公务员期刊网 精选范文 气候变化的研究方法范文

气候变化的研究方法精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的气候变化的研究方法主题范文,仅供参考,欢迎阅读并收藏。

气候变化的研究方法

第1篇:气候变化的研究方法范文

关键词:气候变化经济学;气候变化的经济影响;温室气体减排成本

中图分类号:F08

文献标识码:A

文章编号:1003―5656(2009)08―0068―08

一、引言

政府间气候变化委员会(IPCC)第四次评估报告指出(2007a),近百年来,全球表面的气温升高了0.74℃。如果在2000年到2030年间依然保持目前的能源消费结构,全球温室气体的排放将增加25―90%,预计未来20年间,气温将每10年增加0.2℃。科学证据表明燃烧化石燃料排放的二氧化碳的累积以及人类活动排放的其他温室气体如甲烷和氧化亚氮等是导致气候变化的重要原因。气温升高可能导致极端气候事件(如热浪)发生的频率加大、风暴的密集度增加、大气降水模式的改变以及海平面上升等。这些自然系统的变化反过来又会对生态系统的功能产生根本的影响,从而威胁生物的生存能力和人类财富的安全。

经济学家Williams Nordhaus1982发表了题为“How Fast Shall We Graze The Global Commons”的文章,开始应用经济学研究气候变化,从此气候变化经济学就将焦点落在分析气候变化的影响和提供积极的针对面临的气候问题的政策分析。虽然和环境经济学的其他领域有重叠,但气候变化经济学更多的是利用气候变化的鲜明特点,即温室气体影响的长期性、气候问题产生和影响范围的全球化、政策的效益和成本的不平衡的分布等,来理解气候变化问题的多个侧面。通过模拟经济发展和温室气体排放增长的趋势,检验和分析技术选择对气候变化进程和减排成本的影响,选择控制气候变化的具体措施(如碳税和碳交易等)。

气候变化经济学已经建立了其研究领域和基础要素,并在经济学界达成了共识。1997年,美国2500名经济学家,包括9位诺贝尔经济学奖得主共同发表了一项声明,指出最有效的减缓气候变化的方法是通过基于市场的政策。他们认为如果没有控制措施,温室气体继续排放将导致世界随着气候系统的变化经历根本性的变革。他们相信经济学家和决策者能够利用大量的证据和量化的风险评估提供的信息来帮助形成应对气候变化的措施。

二、气候变化的损失和减缓的效益

气候变化可能导致一系列的后果,如平均气温升高、极端天气现象频率发生、降水模式的变化、海平面上升和生态系统的改变等,这些生物物理系统要素的变化将对人类的福利产生不同程度的影响。经济学家通常将气候变化对人类福利的影响分为两类:市场和非市场的损失。

市场的损失(market damages)来源于气候变化导致的市场产品的价格波动和数量的变化给福利带来的影响,主要是因为生产量的变化受气候变化要素的约束。研究者通常应用气候依赖型的生产函数来模拟气候变化的福利影响。例如,小麦的产量是气候要素气温和降水的函数,因此可以直接估算由于气候要素变化导致的小麦产量的变化。生产函数法还被用在森林、能源服务、水资源利用以及海平面上升导致的洪水等产生的经济损失。有学者认为生产函数法忽视了产品之间替代的可能性。于是享乐价格法(hedonic approach)则成为估算气候变化损失的另一选择。例如Mendelsohn et al.(1994)将享乐价格法应用到农业,基于选择最大化地租的假设,利用跨部门的数据检验自然、物理和气候变量对土地价格的影响。

非市场的损失(no―market damages)包括由于不利的气候变化导致的直接效用的损失、损失的生态系统的服务以及生物多样性减少导致的福利的减少。这些损失的价值不能够在市场上直接观察到。例如,生物多样性的损失没有和价格的变化有任何明显的直接联系,也观测不到需求的变化。条件价值评估法(Contingent Valuation Method)是最有争议也是最为广泛被采用的评估非市场损失的方法。Berk and Fovell(1998)利用支付意愿法研究了美国加州不同地域的公众为阻止当地的气候变化每月愿意支付的价格。结果表明冬季人们为阻止当地气候变得暖湿/暖干的支付意愿分别是每月9.74和16.70美元,而为阻止气候变得冷湿/冷干的支付愿意分别是每月11.10和18.18美元。

评估气候变化的经济影响,更多的研究利用包括市场和非市场部门的经济模型,估算全球或是区域气候变化的经济损失。总体上,基于模型的实证性研究报告了三种不同的气候变化经济影响的评估和结果。第一种是计算在特定的全球平均气温升高的情况下,气候变化的影响占GDP的百分比。Mendelsohn et al.(2003)估算了气候变化对农业、林业、水、能源和海岸地带五个市场部门的影响,结果表明全球气候变化的影响非常的小。如果气温比工业化前升高4℃或是以上,在此情况下气候变化对上述五个部门的影响都是正的。Tol(2002)的估算包括市场(农业、林业、水、能源、海岸地带)和非市场的部门(生态系统以及疾病造成的健康影响),结果发现如果气温比工业化前升高0.5℃时,气候变化带来的效益占全球GDP的2.5%。如果全球气温升高2-2.5℃,气候变化的损失占全球GDP的0.5-2%。Dordhaus(2000)除了考虑更多的市场部门、与气候相关的疾病、污染造成的死亡以及生态系统外,其模型还包括了气候变化导致的灾害的经济损失。

第二种研究气候变化的经济影响则是按照特定的排放情景,在特定的经济发展、技术变化和适应能力的假设前提下,经济影响被按照时间的发展综合,然后被贴现到现在的值。一些估算是在全球的尺度上进行的,有些估算是综合一系列地区或是当地的影响以得到全球的总和。Stern(2006)应用综合评估模型,设计了基准和高气候变化的不同情景。模型估算的结果表明,在“照常营业”(business―as―usual)的情景下,即如果我们现在不采取措施或是行动的话,气候变化对市场部门的影响加上灾害的风险损失,每年至少占全球GDP的5%;如果将市场部门、灾害的风险和非市场的损失都计算在内的话,气候变化影响的损失估计每年占全球GDP的20%或是更多,而且损失将一直持续。Jorgenson et al.(2004)应用一般均衡模型(cGE)估算气候变化对美国投资、资本的存量、劳动力和消费的影响。结果显示,如果温室气体排放导致气温升高3℃,在最佳的适应状态和潜在的危害较低的情况下,气候变化的净收益为GDP的1%;如果很少采用适应气候变化的措施,损失为GDP的3%。不管是哪种情景,70-80%的气候变化影响是由农业产品的价格变化引起的,少部分是由能源价格和死亡率的变化导致的。

第三种气候变化影响研究的是估算社会碳成本(Social Cost of Carbon,SCC)。在任何时间段或是任何时间内,SCC是每增加一个单位的碳排放(CO2)造成的以经济价值来估算的额外(边际)影响或是损害,也可以理解为每减少一个单位的碳排放的边际效益。SCC的计算尽可能将每一吨额外保存在大气中的CO2的边际影响加起来,此过程需要一个温室气体在大气中停留的时间模型和将经济价值贴现到排放年限的方法。2005年社会碳成本的平均估算值为每吨碳(tC)43美元(即每吨二氧化碳12美元),但该平均值的变化范围很大,如在100个估算中,每吨碳从10美元(每吨二氧化碳3美元)到高达每吨碳350美元(每吨二氧化碳95美元)(IPCC,2007c)。社会碳成本大幅度的变化在很大程度上是由于估算的假设上存在的差异造成的,如气候敏感性、响应时间滞后、风险和公平的处理方式、经济的和非经济的影响、是否包含潜在灾难损失和贴现率选择等。

三、温室气体减排成本的估算

美国国家环保局的研究(US EPA,2006)分析了全球和不同地区以及不同部门的非二氧化碳温室气体的减排成本,指出如果减排成本是$10/tCO2eq,2020年全总的非二氧化碳的减排潜力大于2000MtCO2eq(二氧化碳当量);如果减排成本为$20/tCO2eq,则减排潜力为2,185MtCO2eq。由于二氧化碳是最大的温室气体来源,而且其在大气中的累积对气候系统产生巨大的影响,目前国内外主要的研究大都集中讨论二氧化碳的减排成本。

1、减排成本估算的方法和模型

二氧化碳的减排成本取决于多种边际替代的可能性,例如不同燃料的替代以及替代能源密集型产品的能力等。替代的潜力越大,则满足特定的减排目标的成本也就越低。研究者主要应用的模型采用两种不同的方法来评估可替代性的选择和减排成本:“自上而下”和“自下而上”的模型。

“自下而上”的能源技术模型,提供了非常详细的有关具体的能源过程或是产品的技术信息。模型趋于集中在一个部门或是一组部门,对于一般能源替代的能力提供较少的信息,也不能反映能源密集型产品价格的变化对这些产品的中期和最终需求的影响。自下而上的研究一般是针对行业的研究,所以将宏观经济视为不变。比较常用的模型有斯德哥尔摩环境研究所开发的LEAP,日本环境研究所的AIM/Enduse以及在国际能源署框架的MARKAL模型等。许多研究机构都根据研究需要和解决的问题开发不同的模型。

“自上而下”的研究是从整体经济的角度评估减排成本的经济模型,包括“可计算一般均衡”(computable general equilibrium,CGE)模型。这些模型的优势在于能够追踪燃料的价格、生产方式以及消费者选择之间的关系。然而,这类模型包涵了较少的具体的能源过程或是产品的信息,能源之间的替代通过平稳的生产函数来体现,而不是详细的可选择的不连续过程。自上而下的研究是从整体经济的角度评估减排成本,使用全球一致的框架和有关减排的综合信息,并抓住宏观经济反馈和市场反馈。自上而下的结果很大程度上依赖于模型建造的假设。Repetto & Duncan(1997)的综合分析发现,广泛应用的估算气候变化减排成本的模型,都包括了以下主要假设:低碳或是无碳技术的可得性以及成本,经济对于价格变化反应的有效性,能源和能源产品可替代性程度,达到具体的二氧化碳减排目标需要的年限。是否减少二氧化碳排放就可以避免一些气候变化的经济成本,是否减少化石燃料的燃烧就可以避免其他的空气污染的损害,碳税税收如何在一个经济体内循环等。如果假设条件不同,得出的减排成本的差异是比较大的。

综合评估模型(Integrated Assessment Models,IAM)模拟人类活动导致的气候变化的过程,从温室气体的排放到气候变化的社会经济影响进行综合的分析。这类模型将温室气体排放、温室气体在大气中的集中程度、气温、降水等要素联系起来,同时还考虑这些要素的变化如何反馈到生产和效用系统。综合模型也多为优化模型,以解决随着时间的变化如何将减排的利益最大化。综合模型利用气候变化经济分析的方法,比较减缓温室气体排放的政策成本和消除或是减弱气候变化的效益。这类模型如麻省理工学院的IGMS模型和Stern报告中应用的PAGE2002等。

2、减排成本的实证研究

IPCC(2007c)第四次评估报告指出,实现中期减排(2030年),全球将温室气体稳定在445和710ppm CO2-eq之间的宏观经济成本处于全球GDP降低3%和GDP增长0.6%这一范围内。实现长期减排目标(2050年),大气中温室气体稳定在710和445ppm CO2-eq之间,全球平均的宏观经济成本是GDP增加1%到GDP损失5.5%。大多数研究的结论是随着温室气体稳定目标的严格,减排成本加大。模拟也表明,假设排放交易体系下的碳税收入或拍卖许可证的收入用于促进低碳技术或现有税制的改革,将会大幅度降低减排成本。全球减排二氧化碳的宏观经济成本的估算主要是利用自上而下的模型,模型的总体假设是在全球排放交易的前提下,寻找全球最低的减排成本。

区域减排成本在很大程度上取决于假设的温室气体的稳定水平和基准情景。对于相同地区减排成本的估算,由于采用了不同的模型和假设,最后得出的结果也有很大的差异。虽然计算结果在具体的数据上有所不同,但是模型所解释的总体特征还是具有一致性。Chen(2004)利用中国的MARKAL―MACRO模型,预测中国2050年的一次能源的消费为4818Mtee,碳的排放量为2395MTC,从2000到2050年之间,中国单位GDP的碳强度将平均每年降低3%。在此情景下,如果CO2的减排幅度为基准水平的5-45%,估算的碳的边际减排成本在12美元/吨碳到216美元/吨碳,减排的经济成本相当于在基准基础上损失0.1%到2.54%的GDP。王灿等(2005)采用综合描述中国经济、能源、环境系统的动态CGE模型,分析了2010年实施碳税政策的减排情景。结果发现,在基准排放水平下CO2减排率为0-40%时,GDP损失率在0-3.9%之间,减排边际社会成本是边际技术成本的2倍左右。当在基准排放水平下CO2削减10%时,碳排放的边际成本约99元/吨,GDP仅下降0.1%左右,如果减排率上升到30%时,碳排放的边际成本约475元/吨,GDP将下降1%左右。

英国公共政策研究所(Lockwood et al.,2007)报告了一项基于不同模型对于英国减排成本的估算。其中,Anderson的自下而上的模型结果表明,在2050年,如果减排目标是在1990水平上减排80%,在基准没有控制飞行的排放的情境下,减排的成本为GDP的2.49%;如果控制飞行的排放,减排成本是GDP的1.06%;在能效提高的情景下,减排成本为GDP的0.76%;而如果有新核能的投入,则减排成本为GDP的0.94%。MARKAL―MACRO模型的结果显示,在2050年,基准的情景下减排成本为GDP的

2.81%;加速技术革新的减排成本为GDP的2.58%;高燃料价格的情景下,减排成本为GDP的2.64%;而能源效率加速提高的减排成本为GDP的2.04%。不管哪类模型,结果均显示提高能源效率是降低减排成本的关键因素。这两个模型的结果也被用在英国能源白皮书中,强调提高能源效率是英国的能源政策的优先考虑。

研究还发现估算CO2的减排成本,基于不同的理论和方法的变量是关键的要素,例如贴现率的选择、市场有效性的假设、外部性的处理、价值评估的问题和技术、气候变化相关的政策的影响、交易成本等,这些经济要素的不同都会导致估算成本的差异。

3、技术变化与减排成本

气候是由存储在大气中的温室气体决定的。有些温室气体在大气中能够存在上百年,使得气候变化成为一个长期性的问题,因此技术条件的假设对于减排成本的估算就非常的重要。温室气体的减排成本和技术变化的速率、技术替代以及新技术的应用是直接相关的。和没有考虑技术进步的模型比较,将技术变化包括在模型中估算出来的温室气体减排成本明显的减低(IPCC,2007c)。这些成本下降的幅度关键取决于减缓气候变化的技术研发支出的回报率、行业和地区之间的溢出效应、其它研发的推广以及边干边学的模式和学习的速度等。

目前应用的技术进步模型已经有了极为显著的改进,超越了早期的传统模型中将技术看作是外部变化因子的模式。最近的几个模型允许技术进步的速率或是方向对内在的政策干预做出反应。一些模型(如Popp,2004;Nordhaus,2002)则集中在研究和开发基础上的技术变化,结合政策干预、激励研发的政策以及知识的进步。其他的模型则强调基于学和做的技术变化,考虑累积的产出是和学习相关的,随着产出的不断累积而降低生产成本。相对于那些将技术认为是外部因素的模型,政策介入所产生的技术变化的模型能以比较低的减排成本达到规定的减排目标。

四、气候变化经济学与不确定性

气候变化最大的特点是不确定性,在科学上和经济学上均具有不确定性。科学上的不确定性表现在我们还缺乏对一些科学问题的认识,例如排放的温室气体在大气中积累的量,温室气体集中程度的改变对全球气候的影响,气候变化在全球范围内分布以及出现的速度,区域气候变化对海平面、农业、林业、渔业、水资源、疾病和自然系统的影响等。经济上的不确定性表现为我们不确定世界人口和经济的增长速度,人类活动的能源强度和土地强度,控制温室气体排放或是鼓励技术发展政策对温室气体在大气中累积的影响以及政策的成本等。

1、不确定性与气候政策的选择

不确定性分析的目的一是辨别出一系列可管理的变量,二是估计每一个重要的参数可能的分布,三是估计参数的不确定性对所解决的重要问题的影响。一些成熟的数学模型已经被学者用来分析和成本效益相关的不确定性,如一些学者采用Monte Carlo模拟分析减排模型输出的不确定性,决定那些缺乏知识的随机的参数或是误差如何影响被模拟的系统的敏感性和可信度。此方法提供了给定政策的一系列结果或是一系列的优化政策。王灿等(2006)利用Monte Carlo模型对CGE的二氧化碳减排模型的不确定性进行了分析,他们对CGE模型的50个自由参数进行随机采样,考察模型输出的不确定性。敏感性分析也被用来确定减排成本评估中对估算结果产生重要影响的因素。还有一些研究者利用其他的模型来处理不确定性。例如Nordhaus(2007)利用综合的气候-经济模型DICE同时分析不确定性。

2、不确定性与贴现率的选择

温室气体在大气中的存在要持续一个世纪或是更长的时间,因此减缓气候变化的效益必须在不同的时间尺度上被度量,这样就提出了贴现率在气候变化研究中的重要作用。通常讨论两种贴现的方法,但这两种方法均存在明显的不确定性。一种是应用社会时间偏好率,即纯粹的时间偏好率和福利的增长率之和。另外的方法考虑市场的投资回报率,使项目的投资能够得到这种回报。也有专家指出,应该选择比预期价值低的贴现率,以反映贴现的要素以及贴现率和贴现的时间间隔之间的关系。针对减缓气候变化的行动,一个国家必须将其决策建立在让贴现率能够反映资本的机会成本的基础上。发达国家一般采用4-6%的贴现率是合理的(这个贴现水平被欧盟国家用来评价公共部门的项目),而发展中国家的贴现率可能会高达10-12%(IPCC,2001)。在Stern的报告中,基于对气候变化公平性的强调,选择了近似于零的0.1%的贴现率,致使其气候变化影响的估算受到了经济学界的批评。Nordhaus(2007)用相似的方法和3%的贴现率重新模拟Stern的估算,发现气候变化的经济影响远远低于Stern的结果。

3、不确定性与减缓气候变化的行动

除了对减缓气候变化的成本估算有影响,不确定性同时也提出了非常重要的问题:是否应该现在就采取行动减缓气候变化?现在行动应该投入多少?还是等待至少是一些不确定性得到解决?经济学原理建议,在缺乏固定的成本和不可逆转性的情况下,社会现在就应该采取减缓气候变化的行动,温室气体的减排量应该是在预期的边际成本和边际效益相等的那个点。然而,无论是在成本侧的低碳技术的投资还是在效益侧的温室气体排放的累计,气候变化和固定成本和不可逆的决策存在着固有的联系。这些特征导致或是采取更为积极的行动来减缓气候变化或是没有行动,分别取决于各自沉没成本的大小。实证性的分析和数学模型建议现在就应该开始采取措施减缓温室气体的排放,以获得显著的环境效益。Stern的研究报告(2006)显示,如果现在采取行动控制温室气体的排放,气候变化的损失会控制在每年损失全球1%的GDP。所以他呼吁世界应该立即行动,大幅度的削减温室气体的排放,以避免气候变化带来的严重损失。

五、结语

第2篇:气候变化的研究方法范文

一、中华人民共和国和法兰西共和国(以下简称“双方”),认识到气候变化关系人类的生存和发展,意识到应对气候变化实现可持续发展的重要性和紧迫性,决心致力于在以《联合国气候变化框架公约》及其《京都议定书》为代表的联合国框架下共同努力,妥善应对气候变化这一严峻挑战。为加强双方在这一领域的合作,双方决定在中法全面战略伙伴关系框架下建立中法应对气候变化伙伴关系。

二、双方重申对《联合国气候变化框架公约》和《京都议定书》的目标、原则和规定的承诺,愿根据共同但有区别的责任原则、各自能力原则和公平原则,加强气候变化对话与合作,建立一个双边气候变化磋商机制,原则上每年举行一次磋商,磋商在中国和法国轮流举行。

三、双方将加强气候变化政策交流,深入开展应对气候变化合作,就气候变化国际谈判的问题交换意见。双方承诺在国际层面上促进对气候变化问题的重视,并加强在与气候变化相关领域(如生物多样性、水资源、荒漠化、自然灾害、森林、垃圾管理、防治污染、环境友好的经济手段)的合作,推动技术开发、扩散、应用和转让方面的合作。

四、双方强调在保持经济增长的过程中努力控制温室气体排放的重要性,将加强应对气候变化技术开发、应用和转让的务实合作,特别是在节能、生命周期长的能源基础设施、核能及其他低碳、无碳技术的合作,提高能效,促进实现低碳经济。

双方将鼓励发展合资企业,以鼓励应对气候变化创新技术的推广,双方鼓励各自工业企业和金融机构更多地参与双方应对气候变化和可持续发展合作项目。

五、双方将在如下主要领域开展技术合作:

(一)能源效率和节能技术;

(二)可再生能源技术;

(三)氢能和燃料电池技术;

(四)清洁煤炭技术;

(五)碳收集和埋存技术;

(六)民用核电技术。

六、双方将尽快组织应对气候变化技术合作项目,鼓励官方和私营机构以及地方参与,推动在以下方面取得进展:

(一)开发、应用和转让零排放先进煤炭技术;

(二)开发、应用和转让可再生能源技术;

(三)促进能源关键技术的获得和推广;

(四)在建筑和住宅领域提高能效;

(五)发展环保型城市和交通运输方式;

(六)农村的可持续发展。

七、双方将采取有力措施鼓励低碳技术的开发、应用和推广,并共同确保这些技术成为负担得起的能源选择。双方将探索资金问题,包括私营部门、合资企业、公私伙伴关系的作用以及探索碳融资和出口信贷的潜在作用。双方将共同解决技术开发、应用和转让方面的障碍。

八、双方重申2004年关于鼓励和推动清洁发展机制的双边协定,将进一步促进清洁发展机制方面的合作,交换开展清洁发展机制项目合作和排放交易市场的信息,鼓励双方企业开展清洁发展机制项目合作。

九、双方将致力于推动国际社会更加重视适应气候变化问题。双方将加强适应气候变化的合作,提高适应气候变化的能力,特别是开展以下活动:

(一)建立气候变化模型;

(二)研究和分析气候变化的负面影响及脆弱性;

(三)研究气候变化社会经济影响的分析和评估方法;

(四)提高预测气候变化及其影响的能力;

(五)研究和开发适应气候变化的技术和方法。

双方决定探讨加大同第三国共同合作的可能性,以便使最不发达国家,尤其是非洲最不发达国家受益。

十、双方将加强在能力和机构建设方面的合作,尤其是宣传教育、人员交流和培训等;双方鼓励大型研究机构、实验室的合作以及科研人员和专家的交流。

十一、双方承认减少毁林排放的重要性,将致力于更好地管理森林和植树造林。

十二、双方鼓励法国开发署及其他相关机构支持在应对气候变化领域内具有示范和实用作用的项目。

十三、双方承诺积极参与2007年12月在印度尼西亚巴厘举行的《联合国气候变化框架公约》和《京都议定书》缔约方会议,并致力于推动就2012年后的应对气候变化安排尽快达成一致,特别是推动《京都议定书》下特设工作组最晚不迟于2009年完成工作,使议定书第一承诺期与随后的承诺期能够相互衔接。

十四、双方将致力于利用各自担任亚欧会议主席国和欧盟轮值主席国的机会,推动关于气候变化的对话与合作。

第3篇:气候变化的研究方法范文

(中国农业大学农学与生物技术学院,北京100193)

摘要:作物生产潜力的研究对提高作物产量、评价地区粮食的生产能力和人口承载能力,以及为合理进行农业生产规划提供依据。气候变化(包括温度、降水、日照时数等)和极端天气(如干旱、洪涝和暴风雨等)已经对农业产生了深刻的影响。综述了目前国内外气候变化对作物生产潜力的影响的研究方法,以及气候变化对中国小麦、水稻、玉米等主要粮食作物的生产潜力的影响,分析了目前研究中存在的问题与展望,以期为提高中国主要粮食作物的生产潜力和适应气候变化提供理论依据。

关键词 :作物生产潜力;气候变暖;研究方法;影响

中图分类号:S3 文献标志码:A 论文编号:2014-0508

Summary of the Effects of Climate Change on Crop Production Potential

Zhang Yaoyao, Liu Jiangang, Yang Meng, Chu Qingquan

(College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China)

Abstract: The study of the crop production potential can provide the basis for increasing crop yields,evaluating food production capacity and population carrying capacity of the region, as well as rationalagricultural production planning. Climate change (including temperature, precipitation, and sunshine hours)and extreme weather (such as drought, floods and storms etc.) has exerted a profound impact on agriculture.This article summarized the research methods of climate change on crop production potential domestic andforeign, and the effects of climate change on China’s major grain crop (wheat, rice and maize) potentialproduction, and analyzed the existing problems and prospect in the present studies, aiming at providing atheoretical basis to climate change adaptation and crop production potential boost.

Key words: Crop Production Potential; Global Warming; Methods; Effects

0 引言

气候变化已经成为全球公认的环境问题,气候变化及其对经济、环境和社会发展的影响是当前人类面临的严峻挑战,尤其是近10 多年来全球范围的气候异常给许多国家的粮食生产、资源和环境带来了深刻影响[1-2]。农业对天气和气候变化是非常敏感的,包括温度、降水、光照和极端天气(如干旱、洪涝和暴风雨等)。有研究表明,温度增加扩大了作物生长区域范围[3]、延长了作物生长季[4]、缩短了作物生育期[5-6]、调整了种植结构和作物种植熟制[7]。但不同地区作物对气候变化的响应是不同的,如冬小麦生长季内增温1℃,其生育期在欧洲延长约10 天;在日本中部延长约8 天[8],而在中国华北地区缩短约4 天[5]。全球气候变暖背景下,中国东北地区水稻种植面积明显增加,玉米的早熟品种将逐渐被中、晚熟品种取代;西北地区负积温减少,喜温作物的种植面积扩大,越冬作物种植界限北移西扩;华北地区喜温作物生育期延长,种植区域逐渐扩大[9]。这些变化为作物种植结构调整提供了机遇,可能提高单位面积作物生产能力、增加农作物种植面积的潜力[10],但会使原有作物发育进程加快,生育期缩短,光合作用受阻,呼吸消耗加大,导致主要粮食作物产量下降[11]。因此,气候变化对不同地区作物生产潜力的影响不同,即使在同一地区气候变化对不同作物的生产潜力影响差异也很大。光、热、水资源的变化会直接影响作物的生产潜力,理论上作物生产潜力与温度、日照时数呈正相关;与降水关系复杂,在缺水地区呈正相关,在水分充足地区降水过多可能会引起负作用。因此在诸多气候变化产生的不利影响中,其对农业的影响被认为是最重要的[12],尤其是在那些以农业为根本、高度依赖农业的发展中国家[13]。

国内外许多专家学者研究和探讨了气候变化对作物生育期、产量和粮食安全的影响[14-15],也有学者分析了作物生产潜力时空间变异评价以及气候变化对作物生产潜力、产量差的影响[16],但关于气候变化对作物生产潜力影响的综述还较少。气候变化通过改变作物生长发育进程中光、温、水的匹配状况,对农作物的生产潜力将会产生巨大影响。因此,整理前人的研究方法和成果,综述气候变化对中国主要粮食作物生产潜力的影响,以及研究气候变化对作物生产潜力的影响的方法、问题与展望,为进行农业结构调整、解决粮食自给问题和制定农业发展长期规划提供重要的理论依据。

1 气候变化对作物生产潜力的影响的研究方法

关于气候变化对农业的影响,目前国内外的研究方法主要集中在模型模拟和观测实验影响2个方面[17]。模型模拟方法包括统计分析(回归模型)和作物生长模型模拟。观测实验方法主要用于研究气象因子变化对作物生理生态、形态结构及化学组成等方面的影响,分为田间试验和温室/人工气候室实验2种方法。

1.1 实验室模拟方法

关于CO2浓度升高对作物生长发育的影响多采用田间试验或顶部开放温室,通过人为控制CO2浓度来研究其对作物的影响。Leadley[18]率先论证了开顶式气室(OTC)在观测试验研究方面的可行性,徐玲等[19]利用这一装置研究表明CO2浓度增加有利于春小麦增产。借助各种实验模拟装置和监测技术,可在人工模拟CO2浓度增加的大气环境中对作物生长发育、生理生态及形态结构的动态变化进行研究,分析作物对CO2倍增的反应机理等。但在这种人工控制性试验中温室内的温度、湿度等微气候条件与自然条件差异较大,观测到的作物对CO2浓度变化的响应结果与自然条件下作物对CO2 浓度的响应结果不尽相同[20]。因此,FACE方法和设施应运而生[21],即在田间设置一定面积的FACE 处理圈,直接输入高浓度CO2来进行研究。FACE方法是在自然状态下研究作物对CO2浓度的响应的理想方法之一,其不足之处是不能同时模拟CO2引起的升温。直接实验模拟可以获取许多重要数据,用来评价因果关系或检验假设等,是一种重要的研究方法。但鉴于时空尺度变化和气候变化对作物影响的复杂性,该方法存在很大的局限性。

1.2 作物生长模型模拟方法

作物生长模拟模型理论性强、机理明确,不受时空间、品种和栽培技术差异等的限制,因而在资源生产潜力评价中应用广泛。目前已经有至少100 种不同的模拟模型,应用较为广泛的有DSSAT 模型、WOFOST、APSIM 模型以及EPIC 等[22]。利用作物生长模拟模型进行作物生产潜力研究,一方面可以计算不同情景下的潜力产量,如光温生产潜力、气候生产潜力、灌溉条件下的气候生产潜力、光温水肥生产潜力等;另一方面,可以通过作物模型估算环境因素(土壤、天气)、生物因素(品种)和技术因素(耕作方式、种植密度、施肥和灌溉等)对作物生长发育和产量的影响。Verdoodt等[23]模拟南非干旱地区作物的光温生产力、水分限制下的生产力和自然生产力,得出光照、温度是不同生产系统的重要影响因子,但最大生产潜力往往取决于降雨量,因此干旱可能会使作物生产系统变得非常不稳定,进而影响产量。国际半干旱研究所(ICRISAT)利用Cropinfo 模型对印度尼西亚地区小麦、水稻、棉花以及油菜产量潜力及产量差进行了研究。

作物生长模拟模型的优点是能对任意地点(土壤、气候)作物产量潜力进行预测,综合考虑作物生长过程中的各种影响因素,缺点是需要收集大量数据进行品种特性参数校正,包括气象数据、土壤数据及作物管理数据等。另外,作物生长模型的开发是以假设单位区域面积内环境条件在水平方向上一致为前提的[24],因此更适用于小面积的作物生产潜力估算[25]。20世纪80年代以来,大气环流模型(GCM)和作物模型相结合成为评价气候变化对农业生产影响的最基本方法,如Moriondo等[26]用区域环流模型(RCM)评估极端气候对冬季和夏季地中海农作物的影响,得出近年来极端气候的变化频率和强度的增加,对作物产量、潜在产量以及整个农业生产都产生不同程度的消极影响。之后的大多数研究中,作物模拟模型开始与作物估产区划、空间数据库及空间信息技术相结合[27],主要包括2个方面:一是模拟模型与GIS结合,系统的模拟结果全部可用GIS地图来表示;二是模拟模型与INTERNET技术结合。

1.3 经验-统计分析

这是一类建立在气候与作物之间的非动态的经验-统计关系基础上的数学模型。一方面,为研究未来气候变化对作物生长、发育和产量潜力的影响,需以当前和未来的气候、环境及社会经济为基准,构建未来气候情景:第1 种方式是综合构想,即统一假定未来增暖或降水变化趋势,但只适用于范围较小的区域性研究;第2 种方式为(时空间)相似构想,主要是通过历史相似或类比法获得;第3 种方式是大气环流模式构想。这是目前模拟全球气候变化过程最可信的方法,但鉴于模式有很多不确定的地方,各类模式间模拟/预测的结果差别很大,因此根据其结果所作的影响评价差别也很大,可比性较差[28]。另一方面,气候变化对作物生长、发育和产量潜力影响具有一定的复杂性,经常需要同时分析多种变量因子与相应的数据,主要通过模型模拟来研究,包括经验统计分析和动态模拟方法。研究气候变化和产量的关系,通常采用回归分析、主成分分析、判别分析、方差分析和周期分析中一种或多种组合[29]。如根据年平均温度和降水量建立的Miami 模型和改进了的Thornthwait 模型;半经验半理论模型,如Chikugo 模型。利用气温和降水变化与作物生产潜力的关系式,可对气温、降水变化对作物生产潜力的影响作定量评估[30-31]。

2 气候变化对中国主要粮食作物生产潜力的影响

2.1 气候变化对冬小麦生产潜力的影响

过去40 年的气候变化对中国南北麦区影响截然不同。北方麦区冬小麦的生长发育及产量形成经常受到低温冻害的影响,所以气候变暖、气温升高可能对这些地区的冬小麦产生有利影响;但对于南方地区,气候变暖很可能在短时间内使气温超过冬小麦生长的最适范围,冬小麦生育期缩短,影响干物质积累时间,致使潜在产量下降。有研究表明,在作物品种、耕作措施、土壤特性不变的条件下,中国南方麦区模拟的1961—2005 年冬小麦光温潜在产量呈下降趋势,下降幅度为54.1 kg/(hm2·10a);北方麦区大部光温潜在产量增加,但总体也呈略下降趋势,下降幅度为11.1 kg/(hm2·10a)。虽然冬小麦生育期内降雨量明显减少,但春季降雨量没有明显的减少趋势,因此降雨量变化对北方冬小麦产量潜力影响不大,1952—2005 年中国北方冬小麦气候生产潜力变化趋势与光温潜在产量变化趋势基本一致[32]。由于总辐射的下降以及积温增加使得冬小麦生长季缩短,1961—2007 年华北地区冬小麦潜在产量总体呈下降趋势,河北下降趋势最明显,河南次之,山东的德州、惠民和临沂等极少数站点呈上升趋势,每10年下降175.0 kg/hm2[33]。还有研究表明华北地区不同年代冬小麦不同品种的光温生产潜力均呈显著下降趋势,当前品种的下降幅度较高;不同年代冬小麦不同品种的雨养产量均呈不显著增加趋势[32]。同时,日照时数减少也会对冬小麦光温潜在产量产生影响,全国大部分麦区日照时数缩短会对冬小麦生长发育及产量形成产生不利影响[34]。总体而言,冬小麦的潜在产量是温度、降雨和日照时数等因子综合作用的结果,近50年气候变化对华东、华中和华南区域小麦总生产潜力都产生负面影响,而对东北和西南小麦总生产潜力都产生正面影响[9,35]。

2.2 气候变化对中国水稻生产潜力的影响

温度升高对水稻产量的影响存在显著的地区差异,温度升高对东北、西北地区水稻生产的影响最大,其次是中南地区,再次是华东和华北地区,对西南地区的影响最小。东北地区水稻生长期内光、热、水资源同步,且昼夜温差较大,水稻种植面积明显北扩[36];虽然水稻生育期缩短,但光温潜在产量呈增加趋势,这是由水稻生长季内≥10℃积温逐渐增加造成的,但这种增加趋势主要发生在20世纪90年代末以后;虽然东北地区水稻生育期内降雨量呈减少趋势,但气候生产潜力由于受自然降水的影响较小,仍旧呈明显增加的趋势[37]。在南方稻区,单季稻的产量略增,主要得益于CO2的增益效应;但华中和华南地区的双季稻(特别是早稻)将大幅度减产,原因是温度升高缩短了水稻生育期和光合时间、增加了呼吸消耗,同时对水稻抽穗扬花和籽粒灌浆不利,这些负效应明显超过了CO2的增益效应[38]。石全红等[39]研究表明,自1980 年以来南方稻区早稻光温生产潜力均呈不同程度的增加趋势,其中安徽、浙江、福建、江西增幅最为明显,而湖北、湖南2 省增幅较小;气候变化对南方稻区水稻光温生产潜力的负面影响主要体现在对一季中稻和晚稻的影响,影响的主要区域有东南部的浙江、江西、福建3 省以及西北部的湖北、河南两省。胡清宇[40]指出,江淮地区近30 年水稻光温生产潜力呈线性下降的趋势,递减速率为每年24kg/hm2。另外,极端性天气/气候导致长江中下游稻区(夏季极端高温)和东北稻区(夏季极端低温)产量波动性加大[41],光照日数和有效辐射强度降低也是水稻减产的普遍因素[42]。

2.3 气候变化对中国玉米生产潜力的影响

气候变化对中国玉米生产的影响因不同产区而异。温度升高和作物生长季延长对部分高纬度地区、高海拔地区(尤其是黑龙江省)的玉米生产总体呈有利影响,但是对其他玉米主产区的影响总体上仍以减产为主。钟新科等[43]指出,近30 年来中国春玉米气候生产潜力倾向率为-887~1689 kg/(hm2·5a),东北地区西部、黄淮海地区北部及黄土高原部分地区的气候生产潜力呈减少趋势,黄淮海平原南部及南方大部分地区呈增加趋势;夏玉米气候生产潜力倾向率为-589~1768 kg/(hm2·5a),除黄淮海平原北部呈减少趋势外,其他地区夏玉米气候生产潜力呈增加趋势。陈长青等[44]报道,在气温不断升高的情形下,1971—2007 年东北地区春玉米的光温生产潜力呈增加趋势,但由于各地区降水的差异,东北地区春玉米的气候生产潜力在各地区间变化差异较大,相对于20 世纪70 年代,21 世纪以来南部地区气候生产潜力降低,而中部地区增加。黑龙江省玉米光温生产潜力伴随着温度的升高,表现为增加趋势,每年增长52.675 kg/hm2;气候生产潜力则随着降水量的减少而呈减少趋势,每年减少45.446 kg/hm2;气候生产潜力的减少则主要归因于有效降水量减少和作物需水量的增加[45]。张强等[46]研究表明,尽管整个黄土高原年平均温度呈升高趋势,但玉米生长期内的温度反而有所下降,因而玉米光温生产潜力呈下降趋势;受降水变化的影响,除陕西省外,其余地区年代间气候生产潜力均呈增加趋势。黄川容等[47]以黄淮海平原气象数据、土壤数据和作物数据为基础,应用WOFOST作物生长模型,得出黄淮海平原夏玉米光温潜力、气候潜力均呈现下降趋势。

3 未来气候条件下作物生产潜力的变化

关于未来气候变化对作物生产潜力的影响的研究,大多是在CO2 浓度倍增的前提下模拟进行的。IPCC 第4 次评估报告认为,在世界范围的气候变暖背景下,各国农业生产都将出现大幅度波动,粮食供给的不稳定性明显增加。如果不考虑CO2的肥效作用,以中国现有的生产水平和保障条件,预计到2030 年中国种植业产量可能减少5%~10%[48],三大主要粮食作物均以减产为主(主要原因有温度升高、旱涝加剧、水资源短缺等);到2071—2100 年,中国冬小麦生产潜力将下降10%~30%,玉米和水稻生产潜力也将分别下降5%~10%和10%~20%[49]。郑国光等[50]也指出全球气候变暖将导致中国主要粮食作物生产潜力下降,如果不采取措施,到21 世纪后半期,中国小麦、水稻和玉米等主要粮食作物的年产量下降幅度最多达37%。熊伟等[51]研究表明,如果不考虑CO2的肥效作用,未来中国小麦、水稻和玉米生产均以减产为主,灌溉可以部分地减少减产幅度,如果只考虑CO2的肥效作用,3 种主要粮食作物的产量将以增产为主。

4 问题与展望

气候变化对作物生产潜力的影响存在一定的复杂性,目前尚有许多不确定的地方。当所有其他因素,如土壤肥力、土壤水分和杂草、病虫害能很好的控制时,天气和气候决定了作物的产量潜力。其影响因素不仅有温度和CO2,太阳辐射、降水、蒸发、温度、日较差、风等也对作物生产潜力有影响;其影响程度不仅与气象因素变化幅度、时空间分布有关,还与所在区域原气候条件及其农业生产水平相关。不同区域的土地利用、土壤类型和土壤特性有很大的差异,而且作物对生长条件的响应也是非线性的,因此作物对气候变化的响应在时空间分布不同,这将取决于区域、季节和作物类型,而且不同方法和模型之间统一性差、可比性差。目前关于气候变化对作物生产潜力的研究以站点观测和模型模拟为主,代表性不足,缺乏大面积多年连续的能代表区域特点的相关资料、数据,这种以点代面的方法造成潜力分析结果失真,应以多面多点的田间试验、模型模拟与宏观区域调查研究相结合的方法研究生产潜力。同时科学家应加强在气候变化减缓与适应方面的研究,开发极端气候事件的防御及防灾减灾技术,构建适应气候变化的技术体系,加强适应技术的集成与应用推广。中国地域广阔,种植类型、作物类型多种多样,气候变化对中国农业的影响是非常复杂的,且以负面影响为主。但作物产量的变化不仅与气候变化有关,在很大程度上取决于作物田间管理。因此应充分认识各气象因子的变化规律及其对作物生产潜力的影响,通过调整种植结构、选用适宜的品种和栽培管理等措施,趋利避害,提高作物的现实生产力。

参考文献

[1] 秦大河,丁一汇,苏纪兰,等.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J].气候变化研究进展,2005(01):4-9.

[2] Piao S L, Philippe C, Yao H, et al. The impacts of climate changeon water resources and agriculture in China[J]. Nature,2010(467):43-51.

[3] Song Y, Linderholm H W, Chen D, et al. Trends of the thermalgrowing season in China, 1951- 2007[J]. International Journal ofClimatology,2010,30(01):33-43.

[4] 徐铭志,任国玉.近40 年中国气候生长期的变化[J].应用气象学报,2004,15(03):306-312.

[5] Liu Y, Wang E L, Yang X G, et al. Contributions of climatic andcrop varietals changes to crop production in the North China Plain,since 1980s[J]. Global Change Biology,2010,16(08):2287-2295.

[6] Tao FL, Yokozawa M, Xu Y L et al. Climate changes and trends inphonology and yields of field crops in China, 1981- 2000[J].Agricultural and Forest Meteorology,2006(138):82-92.

[7] 赵俊芳,杨晓光,刘志娟.气候变暖对东北三省春玉米严重低温冷害及种植布局的影响[J].生态学报,2009,29(12):1-8.

[8] Yoshino. The effects of climatic variations on agriculture in Japan[M]. Assessments in Cool temperature and cold regions,1988(1):725-868.

[9] 熊伟.气候变化对中国粮食生产影响的模拟研究[M].北京:气象出版社,2009.

[10] 杨晓光,陈阜.气候变化对中国种植制度影响研究[M].北京:气象出版社,2014.

[11] 刘颖杰.气候变化对中国粮食产量的区域影响研究[D].北京:首都师范大学,2008.

[12] Kurukulasuriya P, Mendelsohn R. How will climate change shiftagro- ecological zones and impact African agriculture? [J]. WorldBank, 2008(01):4717.

[13] World B. World Development Report 2008: Agriculture forDevelopment[M].Washington D.C: TheWorld Bank,2007.

[14] Miraglia M, Marvin H J P, Kleter G A, Battilani P, et al. Climatechange and food safety: an emerging issue with special focus onEurope[J]. Food and Chemical Toxicology,2009(47):1009-1021.

[15] Olesen J E, Bindi M. Consequences of climate change for Europeanagricultural productivity, land use and policy[J]. European Journalof Agronomy,2002(16):239-262.

[16] 江抒琳.浦城县气候和土壤时空变化对耕地粮食作物生产潜力的影响[D].福州:福建农林大学,2010.

[17] 孙白妮,门艳忠,姚凤梅.气候变化对农业影响评价方法研究进展[J].环境科学与管理,2007,32(06):165-168.

[18] Paul W L, Bert G D. Open top chambers for exposing plantcanopies to elevated CO2 concentration and for measuring net gasexchange[J]. Plant Ecology,1993,104-105(01):3-15.

[19] 徐玲,赵天宏,胡莹莹,等.CO2浓度升高对春小麦光合作用和籽粒产量的影响[J].麦类作物学报,2008,28(05):867-872.

[20] George Bowes. Facing the inevitable: plants and increasingatmospheric CO2[J]. Annual review of plant biology,1993(44):309-332.

[21] Lieffering M, Kim H Y, Kobayashi K, et al. The impact of elevatedCO2 on the elemental concentrations of field- grown rice grains[J].Field Crops Research,2004,88(02):279-286.

[22] 王纯枝,李良涛,陈健,等.作物产量差研究与展望[J].中国生态农业学报,2009(06):1283-1287.

[23] Verdoodt E, Van R, Van A W. Modelling crop production potentialsfor yield gap analysis under semiarid conditions in Guquka[J].South Africa. Soil Use and Management,2003(19):372-380.

[24] Schulze R. Transcending scales of space and time in impace studiesof climate and climate change on agrohydrological response.Agriculture[J]. Ecosystems and Environment,2000(82):185-212.

[25] Olesen J E, Bocher P K, Jensen T. Comparison of scales of climateand soil data for aggregating simulated yields of winter wheat inDenmark[J]. Agriculture, Ecosystems and Environment,2000(82):213-228.

[26] Moriondo M, Giannakopoulos C, Bindi M. Climate change impactassessment: the role of climate extremes in crop yield simulation[J].Climatic Change,2011,104(3-4):679-701.

[27] 褚庆全,李林.地理信息系统(GIS)在农业上的应用及其发展趋势[J].中国农业科技导报,2003(01):22-26.

[28] 林而达.全球气候变化对中国农业影响的模拟[M].北京:中国农业科技出版社,1997.

[29] 石全红.南方稻区水稻产量差及缩减产量差的技术需求研究[D].北京:中国农业大学,2012.

[30] 陈浩,罗怀良,李勇.气候变化对四川省盐亭县主要农作物生产潜力的影响[J].河南师范大学学报:自然科学版,2009(03):100-104.

[31] 陈峪,黄朝迎.气候变化对东北地区作物生产潜力影响的研究[J].应用气象学报,1998(03):59-65.

[32] 宋艳玲.气候变化对中国农业影响研究[M].北京:气象出版社,2012.

[33] 李克南,杨晓光,刘园,等.华北地区冬小麦产量潜力分布特征及其影响因素[J].作物学报,2012(08):1483-1493.

[34] 杨再洁.品种更替和气候变化对华北冬小麦-夏玉米生产力的影响[D].北京:中国农业大学,2013.

[35] 田展,梁卓然,史军,等.近50 年气候变化对中国小麦生产潜力的影响分析[J].中国农学通报,2013(09):61-69.

[36] 王媛,方修琦,徐锬,等.气候变暖与东北地区水稻种植的适应行为[J].资源科学,2005(01):121-127.

[37] 张旭光.气候变化对东北粮食作物生产潜力的影响[D].长沙:湖南农业大学,2007.

[38] 金之庆.论气候变化对我国粮食生产的影响[A].中国气象学会农业气象与生态学委员会,江西省气象学会.全国农业气象与生态环境学术年会论文集[C].中国气象学会农业气象与生态学委员会,江西省气象学会,2006.

[39] 石全红,刘建刚,陈阜,等.长江中下游地区水稻产量差及分布特征研究[J].中国农业大学学报,2012(01):33-39.

[40] 胡清宇.近30 年江淮地区气候变化对主要作物生产的影响[D].南京:南京农业大学,2012.

[41] 刘娟,杨沈斌,王主玉,等.长江中下游水稻生长季极端高温和低温事件的演变趋势[J].安徽农业科学,2010(25):13881-13884,13901.

[42] 潘根兴,高民,胡国华,等.气候变化对中国农业生产的影响[J].农业环境科学学报,2011(09):1698-1706.

[43] 钟新科,刘洛,徐新良,等.近30 年中国玉米气候生产潜力时空变化特征[J].农业工程学报,2012(15):94-101.

[44] 陈长青,类成霞,王春春,等.气候变暖下东北地区春玉米生产潜力变化分析[J].地理科学,2011,31(10):1272-1279.

[45] 王秀芬,杨艳昭,尤飞.黑龙江省气候变化及其对玉米生产潜力的影响[J].干旱地区农业研究,2012(05):25-29.

[46] 张强,杨贤为,黄朝迎.近30 年气候变化对黄土高原地区玉米生产潜力的影响[J].中国农业气象,1995,16(06):19-23.

[47] 黄川容,刘洪.气候变化对黄淮海平原冬小麦与夏玉米生产潜力的影响[J].中国农业气象,2011(S1):118-123.

[48] 陶战,蔡罗保,杨书润.气候变化对我国农业的可能影响及对策[J].农业环境与发展,1994(03):1-7.

[49] 钱坤,刘和俊,吕凯,等.全球气候变暖对我国粮食作物生产的影响[J].农技服务,2011(10):1485-1486.

第4篇:气候变化的研究方法范文

关键词:气候变化;农业;适应措施;对策

中图分类号 X196;F062.2 文献标识码 A 文章编号 1002-2104(2014)05-0019-06

IPCC第五次评估报告指出,1880-2012年全球地表平均温度约上升了0.85℃。与1850-1900年相比,2003-2012年这10年的全球地表平均温度上升了0.78℃。近百年来,全球平均降水量变化不明显,但区域差异明显,极端干旱洪涝事件频发[1]。根据《中国气候变化监测公报》(2012),1901-2012年,中国地表年平均气温呈显著上升趋势,并伴随明显的年代际变化特征,其中1913-2012年中国地表平均气温上升了0.91℃,气候变暖导致中国部分地区的气温、降水、日照等主要气候因素发生改变。农业是对气候变化反应最为敏感和脆弱的领域之一,任何程度的气候变化都会给农业生产及其相关过程带来潜在的或显著的影响,特别是极端天气气候事件诱发的自然灾害将造成农业生产的波动,危及粮食安全,社会的稳定和社会经济的可持续发展[2]。中国地域辽阔,各区域之间自然资源条件、经济社会发展条件等差异较大,因此受气候变化影响的农业领域区域差异特征尤为显著[3]。东北区气温呈显著升高趋势,农作物种植面积扩大,生长季延长,干旱趋势增大,水稻产量减少,病虫害出现,次要病虫害发展为主要病虫害。华北区随着气温升高和降水减少,粮食产量降低,水资源短缺加剧,积温增加,作物生长季缩短,可能复种指数增加,晚熟品种种植增加。华东区增温速率呈加快趋势,区域旱涝事件趋多趋强,双季早稻和夏粮种植面积呈减少趋势。华中区气温呈显著升高趋势,双季稻,春性小麦种植区域增加,水稻生育期缩短,气候变暖病虫害发育速度加快。华南区主要植物,动物的春季物候期提前,秋季物候期推迟,气候带有加速北移趋势,双季稻中高适宜种植区面积增加,水稻生育期缩短,产量波动增大。西南区主要表现在气候带向高海拔和高纬度的位移和作物产量和品质上,山区水稻和玉米等中晚熟品种产量会提高,春旱尤为突出,大田作物产量受影响。西北区无霜期显著延长,提早了春播作物播种期,推后了秋播作物播种期,加快了作物生长发育速度,种植区域向北和高海拔区域扩展,干旱加剧,种植结构改变,病虫害增多。

总之,气候变化对农业产生的影响是多方面的和多层次的,气候变化对农业生产的影响有利有弊,不同区域之间存在很大差别,对我国农业而言,如何趋利避害,科学应对气候变化是当前迫切需要解决的问题。

1 气候变化对农业领域产生的重大影响

1.1 气候变化对农业气候资源的影响

农业气候资源直接影响农业的生产与布局,光、热、水资源是农业气候资源的重要组成部分。气候变化已对农业气候资源产生了重要影响。气候变暖使我国年平均气温上升,农业生产所需的热量资源都有不同程度的增加,延长了气候生长季,研究表明[4],年平均温度增加1℃时,≥10℃积温的持续日数全国平均可延长15天左右。如东北地区近50年平均气温上升1.5℃,增温率为每10年0-3℃。当热量资源满足的情况下,水分则是决定农业发展和产量水平的主要因素。然而气候变暖使土壤水分蒸发量加大,热量资源增加的有利因素可能会因水资源的匮乏而得不到充分利用,作物产量波动的气候风险性增加,如华北平原地区作物生育期内的自然降水和底墒水只能满足冬小麦全生育期需水的1/3-2/3,如果没有灌溉,冬小麦全生育期缺水率20%以上出现的概率大都在80%以上,缺水率30%-40%的重旱年出现的概率高达30%[5]。

1.2 气候变化对农作物种植制度和布局的影响

气候变化使我国的种植制度和农业布局发生改变。气候变化使我国年平均气温上升、积温增加、作物生长期延长,从而导致种植区成片北移,有研究表明,平均气温每升高1℃,年平均气温等值线将北移1.76°N,种植制度分界线将北移2.44°N,相当于复种指数提高7.2%。据估计,在品种和生产水平不变的前提下,到2050 年,气候变暖将使目前中国大部分两熟制地区有可能成为三熟制适宜种植区;两熟制北界将北移至目前一熟制地区的中部,一熟制地区的南界将北移250 km-500 km,一熟制地区的面积将减少23%[6]。如东北地区随着气温的升高,喜温喜湿作物水稻的种植北界已经移至大约52°N的呼玛县等地区,玉米的栽培北界向北扩展到黑龙江呼玛县, 向东扩展到辽宁东部山区,小麦作为喜凉作物,在温度、经济和技术等多重因素的影响下呈现出显著的北退现象[7-10]。

1.3 气候变化对农作物产量和品质的影响

气候变化可能导致农业的不稳定性增加,农作物产量和品质将会受到影响。研究表明,华北平原区域在夜间冠层增温2.5℃,冬小麦生育期提前、生长期缩短,产量下降26.6%[11]。从1991-2000年,华北平原耕地生产潜力小幅减少1.1%,约52.7 kg/hm2[12]。研究估计,如果不采取气候变化适应对策,到2030年全国粮食综合生产能力可能下降5%-10%[13-14]。气候变化同时也会对农作物品质产生影响。CO2浓度升高对品质的影响因作物品种而异。在CO2浓度加倍的条件下,大豆、冬小麦和玉米的氨基酸和粗蛋白质含量均呈下降趋势[15]。当温度和CO2浓度均增加时,水稻籽粒蛋白含量降低,对人体很重要的铁、锌元素以及稻米籽粒营养品质(蛋白质与氨基酸含量)显著下降,直链淀粉含量将会增加[16]。

1.4 气候变化对农业旱涝及病虫害等气候灾害的影响

随着气候变化,高温、洪涝、干旱、台风、寒害等极端天气事件发生的频率有可能增加,最主要的是干旱和洪涝灾害发生几率较大,其导致的灾害损失约占气象灾害的70%-85%。气候变化会加剧农作物病虫害的流行和杂草蔓延,病虫害出现范围也可能向高纬度地区延伸。研究表明,生长季变暖可使大部病虫害发育历期缩短、危害期延长,害虫种群增长力增加、世代增加,发生界限北移和海拔界限高度增加,危害面积和程度不断加大加重,尤其是水稻病虫害早发和向北扩张趋势突出[17-18]。

1.5 气候变化对粮食安全和农产品贸易的影响

气候变化影响粮食安全,全球粮食总产量因严重自然灾害而降低,到2030年,我国种植业产量总体上因全球变暖可能会减少5%-10%左右,其中小麦,水稻和玉米三大作物均以减产为主。而当前世界主要粮食价格波动呈放大趋势,粮食安全问题已成为一个不容忽视的重要问题。气候变化影响农产品贸易,全球极端天气事件增加,灾害频繁而严重。未来气候变化影响农业生产, 也间接影响农产品价格和贸易活动,相关研究认为中国的气温升高降低了粮食贸易量[19-20]。

2 农业领域应对气候变化的适应技术措施

综合相关文献分析,目前农业领域应对气候变化的主要适应技术措施包括:

2.1 调整农业种植制度和布局

针对气候变化对农业种植制度和布局的影响,在分析和预测农业气候资源条件变化的基础上,调整农作物的种植模式,改进农作物的品种布局,提高复种指数,调整作物种植季节[21]。如西北干旱区减少高耗水量的农作物种植,增加马铃薯等节水、耐旱型农作物的生产。东北地区利用气候变暖热量增加趋势,应适当推进水稻种植区域北移,华南地区适当增加双季稻中高适宜种植区面积,西南地区应向高海拔和高纬度地区增加农作物种植面积[22]。

2.2 选育优良农作物品种

针对气候变化对农作物产量和品质的影响,开发农作物高光效育种,抗高温育种技术,选育抗逆品种,提高作物的光合效能以及对逆境的抵抗能力,不但可以抵消气候变化引起的不利影响,还可以充分利用未来农作物的高CO2肥效作用使粮食获得增产,保证子孙后代的粮食安全。如随着气候变暖,热量资源的增加,玉米早熟品种逐渐被晚熟品种代替,过渡型、半冬性或弱冬性生态类型的冬小麦品种逐渐取代强冬性冬小麦品种,这些都是应对气候变暖的适应,有助于农作物总产的稳定和提高。

2.3 加强农业气候灾害防控

针对气候变化对农业旱涝及病虫害等气候灾害的影响,开展农业气候灾害预测,建立农业灾害监测与预警系统,特别是建立干旱、洪涝、低温灾害、重大植物病虫害等防空减灾体系,并建立农业灾害保险机制等,同时开展研发生物农药有效靶标技术,物理与生态调控技术以及化学防治技术等,有效规避农业气候灾害风险。

2.4 加强农业基础设施建设

加强农业基础设施建设可以提高农作物抗旱,抗涝等能力,有利于增强应对气候变化的适应能力和防御灾害能力,如推广膜下滴水等节水灌溉技术、地膜和秸秆覆盖技术,可以提高地温、减少土壤水分蒸发及增加土壤有机质。在干旱缺水山区兴建一批蓄水塘库,普及集雨设施与补灌技术,开展坡改梯和沟坝地农田基本建设等,提高农业领域应对气候变化的物质基础与适应能力。

3 农业领域在适应能力建设中存在的问题

3.1 农业领域适应技术薄弱分散,尚未形成和建立适应技术清单和适应技术集成体系

农业领域适应气候变化技术还处于发展的初步阶段,各类技术分散于不同部门,其应用领域、影响范围和成熟度均有不同,限制了适应气候变化技术的发展,农业领域适应技术主要集中在农作物品种改良、农业气候灾害防控和基础设施条件建设上,适应技术的自主研发能力较弱,适应技术之间相互联系和依赖性相对较差,适应技术缺少典型区域示范,有效的适应技术薄弱,如在西北、高纬度和高海拔地区适应温度升高的农业生产技术,目前仍在试验中,尚未形成配套和示范规模[18]。部分适应技术措施可操作性不强,尚未形成和建立可操作性的适应技术清单和适应技术集成体系。

3.2 农业领域适应技术评估方法中缺少对适应技术的成本效益分析

选择适应技术和措施是存在风险和成本的,目前我国对气候变化适应的农业技术尚停留在对现有可用技术的分析筛选,基于气候变化影响的风险分析,采取有效性的针对适应技术措施以及对各可行农业适应技术的评估研究还很缺乏,对适应技术的表达方式和适应效果分析比较薄弱,目前对适应成本效益分析的全面评估仍然非常缺乏,应推进相关研究,以便为制定和实施适应对策提供科学依据。

3.3 农业领域适应技术研发和推广的资金和政策保障体制薄弱

适应气候变化是一个系统工程,需要巨大的资金支持,特别是发展中国家,由于适应的基线较低,在适应行动中需要投入的资金更大[23]。目前我国农业领域尚未构建完善和成熟的适应技术推广体系,尚无行业可操作性的适应技术清单,在技术研发和引进以及适应技术措施示范方面缺乏稳定的资金和政策保障。

3.4 缺少对农业领域适应技术推广的国家战略规划与国际合作

目前农业领域适应气候变化的技术措施开发和应用水平很不平衡,理论研究较多,实践信息不足。对适应技术研究的科学基础薄弱,目前科学认识水平尚不足以满足制订科学的适应规划的需要。因此,在采取应对气候变化的适应行动中,缺少国家适应战略规划的指导,导致农业领域应对气候变化适应行动分散、针对性不强。由于缺乏有效的国际合作制度,发达国家和发展中国家在适应问题上一直存在着很大的分歧和矛盾[23],不能公平和及时掌握农业领域适应技术研究与创新的最新动态,导致在引进、吸收和转化先进技术方面的国际合作基础薄弱。

3.5 对农业领域适应技术的公众关注程度不高

虽然国内外对适应气候变化作为应对气候变化的主要途径达成一致。但是气候变化的适应问题却没有得到真正的重视,对如何提高公众适应气候变化的意识与管理水平,增强适应气候变化的能力做得很少。当前中国农业以家庭为单位的分散经营为主,小规模的农业生产经营方式同农业现代化的矛盾突出,相关政策推行、技术普及成本高昂,可操作性难度大。因此,应进一步利用现代信息传播技术,加强适应气候变化的先进农业技术的普及、推广及应用培训,提高公众对气候变化影响认识的深刻性和行动的自觉性[23]。

4 未来农业领域适应技术措施发展对策

4.1 加强气候变化对农业领域影响的科学系统研究,减少不确定性,提升农业在全球气候谈判中地位

农业领域温室气体排放增长快、减排潜力大以及较高的生态脆弱性等决定了其在全球气候谈判中的地位随着国际应对气候变化努力的发展而日渐提升。农业在气候谈判中地位的变化对气候谈判产生了重大而深远的影响[24]。然而由于气候变化事实研究的不确定性,农业生产的不稳定性增加,产量波动加大[25]。因此,加强气候变化对农业领域影响的科学系统研究,开展适应技术的成本效益分析,农业适应技术选择与评价既要考虑区域之间的差异性,还要考虑区域内部的相对一致性和可操作性,减少农业生产的不确定性,进一步提升农业在全球气候谈判中地位。

4.2 建立区域性和综合性的农业适应技术清单和技术集成体系,并示范推广

在充分收集和总结现有农业适应技术基础上,根据不同区域气候变化对农业领域的影响和响应特征,构建应对气候变化的农业适应技术清单(见表1),并选择典型区域进行示范,全面推广成熟与无悔的农业适应技术。建立农业适应技术集成体系,对各种适应技术进行选择、优化、配置,形成一个由适宜要素组成的、优势互补的、匹配的有机体系,当前阶段,我国适应气候变化技术体系整合集成亟需开展的关键工作包括:国家适应气候变化技术体系构建与技术清单编制; 优选现有比较成熟的适应技术,吸收最新适应技术研发成果,评估其综合效益与适用范围,构建中国适应气候变化的基本理论与技术体系框架[26-27]。同

时为避免人类无序适应活动所可能产能的不利影响,需开展相应的科学研究,并在此基础上协调不同部门以形成有序适应,从而实现科学应对气候变化,达到“有序适应、整体最优、长期受益”[28]。

4.3 建立农业领域适应技术选择的方法步骤

在建立应对气候变化的农业适应技术清单与技术集成框架体系基础上,选择和分析农业适应技术应包括四个方法步骤[29]:

一是全面分析农业领域受气候变化的影响及其脆弱性和敏感性;

二是正确表达农业领域应对气候变化的响应和优先考虑选择的适应技术和措施;

三是科学评估应对气候变化的农业适应技术成本与效益;

四是有效选择区域性农业适应技术并示范推广应用。

参考文献(References)

[1]IPCC. Climate Change 2013: The Physical Science Basis[EB/OL]. http://ipcc.ch.

[2]周曙东,周文魁,朱红根,等.气候变化对农业的影响及应对措施[J].南京农业大学学报:社会科学版,2010,10(1):33-37.[Zhou Shudong,Zhou Wenkui,Zhu Honggen,et al. Impact of Climate Change on Agriculture and its Countermeasures[J].Journal of Nanjing Agricultural University:Social Sciences Edition,2010,10(1):33-37.]

[3]科学技术部社会发展科技司,中国21世纪议程管理中心.适应气候变化国家战略研究[M].北京:科学出版社,2011.[Social Development Attend to Technology Division of Ministry of Science and Technology (MOST), The Administrative Center for China’s Agenda 21.Studies on National Strategy of Climate Change Adaptation[M].Beijing: Science Press,2011.]

[4]赵秀兰.近50年中国东北地区气候变化对农业的影响[J].东北农业大学学报:社会科学版,2010,41(9):144-149. [ Zhao Xiulan.Influence of Climate Change on Agriculture in Northeast China in Recent 50 Years [J]. Journal of Northeast Agricultural University:Social Sciences Edition,2010,41(9):144-149.]

[15]高素华,王春乙.CO2对冬小麦和大豆籽粒成分的影响[J].环境科学,1994,15(5):65-66.[Gao Suhua,Wang Chunyi. Effect of CO2 on the Grain Compositions of Winter Wheat and Soybean[J].Journal of Environmental Sciences,1994,15(5):65-66.]

[16]高明超,杨伟光.气候变化及其对农作物的影响[J].现代农业科技,2010,(1):293.[Gao Chaoming,Yang Weiguang. Effect of Climate Change on Crop[J].Modern Agricultural Science and Technology,2010,(1):293.]

[17]霍治国,李茂松,王丽,等.气候变暖对中国农作物病虫害的影响[J].中国农业科学,2012,45(10):1926-1934.[Huo Zhiguo,Li Maosong,Wang Li,et al. Impacts of Climate Warming on Crop Diseases and Pests in China[J].Scientia Agricultura Sinica,2012,45(10):1926-1934.]

[18]潘根兴,高民,胡国华,等.应对气候变化对未来中国农业生产影响的问题和挑战[J].农业环境科学学报,2011,30(9):1707-1712.[Pan Genxing,Gao Min,Hu Guohua,et al. Issues and Challenges on Mitigation of Climate Change Impacts on China’s Future Agriculture[J].Journal of AgroEnvironment Science,2011,30(9):1707-1712.]

[19]任晓娜,孙东升.气候变化对中国粮食贸易的影响研究[J].生态经济,2012,25(3):99-101.[Ren Xiaona,Sun Dongsheng.The Impact of Climate Change on China’s Grain Trade[J].Ecological Economy,2012,25(3):99-101.]

[20]FAO. The State of Food Insecurity in the World:How Does International Price Volatility Afect Domestic Economies and Food Security?[R]. Rome, Italy, 2011.

[21]陈兆波,陈霞,董文,等. 农业应对气候变化现状与科技对策研究[J].中国人口・资源与环境,2012,22(专刊):446-450.[Chen Zhaobo,Chen Xia,Dong Wen,et al. Research of the Status of Agriculture Addressing Climate Change and the Technological Measures [J].China Population,Resources and Environment, 2012,22(S1):446-450.]

[22]王雅琼,马世铭.中国区域农业适应气候变化技术选择[J].中国农业气象,2009,30(增1):51-56.[Wang Yaqiong,Ma Shiming. Technological Options of Regional Agricultural Adaptation to Climate Change in China[J]. Chinese Journal of Agrometeorology,2009,30(S1):51-56.]

[23]李虎,邱建军,王立刚,等. 适应气候变化:中国农业面临的新挑战[J].中国农业资源与区划,2012,33(6):23-28.[Li Hu,Qiu Jianjun,Wang Ligang,et al. Adaption To Climate Change: New Challenges To Chinese Agriculture[J].Chinese Journal of Agricultural Resources and Regional Planning,2012,33(6):23-28.]

[24]高小升,严双伍,方建斌. 农业在全球气候谈判中地位的变化及其影响[J].西北农林科技大学学报:社会科学版,2013,13(4):37-43.[Gao Xiaosheng,Yan Shuangwu,Fang Jianbin. Change of Position of Agriculture in International Climate Negotiation and Its Impact[J].Journal of Northwest A&F University: Social Sciences Edition,2013,13(4):37-43.]

[25]丁一汇,林而达,何建坤.中国气候变化:科学、影响、适应及对策研究[M].北京:中国环境科学出版社,2009:201-207.[Ding Yihui,Lin Erda,He Jiankun. Chinese Climate Change: Sience,Impact, Adaptation and Policy Research [M].Beijing: China Environmental Science Press,2009:201-207.]

[26]韩荣青,潘韬,刘玉洁,等.华北平原农业适应气候变化技术集成创新体系[J].地理科学进展, 2012,31(11):1537-1545.[Han Rongqing,Pan Tao,Liu Yujie,et al. Integrated Innovation Systems for Climate Change Adaptation Technologies in North China Plain[J].Progress in Geography, 2012,31(11):1537-1545.]

[27]潘韬,刘玉洁,张九天,等. 适应气候变化技术体系的集成创新机制[J].中国人口・资源与环境,2012,22(11):1-5.[Pan Tao,Liu Yujie,Zhang Jiutian,et al. Integrated Innovation Mechanism of Technology System for Adaptation to Climate Change[J].China Population,Resources and Environment,2012,22(11):1-5.]

第5篇:气候变化的研究方法范文

[关键词]气候变化经济学;减缓;适应性

一、导论 气候变化经济学及经济政策是一个刚刚起步的研究领域,伴随着科学家们对气候变化认识加深和国际社会特别是联合国的大力推动,初步形成了自己独特的研究内容。目前气候变化经济学一般包括全球变暖、节能减排、对气候变化的适应性等内容。 气候变化经济政策的研究主要是在三个框架中进行的。一是收益一成本框架。气候变化政策成本即减少温室气体或增强对气候变化的适应性的机会成本。气候变化政策的收益指削减排放以降低气候变化风险以及在增强对气候变化的适应性方面所得收益。Cline (1992)和Stem (2007)认为富裕国家需支出其GDP的2%来采取行动。二是国际公共品框架。气候变暖源于跨国外部性效应的影响,但气候变化问题并不是传统外部性问题的一个简单拓展,一个国家的行为使其他国家获利或受损,无法通过市场来进行弥补( Sandler&Hart-ley,2001)。因此,气候变化需要国际间有效合作。“京都议定书”就是国际合作的一项成果。三是博弈论框架。该框架主要用于国与国之间气候变化责任与义务的确定,强调每一个参与主体都是自利的,只有一个有效合作博弈才是对所有参与者有利的策略( Schelling,2005;Carraro&Siniscalco,1993)o

气候变化政策分为适应性气候政策和减缓性气候政策。前者强调用低成本政策来适应气候的变化,后者强调用低成本政策来减缓气候变化( Stern,2007)。减缓性政策研究较多的是碳税和限额,限额有助于达到预定的政策目标,碳税则有利于减少碳排放价格的波动(Metcalf,2009;Ka-plow,2010);适应性政策主要是在改善基础设施建设,完善气候变化信息,调整产业结构和调整经济的地理分布等方面展开( Stern.2007)。

近年来国内直接针对气候变化的研究有所增加,但集中在气候变化对敏感性行业的影响上(吕亚荣,2010;国家农业综合开发办公室,2010;刘恩财等,2010),经济政策方面的研究集中在财政和货币政策应对气候变化的必要性以及相应思路。

气候变化对人类社会经济发展产生的影响越来越大,正在形成应对气候变化的新的国际经济和贸易规则。广西经济发展相对落后,农业占GDP比重较大,是气候变化的敏感地区。近50年来,年平均气温升高了0. 69℃,冬季气温上升趋势明显。1986年到2009年间,广西经历16个暖冬。极端天气气候事件发生的频率和强度不断增加。研究广西应对气候变化的经济政策,主要是希望通过制定合理有效的财政、金融、产业政策,减少排放,提高广西对气候变化的适应性,促进广西经济的可持续发展,对广西抓住机遇、实现经济和外贸的可持续发展具有重要的理论和现实意义。

一、气候变化对广西的主要影响

(一)气候变化影响广西农林业

气候变化对广西农业生产的负面影响正在显现,农业生产不稳定性增加。广西局部干旱和洪涝的频率有所增加,危害不断加大。气候变暖引起农作物发育期提前,暖冬现象加大了病虫害现象。气候变化对广西农业未来的影响虽有正面效应,但可能仍以负面为主。气候变暖以及降雨量分布变化引起的干旱和洪涝将减少甘蔗的产量、蚕桑生产的产量和使其质量下降,水稻和玉米也可能以减产为主。广西农业生产布局和结构将出现变化。土壤有机质分解加快,农作物病虫害出现的范围可能扩大,畜禽生产和繁殖能力可能受到影响,畜禽疫情发生风险加大。

随着全球变暖,亚热带、温带北界北移,物候期提前,未来广西大部分地区可能进入热带地区,部分地区林带下限上升,广西北部的林业种类将发生变化,广西动植物病虫害发生频率上升,分布变化显着。

未来气候变化将使广西生态系统脆弱性进一步增加,主要造林树种和一些珍稀树种分布区缩小,森林病虫害的爆发范围扩大,森林火灾发生频率和受灾面积增加。广西境内湖泊将进一步萎缩,湿地资源减少、功能退化,生物多样性减少。

(二)气候变化影响广西渔业和水产养殖业

广西是海洋大省,气候变暖导致海平面上升加剧,引发海水入侵、土壤盐渍化、海岸侵蚀,损害了滨海湿地、红树林和珊瑚礁等典型生态系统,降低了海岸带生态系统的服务功能和海岸带生物多样性;气候变化引起的海温升高、海水酸化使局部海域形成贫氧区,海洋渔业资源和珍稀濒危生物资源衰退。 人类食用的水生动物绝大多数属于变温动物,水温升高能够明显地影响到动物的新陈代谢、生长速度、繁殖情况以及对于疾病和毒素的抵抗能力。气候变化使广西依托海洋的水产养殖业将受到较大影响,可用于水产养殖的海域萎缩,养殖品种减少。由于气温升高,海水蒸发速度加快,表层海水中的盐分不断增加,引起鱼类的生理发生改变,进而影响到水产养殖业的种群和数量。

(三)气候变化影响广西的水资源分布

气候变化已经引起了广西水资源分布的变化。就全国来看,近20年来,北方黄河、淮河、海河、辽河水资源总量明显减少,南方河流水资源总量略有增加。广西洪涝灾害更加频繁,但由于降水量分布不均,干旱灾害更加严重,极端气候现象明显增多。气候变化加大了水资源年内和年际变化,气候变暖使得中国西部地区的冰川融化加速,未来广西干旱的可能性进一步加大。水资源的供需矛盾将更加突出。

(四]影响广西人的健康

气候变化对广西人健康的直接威胁包括由热应力引起的疾病和死亡、传染病(疟疾和登革热)、与水有关的疾病如腹泻和营养不良。气候变化会间接造成伤害甚至死亡,如泥石流、山洪爆发和热带气旋(强风)造成的结果。因日益恶化的空气污染造成的呼吸系统疾病也可能是气候变化引起的。

三、广西应对气候变化的政策思路

(一)加大对气候变化问题科学研究的支持

科学研究是应对气候变化决策的基础和依据。现有关于气候变化经济学理论分析主要以适应和减少排放绝对量为目的,且宏观层面讨论为主,这为进一步研究应对气候变化经济政策提供了良好的视角和方法。然而,气候变化的政策措施一定要考虑本地区的实际情况,结合广西的实际情况讨论气候变化的影响及相应的对策,才更具适用性。因此,广西要积极开展有关气候变化及其影响的相关科学研究,尽快取得相应的研究成果和基础数据,为政策决策服务,并在此基础上,制定适合广西自身特点的政策措施。

(二)抓紧制定应对气候变化的政策措施

随着全球温室气体排放量的不断累积,全球气温呈缓慢上升态势,极端天气发生的概率不断加大,世界各国政府在应对气候变化方面的合作将不断加强,节能减排的政策措施将不断强化,能否降低能耗、提高资源利用效率将成为广西能否稳定发展的重要条件。目前,国际合作框架内,主要集中在减缓性行动,如发展低碳经济、减少碳排放。此外,广西应对气候变化既是国际、国内压力的体现,更是广西经济发展的一种内生要求。随着气候的不断变化,广西的发展环境正在不断变化,为了可持续发展,广西必须制定合适的政策措施,并不断地进行调整。在市场经济环境下,气候变化作为一种外部性,在时间和地域上已超出了经典经济学范围,需要用一种更大的视角进行研究。市场仍是配置应对气候变化资源的基础性方式,广西应抓紧制定应对气候变化的政策措施,影响和优化资源配置。由于气候变化的外部性特点,仅仅依靠广西自己并不能有效遏制气候变化,通过适应性政策影响资源配置,在较小的政策成本下,提高广西对气候变化的适应性尤为重要。

转贴于 (三)积极响应国家号召,推动减缓性行动

当前,全球将主要精力集中在减缓性行动上,广西应对气候变化的政策应积极响应国家号召,调整产业结构、发展低碳经济,减少温室气体排放。随着北部湾经济区和“两区一带”建设的不断推进,我区正处于资本密集型工业化和城市化加速发展阶段,投资规模在我国乃至世界历史上都是前所未有的,特别是资源富集区经济发展的加快,大的铝、锰等有色金属的冶炼厂的建设和扩能,能源消耗总量不断增加,温室气体排放量加大。如果只按传统常规技术的建设模式,一经投入,便有一个投资回报期技术和资金的锁定效应,将来大规模的二氧化碳排放不可避免。因此,我国未来发展技术路径的选择,对国家乃至全球节能减排、减缓气候变化具有重要意义。在节能减排的历史潮流面前,不论从对全球负责的角度,还是从实现我区可持续发展的角度,都必须积极探索节约发展、低碳发展之路,从法规制度、经济结构、能源利用、技术创新等多个层面,加快推进低碳经济发展。只有这样,才能以实实在在的事实,展现广西在应对气候变化问题上的决心和魄力。

(四)把提高对气候变化的适应性放在突出位置

自气候变化问题提出来以后,在联合国的推动下,国际气候的努力主要集中在减缓,即减少温室气体的排放量,以防止危险的气候变化。广西也在外在压力下把发展低碳经济、完成减排任务作为应对气候变化问题的重中之重。实际上,由于气候变化的外部性特点,减缓性气候政策的效果取决于国际合作程度,哥本哈根、坎昆气候大会进展缓慢,“巴厘路线图”的谈判至今没有完成,“京都议定书”第二承诺期的实质性内容并未落实,国际气候谈判越来越艰难。此外,根据斯特恩报告,即使全球停止排放,由于气候变化的惯性,十年内全球气温仍将上升0.5 -1度,减缓性行动不能根除气候变化问题。而且,减缓性行动的不断推进需要适应性的行动支持。在这样的背景下,广西应结合自己的实际情况,应对气候变化的政策要考虑提高广西对气候变化的适应性,以促进广西经济的可持续发展。

四、政策建议

(一)加快结构调整步伐,切实转变发展方式

广西应加快结构调整,减少温室气体排放。大力发展服务业,推进循环工业,改善农业效益,提高林业的固碳效果。具体来说,广西应综合利用财税、产业、金融政策,积极推进产业结构,不断提高服务业的比例,降低工业比重。工业内部,应着力发展低碳经济减少温室气体排放。具体措施包括淘汰落后设备和产能,建立健全和完善节能、清洁生产、综合利用的各项机制,落实各级政府成立节能执法机构、加强执法队伍建设、节能工作常态化、市场化等。同时,积极承接东部沿海的高技术和高附加值、低能耗的产业必将向广西转移,如技术密集型产业、劳动密集型产业、新兴产业等。大力发展林业,提高固碳效果。

(二)加大财政资金在气候变化研究领域的投入

广西应对气候变化,关键依靠技术进步,通过新的技术降低排放,通过新的技术发展清洁能源,通过技术进步提高对气候变化的适应性。有关气候变化问题的科研工作在广西还没有引起足够的重视,科研资金严重不足,研究成果较少,与气候变化相关的基础数据和资料严重缺乏,与气候变化相关的新技术创新能力不足。广西应设立专门的研究资金,通过政府委托形式进行专题研究,加快共性技术进步。通过激励和约束机制,鼓励企业发展实用技术。同时,在各类科研经费的分配中,向气候变化问题的研究倾斜,提高广西区内关于气候变化的科研能力,为制定适合广西特点的气候变化政策打下良好基础。

(三)提高广西对气候变化的适应性

广西应利用经济政策,优化气候变化的资源配置,提高广西对气候变化的适应性。一是要加快气候变化趋势和影响相关知识的研究。目前,对气候变化最大的共识就是气候变化的不确定性,即气候变化对经济所产生的影响及对未来气候变化的预测都存在很大的不确定性,使得气候变化政策的成本和收益难以确定,政策评价和选择变得非常困难。加强对气候变化趋势的研究,给公众提供更多的气候变化信息,有利于公众做好准备,提高自我适应能力。二是财政资金大力支持适应性技术的研发。如开发耐干旱的品种、推广(下转第28页)(上接第11页)适合较高温度的物种,通过新技术应用,提高应对极端天气条件的能力、提高对自然灾害的监测能力等。三是加大适应气候变化的基础设施建设。特别是对敏感地区和敏感行业,如加强农田灌溉设施、加高沿海的防水墙,激励和补贴农村建设储水设施等。四是推行有关气候变化的保险,以加强经济系统应对气候变化的稳定性。

[]

[1]国家农业综合开发办公室.农业综合开发适应气候变化的实践与探索[J].中国财政,2010,(4).

刘晨阳,中国实施应对气候变化的政策内外部动因及效果初探[J].现代财经,2010,(10).

刘恩财,等.关于农业应对气候变化的适应能力建设问题[J].农业经济,2010,(1).

张丽宾,等.气候变化与公共财政政策的理论分析[J].环境经济学,2010,(5).

Cline, W.R."The Econonuca of Global Wamung."Waslungton: Institute for Intemational Economics, 1992.

Kaplow,L."Taxs, Pemuts, and Climate Change"[ N].NBER Working Paper 16268, 2010.

Metcalf,G.E.”Cost Containment in Climate Change Poli-cy: Altemativc Approaches to MitiS;ating Price Volatility [ Nl. NBER Working Paper 15125, 2009.

第6篇:气候变化的研究方法范文

一、将气候变化的内容及原因引入课堂,增强学生责任感

在有关气候变化教育中,清晰的想学生阐述气候变化的起因,才能让学生从根源上去认识了解气候变化,进而加强保护意识。目前存在的气候问题有温室效应、酸雨、臭氧层被破坏等,气候变暖已经演变成了当前的一种自然现象了,它们形成的原因主要是因为人类无节制的焚烧化石燃料或者是树木,造成过多的温室气体二氧化碳生成,从而吸收红外线,经过长期的累计形成了气候变暖。造成气候变化的原因还有很多,包括人的急剧增多,致使生态环境失衡;人为造成的环境污染,生活垃圾的大量排放、丢弃、有毒害物质的大量涌入海洋,破坏了海洋生态环境等,这些都造成气候的变化,造成了人类生存面临极大的威胁。气候变化会造成海平面上升,一种是由于海水受热膨胀引起,另一种是由于北极南极洲上冰川的融化造成的。气候变化会影响生态环境,对大自然造成危害。还会影响水循环,致使自然灾害等,不光这些,还影响农作物产量的,致使减产等等。通过对气候变化的内容和原因进行分析,让学生能将环境问题重视起来,激发学生的责任感,并通过学习了解这些,让学生自觉的规范自己日常生活的行为,尽量从人为因素上去减少对环境的破坏,对气候的破坏。

二、挖掘气候变化的科学内涵,找去高中地理教学隐藏信息

由于教材的篇幅受到限制,很多知识表述并不能完全呈现在学生的面前,这就需要深入去课本中所隐藏的信息,从课本中挖掘出气候变化的科学内涵,找出更深层次的内容,为学生提供思考空间。对于高中地理课本中没有清晰的阐述的知识,教师可以对课本信息进行适当的加工出来使隐藏在其中的内容呈现出来。如教材中将全球平均气温变化曲线图和大气中二氧化碳浓度增长曲线图对比,找出差异,将有利于学生全方位的了解气候变化之因,人类的活动会影响二氧化碳的浓度,二氧化碳的浓度会对气温的上升造成影响,从两种曲线图的波动规律进行分析,可以了解二氧化碳并非影响气温的唯一因素,气温还受其他因素影响;通过挖掘分析课本中的知识,有利于学生更透彻全面的了解知识,更科学的认识知识。合理科学的找出气候变化的应对措施,是教育的终极目标。有效的挖掘教材中的隐藏信息,让学生通过分析,去寻找缓解气候变化的对策。如在课本中有关减少二氧化碳排放途径的具体措施中,可以挖掘出减少排放二氧化碳的原材料和增加二氧化碳的吸收系统两种有效措施。学生通过在这两方面考虑,追溯到二氧化碳的来源,进而了解要使用清洁型能源、降低消费、增加摘种绿色植物等有效的方法来减少二氧化碳排除,增加二氧化碳吸收。从而真正的了解了知识,并运用知识解决问题,找出对策。

三、将有关气候变化前后知识相关联

第7篇:气候变化的研究方法范文

关键词:气候变化 科普教育 素质教育 途径

中图分类号:G244

文献标识码:A

文章编号:1007-3973(2012)006-001-02

气候变化是一个长期性的全球问题,对青少年的影响最大,青少年有理由关心这个问题,并为之付出努力。政府间气候变化专门委员会(IPCC)第三次评估报告指出,近50年的全球气候变暖主要是由人类活动大量排放的二氧化碳、甲烷、氧化亚氮等温室气体的增温效应造成的。在全球变暖的大背景下,近百年来,中国年平均气温升高了0.5~0.8℃,近50年变暖尤其明显,中国沿海海平面年平均上升速率为2.5毫米,山地冰川快速退缩,并有加速趋势。2008年一份在中国七所高校的1500多名学生中开展的调查报告指出,中国大学生对当前环境和气候变化问题有高度的关注,愿意为节能减排身体力行。2007年国家了《节能减排全民行动实施方案》,包括家庭社区行动、青少年行动、企业行动、学校行动、军营行动、政府机构行动、科技行动、科普行动、媒体行动等九个专项行动。其中青少年行动和学校行动主要内容是积极开展以节能减排为内容的学校主题教育和社会实践活动,培养学生树立节能环保意识。因此,加强青少年应对气候变化科普教育显得十分必要和迫切。

如何加强青少年应对气候变化科普教育?笔者认为,要从三个方面下工夫。

1 加大气候课堂教育项目的推广力度

学科课程渗透是实施应对气候变化教育的主要渠道。

(1)结合学科教学特点,依据课程标准的有关要求,充分挖掘现行教材中有利于气候变化的渗透点,开展气候变化教育。目前全国不少中学都以地理、生物、化学、社会课程教学为主,同时在各学科教学中渗透环境教育和节约教育。一些地方,防灾减灾和应对气候变化知识纳入中小学校有关课程和课外教育内容,已经成为社会各界的共识。

(2)积极参与国际气候变化课堂教育项目在我国的实践。2010年11月17日至19日,英国大使馆文化教育处举办了“中英国际气候课堂教育论坛”。本次论坛主要围绕“青少年与气候变化”、“如何在学校成功开展气候课堂项目”、“气候变化教育教学方法”、“本土资源的开发”、“利用社会资源加强学校的气候变化教育”等五个议题开展专家讲座、经验分享及分组讨论,并对当地两所学校进行考察。专家详细介绍了气候课堂项目及其实施细则,阐述了气候课堂项目的重要性、必要性及可行性。北京、天津、重庆等地的三位老师在实践层面,从课内资源、课外资源以及网络资源三个方面详细介绍了学校开展气侯变化教育的情况,用真实的案例阐述了学生社会实践中所做的工作,介绍了学生在推进气候课堂中遇到的实际困难和解决办法。论坛最后签署并宣读了《气候课堂中国宣言》。

如何积极参与气候课堂项目,真正把气候变化教育落到实处?1)积极与全国气候课堂项目中心联系,成立组织,制定计划,建立资源库,为教师提供气候课堂的素材、方案。并积极开发本土资源。2)在各级中小学校本课程上、社会实践、研究性学习上打开思路,进行落实,积极参与国际交流,与友好学校联系,交流经验。加强校际交流,积极推广并培养示范校、重点校。3)结合教学工作,进行气候变化访谈,尽可能利用课余时间、假期进行教学设计、活动设计。4)成立学校气候变化协会,以起始年段为主要成员,开展社区活动,向学校、社区提供建设性意见、建议。

(3)积极配合气象部门开展应对气候变化科普知识进校园活动。科协、教育局编印《应对气候变化》普及读本,将该读本纳入中小学素质教育的必修课程,介绍有关应对气候变化各方面基础知识,作为中小学生人文素质教育的重要内容。在全国、全省范围内各中小学的课外读物中,必须有相当部分指定书目是关于应对气候变化科普类读物。应对气候变化也具有丰富的国情教育内容,应由科技局、科协、教育局牵头,会同有关宣传主管部门和气象部门,开展协调规划和安排,整合有关信息资源,将应对气候变化知识转化为教师、学生和普通大众容易获得和应用的形式,达到普及和宣传的目的。在小学、初中、高中阶段的自然、地理和生物课教学中加重应对气候变化科普知识教育;编制应对气候变化教育系列丛书作为小学、初中、高中阶段的课外必读物;在各大院校普遍设立应对气候变化学科的选修课,加大对大学生应对气候变化科普知识教育的力度。

2 充分发挥科普基地的独特作用

科技场馆在科普教育中有自己独特的作用,它的教育对象主要是青少年。我们要充分发挥科技馆在应对气候变化科普教育的作用。目前,我国有300多座科技馆,据了解,大多数科技馆在展示内容方面应对气候变化科普教育展项设置不多,缺少这方面科普知识的教育。为此,笔者建议在科技馆的展示内容方面要增加应对气候变化科普教育的展项内容,吸引更多的青少年和公众到科技馆接受应对气候变化科普知识的教育。

探索整合社会资源兴办专业化的科普基地。如充分开发利用气象科普资源和基础设施,提高科普基地的科普服务能力及全民的防灾减灾意识,更好地发挥在科普宣传教育方面的示范作用。规范科普基地建设的管理,每年年初制定计划,明确工作任务,主动接受科普基地主管部门的工作指导,参加科普工作的经验研讨会和培训等活动。落实开展的项目经费和人员,争取纳入本单位的年度工作任务管理。《中华人民共和国科普法》明确规定了气象等部门开展科普工作,《全国气象科普基地标准》及《全国气象科普基地管理办法》为应对气候变化科普基地建设规划提供了政策依据。要将科普基地建设纳入第十二个五年国民经济发展规划,加强科普基地建设经费维持经费投入,实现科普基地建设健康发展。

3 加大青少年应对气候变化科普教育体验活动组织参与力度

要使中小学的科学教育真正体现出“主渠道”的作用,除了制定科学的课程标准外,还要求教育主管部门、校长和教师要具备大教育、大科普的观念,要充分认识到中小学科学教育不仅局限于学校内,而是学校、社区和家庭共同参与,消除障碍和隔阂,从不同角度、不同层面定位,注意相互衔接,形成完善的中小学科学教育的社会体系,也即是科普的社会体系。这对于从多元化的途径培养青少年的科技素质,最终实现人才培养的科学性和整体性,具有非常重要的意义。

(1)提供青少年体验模式。在这方面,美国科学教师鼓励学生进行研究全球变化等科学实验的一些做法给了我们启示。在向中小学传播过程中,通过课程讲授、校外辅导、参观实验等方法可以传播气候变化科普知识。传统的讲授式也被小组讨论、角色扮演、个案研究、实验、野外考察、参观博物馆 (科技馆)等方式所取代。也就是说青少年应对气候变化不仅体现在科普知识的学习与宣传,更体现在积极参与宣传环保理念,践行低碳生活方式,使青少年受到影响,在未来从事与环保有关的工作,让应对气候变化的理念和行动落实到更广泛、更深入的层面。

(2)探索青少年应对气候变化科技俱乐部和创新竞赛等系列活动,抓好青少年科技活动站活动。共同构建一个青少年科普的社会体系,从而能够提供多元化的科普途径和学习机会,以满足不同类型对象的科普需求,促进青少年科学素质和创造能力的提高。

第8篇:气候变化的研究方法范文

一是深化研究建立碳排放交易市场。年初以来,国家发展改革委继续通过备案管理的方式,推出了一批经国家认可的自愿减排方法学、交易机构、第三方审定核证机构以及自愿减排交易项目。2011年11月,我委在北京市、天津市、上海市、重庆市、湖北省、广东省及深圳市启动了碳排放权交易试点工作。按照国家统一要求,各试点省市都编制了试点工作实施方案,制定了交易管理办法,加快开展总量设定、配额分配、报告与核查体系建设、登记注册系统和交易平台建设等基础工作,取得了积极进展。目前7个试点已经全部启动上线交易。截至2014年6月29日,已启动交易的试点省市累计总成交量约856万吨二氧化碳,总成交额约3.38亿元。与此同时,我委着手开始全国碳市场的建设,已经启动制定全国碳排放权交易管理办法,研究全国碳交易总量控制目标及分解落实方案,继续研究制定重点行业企业温室气体核算与报告指南,开发建设国家碳交易登记注册系统。今年1月,我委下发通知组织开展重点企(事)业单位温室气体排放报告工作,为开展碳排放权交易等相关工作提供数据支撑。

二是进一步推进低碳省区和低碳城市试点。继续推动低碳省区和低碳城市试点,落实试点工作实施方案,加强对试点工作的总体指导和协调。组织开展低碳试点进展分析,研究制定关于深化低碳试点的指导意见。各试点省市以尽快实现试点地区的二氧化碳排放峰值目标或碳强度显著下降为目标,倒逼调整产业结构、节能提高能效、优化能源结构、增加森林碳汇。试点省市初步探索了碳目标逐级分解考核评估、投资项目碳评估、产品碳认证、企业碳排放报告制度及碳排放管理平台等体制机制创新,较好地实现了控制排放与促进经济社会发展的“双赢”。

三是探索推进低碳工业园区和低碳社区试点。与工信部联合组织开展了国家低碳工业园区试点工作,组织低碳工业园区试点评审,研究制定相应的评价指标体系和配套政策。组织开展了低碳社区试点,正在编制《低碳社区试点建设指南》,争取尽快印发各地方。

四是实施低碳产品标准、标识和认证制度。组织制定低碳产品认证技术规范,并在广东、重庆、山西、辽宁等省市编制地方低碳产品认证实施细则,开展低碳产品认证推广和应用示范。为推动温室气体排放管理的标准化工作,全国碳排放管理标准化技术委员会于2014年7月成立,主要负责我国碳排放管理领域的国家标准制修订工作、相关国际组织在国内的标准技术归口及其他相关的标准化工作。

五是积极参加气候变化国际谈判与国际合作。全面参与联合国气候变化框架公约主渠道的谈判,在谈判中坚持联合国气候变化框架公约及京都议定书确立的“共同但有区别的责任”原则、公平原则和各自能力原则,坚决维护广大发展中国家的共同利益,与各方一道努力推动谈判进程。在气候变化对话与国际合作方面,通过各种双多边渠道与发达国家开展对话沟通和务实合作。中美两国气候变化对话合作取得新进展,在刚刚结束的第六轮中美战略与经济对话期间,中美双方召开了气候变化问题联合特别会议,了工作组进展报告,并达成了多项气候变化相关成果。与欧盟、澳大利亚、英国、法国、德国、瑞典等开展了双边对话和务实合作。通过开展“南南合作”,利用“基础四国”、“立场相近发展中国家”等磋商机制以及双边对话,维护发展中国家的整体团结。

第9篇:气候变化的研究方法范文

关键词:气候变化;不确定性;成本—收益分析;历史责任原则;平等主义原则;功利主义原则;差别原则

中图分类号:b82-058 文献标识码:a 文章编号:1671

2005年8月29日,卡特里娜飓风袭击了美国的南部海岸,这场美国历史上损失最大的飓风横扫几个州区,造成了至少1 800人死亡,近百万人被迫转移,财产损失高达812亿美元。虽然不能将气候变化和卡特里娜飓风直接联系起来,但这场风暴可以说为我们呈现了有关气候变化的直观图景。

现在,气候变化的起因和机制已经得到了广泛的证实:ipcc在2007年的报告中指出,自工业化时代以来,人为排放的温室气体显著增加,大部分已经观测到的全球平均气温的升高很可能是由于人为温室气体浓度的增加所致。报告还指出,如果以当前的速度继续排放温室气体,到21世纪末全球平均气温将在现有基础上再上升2℃,到那时海平面将升高0.4~0.7米,许多沿海地区和国家将被吞没,随之而来的全球降水模式的变化将威胁到更多人口的生存条件。[1]

气候变化的复杂性为研究提供了多种视角,气候伦理的研究集中在对气候变化的伦理维度上,人为因素导致的气候变化已经引起了很多重要的伦理问题,无论是对气候变化的研究还是制定应对决策,都需要以一定的伦理观作为支撑。气候伦理是环境伦理的进一步扩展,它突破了环境伦理的中心问题——人与自然的关系,更强调纵向的可持续发展,注重代际公平。另外,在空间维度,气候伦理更强调一种国际性,即探讨如何在国际层面实现平等、公正。[2]当代越来越多的哲学家和社会学家参与到了对气候变化伦理维度的研究中来,对气候伦理的研究主要集中在以下几个方面:一、气候变化中的科学不确定性

虽已取得一定共识,但气候变化问题中仍存在大量不确定性。《科学美国人》的编辑david biello说:“实际上无论是国际专家小组还是其他什么人都不能对全球变暖究竟有多糟给出任何确定的说法。”大气物理学家gerard roe认为气候变化的不确定性来源于气候系统本身的复杂性和敏感性,因为它极复杂,所以不可控的变化极易发生;又因为它极其敏感,所以小小的变化都会带来结果的巨大差异,不确定性就这样产生了。[3]全球变暖的怀疑者以不确定性作为不立即采取行动的借口,一些工业团体和保守派反对政府现在就限制温室气体的排放。他们觉得即使要采取行动,也要等到掌握了足够的信息和技术才行。在“怀疑派”中,代表人物之一是丹麦统计学家bj rn lomborg,他认为气候变化并不是目前急需解决的问题,世界性的贫困、艾滋病的蔓延、核武器才是现在人们应该关注的问题。现在应对气候变化的成本远大于听之任之的代价,因而他认为无需采取任何措施应对气候变化。[4]

密歇根大学教授henry n.pollack认为科学中的不确定性和日常生活中的不确定性并无本质差异,人们应当用与处理生活中不确定性相类似的方式去理解和适应科学的不确定性。华盛顿大学副教授stephen m. gardiner指出,因不确定性而拒绝采取行动就是拒绝承认全球变暖这一事实或者认为“不作为原则”是应对不确定性的明智之举。gardiner认为前者就像鸵鸟将头埋进沙子里一样,而后者也不能解决任何实际问题,这都不能应用于我们的实际。gardiner认为当务之急并不是考察确定性本身,而是要决定在这种情况下我们应该做些什么。[5]rock ethics institute制定的《气候变化的伦理尺度白皮书》明确提出了“不再将科学的不确定性作为拒绝减少温室气体排放至全球安全总排放所分配的公平份额的理由”[6]。鉴于当前气候变化正在侵害部分人群,严重且无法挽回的损失很可能在所有确定性被消除以前就已出现,因此,即便存在大量不确定性,我们仍应立即采取行动防范风险,以不确定性为理由拒绝行动是找不到任何道德支撑的。

比较通行的处理不

定性的理论原则是预防原则,《里约宣言》将其定义为:“为了保护环境,各国应当根据其能力,广泛运用风险预防原则。只要存在严重的或者不可逆转的破坏的威胁,不可将没有充分科学证据作为延缓预防环境恶化的理由和采取成本有效性合理措施的原因。”[7]道德哲学教授john broome则认为无需特别的预防理论,“预期效益”即可应对不确定性问题。他认为,人们在抉择时,考虑的不是事情发生的可能性,而是它的结果也就是预期效益。这样,在面对气候变化问题时,我们首先要考虑到有可能出现的危害巨大的极端气候现象,无论它发生的概率是多少,鉴于这种极端变化所带来的严重损失,我们应该认真对待并及时行动。[8]

此外,在主流派和怀疑派之外还出现了第三种观点,这就是麻省理工学院物理海洋专家卡尔·温施教授的“保险论”:将人类现在花费高昂的代价来应对气候变化看做是为自己和子孙后代买了一个“保险”,即使最后发现并未出现极端的气候变化,这个代价也是值得的。虽然这种观点受众很小,但它也为争论不休的主流派和怀疑派提供了一种看待问题的全新视角。二、气候变化的经济学研究

在自然科学之后,率先探索气候变化的社会科学当属经济学,经济学家主要对气候变化的影响及其应对方案进行“成本—收益分析”。由英国政府经济顾问nicholas stern主持的《斯特恩报告:气候变化经济学》(《报告》)就是对气候变化进行经济学研究的一个范例。报告对气候变化问题进行了全面综合、长期有效的经济分析,是目前较有影响的经济学研究成果之一。报告采取的极低贴现率犹如一颗重磅炸弹,激起了赞同者和批判者的激烈争论,而这正是气候伦理所关注的焦点问题之一。 一些传统经济学家对《报告》提出了质疑:他们认为鉴于气候变化的不确定性,不能轻易得出悲观的不利结论。即便气候变化的危害是确定的,我们也可以通过不断适应以增强抵御灾害的能力,而在《斯特恩报告》中,最坏的影响延续了二百年而人类没有有效适应,这意味着,报告采取的经济模型过于简化,其分析方法是存在问题的。剑桥大学的partha dasgupta教授指出,《斯特恩报告》设定的极低贴现率,意味着当代人必须要把收入的90%以上用于储蓄留给子孙后代,这根本不现实。[8]

而一些哲学家认为较高的贴现率会使后代的权利被剥夺,严重违背了代际公平。john broome指出,在“成本—收益分析”中市场利率影响了贴现率的设定,而市场只反映当代人的偏好,事关后代利益的贴现率被当代人主观地决定,后代人就这样被剥夺了“话语权”。《气候变化的伦理尺度白皮书》也认为贴现只考虑了当代人的利益,没有按照代际公平的要求一视同仁地对待当代人和后代人。

为什么贴现会引出如此大的争议呢?stern认为经济学家关于贴现率的确定,不能简单地归为数学公式和统计学,它本身就是一种反映特定社会价值的道德抉择。[9]broome则对贴现率问题作了一个比较全面的分析。他认为经济学家根据“边际效益递减”而需要对未来进行贴现[10],而贴现率究竟是多少,首先看经济增长率。更重要的是,broome认为经济学家在对气候变化进行分析时,已经预设了一个伦理前提,他们自觉或不自觉地根据这一伦理立场行事,这就使得贴现率还需要取决于一个纯伦理因素。即经济学家在确定贴现率时必须在“优先主义”和“功利主义”、“纯贴现”和“一视同仁”之间作出选择(“功利主义”和“一视同仁”都会导致一个相对较低的贴现率,而“优先主义”和“纯贴现”则相反)。[8]正是基于这样选定的伦理立场,不同的人才会得出不同的贴现率。

另外,还有一部分人从根本上否定了传统的经济理论中根据gdp来衡量经济增长,并将这种经济的增长等同于人类福利增加的计算方法。gardiner指出,传统的经济分析并不能充分反映所有相关的成本和收益,例如非人类成本和非经济成本。[5]传统的经济分析或是没有将环境、社会等成本计入其中,或是将其转化为量化的货币成本和收益,只承认了相关的市场价值,将事物的内在价值归结为工具价值,这就违背了一些赋予有生命事物以内在价值的伦理体系,贬低了万物存在的意义。

诚然,对成本与收益的权衡不能完全回答面对气候变化时我们应当如何行动这一问题,但它也是不容忽视的。我们需要经济学的实用方法,但不能仅仅依靠经济学,要将经济学建立在道德哲学基础之上,应首先讨论其伦理基

础。因此,我们可以得出结论:经济学家应该重新思考经济学与伦理学的关系,重视经济活动中的伦理考量。三、温室气体排放与减排的分配原则

有关全球变暖的核心伦理问题就是如何分配温室气体的排放和减排,我们可以将温室气体的排放简单地分为存量(历史排放)和流量(当下排放)两部分,针对这两部分排放制定相应对策所依据的分配原则即为气候伦理研究的基本对象。

(一)存量

由于温室气体在大气中留存时间长,温室效应的结果显现有一定的滞后性。那么就目前和将要出现的全球变暖的危害,谁应负责呢?对此,伦理学界有一个颇为一致的答案:根据历史责任原则,发达国家应承担应对气候变化的主要责任。[5]历史责任原则基于这样一个历史事实:自工业革命以来,发达国家在利用廉价能源发展经济的同时,排放了大量的温室气体,导致了全球变暖,因而,发达国家对于温室气体的存量负有主要责任。历史责任原则也叫污染者付费原则,它要求发达国家在大幅削减温室气体排放的同时,向发展中国家提供资金和技术,帮助其应对气候变化。这一原则与矫正正义的要义相符,因此历史责任原则对发达国家的要求是其对自己过错的纠正。

这一原则受到一些发达国家及其学者的质疑:伦理学家peter singer和环境伦理专家dale jamieson认为发达国家直到最近才知道了自己排放的恶劣影响,“无知者无罪”,因此认为发达国家不应为之前的历史排放负责;还有一种观点对侵权者身份提出了质疑,美国芝加哥大学教授eric a. posner 和 cass r. sunstein认为,目前大气中的温室气体存量是过去人们所排放的,他们中的绝大部分已经去世了,当今的美国人并不是制造危害的侵权者,让他们承担历史责任,有失公平[11]298-301;另外,历史责任原则存在着实践上的困境,没有一个温室气体的排放标准,我们对发达国家的历史排放量也没有具体的测量数据,很难制订出具体的减排责任分配方案。[12]

(二)流量

当下温室气体排放的分配原则主要有以下三个:

1.平等主义原则

平等主义原则有一个伦理前提,即将地球大气吸纳温室气体的能力当做公共财富,根据所有人对公共财富都拥有平等使用权得出:每一个人都拥有权利排放同等数量的温室气体。这一原则得到了广大发展中国家的支持。因为无论以哪一年的排放量为基准,发达国家都远远超过了平均排放水平,而发展中国家还远未达到平均水平。 这就意味着按照平等原则的要求来进行分配,在发达国家需要大量减排的同时,发展中国家可以继续增加排放量。

就像john ashton所说的,“与抽象的公共事物,如自由、安全相比,更加实际的物质产品更难适用平等主义原则”[13],平等主义原则存在着一定的局限。dale jamieson认为各国很可能为了获得更多的份额而想方设法地增加人口。另外,gardiner指出,这一原则并没有考虑到排放份额在人们生活中的不同作用。一些排放被用来生产奢侈品,而另一些则被用于维持人们的基本生活。[5]也就是说这样一个平等的分配方案对于境遇不同的人来说似乎不够公平,并不符合分配正义的基本要义。

2.功利主义原则

功利主义追求功利的最大化,也即在投入一定的前提下,将能产生最大实用性或“福利”的方法作为最优选择。[14]这一原则反映了一种实用主义伦理观,而体现在决策制订中,就需要一个十分有用的工具,即“成本—收益分析”。根据功利主义原则,温室气体排放量的分配应当这样来安排,即这种分配能使受其影响的人获得最大的“功用”。因为偏好满足是可以测量的,大多数经济学家采用以偏好为基础的功利观点。 利主义原则被经济学家广泛使用,但其自身存在着致命的缺陷:它以总量、效益的最大化为目标,却忽视了分配的公正与公平,按照功利主义的观点,温室气体的排放份额应更多地被给予高效率的发达国家,以达到最大实用性,但这显然有失公允;另外,以偏好为基础的功利主义,只关注偏好的满足,却忽视了偏好的价值与是否合理[15],这也不能达到分配正义的要求。

3.差别原则

差别原则又叫“惠顾最不利者原则”或“按能力支付原则”,是以罗尔斯关于分配正义的理论为基础。这一原则要求给予最贫穷人口以最大的排放权,而给予最富裕人口以最小的排放权。[16]气候变化的最大受害者是脆弱的发展中国家,特别是贫穷的热带国家基本上没有能力应对气候变化,

因此,差别原则给予他们特殊照顾,这正是分配正义的一种体现。《联合国气候变化框架公约》提出的“共同但有区别的责任”原则就是差别原则的一个例证,该原则要求各国基于不同的经济发展水平、历史责任和当下排放来承担有差别的减排责任。

这一原则虽然在伦理道德角度可以获得一定支撑,但由于利益立场的不同,不被一些发达国家及学者所接受,eric a. posner 和 cass r. sunstein就称这样一种分配原则实质上是“一种(适度)伪装的跨国再分配要求”,他们认为该分配原则由于受到各方利益的钳制,是根本不受欢迎的。[11]271 因此,鉴于当前的国际形势,这样一个原则在实践中是很难得到完全履行的。四、结语

上面所涉及的气候伦理研究仅仅是影响较大且被广泛认同或是备受争议的问题,还有许多学者从更加多样化的角度对气候变化进行伦理维度的研究。例如,从博弈论角度和从基督教等宗教信仰角度进行气候伦理的研究,但由于篇幅和能力有限,在此仅能点到为止。

通过对上述气候伦理问题的介绍,我们可以看到几乎所有的问题都是围绕着正义这个伦理概念进行的。科学研究和经济分析最终都是为决策制定服务的,究竟以什么样的伦理原则来引导应对气候变化的活动才能达到正义的最大化是气候伦理研究的焦点,通过对气候变化问题的伦理分析,最终为政治决策提供价值导向,促进应对方案的达成,真正解决气候变化问题是气候伦理的最终指向。

参考文献:

[1]ipcc.climate change 2007: the physical science basis[r/ol].cambridge: cambridge university press,2007 [2012-05-26].ipcc.ch.

[2]曹荣湘.全球大变暖——气候经济、政治与伦理[m].北京:社会科学文献出版社,2010:16-20.

[3]david biello. climate changes uncertainty principle[j/ol]. scientific american,2007(11): 20[2011-05-10].scientificamerican.com/article.cfm?id=climate-changes-uncertainty-principle.

[4]黄卫华,曹荣湘.气候变化:发展与减排的困局——国外气候变化研究述评[j/ol].经济社会体制比较,2010(1):76-82[2011-05-11].cctb.net/llyj/lldt/llqy/201002/t20100224_20439.htm.

[5]stephen gardiner. ethics and global climate change[j/ol]. ethics, 2004,114(4): 555–600 [2011-05-10].hettingern.people.cofc.edu/environmental_ethics_sp_10/index.htm.

[6]donald brown, nancy tuana, marilyn averill, et al. white paper on the ethical dimensions of climate change[r/ol]. collaborative program on the ethical dimensions of climate change, 2006: 7-38[2011-5-12]. rockethics.psu.edu/climate/.

[7]王小文.气候变化伦理学初探[j]. 环境保护,2008(17):69-72.

[8]方旭东,约翰·布鲁姆.超越“成本—收益分析”的伦理学考量[j].学术月刊,2010,42(2):5-13.

[9]nicholas stern. the economics of climate change: the stern review[r]. london: cambridge university press,2007:1-29.

[10]约翰·布鲁姆.气候变化的伦理抉择[j].环球科学,2008(7):14-21.

[11]埃里克·波斯纳,卡斯·森斯坦.气候变化正义[m]//曹荣湘.全球大变暖——气候经济、政治与伦理.北京:社会科学文献出版社,2010.

[12]martino traxler. fair chore division for climate change[j]. social theory and practice, 2002(28):101-134.

[13]john ashton, xueman wang. equity and climate:in principle and practice[c] // joseph aldy, john ashton, richard baron, et al. beyond kyoto: advancing the international effort against climate change. arlington: pew center on global climate change, 2003:61-84[2011-05-15]. academic.research.microsoft.com/publication/5252830/equity-and-climate-in-principle-and-practice,2003.

[14]inge johansen. ethics of climate change: exploring the principle of equal emission rights[r].oslo:norwegian academy of technological sciences, 2007:6-51[2001-05-17]. euro-case.org/documents/ethics-climate.pdf.