概念、知识点或知识单元之间的界面关系,归纳和揭示其特殊性质和内在的一般规律。例如,在“因式分解”这一章中,我们接触到许多数学方法一提公因式法、运用公式法、分组分解法、十字相乘法等。这是学习这一章知识的重点,只要我们学会了这些方法,按知识――方法――思想的顺序提炼数学思想方法,就能运用它们去解决成千上万分解多项式因式的问题。又如:结合初中代数的消元、降次、配方、换元方法,以及分类、变换、归纳、抽象和数形结合等方法性思想,进一步确定数学知识与其思想方法之间的结合点,建立一整套丰富的教学范例或模型,最终形成一个活动的知识与思想互联网络。

二、以数学知识为载体,将数学思想方法有机地渗透入教学计划和教案内容之中

教学计划的制订应体现数学思想方法教学的综合考虑,要明确每一阶段的载体内容、教学目标、展开步骤、教学程序和操作要点。数学教案则要就每一节课的概念、命题、公式、法则以至单元结构等教学过程进行渗透思想方法的具体设计。要求通过目标设计、创设情境、程序演化、归纳总结等关键环节,在知识的发生和运用过程中贯彻数学思想方法,形成数学知识、方法和思想的一体化。

应充分利用数学的现实原型作为反映数学思想方法的基础。数学思想方法是对数学问题解决或构建所做的整体性考虑,它来源于现实原型又高于现实原型,往往借助现实原型使数学思想方法得以生动地表现,有利于对其深入理解和把握。例如:分类讨论的思想方法始终贯穿于整个数学教学中。在教学中要引导学生对所讨论的对象进行合理分类,然后逐类讨论,最后归纳总结。教师要帮助学生掌握好分类的方法原则,形成分类思想。

三、在知识的引进、消化和应用过程中促使学生领悟和提炼数学思想方法

数学知识发生的过程也是其思想方法产生的过程。在此过程中,要向学生提供丰富的、典型的以及正确的直观背景材料,创设使认知主体与客体之间激发作用的环境和条件,通过对知识发生过程的展示,使学生的思维和经验全部投入到接受问题、分析问题和感悟思想方法的挑战之中,从而主动构建科学的认知结构,将数学思想方法与数学知识融汇成一体,最终形成独立探索分析、解决问题的能力。

概念既是思维的基础,又是思维的结果。恰当地展示其形成的过程,拉长被压缩了的“知识链”,是对数学抽象与数学模型方法进行点悟的极好素材和契机。在概念的引进过程中,应注意:①解释概念产生的背景,让学生了解定义的合理性和必要性;②揭示概念的形成过程,让学生综合概念定义的本质属性;③巩固和加深概念理解,让学生在变式和比较中活化思维。在规律的揭示过程中,教师应注意灌输数学思想方法,培养学生的探索性思维能力,并引导学生通过感性的直观背景材料或已有的知识发现规律,不过早地给结论,讲清抽象、概括或证明的过程,充分地向学生展现自己是如何思考的,使学生领悟蕴含其中的思想方法。

数学问题的化解是数学教学的核心,其最终目的要学会运用数学知识和思想方法分析和解决实际问题。例如“平行四边形的面积求法”的问题,通过探求解决问题的思想和策略,得到以化归思想指导将思维定向转化成求已知矩形的面积。这样以问题的变式教学,使学生认识到求解该问题的实质是等积变换,即要在保持面积不变的情形下实现化归目标,而化归的手段是“三角形位移”,由此揭示了解决问题的思维过程及其所包含的数学思想,同时提高了学生探索性思维能力。

四、通过范例和解题教学,综合运用数学思想方法

第8篇:初中数学数学方法范文

关键词:初中数学;思想方法;渗透

一、思想方法的重要性

在日常的初中数学教学的过程中,我们对于学生的教育往往只停留在书本知识的层面上,而缺少了对解题方法的教育。数学思想方法是数学学习的思想精髓,正所谓“授之以鱼”不如“授之以渔”,教师传授知识不如传授学习的方法。只学习书本知识的传统数学教学极大地影响了学生的思维方式,使他们的智力成长受到很大的限制,削弱了他们的自主学习能力,使他们难以理解复杂或者有难度的知识。在当今教育改革的背景下,思想教育的重要性已经逐渐被大众所认知,所以我们在知识传授的过程中,要注重数学思想方法的教育,从而进一步提升初中学生的数学解题能力。

二、思想方法的精髓

数学思想是数学教学的精髓,和单纯的书本知识相比,数学思想更加实用,它是解决问题的桥梁,是汲取知识的纽带。在日常教学中,数学思想的渗透可以说是非常必要的一部分,教学质量和教学品质的提高都依赖于此。这种灵魂式的教学,比单纯地学习书本知识的方法更有效。

当学生熟练掌握思想层面的精髓后,其解决数学问题的速度也会加快。同时,学生也能更加灵活地运用所学到的知识,并做到举一反三,从而使教学成果最大化。学生能够灵活地掌握数学方法可以使数学教学取得事半功倍的效果,而单纯死板地学习书本知识只会让学生做无用功,使学生无法取得实质性的进步。

三、数学方法应用例举

初中数学思想方法主要有:数形结合思想、分类讨论思想、逆向思维、整体思想方法、类比联想的思想和方法、化归思想。

(一)数形结合思想

这种思想中的“数”一般指代数,而“形”一般指几何,这两者看似没有什么联系,但是在数学问题的解答中它们可以相互转化,即把代数问题通过几何更加直观地表现出来,把几何的问题更加准确地用代数来解答。在初中数学的教学中经常会用到“数轴”,在遇到相反数、绝对值、有理数大小的比较时我们会借助数轴来解答。而“数轴上的点”和“点表示的数”,它们所表示的就是数和形的意义。据我们所知,函数有很多种表达方法,例如图像法、解析法、列表法,它们分别用不同的方法来表现函数,同样的问题可以用数字来表达函数,也可以用图像来表达函数。可见,数学方法的使用是多种多样、灵活变通的。在数学学习中,我们经常会遇到几何计算问题,在线段长度的表示、角度的计算、长度或者角度的比较上,一般初学者都不会想到利用代数来帮助几何的运算求解,这往往会给计算求解增加许多不必要的麻烦。所以在教学中,我们一定要让学生把所学习的知识结合起来利用,这样我们可以取得最巧妙的解决方法。数与形的结合可以使得抽象的形得当更加准确的表达,使繁杂的数得到更加形象的展现。这种知识的综合运用可以培养学生的统筹思维,让他们学会灵活变通,提高他们对抽象事物的理解能力。

(二)分类讨论思想

根据数学问题的不同属性可以将其分成不同的类别,对于同一类别的问题我们可以一起处理,这样可以使得解题思路更加明确,方法更加简单。分类讨论的方法可以把复杂的东西简单化,从而提高学生的做题效率。

(三)逆向思维方法

一般人的思维都是由始到终的正向思维,其实很多问题的解决可以利用逆向思维。逆向思维正如字面所表示的一样,是倒过来思考或者从反面角度解决问题,很多公式或者思想的逆向使用会使问题得到更好的解决。这种方法的使用不仅可以培养学生的拓展思维和创新思想,并且能够增强学生思维的灵活性,培养学生的逻辑思维能力。

(四)整体思想和方法

有时候,我们思考问题要立足于整体,统筹全局,了解整体结构。整体的组合搭配能使学生思考问题时从全局看问题,不受局部思维的限制,从而拓宽了学生的视野,使学生对所学的数学知识和所遇到的数学问题有更为全面的认识。

(五)类比联想的思想和方法

《论语》中有言:“举一隅不以三隅反,则不复也。”在数学的学习过程中,类比是一个很重要的方法。学生通过运用这种方法可以更加方便地发现问题的共性与特性,从而有针对性地、灵活地解决相同类型的问题。

(六)划归思想

在有理数加减乘除的运算中,我们可以运用划归思想。在实际生活中,我们也可以把日常问题转化为数学问题,同时在具体地解决数学问题时,我们也可以将其往已有的公式或者定理上靠,这就是划归的思想,其在培养学生的拓展性思维方面具有重要作用。

四、数学思想方法在教学中的应用

在数学教学中,我们需要在传授数学知识的同时渗透数学思想方法的教学,从而取得最好的教学效果。同时,我们还要让学生适当地做一些配套练习,让学生在实战中加深对数学知识的理解和对数学方法的掌握。书本中的例题具有很强的代表性,能突显问题的精髓,在解决其他相同类型的题目时,例题具有重要的借鉴作用,可以帮助学生实现从点到面的突破。而对于题目的解题方法,我们应该鼓励学生一题多解,拓展思维,找出最佳的解决办法。

数学教学中有重点也有难点,教师要对教学重点进行反复讲解。而数学教学中的难点,一般都是与数学思想方法相关的内容。所以在教学过程中,教师需要特别注意重点和难点的讲授。在点拨过程中,教师不能直接给出结论,而应该让学生通过自己的计算推理得出结论,这样能锻炼学生的探究能力。而对于学生的不足之处,教师要进行及时的指导和纠正。教学不应该只是知识的传达,更应该是一种引导学生学习的过程。数学方法是思维的基石,它包含很多内容,学生需要通过对这些内容的学习实现从量变到质变的转化。数学的思想方法不是短期可以掌握的,需要教师的多次引导和学生充分的理解消化,所以教师要耐心引导,因材施教,逐步促进学生对数学思想方法的掌握。

第9篇:初中数学数学方法范文

摘要:新课表明确指出“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理、定理以及由其内容反映出来的数学思想和方法。”这就要求我们在数学教学的同时,必须注意数学思想方法的有机渗透和统帅作用。只有这样,才能有助于学生形成一个既有肉体又有灵魂的活的数学知识结构,促进学生数学能力的发展,推动学生思维一般品质乃至整个素质的全面提高。

关键词:初中数学 教学 数学思想 方法

把数学思想和方法作为初中数学的基础知识在大纲中明确提出来还是第一次,它要求我们在实施义务教育过程中,更要注重数学思想和方法的数学。数学思想是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的一种结果.它是数学中处理问题的基本观点,是对数学基础知识与基本方法本质的概括,是创造性地发展数学的指导方针。数学思想比一般说的数学概念具有更高的抽象概括水平,后者比前者更具体更丰富,而前者比后者更本质更深刻。数学方法是指人们为了达到某种目的而采取的手段、途径和行为方式中所包含的可操作的规则或模式。以下笔者就初中数学教学渗透数学思想方法进行初略的探讨。

一、把握层次,克服盲目

1、低层次的数学基本方法,包括归纳 (主要是不完全归纳)法,反证法,换元法等。通常是从知识中提炼出来的,适应范围较广。

2、中层次的数学思想方法,包括类比、特殊化、演绎、抽象概括、归纳猜想等。都是主要的思考问题,探索思路,发散创新,总结规律,拓宽发展,解决问题的主要方法。

3、较高层次的数学思想方法 ,包括化归、数形结合、数学模型、分类等。化归是我们处理数学问题的一种基本思路 ,它是实现由所要解决的问题向已经解决的或较易解决的问题的转化,即实现由未知(难、复、杂)向已知 (易、简单 )的化归 ,具有很强的思维导向功能。而数学模型则是通过抽象、概括和一般化,把研究的对象或问题化为本质 (关系或结构 )同一的另一对象或问题并加以解决的思维方法,达到研究对象的处理典型化、形式化和精确化。通过适当的抽象(理想化)由现实原型构造出相应的数学模型,然后再通过对数学模型的数学研究 (演算、推理等 )以解决相应的实际问题。培养人们的观察能力和想象力,提高人的素质。数形结合方法反映了人们对数学的总体认识。分类思想方法,帮助人们使知识条理化、系统化,对知识巩固和理解深化,指导后续学习和问题的解决,它贯穿整个初中数学的始终。

4、为学生进行学习方法指导的需要。学会学习的三大要点:第一,培养学生浓厚的学习兴趣。第二,培养学生掌握科学的学习方法。第三,培养学生树立终身学习的观念。数学思想方法的教学过程 ,就是培养学生掌握科学的学习方法,进而达到培养学生学习兴趣和学会终身学习。

5、教育目的的需要。对于大多数学生来说 ,数学思想方法比形式化的数学知识更加重要,因为前者更具有普遍性。社会各部门、各行业对数学知识要求的深度与广度差异极大,但对人的素质要求是共性的。如:具备严谨的工作态度 ,掌握分析情况、归纳总结、综合比较、分类评析、概括判断的工作方法。实际工作者、科研工作者,特别是决策部门工作人员更需要逻辑论证,严密推理的科学方法和工作作风。这一切都是在数学思想方法的渗透、训练中可以培养的。

二、寓数学思想方法于教学活动之中,优化学生思想品质

数学思想方法不同于其他基础知识,不能用符号、图形、式子等表示,不可能在一节或几节课内完成。为了使学生在初中三年里得到数学思想方法的陶冶,教师在平时的课堂教学活动中就应有意识、有目的地进行传授,使学生慢慢地消化吸收。

1、经常归纳,训练思维的深刻性。

归纳的思想就是由个性到共性,由特殊到一般,从而从本质上把握事物。例如,一元二次方程的应用”中关于浓度问题的教学,引导学生先做以下练习:现有含盐10%的盐水300克(1)要配成含盐8%的盐水,需要加水多少克?(2)要配成含盐15%的盐水,需要加盐多少克?(3)要配成含盐18%的盐水,需要加入含25%的盐水多少克?做完了这些练习之后,教师再启发学生思考:如果把水的浓度看作0%,盐的浓度看作100%。三种类型的列式可否归纳为一种?

2、类比联想,训练相似思维。

相似思维就是从一个事物的性质和变化规律,去引出另一有相似性事物的性质和变化规律,从而寻求解决问题的方法。相似思维需要联想,而类比是联想的一种有效途径。

3、既要突出重点,又要逐步渗透在教学过程的不同阶段。

对数学思想方法的教学的侧重点应有所不同。在低年级介绍较低层次,在高年级介绍较高层次;新授课阶段介绍低层次的,复习巩固阶段介绍较高层次的。下面以二元一次方程组的解法的教学为例加以说明:开始讲代入消元法和加减消元法,让学生明确两者虽然不同,但作用却是一致的―都把二元一次方程组化为一元一次方程,两者统一称为消元法。消元的思想是解二元一次方程组的基本思想;在复习阶段则让学生理解消元思想实施的结果是化二元为一元,即化繁为简、化陌生为熟悉,为彻底解决问题铺平道路,从而把消元的思想上升为化简和转化的高层次的数学思想。

4、努力做到掌握数学方法和渗透数学思想的有机结合。

数学教学本身就是思维活动过程的教学,引导学生把握数学方法,按照思维活动的规律,渗透合理的数学思想,才能提高和发展学生的思维能力。具体可从两个方面人手:一方面,通过数学思想的渗透,启发、帮助学生发现和认识教科书中阐述的数学方法,使得数学不只是单纯的灌输,而是使这些方法成为分析问题和解决问题的有力工具,做到自然而然地掌握和运用;另一方面,通过对数学方法的掌握,进一步了解隐含于其中的数学思想,认识到具体事物的本质,从而逐步掌握科学的思想方法。以上这两个方面的交替发展,还可以从新旧知识的联系,转化、发展等方面引发学生的思维活动,使未知问题转化为已知问题而得到解决。这就要求教学过程中必须根据问题的具体情况及时创设思维情境,如暗示、引导、分析、揭示等,这些方法会使学生的思维豁然开朗,留下深刻的印象,并且饶有趣味。

结束语:

总之 ,知识记忆是暂时的,思想方法的掌握是长远的,知识使学生受益一时,方法和思想将学生受益终生。因此,在数学教学中渗透数学思想方法大有裨益。

参考文献: