前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的纳米技术总结主题范文,仅供参考,欢迎阅读并收藏。
关键词:功能性纺织品 纳米技术开发 应用 研究
前言
传统的纺织企业被发达国家逐渐淘汰,目前,先进的科学技术已经替代了传统纺织企业。纳米技术、生物技术、信息技术等新型的技术在纺织品制造中应用,能够有效的完善纺织品的功能。其中基于纳米技术下的纺织品的市场需求量逐渐增加。如,纳米领跑、纳米羊绒衫、纳米保暖内衣等产品市场前景光明,为了拓展的纺织品市场,需要深入的研究纳米技术应用。
一、功能性纺织品加工方法与发展思路
(一)功能性纺织品加工方法
功能性纺织品加工的方法比较多,常见的方法有以下几种:第一,基于新的原料仿制功能性纤维。该种方法中所提到的新材料是指虾、蟹、昆虫壳中所提炼出来的纤维。此外还有自然界中的竹炭纤维、竹原纤维;第二,对纺织品的化学改性处理,该种方法是在原始的材料基础上应用化学材料进行材料的性质改变,最终使得纺织品原液中的掺入功能剂;第三,应用新型的纺丝技术,该种技术下所生产出来的纺丝比较柔软,并且表面上的纤维功能被优化;第四,基于后整理的纤维织物功能优化,应用功能性整理剂对纺织品进行后整理的方式,能够赋予纺织品新的功能。
(二)功能性纺织品发展思路
功能性纺织品的产生,以人们的生活需求,社会的发展需求为核心,在未来,其发展道路更加的宽广。在发展功能性纺织品环节中,首先需要强化基础科学研究,其次,关注多学科、多领域以及相应产业链之间的合作与发展。第三,大力发展功能性纺织品市场。
二、纳米技术在功能性纺织品加工中的应用
(一)仿荷叶效应防水材料
荷叶上的水珠不会浸湿荷叶,会聚积成为水珠,这样的自然现象说明荷叶具有较好的防水性,该种现象对于功能性纺织材料的设计提供了新的思路。防水纺织品在人们的生活中应用广泛,因此对于防水材料的研究比较关键。在电子显微镜下,莲叶表面上覆盖着无数尺寸约为10个Um的凸起包,并且在每个小凸起包上又布满直径约为的几百nm的绒毛。基于荷叶表面的结构特征,使得其具备了较强的防水性能,该种结构为较为特殊的纳米结构,研究人员在此基础上研发出仿荷叶结构纳米防水布。该种防水布借助其表面上凹凸不平的结构,能够实现疏水疏油。
(二)仿“孔雀羽毛”结构的生色纤维
孔雀的羽毛色泽艳丽、美观,将纳米技术应用到功能性的纺织品加工中,通过分析孔雀时羽毛结构生色,总结出这样结论:动物羽毛中的蛋白质晶体纤维会在自然光的照射下发生干涉,并且使得羽毛产生绚烂多彩的视觉色彩。为了借助纳米技术仿造孔雀羽毛材料,采取对孔雀羽毛结构进行观察的方式,了解其蛋白纤维的结构特征。在研究中发现孔雀羽毛的蛋白纤维、二维光子晶体结构产生过程比较特殊,是在积聚状态下产生。在功能性纺织品研发中,应用纳米技术,需要解决将nm单位的纤维设置在阳光折射率不同的尼龙材料中。该问题比较关键,需要在实际研究中,对重叠厚度设定中按照nm单位进行控制,那么,在这样的设计下,就能够制造出能够发出红、绿、蓝、紫等四种颜色的纺织材料。该种材料与传统的纺织材料相比,其实际的辨识度比较高,提升了纺织品的装饰性。
(三)仿“小鸟绒毛”的中空纤维
鸟类的羽绒质软,并且保暖性能较强,在羽绒服等御寒服装中常见,但是该种羽绒材质造价比较高,因此,在纺织行业中运用纳米技术研发出与小乌羽绒功能相似的中空纤维材料。该种纤维材料的产生为―种人工合成纤维,能够有效的替代羽绒纤维材料,目前,该种材料已经成为了功能性纺织品中较为重点的材料。在绒毛纤维仿造中,借助虎皮鹦鹉的绒毛纤维特征进行生产,在研究中,通过虎皮鹦鹉绒毛纤维的电镜照片,能够发现绒毛细长,并且包含棱锥状的附节。基于该种结构材料在实际应用,具有较好的方向性。在功能性纺织品生产中,借助胶原蛋白和静电纺丝技术,能够研制出一种兼具保暖性、蓬松性的产品。
(四)仿“蜘蛛丝”的防弹纤维
[关键词]纳米技术、包装、食品包装、药品包装
中图分类号:TB383.1;TB484 文献标识码:A 文章编号:1009-914X(2015)06-0047-02
20世纪90年代初兴起的纳米技术,被认为是21世纪科技发展的前沿领域。它主要研究0.1~100nm尺寸之间的物质组成体系以及其运动规律和相互作用,其中在实际应用中纳米技术的实用性。它是一种结合科学前沿和高技术于一体的完整体系。纳米技术的出现标志着人类改造自然的能力已延伸到原子、分子水平,标志着人类科学技术已进入一个新的时代――纳米科技时代。其科学价值和应用前景已逐渐被人们所认识,纳米科学与技术被认为是21世纪3大科技之一。纳米技术主要包括:纳米物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学和纳米力学。在包装行业迅速发展的当今社会,纳米技术必然会引领包装行业走向更好的未来。
1 纳米材料
纳米材料是纳米科学技术最基本的组成部分。纳米材料可定义为:把组成相或晶粒结构控制在100nm以下长度尺寸的材料。从广义上说,纳米材料是指在三维空间中至少有一维处于纳米尺寸长度范围或由它们作为基本单元构成的材料。
1.1 纳米材料的结构特征和性质
纳米材料又称为纳米结构材料,主要由晶粒和晶界组成。纳米晶体结构与常规物质不同,关于纳米晶体结构特征主要有两类看法:a.以Gleiter为代表的1类气体0结构。它既不同于长程有序的晶体也不同于近程有序的非晶体,而是处于一种无序度更高的状态;b.近程有序结构说。根据大量的实验结果分析,纳米材料的晶界处存在着短程有序的结构单元,原子保持一定的有序度,趋于低能态排列。按不同的分类原则,纳米材料有不同的分类。按纳米晶体结构形态划分成4类:零维纳米材料,如原子团、量子点等;一维纳米材料,即在一维方向上晶粒尺寸为纳米量级,如纳米丝、量子线等;二维纳米材料,即在二维方向上晶粒尺寸为纳米量级,如纳米厚度薄膜,碳纳米管等;三维纳米材料,即在三维方向上晶粒尺寸为纳米量级,如通常所指的纳米固体。把所有纳米材料从结构上区分为两类:第一类纳米材料结构全部为晶粒和晶界组成,结构基元尺寸为纳米量级;第二类是低密度具有大量纳米尺寸空洞的无规网格结构,由纳米晶粒和纳米空洞(有时还有纳米骨架结构和更小的亚稳原子团簇)组成。
1.2 纳米材料优异的特性[1~2]
a.表面效应 表面效应是指纳米晶粒表面原子数与总原子数之比,随粒径变小而表面急剧增大后所引起的性质上的变化 这种表面效应使其在催化、吸附、化学反应等方面具有普通材料无法比拟的优越性。
b.体积效应 当纳米晶粒的尺寸与传导电子的德布罗意波波长相当或更小时,其周期性的边界条件将被破坏,使其物理性质、化学活性、电磁活性、光吸收和催化特性等与普通材料相比都将发生很大变化,这就是纳米粒子的体积效应。
c.量子尺寸效应 指纳米粒子尺寸下降到一定值时,纳米能级附近的电子能级由连续能级变为分离能级的现象,这一效应可使纳米粒子具有高的光学非线性、特异催化性和光学催化性等。
d.宏观量子隧道效应 微观粒子具有贯穿势垒的能力称为隧道效应。近年来,人们发现一些宏观量如微粒的磁化强度、量子相干器件中的磁通量以及电荷等亦具有隧道效应,它们可以穿越宏观系统的势垒而发生变化,故称为宏观量子隧道效应MQT。早期曾被用来定性的解释纳米Ni晶粒在低温下保持顺磁性现象。这一效应与量子尺寸效应一起确定了微器件进一步微型化的极限,同时也限定了采用磁带磁盘进行信息存储的最短时间。
e.独特的光学性质 又分为:线性光学性质。纳米材料的红外吸收研究是近年来比较活跃的领域,在纳米SnO2、Fe2O3、Al2O3中均观察到异常红外振动吸收。目前,纳米材料拉曼光谱的研究也日益引起关注。当Si晶粒尺寸减小到5nm或更小时,观察到很强的可见光发射。进一步的研究发现,CdS、CuCl、TiO2、SnO2、Fe2O3等的晶粒尺寸减小到纳米量级时,也观察到发光现象。非线性光学效应。纳米材料的非线性光学效应分为共振和非共振光学非线性效应,前者由波长低于共振吸收区的光照射样品而导致,其来源于电子在不同电子能级的分布而引起电子结构的非线性,从而使纳米材料的非线性响应显著增大;后者由高于纳米材料的光吸收边的光照射样品导致,目前主要采用ZSCAN和DFWM技术来探测纳米材料的光学非线性。
f.巨磁电阻效应(GMR) 磁场导致物体电阻率改变的现象,称为磁电阻效应(MR),对于一般的金属其效应(2%~3%)常可忽略。巨磁电阻效应(GMR)是指在一定的磁场下电阻急剧减小,一般减小的幅度比通常磁性金属与合金材料的磁电阻数值约高10余倍。最近,在一些磁性纳米材料中观测到比巨磁电阻效应大得多的效应称为庞磁电阻效应(CMR)。
g.超塑性 指材料在特定条件下变形时不存在加工硬化现象,且可以承受很大程度的塑性变形而不断裂,这种特性被称为超塑性或超延展性。材料超塑变形的基本原理是高温下的晶界滑移。除以上特性外,纳米材料还具有高导电率和扩散率、高比热和热膨胀、高磁化率和矫顽力,在催化、光电化学、熔点、超导等方面也显示出与宏观晶体材料不同的特性。
2 纳米技术在食品包装应用研究的最新技术
2.1 纳米抗菌性包装材料
传统的抗菌材料一般采用以银、铜、锌等金属离子为抗菌活性成分的抗菌剂生产工艺,新的MOD系列纳米高性能无机抗菌剂是将纳米技术导入无菌复合包装,是以MOD活性基因及无机纳米银化合物为主要抗菌成份,以各种无机材料为载体而制成的无机抗菌粉体。该抗菌材料采用高科技纳米技术制备而成,抗菌机理为金属离子作用和光催化作用,具有强力的长效抗菌功能,抗菌率可达99.9%,彻底解决了无机抗菌包装材料在应用中变色的难题,是一种无毒的广谱抗菌剂,可广泛应用于生产液体奶、饮料无菌复合包装产品。抗菌制品被世界各国认为是跨世纪的环保和健康产品,纳米无机抗菌剂具有巨大的潜在市场[3]。新型抗菌材料尼龙66中掺加了一种特殊的纳米粘土复合材料,经改性后,不但提高了强度、韧性等物理力学性能,还对大肠杆菌、金黄色葡萄球菌具有明显的杀伤效果,同时生产成本也可大幅度降低,应用于食品等高档包装薄膜的生产。日本开发了以银沸石为母料的全新型无机抗菌剂,既起催化作用,同时有具有显著的抗菌特性,其特点为抗菌效果持续时间长,不会气化和迁移而对包装物产生影响,加工稳定性高,不会污染环境。添加银沸石母料(含量1%~ 3%)制得的薄膜或表面覆一层这种薄膜的容器,经2年试用表明:在无营养源的情况下,含1%银沸石的薄膜在1~2天内完全杀死会引起食品中毒菌类,广泛应用于熟食肉类、水产品和液体食品包装[4]。
2.2 纳米保鲜包装材料
在保鲜包装中,果蔬释放出乙烯,当乙烯释放到一定浓度后,果蔬会加速腐烂。因此,果蔬等新鲜食品的保鲜技术的思路,是加入乙烯吸收剂,减少加快果蔬后熟过程的乙烯气体含量,控制包装内部气氛浓度。纳米Ag粉具有乙烯氧化的催化作用,在保鲜包装材料中加入纳米银粉,便可加速氧化果蔬食品释放出的乙烯,减少包装中乙烯含量,从而达到良好的保鲜效果,并延长货架寿命。紫外线不仅能使肉类食品自动氧化而变色,而且还会破坏食品中的维生素和芳香化合物,从而降低食品的营养价值。利用纳米材料的光学特性,纳米TiO2粉体可以有效地屏蔽紫外线,用添加0.1%~0.5%的纳米TiO2制成的透明塑料包装材料包装食品,既可防止紫外线对食品的破坏作用,还可以使食品保持新鲜。纳米技术在食品包装领域已得到较广泛地应用,陈丽、李喜宏[5]等人成功研制出富士苹果PVC/TiO2纳米保鲜膜;李喜宏等[6]还进行了PE/Ag纳米防霉保鲜膜研制;黄媛媛等通过实验研制了一种新型绿茶纳米包装材料,与普通包装材料相比,透氧量降低2.1%,透湿量降低28.0%,纵向拉伸强度提高24.0%;绿茶包装240d后,新型纳米材料包装的绿茶中,维生素C、叶绿素、茶多酚、氨基酸保留量比采用普通包装绿茶分别高7.7%、6.9%、10.0%、2.0%。
2.3 纳米高阻隔性材料及其在高阻隔性PET塑料啤酒瓶中的应用
食品包装阻隔性主要是指氧气、二氧化碳等的气体阻隔性,水蒸气阻隔性等。目前市场上较普遍的玻璃啤酒瓶存在质重、运输破损与易爆裂,制造污染等不利因素,国外上世纪90年代就已经着手研制用于啤酒灌装的PET瓶。啤酒对包装材料要求的一个重要指标是对气体的阻隔性,首先要保证在6个月的货架期内CO2的损失率小于10%,同时氧气的透过量不超过110-6。氧气尤为敏感,极微量的氧气就可以使啤酒产生异味从而影响口感,甚至是塑料瓶体材料自身溶解的氧的渗出都会影响啤酒的品质,塑料作为啤酒包装材料首先必须解决的就是气体的阻隔性问题。PET瓶因透明,化学性质稳定,阻隔性相对好,质轻价廉,回收方便等优点广泛用于软饮料和含气饮料的包装,但作为啤酒瓶,PET的气体阻隔性仍不够高,普通PET装啤酒一般只有1个月左右的保质期,不能满足市场需求。如何改进PET材料组分使之适用于啤酒包装是该领域的一个重要课题,提高聚酯瓶气体阻隔性是实现啤酒包装塑料化首要解决的技术问题。法国Sidel公司开发的无定形纳米碳涂覆技术(ACTIS)是使等离子乙炔在PET瓶内壁凝聚淀积,形成一层高度氢化的非晶态碳均匀的纳米固体膜,厚度为20~150nm。采用ACTIS工艺处理的PET瓶,较普通PET瓶的隔氧化性能效果提高30倍,对CO2的阻透性提高7倍多,防乙醛的渗入性提高了6倍[7]。此外,中科院化学所工程塑料国家重点实验室的研究人员使用PET(聚对苯二甲酸乙二醇酯)聚合插层复合技术,将有机蒙脱石与PET单体一起加和到聚合釜中,成功地制备了PET纳米塑料(NPET),这种纳米塑料的阻隔性较普通的PET有了很大改善,实验表明:把啤酒装在NPET瓶里保存了4~5个月后,结果发现啤酒的口味与新鲜啤酒没有明显区别[8]。
3 纳米技术在药品包装应用研究的最新技术
3.1 高阻隔性包装
高阻隔性包装是指对氧气、水蒸气、二氧化碳等有高阻隔性的包装,高阻隔包装常采用多层复合膜。药用泡罩包装材料包括药用铝箔、塑料硬片(最常用的材料是药用聚氯乙烯PVC硬片)、热封涂料等。但因为药品对湿气、氧气等敏感和人们对药用包装要求的提高及药品储存期的延长,现在正在采用新技术将塑料硬片复合一层高阻隔性材料,如PVDC等,以提高对湿气等气体的阻隔性能,最具有代表的结构为PVC/PVDC,PVDC作为高阻隔层材料,其最大的特点就是对气体水蒸汽优异的阻隔性,很好的保持药品原味。
添加纳米级材料的无机粒子可以极大地改进基础树脂的物性,在高阻隔包装材料中发挥神奇的作用[9]。如德国Bayer公司推出的尼龙纳米复合材料,把化学改性的硅酸盐粘土分散在PA6薄膜中,这些细小颗粒不影响薄膜透明度,但建立了迷宫式的气体通路,减慢气体通过薄膜的进程。日本纳米材料公司将纳米复合材料涂在各种薄膜基体上,据称阻隔性与镀铝膜相同。既具有无机材料的高阻隔性又有塑料透明性的涂氧化硅膜是塑料阻隔技术发展的代表,这种薄膜光泽、透明性好,阻隔性优于一般共挤出薄膜和PVDC涂布膜。氧化硅的深层厚度仅为0.05~0.06 m,不会影响透明度,氧气、水蒸气的透过率极低,而且与塑料膜粘合极牢,抗弯折性极佳,耐消毒,因而在美国、日本等发达国家已生产和使用。
3.2 纳米抗菌性包装材料
纳米抗菌性包装材料在药品包装领域的应用前景有具有抗菌功能的纳米纸、纳米复合抗菌素薄膜等。主要是将一些纳米级的无机抗菌剂加入到造纸浆料或者薄膜中,制成抗菌性能极强的纳米纸[10]、纳米薄膜。
由于许多有机抗菌剂存在着耐热性差、易挥发、易分解产生有害物质、安全性能不好等问题,所以无机抗菌剂的开发成为人们的研究重点。人们利用超微细技术可以产生纳米级的无机抗菌剂,无机抗菌剂主要包括银、铜、锌、硫、砷及其离子元素。光催化抗菌剂有纳米级氧化钛、氧化硅、氧化锌等,它们能将细菌和残骸一起杀灭和消除,所以比传统的抗菌剂仅能杀死细菌本身的性能更加优越。MOD系列的纳米高性能无机抗菌剂还解决了无机抗菌剂在应用中 变色的世界性难题。
4 展望
纳米技术是未来包装技术的希望。它可以使用更少的材料,同时具有更好的性能,并且使包装成为智能化系统的一部分。纳米技术制造的包装材料有更好的强度、刚性、生物降解性、化学稳定性、热力稳定性、隔热防火特性和防紫外线特性等。这必将使得食品和药品包装领域的新材料新技术大量出现。从而使这些与我们生活密切相关的商品质量得到更好的保障。
参考文献
[1] 张荣.包装机中薄膜热封过程的仿真研究[D].哈尔滨:哈尔滨商业大学,2002.
[2] 程卫国.等.MATLAB5.3应用指南[M].北京:邮电出版社,2000.
[3] 陈希荣.纳米无机抗菌剂的添加法及在液态奶包装上应用[N].中国包装报,2005-07-16
[4] 黄媛媛.王林,胡秋辉. 纳米包装在食品保鲜中的应用及其安全评价[J].食品科学,2005:16(8):442-444
[5] 陈丽,李喜宏,胡云峰,等.富士苹果PVC/TiO2纳米保鲜膜的研究[J].食品科学,2001,22(7):74-76
[6] 李喜宏,陈丽,关文强.PE/Ag纳米防霉保鲜膜研制[J].食品科学,2002,23(2):129-132
[7] 徐锦龙.聚酯啤酒瓶技术现状及发展趋势[J].合成技术及应用,2001,15(2):22-24.
[8] 欣溪.食品工业中的纳米科技[J].中外食品,2002,(7):44
那么现代变色杯的变化技术有哪些奥妙呢?1600年前变色杯的变化技术会比现代更神奇吗?
随温度变色的奥秘
能随温度变色的杯子,叫做温变杯。现代人制作这种杯子的方法已经不止一种了。
早些时候的温变杯是由同轴设置的外杯和内杯两部分构成,在两杯底端间辟设有一个内充有热敏变色挥发液体的夹层腔体,在内杯的外侧壁上镂刻有艺术图案,这些被镂刻出的图案有与夹层腔体相通的通道。当饮水杯倒入热水后,夹层腔中的热敏液体会产生色泽变化,使杯壁显现出艺术图案;当水温变冷后,热敏液体就会变成无色――这显然是一种填充材料变色法。
最近流行的温度变色法是在玻璃或陶瓷杯子上涂抹特殊材料,这种涂料不但可以遇热变色,还可以遇冷变色。当热变色的温度达40摄氏度以上时,杯子颜色就会发生变化;当冷变色杯的温度达20摄氏度以下时,杯子颜色也发生变化。
这其中的变色原理也不复杂:杯子外侧包裹着一层变色涂层,这些涂层只涂在杯子本身设计好的艺术图案上;涂层在常温下的颜色与杯子整体的颜色是一样的,当杯子内部的温度升高或降低时,涂层的颜色就会发生改变。遇热变色与遇冷变色的差别仅仅在于,涂层材料有所不同。
随光变色更玄妙
和随温度变色的杯子比,随光变色的杯子――光变杯其变化更显得玄妙些,而且其制作技术也相对玄妙许多。
如我国研究人员发明的陶瓷光变杯,其色彩变化就非常玄妙,其变色灵敏,呈色丰富,能变幻紫、绿、蓝、橘红等14种不同颜色。如在阳光下呈紫茄色,白炽灯下显玫瑰红,日光灯下则变成天青色等等。一些辅以名家书画,或采用描金、腐蚀金装饰的杯子,更显雍容华贵。其中的变术最玄妙的地方是陶瓷的制作材料,研究人员以某些稀土原料为着色剂,在加上特殊的烧制技术,所以让特殊的陶瓷能对不同波长的光进行反射。
当然,玻璃杯也能变成光变杯,其制作方法是在玻璃原料中加入含有氯化银和微量氧化铜的光色材料。此材料具有两种不同的分子或电子结构状态,在可见光区有两种不同的吸收系数,在日光强弱不同的照射下,可从一种结构转变到另一种结构,这才导致颜色的可逆变化。.
最近,美国科学家又研制出一种更玄妙的光变杯,这种杯子的色彩可以有人工控制,可以是全透明,可以半透明,也可以微微透明,甚至可以变成黑色!之所以能这样,是因为科学家在玻璃中嵌入了一层超薄纳米涂层,其材料由氧化铟锡纳米晶体和氧化铌组成。不过这种变色杯子需要用电来控制,其色彩变化完全由电流的强弱来决定。
1600年前的变术有多神奇?
现代的光变杯用上了纳米技术,人们已经不会感到非常惊奇,但令人拍案惊奇的是,1600年前的光变杯,竟然也用上了纳米技术!真有这么神奇的事情吗?
事实却是如此。1600年前的古罗马人制作一支名为“卢奇格斯杯”的高脚杯,目前正在伦敦的大英博物馆展出。这支神秘的高脚杯会变色:光线从正面照射时呈绿色,从后面照射时呈红色。
在漫长的岁月里,人们一直对卢奇格斯杯的变色之谜迷惑不解,直到人类纳米技术逐渐走向成熟之后,人们才揭开了这个谜团。英国科学家在将卢奇格斯杯的玻璃碎片进行显微镜分析时,发现古罗马人将金银颗粒植入玻璃了。这些金子颗粒的直径只有50纳米左右,是盐粒直径的千分之一――这表明古罗马人已经掌握了纳米技术。有了这种纳米粒子,杯子才会发光:在受到光线照射时,玻璃内金属颗粒的电子发生振动,从而改变了杯子的颜色。具体呈现出何种颜色。取决于光线入射的角度,也取决于观察者的角度。
随着纳米技术的飞速发展,纳米材料的生物效应与安全性引起了人们的高度关注,关于纳米材料对生物的负效应研究也日益增多。本文对国内外纳米材料水生态环境效应的研究进展进行了综述,并提出了一些问题与研究的方向。
关键词:
纳米材料;环境效应;毒性
纳米材料由于粒径的特异性,具有独特的物化性质,如巨大的比表面积、强烈的量子效应和界面效应等,使其在工业、科技和医学等领域均有广泛的应用,成为各国发展最快的科学研究和技术开发领域之一。随着纳米技术的飞速发展,纳米材料的生物效应与安全性引起了人们的高度关注,关于纳米材料的环境归趋及对生物的负效应等研究也日益增多。
1纳米材料对水生生物的毒性效应
纳米材料的大量研发、生产和商品化应用,使其不可避免的通过不同途径如水处理系统、污水排放和再生水补给等进入到城市河流和景观水体等水体环境中,对其化学组成和生态系统产生影响。自2004年Oberdorster[1]报道了低浓度的富勒烯使大嘴黑鲈脑部产生脂质过氧化开始,纳米材料对水生生物的生态毒理效应逐渐受到人们的关注。纳米材料对不同营养级水生生物(细菌、浮游植物、浮游动物、鱼类等)的毒性影响已有不少报道,发现纳米材料对水生生物的毒性高于传统材料,如抑制藻类、细菌和大型水蚤等的生长,降低生物的食物摄取能力,甚至能穿越鱼的大脑屏障,到达大脑。
水体中碳纳米管的存在会改变腐殖酸与铜的原有平衡而增大自由铜离子的浓度[2]。进入水环境中的悬浮纳米材料能够被不同营养级别的水生生物(细菌、浮游植物、浮游动物和鱼类等)通过水体或者食物链的方式吸收,抑制其生长、繁殖,对其产生危害。纳米TiO2颗粒会导致水生细菌产生细胞内ROS从而对其细胞壁产生破坏作用,且会抑制微藻和大型水蚤的生长[3]。低浓度富勒烯纳米材料也会对大型水蚤产生毒性效应,显著减弱大型蚤的繁殖能力,且会诱导大口黑鲈幼鱼脑部脂肪超氧化作用,降低腮部谷胱甘肽的水平。纳米Al2O3会影响网纹水蚤和微藻细胞的生长,且在低浓度下(1mg/L)会降低湖水中细菌的存活率并造成细胞损伤[4],也有报道表明纳米Al2O3对绿藻和大型水蚤低毒或基本无毒[5]。至今为止,对于纳米Al2O3的毒性效应还没有得到很好的认识。
纳米材料进入水环境后,由于与传统材料相比具有巨大的比表面积和反应活性,能与水体中的其它污染物发生界面反应。不仅影响污染物在环境中的存在状态和迁移转化,也会作为污染物的载体,增大污染物的生物可利用性和毒性效应,引起严重的生态后果,具有潜在的生态风险。目前,大多数研究主要集中在单一纳米材料的环境效应上,但却忽视了实际环境中多种污染物共存产生的协同效应。重金属污染物仍然是河流生态系统中重要的危害因子,其能够通过食物链传递等影响城市陆地生态以及人群健康。纳米材料与重金属污染物的界面结合是强化还是弱化污染物的毒性效应至今仍无统一定论。
2总结与展望
关键词:颠覆性技术;创新;移动互联;机器人;人工智能
基金项目:“江苏省社科应用研究精品工程”课题;项目名称:颠覆性技术的识别及培育发展研究;项目编号:16SYB-023。
历史上,每次科技革命时期,都是颠覆性技术出现的高峰期。科技革命构成了发掘和发展颠覆性技术的难得历史机遇。目前,科W已经沉寂了60余年,第三次技术革命发生距今接近80年,科技知识体系积累的内在矛盾已经凸显,迫切需要新的重大突破。在物质科学、量子信息科学、生命科学、宇宙科学等基础科学领域,一些重要的科学问题和关键技术发生革命性突破的先兆日益显现;科技发展跨学科趋势愈益明显,新学科、新知识、新思想的出现更多体现为学科交叉融合的方式,许多重大创新出现在学科交叉领域。当今世界已处在新一轮科技革命的前夜,颠覆性技术大量涌现的时期即将到来。
一、颠覆性技术的概念
颠覆性技术概念最早出自美国哈弗商学院克莱顿・克里斯滕森教授1995年出版的《颠覆性技术的机遇浪潮》。他认为,颠覆性技术是指这样一类技术:它们往往从低端或边缘市场切入,以简单、方便、便宜为初始阶段特征,随着性能与功能的不断改进与完善,最终取代已有技术,开辟出新市场,形成新的价值体系。德国弗郎恩霍夫协会认为:颠覆性技术就是指能够“改变已有规则”的技术,即那些与现有技术相比,在性能或功能上有重大突破,其未来发展将逐步取代已有技术,进而改变作战模式或作战规则的技术。
综上所述,颠覆性技术是一种另辟蹊径、会对已有传统或主流技术途径产生颠覆性效果的技术,可能是完全创新的新技术,也可能是基于现有技术的跨学科、跨领域的创新型应用。颠覆性技术具有四个特点:技术发展速度快、产生潜在影响范围广、可创造经济价值高、带来颠覆性影响大。与渐进性技术相比,颠覆性技术在形态上更具有超越性和突变性,在效能上更具备革命性和破坏性。
二、我国颠覆性创新的领域选择
(一)“十三五”国家科技创新规划:15个领域
《“十三五”国家科技创新规划》中明确提出要发展引领产业变革的颠覆性技术:加强产业变革趋势和重大技术的预警,加强对颠覆性技术替代传统产业拐点的预判,及时布局新兴产业前沿技术研发,在信息、制造、生物、新材料、能源等领域,特别是交叉融合的方向,加快部署一批具有重大影响、能够改变或部分改变科技、经济、社会、生态格局的颠覆性技术研究,在新一轮产业变革中赢得竞争优势。重点开发移动互联、量子信息、人工智能等技术,推动增材制造、智能机器人、无人驾驶汽车等技术的发展,重视基因编辑、干细胞、合成生物、再生医学等技术对生命科学、生物育种、工业生物领域的深刻影响,开发氢能、燃料电池等新一代能源技术,发挥纳米技术、智能技术、石墨烯等对新材料产业发展的引领作用。
(二)国家科技重大专项:16个领域
《国家中长期科学技术发展规划纲要(2006-2020 年)》确定了核心电子器件、高端通用芯片及基础软件,极大规模集成电路制造技术及成套工艺,新一代宽带无线移动通信,高档数控机床与基础制造技术,大型油气田及煤层气开发,大型先进压水堆及高温气冷堆核电站,水体污染控制与治理,转基因生物新品种培育,重大新药创制,艾滋病和病毒性肝炎等重大传染病防治,大型飞机,高分辨率对地观测系统,载人航天与探月工程等16个重大专项,涉及信息、生物等战略产业领域,能源资源环境和人民健康等重大紧迫问题,以及军民两用技术和国防技术。
(三)中国科技发展战略研究院:20项关键技术
2016年,中国科学技术发展战略研究院科技预测与评价研究所对关系到我国经济建设、生态建设、国防建设、民生改善乃至综合国力提升具有决定性、基础性的核心技术,按照科学(属于国际竞争激烈的前沿或核心技术)、颠覆性(有望取代主流技术、替代主导产业的技术)、重大(有望替代1-2个主导产品,或颠覆1个以上行业的技术)、可行(经过10年努力能够取得自主知识产权,并有望商业化的技术)四个原则,进行了预测和遴选,遴选出未来能够改变或部分改变科技、经济、生态、军事现状与格局的20项关键技术。
(四)中国科协创新战略研究院:7大领域
中国科协创新战略研究院在的《我国应对颠覆性技术创新需要重点布局的领域》中,认为未来十年世界范围内可能出现的颠覆性创新集中在9大领域:先进计算技术与人工智能、纳米技术与材料科学、基因与精准医疗、能源开发与存储、航空航天与地外生命探测、网络与大数据、智能汽车与智慧交通、绿色制造与先进制造、教育技术与知识自动化。
从我国各机构评选的技术来看,出现频率最高的五大技术领域是移动互联、机器人、3D 打印、人工智能、纳米技术,这五大技术领域将是我国未来颠覆性技术创新的主要方向。
三、我国颠覆性领域的技术创新方向
(一)移动互联领域
大力支持移动互联网软件开发,突破系统软件、人机交互、应用开发、虚拟化等热点技术与新兴技术。加快推进移动互联网的云计算和大数据应用,重点突破数据挖掘、海量数据处理、计费、访问控制等平台关键核心技术。支持开展未来网络重大基础设施(CENI)项目的关键技术研究,加强相关领域产品研发和产业孵化,大力推广基于下一代广播电视网的创新业务及相关应用。充分发挥移动互联网对生产领域的带动作用,在工程机械、汽车、食品、电子信息、物流等行业形成领先的服务产品。深化移动互联网在生活领域的引领作用,大力推广面向餐饮、休闲娱乐、购物、旅游等的移动互联网应用,重点发展移动支付、移动娱乐、移动阅读、移动资讯、移动搜索、移动位置服务等。鼓励移动互联网应用创新,重点发展车载数据与资讯、智能交通、基于北斗等多制式智能交通导航、远程测试诊断、在线节能监管、道路救援、食品安全溯源与安防等移动信息服务。
(二)机器人领域
重点研究智能机器人机构设计、制造工艺、智能控制和人机交互等共性技术,攻克机器人优化建模、精准感知、多机器人协调等核心技术。(1)伺服电机方面:重点发展根据机器人的高速,重载,高精度等应用要求,增加驱动器和电机的瞬时过载能力,增加驱动器的动态响应能力,驱动增加相应的自定义算法接口单元,且采用通用的高速通讯总线作为通讯接口,摒弃原先的模拟量和脉冲方式,进一步提高控制品质。(2)减速器方面:重点发展高强度耐磨材料技g、加工工艺优化技术、高速技术、高精度装配技术、可靠性及寿命检测技术以及新型传动机理的探索,发展适合机器人应用的高效率、低重量、长期免维护的系列化减速器。(3)控制器方面:重点研究开放式,模块化控制系统,开发适用于机器人控制的通用软件包;提高机器人控制器的智能化和网络化水平,开发具有多传感器信息融合能力的控制器。
(三)3D打印领域
围绕3D打印重点方向,突破一批原创性技术。(1)材料方面:针对金属3D打印专用材料,优化粉末大小、形状和化学性质等材料特性,开发满足3D打印发展需要的金属材料;针对非金属3D打印专用材料,提高现有材料在耐高温、高强度等方面的性能,降低材料成本。(2)工艺方面:解决金属构件成形中高效、热应力控制及变形开裂预防、组织性能调控,以及非金属材料成形技术中温度场控制、变形控制、材料组份控制等工艺难题。(3)装备及核心器件方面:加强3D打印专用材料、工艺技术与装备的结合,不断提高金属材料3D打印装备的效率、精度、可靠性,以及非金属材料3D打印装备的高工况温度和工艺稳定性,提升个人桌面机的易用性、可靠性;重点研制与3D打印装备配套的嵌入式软件系统及核心器件,提升装备软、硬件协同能力。
(四)人工智能领域
进行人工智能前沿技术布局,推动核心技术产业化,重点突破人工智能基础理论(包括深度学习、类脑智能等)、人工智能共性技术(包括人工智能领域的芯片、传感器、操作系统、存储系统、高端服务器、关键网络设备、网络安全技术设备、中间件等基础软硬件技术)、人工智能应用技术(包括基于人工智能的计算机视听觉、生物特征识别、复杂环境识别、新型人机交互、自然语言理解、机器翻译、智能决策控制、网络安全技术等)。加快人工智能基础资源公共服务平台建设,包括满足深度学习计算需求的新型计算集群共享平台、云端智能分析处理平台、算法与技术开放平台、智能系统安全情报共享平台等,为人工智能创新创业提供相关研发工具、检验评测、安全、标准、知识产权、创业咨询等专业化服务。加快人工智能技术的产业化进程,推动人工智能在家居、汽车、无人系统、安防、制造、教育、环境、交通、商业、健康医疗、网络安全、社会治理等重要领域开展试点。
(五)纳米技术领域
加强纳米技术研究,重点突破纳米材料及制品的制备与应用关键技术,积极开发纳米粉体、纳米碳管、富勒烯等材料,大力推进纳米材料在电子信息、生物医药、新能源和节能环保等领域的广泛应用。针对信息、能源、环保、生物医学等领域的迫切需求,开发纳米结构加工与制造的新方法、纳米器件集成与系统的设计、制备技术。重点研究新型纳米电子、光电器件、传感器件,大力发展纳米晶太阳能电池、新型薄膜太阳能电池、有机太阳能电池、热电电池、超级电容器等技术,着力突破室内空气污染物、工业源有毒有害气体、动力机械尾气的纳米净化材料及催化净化技术,切实攻克纳米颗粒与生物活性物质的组装方法。促进纳米绿色印刷制版、高密度存储器、新型显示、高效能源转化、气体净化、疾病快速诊断等纳米材料与技术的规模化应用,抢占未来纳米材料发展的制高点。
参考文献
[1] 刘根生.多些“颠覆性技术创新”[J].群众,2016,(1).
[2] 杨,余晓洁.科技创新引领“第一动力”重视颠覆性技术创新[J].中国职工教育,2016,(1).
[3] 赵刚.未来五年颠覆性技术将不断涌现[J].领导文萃,2016,(7).
[4] 王武军.颠覆性技术的“摇篮”高明在哪儿[J].中国中小企业,2016,(6).
关键词:计算机 趋势 发展
一、计算机科学与技术的发展趋势
(一)计算机科学与技术实现了智能化的超级计算
可能你不知道,超高速计算机采用平行处理技术改进计算机结构,使计算机系统同时执行多条指令或同时对多个数据进行处理,进一步提高计算机运行速度。超级计算机通常是由数百数千甚至更多的处理器(机)组成,能完成普通计算机和服务器不能计算的大型复杂任务。从超级计算机获得数据分析和模拟成果,能推动各个领域高精尖项目的研算、传翰和存储。光子计算机即全光数字计算机,以光子代替电子,光互连代替导线互连,光硬件代替计算机中的电子硬件,光运算代替电运算。在光子计算机中,不同波长的光代表不同的数据,可以对复杂度高、计算量大的任务实现快速地并行处理。光子计算机将使运算速度在目前基础上呈指数上升。总之,计算机科学与技术实现了智能化的超级计算。
(二)计算机科学与技术实现了分子计算机
大家都知道,分子计算机体积小、耗电少、运算快、存储量大。分子计算机的运行是吸收分子晶体上以电荷形式存在的信息,并以更有效的方式进行组织排列。分子计算机的运算过程就是蛋白质分子与周围物理化学介质的相互作用过程。转换开关为酶,而程序则在酶合成系统本身和蛋白质的结构中极其明显地表示出来。生物分子组成的计算机具备能在生化环境下,甚至在生物有机体中运行,并能以其它分子形式与外部环境交换。因此它将在医疗诊治、遗传追踪和仿生工程中发挥无法替代的作用。目前正在研究的主要有生物分子或超分子芯片、自动机模型、仿生算法、分子化学反应算法等几种类型。分子芯片体积可比现在的芯片大大减小,而效率大大提高,分子计算机完成一项运算,所需的时间仅为10微微秒,比人的思维速度快100万倍。分子计算机具有惊人的存贮容量,1立方米的DNA溶液可存储1万亿亿的二进制数据。分子计算机消耗的能量非常小,只有电子计算机的十亿分之一。由于分子芯片的原材料是蛋白质分子,所以分子计算机既有自我修复的功能,又可直接与分子活体相联。美国已研制出分子计算机分子电路的基础元器件,可在光照几万分之一秒的时间内产生感应电流。以色列科学家已经研制出一种由DNA分子和酶分子构成的微型分子计算机。预计20年后,分子计算机将进人实用阶段。也就是说计算机科学与技术实现了分子计算机。
(三)计算机科学与技术实现了纳米计算机
纳米计算机是用纳米技术研发的新型高性能计算机。纳米管元件尺寸在几到几十纳米范围,质地坚固,有着极强的导电性,能代替硅芯片制造计算机。“纳米”是一个计量单位,大约是氢原子直径的10倍。纳米技术是从20世纪80年代初迅速发展起来的新的前沿科研领域,最终目标是人类按照自己的意志直接操纵单个原子,制造出具有特定功能的产品。现在纳米技术正从微电子算机也会像现在的马达一样,存在于家中的各种电器中,那时问你家里有多少计算机,你也数不清,你的笔记本,书籍都已电子化。再过十几、二十几年,可能学生们上课用的不再是教科书,而只是一个笔记本大小的计算机,不同的学生可以根据自己的需要方便地从中查到想要的资料所以有人预言未来计算机可能像纸张一样便宜,可以一次性使用,计算机将成为不被人注意的最常用的日用品。
(四)计算机科学与技术实现了量子计算机
量子计算机的概念源于对可逆计算机的研究,量子计算机是一类遵循量子力学规律进行高速数学和逻辑运算、存储及处理量子信息的物理装置。量子计算机是基于量子效应基础上开发的,它利用一种链状分子聚合物的特性来表示开与关的状态,利用激光脉冲来改变分子的状态。使信息沿着聚合物移动。从而进行运算。量子计算机中的数据用量子位存储。由于量子叠加效应,一个量子位可以是0或1,也可以既存储0又存储1。因此,一个量子位可以存储2个数据,同样数量的存储位,量子计算机的存储量比通常计算机大许多。同时量子计算机能够实行量子并行计算,其运算速度可能比目前计算机的Pentium DI晶片快10亿倍。除具有高速并行处理数据的能力外,量子计算机还将对现有的保密体系、国家安全意识产生重大的冲击。无论是量子并行计算还是量子模拟计算,本质上都是利用了量子相干性。世界各地的许多实验室正在以巨大的热情追寻着这个梦想。目前已经提出的方案主要利用了原子和光腔相互作用、冷阱束缚离子、电子或核自旋共振、量子点操纵、超导量子干涉等。量子编码采用纠错、避错和防错等。量子计算机使计算的概念焕然一新。
二、计算机科学与技术的发展趋势总结
计算机科学与技术的发展,将朝着向信息的智能化发展。计算机技术的大多数领域以应用学科和工程学科的出现为标志,这些学科的职责是促进与实践有关的认识的发展,这些学科常吸收更为基础的学科,提高就能有实践的进步,在对计算机技术研究中,发现常有另外一条路径,这个过程存在着强烈的相互作用,有关半导体是如何运行的理论也建立了起来,这是用它们能够使计算机技术的实践中普遍存在的问题得到解决,或者说是促进实践的发展。能实现或更困难一些。显然,选择机制在计算机技术的实践进化和认识进化之间明显地提供了一种双向的连接,推动计算机技术的快速发展。参考文献:
[1]王华.计算机技术发展[J].电脑与电信,2013(02).
【关键词】计算机技术 信息化 发展趋势
一、计算机科学与技术的历史步伐
已去的20 世纪,是计算机飞速发展的一个时期。世界上第一台电子计算机“ENIAC”诞生于1946年,至此计算机的发展才不过60年的光阴。现代计算机体系结构的形成及其技术实现的有关发明,主要归功于两位数学家,与四位物理学家,由于他们的不懈努力奠定了计算机科学与技术发展的基石。
英国数学家布里顿.艾伦.图灵和美国数学家冯.诺依曼在计算机体系结构方面做出了巨大的贡献。1935 年到1936年间由图灵设计的抽象计算机“图灵机”成为计算机发展历史中的里程碑,因此,图灵被人们公认为计算机科学之父。冯.诺依曼在1945年总结了ENIAC计算机的优缺点, 提出了基于存储程序的通用电子计算机EDVAC逻辑设计方案,1952年成功设计建造,它在体系结构设计中实现了数字化的计算过程、存储程序控制并按电子学原理工作,这三点奠定了现代计算机体系结构的基础,因此,人们又把现代计算机称之为“冯.诺依曼计算机”。
1947美国贝尔实验室的物理学家威廉.肖克莱、约翰.巴丁和沃尔特.布莱顿共同发明了晶体管,他们一起成为了晶体管之父。11年之后,美国物理学家杰克.基尔比研制出第一块集成电路(IC),从此,以晶体管为基础的芯片按照摩尔预言的速度发展,带来了今天计算机的普及,基尔也成为了电子学革命之父。
大规模集成电路的发展和微处理器的出现,其直接成果就是带来了计算机的高性能和快速小型化,1971年,世界上第一款微处理器—Intel4004问世,1978年,英特尔公司开发出了8086,首次用于IBM PC机中,电脑走入家庭。一个全新的概念“个人电脑(PC)”取代了“微电脑”的概念,
二、计算机科学与技术得到发展的原因
(一)日新月异的时代需求
起初对计算机的时代需求为“二战”时期,有着对各种信息进行处理加工的欲求,这样促使进算计的研发运用。随后信息化时代的快速发展,计算机的运算速度也在不断的提高,存储功能不断强大,使其在教育、经济等领域迅速发展普及。市场激烈的竞争之下,计算机要顺应社会需求,不断的研发变化着,无形的竞争很大程度上促进了计算机科学技术的发展进步。
(二)稳定的选择机制基于计算机技术
对于相互竞争的技术价值做出一个共识性判断之前需要一段时间,这种不确定因素可能最后影响选择机制。大多数,同时发挥作用的围绕计算机技术的若干选择判据和机制及其影响要素,选择的环境常常是非常敏锐和稳定的,这是计算机技术迅速发展的一个重要原因。
在实践中,最强的技术性创新,把经济之间的激烈竞争转化为了技术性的较量。其计算机的发展在工程学科和应用学科也给我们许多启发。这使计算机的选择机制判断更加稳定明显,这样就更容易解决计算机在生产生活的运用中所存在的各种问题。同时,计算机选择机制的发展与计算机的发展是一种双向促进的关系,一种技术的发展可以促进另一种技术的进步。
(三)科学技术的发展离不开计算机技术的支持
新一代的技术与其他领域结合,又为了满足其需求不断的研发更新,慢慢计算机技术成为生活生产中的重要工具,并成为其他行业生产中重要的工具,直接与间接的促进了各个行业科学技术的发展,最终提高了社会的经济水平。
三、计算机科学与技术的发展趋势
计算机的具体发展趋势主要分为两大部分:
(一)智能化
智能化计算机是指设计结构独特并采用平行的处理技术,对计算机中的多个数据及多种指令可进行同时处理和分析的一种超级计算机。超级计算机相对于普通的计算机来说有着更高的运算速度。这些更智能化的计算机跟接近与人类大脑的性能,可以为人们生活和工作提供方便。更可以在某些高端行业,帮忙处理大量繁杂数据,提高工作效率,节省时间与成本。这也就是计算机发展的趋势是更人性化,更智能化。
(二)新型计算机
计算机的发展是基于硅芯片技术的不断更新,但由于需求的不断加强,硅芯片的研发潜力已近极限。所以很多新型计算机就成为了计算机技术的发展趋势。
(1)纳米计算机。计算机技术与纳米技术相结合,便有了纳米计算机。纳米元件与电子元件相比,其体积较小,质地优良且导电性能较高,完全可以取代传统的硅芯片。纳米技术兴起于20世纪80年代初,纳米作为一种计量单位,它的目标是使人类可以自由的操作原子。使用纳米级芯片组成的纳米计算机的能耗非常小,几乎可以忽略不计,性能上远远高于现有的计算机,所以纳米计算会是计算机技术的发展趋势之一。
(2)量子计算机。量子力学的原理来对大量数据进行运算以及存储和分析处理的源自可逆计算机的一种物理装置,而量子计算机就是基于这个。量子效应是量子计算机研发的基础,这种计算机中,开与关的状态是通过激光脉冲来改变一种链状分子聚合物的特性来决定的。由于量子的叠加效应,与传统计算机对比而言,量子计算机存储的数据量要大得多,还有就是,其运算速度是传统计算机的十亿倍。除了其存储性能及运算速度方面的优势外,其在安全性及安保体系等方面的优良性能也远远高于传统计算机。这也成为了计算机发展的另一趋势。
(3)光子计算机。光子计算机是利用光子进行计算,用光子代替传统的计算机通过电子进行数据计算、传输和储存。并把传统计算机的导线互联转变成了光互联。传统的计算机硬件结构复杂,多数为电子硬件,而光子计算机则为光子硬件,并为光运算,不同的数据是由光的不同波长表现出来的,对于复杂的任务可以进行快速处理。成为新型计算机一员。
四、总结
以上为对计算机科学与技术发展趋势的探究,从其发展趋势到发展其必要原因到未来计算机从智能化到新型化的发展态势的必然进行了探究阐述。
微博传言
2012年CES展会上一家名为Liquipel的公司通过纳米防水技术让iPhone 4拥有了防水能力,在当时,这种神乎其技的能力让人大跌眼镜。2013年该公司推出升级版Liquipel2.0,官方称2.0版本较上一代防水能力提升百倍,可正常在一米的水下停留30分钟。一层看不见、摸不着的纳米涂层为何有着如此神奇的能力?
先来点通俗易懂的内容:科技源于生活,在我们的生活中你一定见过荷叶,其表面具有超疏水以及自洁的特性,于是聪明人总结出了“莲花效应”。20世纪70年代,波恩大学的植物学家巴特洛特在研究植物叶子表面时发现,光滑的叶子表面有灰尘,要先清洗才能在显微镜下观察,而莲叶等可以防水的叶子表面却总是干干净净。
莲花出污泥而不染,自古以来就被人们认为是纯洁的象征。落在叶面上的雨水会因表面张力形成水珠,换言之,水与叶面的接触角会大于150度,只要叶面稍微倾斜,水珠就会滚离叶面。巴特洛特在显微镜下发现,莲叶的表面有一层茸毛和一些微小绒毛和颗粒。在这群聪明人之中,总有一些人具备商业头脑,他们模拟莲花叶的表面,发明了纳米自清洁的衣料和建筑涂料,只需一点水形成水滴,就可以自动清洁衣物和建筑表面。
同门竞争
科技总是有着互通性,就像灯泡的发明一样。它是众多科学家呕心沥血的成果,显然,爱迪生解决了关键问题,于是我们记住了爱迪生。纳米防水涂层可不仅仅是Liquipel的专利……
HzO
WaterBlock
2013年CES电子展,WaterBlock涂层让人眼前一亮,其有着Liquipel的特性而且看起来更强大,在果汁、啤酒等各种混合水的液体中都可以很好地保护手机。
UltraTech
――Ultra Ever Dry
这货显然是最近才在微博上火起来的,与上面两位相比,它的能力更像是孙悟空的72变,让二师兄的36变黯然失色。ArsTechnica的野心不局限于那两位在IT行业的发展,它将目标定在给生活各个方面带来便利的远景上,其防水、泥和油漆粘附的性能以及可以附着在任何物体上的方便特性,很难不让它成为焦点。
和域战士
――神盾防水
和域战士可谓是民族科技的领跑者,关键是价格很便宜,而且在青岛、威都、重庆、东莞、香港都设立了服务网点。
防水喷雾
iWo聊了这么多,你是否想尝鲜体验一下?手机全身防水一般在200元-500元,有没有更便宜的尝鲜方式?必须的,在淘宝购入20元一瓶的防水喷雾,可以用它保护你的衣服、鞋以及包包等生活物品。至于手机嘛?我们不太推荐,这么便宜显然不是纳米技术,而是像不粘锅一样的氟化物涂层。
身边的科技
诺基亚EOS
IT行业的定律――不创新就等死,诺基亚经历了凤凰涅的重生之后,更坚定了创新的理念。即将到来的4100万像素诺基亚EOS将作为Lumia 920接班人推出,配备4100万像素摄像头,加入光学防抖功能,铝合金材质机身等众多亮点。但这还不够,于是诺基亚将其打造成为表面和内部元件则涂有纳米防水涂层的新一代旗舰手机。昔日老大的一举一动都在影响着整个行业,纳米防水涂层成为标配的日子不远了。
博士,中国科学技术大学副研究员,主要从事微量元素硒研究,获研究经费超过300万,在国内外学术期刊超过20篇,主要成就为发现了纳米硒,该研究改变了硒研究中教条性认识。
1995年国家教委、人事部授予“全国优秀教师”
1997年国家烟草专卖局授予“技术创新先进工作者”
1998年团中央、科技部授予“第三届中国优秀青年科技创业奖”
1995年所负责研究组被评为国家烟草专卖局“先进集体”
1997年所负责研究组被评为国家烟草专卖局“科技创新先进集体”
1998年研制的纳米硒被卫生部批准为“保健食品”
1998年研制的纳米硒被国家经贸委批准为“国家级新产品”
1999年研制的纳米硒被国家知识产权局批准为“中国发明专利”
2000年至2002年在英国食品研究所开展研究工作,硒与西兰花提取物协同作用后,立即被英国的BBC、卫报等几十家传媒报道。
2000年,将纳米硒知识产权转让上海四通纳米技术港有限公司,并实现产业化,现纳米硒产品“硒旺胶囊”已在全国各大城市上市。
目前,张劲松继续投入在如何防止癌症的高发和把硒作为一个名副其实的放化疗辅助治疗并减少放化疗副作用和耐药性预防癌细胞转移的攻关课题中。
Extraordinary, essential, enigmatic selenium and novel Nano-Se A talk with the first inventor of Nano-Se, Dr. Jinsong Zhang
Dr. Jinsong Zhang is an associated professor in University of Science and Technology of China. He and his colleagues found and elucidated nano red elemental selenium (Nano-Se). Their finding challenges long-held dogma that elemental selenium is biological inert and shows this kind of selenium in nano size is highly active with lower toxicity. In this talk, Dr. Zhang explain why selenium is extraordinary, essential, and enigmatic, also he describe his experience of Nano-Se research and novel properties of Nano-Se.
张劲松博士是中国科学技术大学副研究员,他和他的同事发现并阐述了纳米硒。他们的发现挑战了长期持有的零价元素硒无生物活性教条,说明这种硒处在纳米尺寸时有高活性和低毒性。本访谈中,张博士解释了硒被称为非凡的、必需的和谜一般的原因,介绍了发现纳米硒的经历和纳米硒特点。
记者:你主要的工作是研究纳米硒,从发现它到阐述它甚至到产业化均做了大量工作,首先想问一下硒的重要性是什么?
张劲松博士:德国科学家最近写过一个综述,题目叫“非凡的、必需的与谜一般的硒和硒蛋白”。三个形容词的开头均是E,如果我们能理解硒的3E性,就可以很好认识硒的重要性。首先是非凡性,自上世纪六十年代破译基因密码,确定二十种氨基酸之后近半个世纪,在进入21世纪时,硒半胱氨酸是唯一被科学界公认的第21个参与蛋白质合成的氨基酸。除了这个特殊性外,硒半胱氨酸进入蛋白质与前20种截然不同,它利用本该终止蛋白质合成的密码,要十分特别的基因结构参与识别这个密码。
另外一个明显区别是,前20种氨基酸是合成后加到蛋白质上,而硒半胱氨酸是与蛋白质合成同步的,显然机体蛋白质要加入硒半胱氨酸比加入其它氨基酸要吃力的多,动用更复杂的装配线。那么为什么生命的进化要向这种耗能的方向发展呢?原因是硒半胱氨酸极活泼,当它占据活性中心后,其工作效率,如清除自由基,是非凡的,这样看前面合成虽费劲,但后面运转高效,因而生命从无硒半胱氨酸向有硒半胱氨酸进化。其次是必需性,简单的说,当用基因删除等手段将硒蛋白的基因逐个从身体中除去,会导致死亡和多种疾病,显示出硒的必需性。最后是硒的谜一般性质,这有两个层面,第一层面是硒蛋白可能有近百种,而已知的只有二十几种,准确知道其作用的不足十种。
前面说到机体那么费力地生产硒蛋白,已知的硒蛋白有非凡的效应,那些未知的硒蛋白到底在我们的机体中做了些什么?硒与健康关联那么紧,大大小小疾病的预防和辅助治疗的报道不胜枚举,现有的知识远远阐述不了它被观察到的作用,这不能不让人感到神秘。由此可以想到它与疾病的关联比我们目前所知的还要广泛。另一个层面形象一点说,是月光女神时而明媚时而漆黑,硒是用希腊神话中月光女神命名的,恰巧它的个性与它的名相吻合,科学研究中已发现缺硒导致疾病、疾病伴随缺硒,硒与五花八门的疾病有关联,补硒对很多疾病的预防和治疗是有益的,相对充足、超营养水平效果更好,但太高又靠近它的毒性,这使得硒显得十分神秘。非凡、必需和神秘说明硒留给我们研究、思考和开拓的内容太多,也说明它十分重要。要等到完全认清硒再去利用硒防治疾病显然不合适,在对硒的认识还处有限阶段充分利用硒的潜能的唯一选择是开发低毒高效的硒,让它更明媚、让它脱离黑暗。
记者:硒是人体和动物必需的微量元素,硒和维生素一样是作为营养品,在国内外被广泛应用。但是传统硒的特点就是营养剂量和毒性剂量之间的范围很窄,因此其使用往往受到限制。我们已知道您在零价元素硒中利用纳米技术魔术般改变硒的形式,成为零价纳米硒,具有高效低毒的功效,那也就是说,作为营养剂我们在剂量上放宽了范围。
张劲松博士:硒作为人体和动物必需的微量元素,特点是必需和微量,作为营养剂,世界卫生组织已明确提供每日膳食补充50~250微克硒,在这个剂量范围内,目前在国内外已使用的硒是安全的。但是有一点,硒的防癌作用和治疗或辅助治疗疾病作用在较高剂量时才突出,这就产生了矛盾,能充分体现硒效应的剂量靠近不安全剂量,如果能增强硒的活性,提高硒的安全限度,则能有效缓解这个矛盾,释放出硒防病治病潜能。纳米硒显示出低毒高效特点,在应用上,尤其是在防癌、治疗或辅助治疗疾病方面更有潜力可挖。
记者:刚刚提到,传统硒的营养剂量和毒性剂量之间的范围狭窄,而硒的抗癌和有益生理作用往往依赖于较高的摄入量。现在发明的纳米硒和传统的无机硒、有机硒相比,在毒性方面有什么区别,您是如何发现的?
张劲松博士:因为硒有几十种化学形式,不同的化学形式的硒,它的生物活性以及它的副作用都是不一样的。现在研究比较多的是无机硒和天然有机硒。
我们对硒的兴趣起源于从植物中提取蛋白质,湖北恩施市是世界上硒含量最高地区,一个偶尔的机会,恩施市副市长等参观我的实验室,他们说你提取植物蛋白质,为什么不提取硒蛋白呢,恩施的土壤富硒,植物中的硒多富集在蛋白质中。我们去恩施做了一段研究,确实如此,后来我们就把研究兴趣转到提取植物硒蛋白,它属于天然有机硒,主要成份为硒蛋氨酸,和硒酵母的成份相同。然而,愈来愈多的资料显示,以硒蛋氨酸为主要成份的有机硒并不象科学界期待的那样有高活性和低毒性。硒蛋氨酸有很好吸收作用,但对硒而言,吸收不等于高效,防癌作用为硒最突出的作用,令人失望的是硒蛋氨酸效果反而不如无机硒。另一方面它的长期安全性也不优于无机硒,由于它能被更多吸收,非专一地积蓄,甚至会造成更强的毒性。这就提示我们需要进一步探索其它形式的硒,有一种硒,在国际上大家普遍认为它没有生物利用度,就是零价态的硒。零价态的硒外观形同烟灰,为粉末,它不溶于水,这样它即没有活性,也没有毒性,所以它是一种惰性硒。我们发现把这种惰性的零价硒,用生物的方法,使它成为纳米粒子,居然产生了巨大的变化。首先是外观上的,它原来是黑色,但是到了纳米以后它变成红色了。从最初它不溶于水,到了纳米硒以后,它变成红亮透明溶液,也就是说它溶于水了。它的生物性质发生了改变,我们经过一系列的研究,发现纳米硒有很强的生物活性,同时它的安全性也提高了,与其它硒形式相比,纳米硒显示出低毒和高效特征。现在国际上对硒的研究越来越重视,也发现硒必须在一个较高的剂量情况下,才能有较高的生物学活性,比如说,用硒来控制艾滋病情的发展,每天摄入量要达到800微克,癌症病人在放化疗期间,摄入量要达到1500微克,在癌症期间,用到600至800微克的很多。在高剂量的情况,硒的安全性就是一个比较突出的问题。用什么样的硒,当然选用活性高的,安全性高的。我们发现纳米硒具有这么一个特点。科学界已研究了近千种硒,一概排斥对零价硒的深入探索,形成零价硒是惰性的教条。恰恰是大家所抛弃的零价硒,经过纳米技术改造以后,它产生了巨大的变化。它产生了人们最希望得到的特性,即低毒和高效的特点。
记者:纳米硒在急毒、慢毒方面做了哪些研究和测试试验,您可以简单地介绍一下吗?
张劲松博士:在急性毒性方面,我们发现纳米硒比无机硒下降了7倍,这是一个非常大的下降幅度,最近国内其他学者证实了我们的这个发现,同时进一步说明纳米硒比有机硒的急性毒性下降了3倍。超大剂量硒的短期毒性也是纳米硒低,如肝损伤、抗氧化逆境和压制生长,从这些指标看,纳米硒比无机硒更安全。硒的长期毒性指标与它作为营养剂的关系更紧,通常用亚慢毒性试验比较,这个关键环节上,我们十分慎重,围绕亚慢毒性试验工作,我们就做了3次,在别人眼中有点不可思议,甚至有些傻,因为每次试验的耗时与耗资是一般试验不可比的。第1次在南京铁道医学院,发现纳米硒亚慢毒性没出现传统硒所表现出的强烈毒性,提示纳米硒低毒。接着在预防医科院营养与食品卫生研究所、食品安全毒理实验室,比较了天然有机硒(大豆硒蛋白),无机硒(亚硒酸钠)和纳米硒,在明显产生硒中毒的高剂量(饲料含硒6ppm),发现了纳米硒的毒性要比其它硒要轻。为进一步说明它的低毒,我们又在预防医科院营养与食品卫生研究所、食品安全毒理实验室进行了比较,降低硒剂量,在2、3、4和5 ppm大范围比较天然有机硒(大豆硒蛋白),无机硒(亚硒酸钠)和纳米硒亚慢毒性,充分证明纳米硒毒性最低,同时也看到天然硒蛋白毒性不仅不低于无机硒,反而略高于无机硒。最近国内其他学者用0.5和1ppm含硒饲料喂养动物,这些剂量一般不产生硒毒性,但无机与有机硒在此剂量范围导致动物不再增重,而纳米硒保持高增重状态,说明纳米硒的安全范围宽。
记者:纳米硒和其它硒相比,除了刚才所说的这些特点之外,还有其他的不同之处吗?
张劲松博士:硒在生物体内发挥生物功能,基本途径是通过调节含硒酶,从这个角度来说,纳米硒和其它硒有许多相近的地方,都能有效地增加谷胱甘肽过氧化物酶、硫氧还蛋白还原酶、脱碘酶等含硒酶。但是纳米硒有一个新的特点,它能直接清除自由基,也就是说纳米硒碰到自由基能把它还原,从实际结果看,纳米硒效应强于无机硒,按表面硒原子数计算,它比其它硒的活性大幅提高,达几十倍,这依赖于纳米尺寸和结构。现在很多人认为到了纳米已是高技术了,其实除了纳米尺寸,还有纳米结构的概念。我所做的纳米硒在电镜下观察为中空结构,使硒表面最大化,我所讲的纳米硒是具有这种结构特点的纳米硒,不同于一般的以尺寸定义的纳米硒。我们在防肺癌实验和免疫实验中,发现纳米硒与其它硒相比,有更高的生物学活性,这可能跟它有新的作用途径有关。
记者:硒在防癌、抗癌方面有哪些机理呢?
张劲松博士:硒在癌症治疗中作为辅助治疗,是非常有效的,这体现在以下几个方面:第一方面,硒能控制肿瘤细胞的转移。癌症治疗中的一个难点就控制癌细胞转移,癌细胞转移到其他部位,是导致无药可救的主要原因。美国已经做4项研究,都证明硒能有效阻止癌细胞转移。第二方面,硒在放化疗中作为辅助治疗有明显效果,因为放化疗产生很大副作用,病人的白细胞、红细胞都普遍的下降,很多病人坚持不住,高剂量硒能防止白细胞和红细胞下降,防止呕吐和浮肿等现象。硒在癌症病人中用的非常广,它对放化疗起到很好的改善作用。第三方面,化疗药物长期使用的话,癌细胞将产生耐药性。如果说不加控制的话,化疗药物用到后期就对癌细胞失效了。硒能抑制癌细胞对化疗药物产生耐药性,这样使化疗药物对癌细胞始终处于一个敏感状态。围绕硒预防和治疗癌症的机理,现在科学家总结出5个可能的途径。
第一,硒能调节人体的免疫,最近发现硒对癌症病人的免疫调节效应比对健康人更灵敏。
第二,硒能够增强人体的抗氧化功能,因为癌症病人广泛存在抗氧化不平衡,自由基过剩。硒可以通过一系列含硒酶,使许多脂质过氧化物,过氧化氢等得到有效的清除。
第三,硒能够上调人机体中的二相酶,或者叫脱毒酶,比如说谷胱甘肽硫转移酶。这一类酶能把许多致癌物在它发挥致癌效应以前代谢排除掉,从而降低致癌物的毒性。
第四,硒能抑制肿瘤血管形成。因为肿瘤转移和生长,依赖于自身建立一套血管系统,从人体中获取养分,来满足它快速生长需要,硒能抑制形成肿瘤血管的信号途径,从而控制肿瘤的生长和转移。
第五,硒能抑制癌细胞生长和杀伤癌细胞,这点研究的最透彻。
记者:纳米硒在抗癌上有什么优势?
张劲松博士:2004年美国用超大剂量硒与依力替康联用,取得惊人效果。依力替康是最新的治疗肠癌化疗药物,它对敏感性肠癌和头颈部癌治愈率为20%―30%,对不敏感性肠癌和头颈部癌治愈率为0%―10%。当与超大剂量硒联用后,敏感性肠癌和头颈部癌治愈率达到100%,不敏感性肠癌和头颈部癌治愈率达到40%―80%。美国这项研究中使用的是超大剂量硒,结果即振奋人心又引人深思,超大剂量硒意味着硒会有毒性,纳米硒有低毒优势,我们想从这个点上用纳米硒追赶并超越美国的研究,将其视为纳米硒的第二次创新,目前苗头挺好,有两年时间可能会实现纳米硒的二次创新目标。
记者:我国科学家对于纳米硒的研制和开发对于国际上硒元素的研究起到了哪些积极的影响和促进作用?
张劲松博士:
我们在1995年~1999年就把纳米硒多方面的性质描述清楚而且把它产业化,申报了卫生部的保健食品,以及国家经贸委的国家级新产品。这些都得到了批准。我们挑战的零价硒没有生物利用度,在申报保健食品时,确实面临着很多困难。所以要通过研究鉴定会形式,由管理部门请国内该领域最好的专家进行鉴定和评审。从硒和纳米两方面双重鉴定和评审。有几个科研成果要经历双重鉴定和评审?很少。有哪项保健品是只有通过学术成果鉴定会认可,才最终被卫生部专家组批准的?没有。学术创新本身已很困难,这种创新迅速跨越至产品所面对的困难是非常大的。虽然我们面对的过程很多,但每次答辩均赢得高分。这些是国内的情况。
去年美国威斯康新医学院有一位教授,他长期做光化疗治疗研究,发现一种光化疗药物,如果用硒代替硫,它的光化疗效果更好。因为硒从光化疗药物脱离下来,变成了纳米态的硒。所以他认为纳米硒是最令他兴奋的发现,这对他来说也是一个意外的发现,他在自己的网页上声称自己挑战了零价硒不能利用教条,但没有注意到我们早期的科研工作。我与他通信指出了我们首先挑战,并告诉他我们已实现了产业化。今年初,美国一个微生物实验室和美国一个重要的纳米技术研究所合作,发现微生物能合成纳米硒,为300纳米,他们认为纳米硒只能在微生物中生成,不能在体外制备。恰恰相反,我们在5年前已经在体外制备了小至5纳米的纳米硒,并将20-60纳米产业化,形成“国家级新产品”。美国权威杂志《科学》,把这个微生物现象摘录到该杂志评述,突出了它的重要性。著名的生物学网站(省略)也大篇幅评述这项工作意义,题目叫纳米与生物结合开创新的研究空间。这些均忽视了我们的工作,我们的纳米硒已产生了几篇高影响因子论文,在这些论文送审中,国际上该领域匿名审稿专家认为纳米硒改变了硒研究教条性认识,这一点是纳米硒所产生的最基本的影响。