公务员期刊网 精选范文 常用的数学建模方法范文

常用的数学建模方法精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的常用的数学建模方法主题范文,仅供参考,欢迎阅读并收藏。

常用的数学建模方法

第1篇:常用的数学建模方法范文

[关键词]高职学生 数学建模

[作者简介]郑丽(1974- ),女,河北邯郸人,邯郸职业技术学院,副教授,研究方向为数学教育。(河北 邯郸 056001)

[课题项目]本文系2012年河北省教育厅人文社会科学研究项目“基于数学建模的高职学生创新能力的培养”的部分研究成果。(课题编号:SZ123022)

[中图分类号]G647 [文献标识码]A [文章编号]1004-3985(2014)12-0187-02

数学建模是在20世纪六七十年代进入一些西方国家大学的,我国几所大学也在80年代初将数学建模引入课堂。1992年由中国工业与应用数学学会组织举办了我国10城市的大学生数学模型联赛,74所院校参加了本次联赛。教育部及时发现,并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,每年有几万名来自各个专业的大学生参加竞赛,有效激励了学生学习数学的积极性,提高了学生运用数学解决问题的能力,为培养学生利用数学方法分析、解决实际问题开辟了一条有效途径。

从1999年起,全国大学生数学建模竞赛设立了专科组,高职院校作为高等教育的重要组成部分,在开展数学建模活动中投入了极大的热情,数学建模也成为高职院校数学教学改革的一个热点。作为高职院校的数学教师,笔者自2001年以来一直担负着学校的数学建模培训工作,每年学生们都积极参加数学建模竞赛,也取得了国家级、省级的奖励。结合高职院校的学生特点,以及十年间高职数学教学和数学建模活动的实践,笔者对高职院校开展数学建模活动的意义进行了探讨,并总结了高职院校实行数学建模培训的思路与方法。

一、在高职院校开展数学建模活动的意义

(一)数学建模活动能够满足部分学生的学习需求

高职院校的学生大多是基础知识相对薄弱的,但是也有不少学生基础扎实,善于思考。高职院校目的是培养既有理论基础,又有实践能力和创新精神的复合型人才,这就要求我们既要进行大众化的人才培养,又要满足部分学生对知识、能力更高层次的需求。数学建模活动为这些学生带来了新的挑战和机会,为他们展示创新思维与实践能力提供了舞台。

(二)数学建模活动可以培养学生的创新精神,提高学生的综合素质

通过数学建模训练,可以扩充学生的知识面,培养学生利用数学知识解决实际问题的能力,增强学生的知识拓展能力、综合运用能力;还可以丰富学生的想象力,提高抽象思维的简化能力和创新精神,既有洞察能力和联想能力,又有开拓能力和创造能力,以及团结协作的攻关能力。

(三)数学建模活动可以促进数学教师的教学能力和科研能力,推动高职数学教学的改革与创新

通过在高职院校中开展数学建模活动,对数学教师本身也是机会和挑战。教师必须重新组织教学内容,补充自身知识的缺陷与不足,促使教师自身综合素质的不断提高。通过数学建模训练,教师在数学教学中必然会改进教学方法,转变教学观念和教学方式,教学水平和科研能力都会逐步提高。通过数学建模训练,教师也能够学会一定的科学研究方法,增强实践教学意识,对于在数学教学中培养学生的创新能力和抽象思维有了明确的认识。通过数学建模训练,教师更善于在教学过程中激发学生学习的主动性,调动学生学习的积极性,重视教学方法与教学手段的改革,推动教学质量不断提高。

二、在高职院校实行数学建模培训的思想与方法

(一)高职院校实行数学建模培训的必要性

数学教育本质上是一种素质教育。通过数学训练,可以使学生树立明确的数量观念,提高逻辑思维能力,有助于培养认真细致、一丝不苟的作风,形成精益求精的风格,提高运用数学知识处理现实世界中各种复杂问题的意识、信念和能力。高职院校中,作为基础课程的数学课,不仅要为学生学习专业课提供必要的数学知识,同时还要培养学生的数学思维,培养他们勇于创新、团结协作解决问题的能力。而开设数学实验课,进行数学建模活动有助于提高学生在数学学习中的兴趣与主动性,提高学生利用所学知识解决实际问题的能力,为培养高质量、高层次复合型人才提供有力的帮助。

(二)突出高职特色,渗透数学建模教学思想

高职学生的学习基础总体比较薄弱,但实践能力和动手能力又相对较强。这就要求教师在教授数学知识的时候,必须把握“以应用为目的、必需够用”的原则,扬长避短,体现精简数学理论,弱化系统性,突出数学应用,强调实用性。在开展数学建模活动中,要从开设数学实验课入手,普及数学建模思想,强化数学建模在实际当中的应用。

从目前课程设置及课时的统计上,可以看出作为基础课程的数学课总课时整体呈缩减趋势。面对这种现状,我们需要在保证学生够用的前提下,突出数学的应用性,这就需要我们进行教学内容和教学方法上的改革。开设数学实验课,引导学生进行数学建模活动,给数学教学改革带来了新的启示,使数学教学改革在迷茫中找到了突破口。通过组织学生参加全国大学生数学建模竞赛,以及对数学建模和数学实验的进一步研究,我们提出了在高职院校中开设数学实验课的构想,利用现有课时使学生尽可能多地了解数学的思想方法,掌握应用软件解决数学问题的技能。数学实验课建设的指导思想是以实验为基础,以学生为主体,以问题为导向,以培养能力为目标。在数学教学改革中,要坚持贯彻指导思想,努力构建数学实验课程教学的模式。

(三)数学建模培训的方法探索

在高职院校的实际数学教学中,可以采取在大一第二个学期,由各系推荐,学生自愿的方式开设数学实验选修课。这一阶段主要给学生补充一些必要的数学知识及软件应用方法,介绍一些最常用的解决实际问题的数学方法,比如数值计算、最优化方法、数理统计中最基本的原理和算法,同时选择合适的数学软件平台,熟练计算机的操作,掌握工具软件的使用,基本上能够实现所讲内容的主要计算。组织兴趣小组,集体讨论,相互促进,共同提高,培养团队精神。在教授过程中尽量引入实际问题,并落实于解决这些问题,引导学生自己动手操作,通过协作讨论,写出从问题的提出和简化到解决方案和数学模型的实验报告,并尽可能给出算法和计算机的实现,得出计算结果。

在期末选出部分比较出色的学生,为参加全国大学生数学建模竞赛进行培训,时间主要集中在暑假期间。这一阶段安排学生熟悉数学建模所涉及的各种方法,诸如几何理论、微积分、组合概率、统计(回归)分析、优化方法(规划)、图论与网络优化、综合评价、插值与拟合、差分计算、微分方程、排队论等方法。学生也要在尽量岔开专业的前提下,依照教师建议及学生自己选择进行分组,利用历年一些典型的竞赛题目模拟训练,对于每道题目要求各组按比赛要求给出模型论文。教师引导学生及时总结题目中所用的方法,找出各自的长处与不足,为后面的训练与比赛积累知识与经验。

三、如何在高职院校中开展数学建模培训

(一)高职院校数学建模培训的总体规划

确定对于高职学生实行数学建模培训的思想与方法后,重点就是要组织教学内容。目前关于数学建模的书籍及参考资料多种多样,其中大多是面向本科学生的,近几年也有不少针对专科学生的数学建模材料。前期数学实验课的选修过程中,建议高职院校不要局限于某一本教材,而是参考各种资料,选择一些比较典型又易于上手的数学模型,让学生既在学中做,又在做中学。而在针对全国大学生数学建模竞赛的集中训练中,要优化数学建模竞赛队员的组合,强调三人各有专长,有的数学建模能力较强,有的计算机软件应用能力较强,还有的擅长文字表达。这一阶段要扩展学生知识面,打牢基础,强调“广、浅、新”。强化训练历年竞赛真题,使学生多接触实际问题的简化与抽象方法,应用数学知识解决实际问题。同时要对一些比赛常用的基本技能进行强化训练,如数学软件的应用、数学公式编辑器的使用,以及论文格式的编排等。

(二)高职院校数学建模培训的基础内容

初期的数学实验课,应先从初等模型入手,引导学生应用中学所学的数学知识解决一些实际问题。教师有意识引导学生发散思维,让他们沿着问题分析―建立模型―求解模型―模型分析与检验的过程解决问题。由于初等模型不需要补充多少知识,学生用原有的知识能够解决模型问题,使得学生对数学实验与数学建模充满了兴趣与信心。

接着可以引入一元函数及多元函数的微分模型,以求最值问题为主。高职院校各专业学生基本都在第一学期学过了一元函数的导数及应用,对于这类模型也比较容易接受。在此期间应穿插数学软件的学习与练习,重点是Mathematica和Matlab的使用,利用数学软件帮助求解模型。

再来就是微分方程模型,这时由于不同专业学生学习情况不同,所以要先适当补充微分方程的基本知识,才能由易到难,由简单到复杂地带领学生建立微分方程模型,然后借助数学软件求解模型。在第二学期,有些专业的学生会开设线性代数或概率论与数理统计,所以后半学期会在线性代数基础上讲解规划模型,以及概率统计的模型。

这样通过一个学期的数学实验与数学建模课程,多数参加数学建模培训的学生分析问题、解决问题的能力都能显著改善,还可以扩充知识面,学习新理论和新方法,自身的能力、水平和综合素质都有很大的提高。

(三)高职院校数学建模培训的强化内容

暑假期间,筛选部分优秀的学生进入数学建模竞赛培训阶段,学习时间可以比较集中。这一时期应利用典型模型,结合实际问题,穿插讲解数据拟合及综合评价等数学建模中常用到的方法,让学生在具体模型中体会学习机理分析、数据处理、综合评价、微分方程、差分方程、概率统计、插值与拟合及优化等方法。同时深入学习Mathematica和Matlab等数学软件,掌握它的强大功能,还要求部分擅长计算机软件的学生能够熟练使用Lingo软件,这几种软件的应用为求解数学模型提供了方便快捷的手段和方法。最后,在历年的数学建模竞赛题目中选取部分题目,分别涉及不同的建模方法,让学生做赛前的强化练习,模拟比赛环境与要求,各组在规定时间内拿出符合比赛要求的建模论文。

在高职院校开展数学建模活动,有助于促进教师知识结构的更新与扩展,为数学教学的改革与创新提供了切入点和发展方向。同时,高职院校的学生通过参加数学建模竞赛,可以用事实来证明自己的实力和价值,更有利于自身综合能力和素质的提高,增强了未来的就业竞争力。

[参考文献]

[1]陈艳.数学建模对实现高职高专数学素质教育之分析[J].学理论,2011(12).

[2]姜启源,谢金星,叶俊.数学模型[M].3版.北京:高等教育出版社,2003.

第2篇:常用的数学建模方法范文

数学建模是对一个实际问题,为了一个特定目的,根据特有的内在规律,做出必要的简化假设,运用适当的数学工具,借助数学语言刻画和描述一个实际问题,得到一个数学结构,然后经过数学处理得到定量或定性结果,供人们分析、决策、预报和控制。如今,国民经济的各个领域都涉及到数学建模技术,它已成为对被研究对象的特性进行仿真和系统研究必不可少的基础。用数学建模解决实际问题一般分为五个环节:(1)模型假设,即必要合理的简化假设,符号说明;(2)模型建立,即局部问题分析,进行公式推导得到基本模型;(3)模型求解,即用数学方法借助于计算机得出精确或近似结果;(4)模型检验,即模型的结果分析与检验,误差分析;(5)模型应用,即对以上过程进行反复多次实验,直到很好的解决问题。

二、高职高专院校开展数学建模的必要性

1.数学建模有力补充了传统数学教育

目前,我国高职高专院校所开设的高等数学课程大多还是注重理论,教学偏重理论推导,过于强调解题技巧,忽略实际应用,使得很多学生觉得学了数学没什么用途。然而,从科学技术的发展趋势来看,未来技术人员不但要掌握基本数学理论、常用数学方法,更重要的是解决实际问题的基本能力,因此在教学中,应该加强数学知识与相关课程的有机结合和相互渗透,而数学建模是解决这个问题的有效途径。他能够广泛联系不同学科知识,是实现数学知识和应用能力相结合的最佳结合点。数学建模课程系统性强,实际案例分析比例大,联系实际的领域宽,有效改善了传统教学中知识与能力脱节的弊端。因此,应该将数学建模的基本内容引入到数学教学中,让学生在数学学习的过程中更多得接触一些实际应用问题,了解数学应用的背景,体会数学的思想和方法。

2.数学建模有利于培养学生多种技能

数学建模用到的知识比较宽泛,而且从问题的提出到问题的解决,都没有固定答案和模式,因此给了学生更大的自主性和想象空间。学生需要通过图书馆和网络搜集资料,进行自学,经历独立思考、深入探索、小组成员相互讨论、相互协作的实践过程,培养了学生的自学能力,独立思考能力,相互协作能力和创新意识。随着计算机技术的迅猛发展,数学建模中大量繁琐的计算问题都可以通过计算机软件来实现,很多问题只要编制一些简单的程序即可得到满足要求的数值解,另外,很多抽象难懂的数学概念、复杂的几何图形,都可以通过计算机直观显示。因此,这就要求学生在数学建模过程中还需要熟练掌握必要的数学软件,如Matlab,Lingo,SPSS,Mathematica,提高了学生应用计算机软件解决实际问题的能力。

3.数学建模有利于促进高职高专院校教师队伍水平的提高

高职高专教育的培养目标是为服务、生产、管理等第一线培养适用的高技能复合型人才,这就要求高职高专院校的教师不仅需要具备扎实的理论知识和丰富的教学经验,更要具有较强的从事本专业工作的能力。数学建模活动的创造性和知识的广泛性,对指导教师提出了更高的要求,这就促使教师不断优化知识结构,改革课程体系、教学内容、教学手段、教学方法,不断提高教育教学质量。

4.数学建模有利于推进高职高专院校数学教学改革

高职高专院校是培养高技能复合型人才的基地。而如今,高职高专数学教育面临着诸多问题,如教材不规范、不统一,教学内容多,教学课时少,生源素质总体偏低,学生积极性不高等,根据高职高专数学教学目标,进行数学教学改革势在必行。数学建模以数学知识为基础,以问题为导向,以学生为中心,以计算机为辅助工具的思想方法,更有利于培养学生创造性思维,提高学生综合素质,对高职高专院校数学教学改革起到巨大的促进作用。

三、高职高专院校开展数学建模的两点思考

1.完善奖励激励政策有利于数学建模活动的持续开展

数学建模活动是一项系统工程,需要耗费教师大量的时间和精力。只有在教学管理中对数学建模竞赛取得的成绩给予充分肯定,并且给予政策支持和物质奖励,才能充分调动师生参与的积极性,促使数学建模活动的持续开展。

2.开设数学建模选修课

第3篇:常用的数学建模方法范文

(一)数学建模融入数学教学中可激发学生学习数学的兴趣。现今大学数学教学普遍存在内容多、学时少的情况,为完成教学进度,很多教师在内容处理上,偏重理论与习题的讲解,忽略应用问题的处理与展开,使学生对数学的重要性认识不够,也不知道该如何应用,影响了学生的数学学习的兴趣。而数学建模是社会生产实践、医学领域、经济领域等生活当中的实际问题经过适当简化、抽象而形成的某种数学结构或几何问题,它体现了数学应用的广泛性,所以教师在教学过程中利用所学的数学知识引导学生积极参与到数学建模实例中,可以使学生感受到数学的生机与活力,感受到数学无处不在,感受到数学思想方法的无所不能,同时也体会到学习高等数学的重要性。把数学建模融入数学中教学可以充分调动学生应用数学知识分析和解决实际问题的积极性和主动性,使学生充满把数学知识和方法应用到实际问题中的渴望,把以往教学中常见的“要我学”真正变成“我要学”,从而激发学生学习数学的兴趣和热情。

(二)利用数学建模培养学生的创造能力,联想能力,洞察能力,以及数学语言的表达能力。由于数学建模没有统一的标准答案,方法也是灵活多样的,学生针对同一问题可从不同的角度、用不同的数学方法解决,最终寻找一个最优的方法,得到一个最佳的模型,因而有利于发挥学生的创造力。而对一个实际问题在建模过程中能否把握其本质,抽象概括出数学模型,将实际问题转变成数学问题,需要敏锐的洞察力和数学语言的表达能力。建模的过程同时也是将实际问题用数学语言表述的过程。

(三)数学建模可以培养学生团结合作的精神,交流、表达的能力。建模过程中学生每人的思想都必须通过交流才能达成一致,其结果还要用语言表达清楚。好的想法、大胆的创新,如果不表达出来,就不会被人们所理解和接受。

(四)数学建模可以提高学生数学软件的应用能力。利用数学建模竞赛前的培训和课外数学软件上机的实践,使大学生能够熟练掌握并应用数学软件,使数学软件应用能力得到一定程度的提高。同时有效利用培训时间,开设数学软件的专题教学,使学生更熟练地掌握并应用多种软件的操作和编程方法,有助于促进大学生综合运用软件知识、数学建模知识和数学基础知识解答现实问题的能力,也是对大学生动手和动脑能力一种综合培训,更是数学软件应用和大学数学应用等综合能力提高的有利时机。

(五)数学建模是提高青年教师业务水平的好帮手。通过数学建模竞赛,很多青年指导教师获益匪浅。这主要表现在两个方面:一方面,让自己在高等数学、概率论与数理统计、线性代数的教学过程中底气更足,理解更深。在上课进行讲解的时候可以理论联系实际,使得教学生动饱满,也可以提高学生的学习兴趣。另一方面,通过数学建模培训和竞赛,逼迫自己学习数学软件,特别是spass、matlab等数学建模常用软件,在边学边用的过程中,软件操作能力得到大大提高,这样又会反哺给下一届参赛学生,使得学生能够共同进步。

二、数学建模可以推动高等数学教学改革

(一)数学建模可以促进高等数学教学内容的改革。目前,大多数高校在高等数学的教学过程中偏重理论和计算,而忽略了概念产生的实际背景和对数学方法的实际应用。因此,在实际的高等数学教学中我们可以增加部分概念的现实背景材料和贴近实际生活的案例,使学生认识数学概念、原理和方法的形成过程,体会到数学思维的美妙,提高学生的学习兴趣。同时在课堂教学中还可以适当介绍运筹优化、统计与数据建模、决策分析等方面的知识。这些教学内容的改革可以使学生感受到数学来源于生活的本质。

第4篇:常用的数学建模方法范文

关键词 数学建模 独立学院 课程改革 实践能力

中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdks.2015.02.044

Independent College Mathematical Modeling Education Curriculum Reform

――Take College of Arts and Sciences, Yunnan Normal University as an example

LIU Ruijuan[1], YANG Bin[2]

( [1]College of Arts and Sciences, Yunnan Normal University, Kunming, Yunnan 650222;

[2]Yunnan Institute of Electronics Industry, Kunming, Yunnan 650031)

Abstract This article from the reality of Yunnan Normal University of Arts, discusses the characteristics of Mathematical Modeling Course and the creation of the significance of this course, and then analyzes the independent Institute of Mathematical Modeling Courses problems proposed curriculum reform and solve mathematical modeling ideas. By selecting the appropriate course materials and auxiliary teaching materials, teaching and the establishment of mathematical modeling contest guide the team to achieve classroom case discussions and presentations combine teaching mode, associated with the creation of mathematical modeling curriculum support programs, such as probability theory, mathematical analysis , operations research, graph theory and other courses, assessment methods diversified, respectively, classroom attendance, classroom discussion to answer the performance aspects of modeling large peacetime operations and final quality modeling work, modeling reply comprehensive assessment, in addition to organize students to participate actively in the network challenge and the National mathematical Contest in Modeling and other students, with remarkable results.

Key words mathematical modeling; independent college; curriculum reform; practical ability

数学建模课程是20世纪80年代初在我国理工科大学开设的一门重要的数学课程。由于数学建模过程几乎模拟了科学研究的全过程,因而对于培养大学生的科研能力与创新意识和应用数学能力具有特殊的作用。而数学建模的多媒体教学,作为一种现代化的教学手段,具有形象直观、信息量大、交互性强等优点,对于发挥学生的主体作用、促进学生主动学习和培养学生创新能力也非常有益。这些能力也正是我们大学数学素质教育所要努力追求的。

目前国内关于数学建模课程改革的研究论文虽然比较多,也有一定的成果,当时均处于探索阶段,并且从目前数学建模课程教学改革的相关文献可以看到,大部分这方面的研究都集中体现普通高校和研究型高校或者数学建模课程的改革方案和与能力培养方面的关系,然而,尽管不少普通大学和研究型大学都在大胆尝试建模课程体系改革,但针对独立学院实际的数学建模教学改革基本空白,对数学建模课程的具体化改革对象和成果展现等方面的研究更是少见。

云南师范大学文理学院建模课程开展时间较短,从内容到体系均有待完善,所以本文就云南师范大学文理学院的实际探讨数学建模课程的改革及其成效,从而达到促进建模的教学工作,提高教学质量,同时提高自身的素质水平。

1 在独立学院开设数学建模课程的意义

云南师范大学文理学院自办学以来,针对学生的缺点和不足,以新的视角,欣赏学生的特点,梳理学生的优势,客观评价学生,掌握学生的优势、优项,树立教学信心,以积极的态度开展教学工作。培养学生处理相关信息和大量数据的能力,在数学建模过程中,我们引导学生针对所研究问题进行收集、加工,处理和应用信息的能力。学会提炼有用信息,并恰当地运用信息,并学习使用计算机和相应的数学软件。

在建模过程中我们要求学生充分发挥想象力和动手能力,采用类比的方法把表面上完全不同的实际问题,用相似的数学模型去描述解决他们,逐步达到触类旁通的效果。

另外,因为数学建模课程主要涉及的都是现实生活中的实际问题,通过数学建模课程的学习和数学建模竞赛的参与,可以极好地锻炼学生的论文写作能力和创新能力,同时提升学生的参与意识,为以后的学习和工作打下良好的基础。所以在独立学院开设数学建模课程具有重要的意义。

2 云南师范大学文理学院数学建模课程的特点和存在的问题

2.1 云南师范大学文理学院数学建模课程的特点

(1)先修课程和应用课程较多。数学建模课程需要众多的先修基础数学课程和数学软件课程,如数学分析、运筹学、微分方程、概率论与数理统计、图论、计算方法、计算数学、解析几何,MATLAB,Mathematics,lingo等,我院信息工程学院在开设数学建模课程的前期或者同时开设上述相关课程,因为需要具备扎实的专业功底,才可能较好地学习数学建模课程。

(2)教学方式灵活多变。各大高校数学建模课程是基本是案例式教学,每个章节以例子来说明,如商人过河问题,交通流问题,减肥问题,旅游地的选择问题等等,均是和实际联系较为紧密的身边的问题,激发学生的学习兴趣。但是也有一些常见的建模方法可以类比推广,如层次分析法,灰色关联度分析法,时间序列法,排队论等,我们都是有针对性地选取教学内容以适应学生现有的知识结构和接受能力。教学方法上我们采用讲授法、探讨法、历年真题论文案例法(包括学生平时作业点评)等。

(3)教学设备手段先进。建模课程需要处理大量的数据,我院配备了先进的投影多媒体教室,并且开设了与建模相关的Matlab,Mathematica等数学软件。

(4)实用性强。数学建模课程的案例基本都来自实际问题,如人口、天气、干旱等的预测模型,优化模型,决策模型,控制模型等。这些模型的引入,让学生更加深刻地领会数学建模课程的实用性。

(5)课程较难学。数学建模课程涉及的领域广,知识面大。通的(交通流问题),医疗领域(看病排队问题)等,采用的各领域的知识较多,很多时候都是现学现用,需要很高的领会能力和接受能力,这对学生和教师要求都比较高。

2.2 云南师范大学文理学院数学建模课程存在的问题

本文作者从2011年开始讲授数学专业的数学建模课程,数学建模作为数学专业的专业基础课程,在教学过程中发现数学建模课程存在的问题。

(1)教材涉及面太广,如姜启源的《数学模型》教材是我国自开设建模课程以来比较权威的一本建模教材,很多高校都在使用,但是从初等模型、简单的优化模型、线性规划模型、微分方程模型到马氏链模型等共13章,而课程安排只有周4课时,教学时间上较为紧张;另外整本教材基本都是案例,内容多且涉及的数学建模方法很少,学生看着一本厚厚的教材,心里难免畏惧,而实际上并不能完全讲授;对于三本独立院校的学生来说,专业基础不是很扎实,教材一些内容较深,学习起来较为吃力。

(2)课堂教学基本以教师为中心,教师采用纯讲授的教学方法,学生很少参与,因而缺乏学习数学建模的兴趣与积极性,学生也怕学。

基于上述问题的存在,影响学生学习数学建模课程的积极性,并且我们要参与各类建模赛事,如果不及时进行教学改革,势必影响教学和学习效果,在建模竞赛中也难取得较好的成绩,虽然关于建模课程改革的课题和论文较多,但是紧扣我院实际的还基本空白,不利于应用型人才的培养,所以有必要对现有的数学建模课教学模式进行改革。

3 对云南师范大学文理学院数学建模课程改革尝试的思路

本文作者从2011年开始教授数学建模课程开始,就在实践中开始摸索适合云南师范大学文理学院的数学建模课程改革思路,经过几年的实际教学和竞赛指导,主要收获如下:

(1)主体教材辅助方法、软件教材进行教学。目前作者使用的姜启源编写的《数学模型》对于独立学院的学生来说这本教材内容太难、太多了。作者近年来除讲解教材的基本模型外,尝试对教材进行补充、重组和开发,具体方式有根据历年的全国建模竞赛的题目类型,有倾向性地进行教学安排,并插入历年建模真题和常用方法进行课堂讲授,同时插入一些实际问题让学生进行建模论文的写作,根据我院学生的数学基础和竞赛的实际(对历年的真题出现的题型和用到的方法出现的频率)对章节进行取舍。

(2)数学建模课程教学方法改革。由于数学建模课程要进行实战演练,在学期配备相应的建模大作业习题,如手机购买问题,地方人口问题,水资源短缺问题,气候干旱问题,网吧数量萎缩等实际问题,要求学生在指定的时间内进行数据收集,整理,分析处理并以论文形式展现研究成果,同时安排论文模拟答辩,锻炼学生的解决实际问题的能力。同时学院也积极聘请省级建模专家进行专题讲座,提高大家学习的积极性。

(3)数学建模课程教学竞赛团队。我院近年来连续积极组织学生参加各类官方、民间数学建模竞赛赛事。我院专门组建立了一支建模指导教师团队,除了学期必修外,在全国建模竞赛前的假期还专门组织学生进行赛前培训,教师负责制分专题讲授离散模型、连续模型、优化模型、微分模型、概率模型、统计回归模型和软件讲授、论文写作等,突出体现教师的专长,提高了课堂教学效率,增强了学生学习的积极性。

(4)开设与数学建模课程相关的软件课程。为了让学生更好地参与到数学建模中来,我们从大学一年级就有针对可开设数学软件和建模讲座。开设Mathematic,MATLAB,Lingo等软件选修课,进行数学的应用与建模能力的培养,提高学生数学建模能力,在运筹学等课程中,有意识地让学生进行作业的排版练习,如WORD,EXCEL等常用排版计算软件。

(5)通过积累建立数学建模课程学习资源。如本校学生历年的较优秀的参赛论文,平时作业

教师教案、课件等,数学建模优秀论文等学习环境和信息交互空间。另外,给学生身边实际的问题,如云南水资源短缺问题,干旱气候预测问题,地区人口预测问题,网吧问题等进行建模练习,让学生把数学建模课程与实际应用结合起来。

(6)课程考核形式多样化。本文作者通过课堂考勤,课堂回答问题,课堂讨论,平时作业,期末大作业,作业课堂答辩等多种方式结合的方法进行课程考核。根据问题的大小,由学生独立或组队完成实际问题,若完成得好在原有成绩的基础上获得“平时成绩加分” ,给出最后考核的分数,提高学生学习数学建模课程的积极性,从而提高学生的建模能力。

(7)积极组织学生参加全国大学生数学建模竞赛和各类网络建模赛事。截至目前为止,我们已经连续五年组织学生参加全国大学生数学建模竞赛,连续两年组织学生参加“认证杯”数学中国数学建模竞赛,成绩优良。并且由信息工程学院定期举办建模和软件讲座参与各类数学建模比赛,熟悉比赛流程,了解论文撰写过程,为每年九月的全国数学建模做准备。

4 建模课程改革初步成效体现

我校作为独立学院从2010年开始尝试开设数学建模课程,推动大学数学素质教育方面,进行了一些探索和实践,并同年开始组织学生参加全国数学建模竞赛和网络建模竞赛,成效显著。

首先,从竞赛获奖来看,2010年全国大学生数学建模竞赛中,4个参赛队分别荣获1个省级一等奖,占总奖项的25%;2个省级二等奖,占总奖项的50%;1个省级三等奖,占总奖项的25%,获奖率100%;

2011年全国大学生数学建模竞赛中,4个参赛队分别荣获1个省级一等奖,占总奖项的25%;2个省级二等奖,占总奖项的50%;1个省级三等奖,占总奖项的25%,获奖率100%;

由于从2012年开始,数学建模竞赛组委会对建模奖项做了限制调整,获奖比例仅为原来的50%,所以2012年全国数学建模竞赛指导的参赛队教练组15个参赛队其中荣获2个省级一等奖,1个省级二等奖,9个省级三等奖,获奖率为80%,其中省级一等奖占总奖项的16.7%,省级二等奖占总奖项的8.33%,省级三等奖占总奖项的75%。

2013年“认证杯”数学中国数学建模网络挑战赛2个队参赛,第一阶段两个参赛队均获云南最好成绩全国二等奖,第二阶段一个队荣获云南省唯一个全国一等奖,取得全球建模能力高级认证;另一个参赛队荣获全国三等奖,取得全球建模能力基础认证,获奖率100%。

2013年全国数学建模竞赛,26个参赛队参赛,其中荣获1个国家二等奖,2个省级一等奖,3个省级二等奖,4个省级三等奖的优异成绩,奖项水平首次冲入国家奖项,建模水平大幅度提高,其中全国二等奖占总奖项的10%,省级一等奖占总奖项的20%,省级二等奖占总奖项的30%,省级三等奖占总奖项的40%。

2014年全国数学建模竞赛,22个参赛队参赛,其中荣获2个国家二等奖,2个省级一等奖,4个省级二等奖,4个省级三等奖的优异成绩,奖项水平较上年建模水平大幅度提高,其中全国二等奖占总奖项的16.7%,省级一等奖占总奖项的16.7%,省级二等奖占总奖项的33.3%,省级三等奖占总奖项的33.3%。

可以看到从开设数学建模课程以来,我校的数学建模水平到目前稳步提升,很好地锻炼了学生的创新能力和动手能力,同时增强了学生学习的自信心和积极性,成效显著。其次,从综合能力来看,通过建模课程的改革,学生的应变能力和思维能力都获得了很大的提升。

参考文献

[1] 段璐灵.数学建模课程教学改革初探教育与职业,2013(5).

[2] 常青.数学建模教学的实践与思考.http://.cn/gzsxb/jszx/jxyj/201211/t20121113_1143732.htm.2014/06/13.

[3] 姜启源,谢金星,叶俊.数学模型(第三版)[M].北京:高等教育出版社,2003.

[4] 朱道元.从数学建模看新世纪的数学教改[D]新世纪数学学科发展与教学改革研讨会论文集.东南大学数学系,2000.

[5] 杨霞,倪科社,王学锋.积极开展数学实践教学活动培养学生创新意识与实践能力[J].大学数学,2010(A01).

[6] 张银龙,刘敏.创新人才的培养与数学建模意识的形成[J].长春金融高等专科学校学报,2008(2).

第5篇:常用的数学建模方法范文

一、数学建模与数学建模意识

所谓数学模型,是指对于现实世界的某一特定研究对象,为了某个特定的目的,在做了一些必要的简化假设,运用适当的数学工具,并通过数学语言表述出来的一个数学结构,数学中的各种基本概念,都以各自相应的现实原型作为背景而抽象出来的数学概念。各种数学公式、方程式、定理、理论体系等等,都是一些具体的数学模型。举个简单的例子,二次函数就是一个数学模型,很多数学问题甚至实际问题都可以转化为二次函数来解决。而通过对问题数学化,模型构建,求解检验使问题获得解决的方法称之为数学模型方法。我们的数学教学说到底实际上就是教给学生前人给我们构建的一个个数学模型和怎样构建模型的思想方法,以使学生能运用数学模型解决数学问题和实际问题。

由此,我们可以看到,培养学生运用数学建模解决实际问题的能力关键是把实际问题抽象为数学问题,必须首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。

二、培养数学建模意识的基本途径。

1、必须从数学教材、教学本身结合高考导向来培养学生的数学建模意识,提高数学思维能力。虽然数学建模的目的是为了解决实际问题,但对于中学生来说,进行数学建模教学的主要目的并不是要他们去解决生产、生活中的实际问题,而是要培养他们的数学应用意识,掌握数学建模的方法,提高数学思维能力。首先我认为可以利用现行的数学教材,向学生介绍一些常用的、典型的基本数学模型,如函数模型、方程模型、不等式模型、数列模型、概率模型、几何模型、几何曲线模型等。可通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程。

2、应尽可能地注意与其它相关学科的关系。现代科学技术的发展,使数学广泛的渗透到了各个学科,促进了各学科的数学化趋势。

在建模教学中应重视选用数学与物理、化学、生物、美学等学科知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、优化、测量等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。我们在教学中注意数学与其它学科的呼应,不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的重要途径。

3 、把构建数学建模意识与培养学生创造性思维过程统一起来。培养创造性思维能力,主要应培养学生灵活运用基本理论解决实际问题的能力。因此在数学教学中培养学生的建模意识实质上是培养、发展学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动,它既具有一定的理论性又具有较大的实践性,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立,自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力,直觉思维、猜测、转换、构造等能力。而这些数学能力正是创造性思维所具有的最基本的特征。

通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。

三、 把构建数学建模意识与培养学生创造性思维过程统一起来。

在诸多的思维活动中,创新思维是最高层次的思维活动,是开拓性、创造性人才所必须具备的能力。我认为培养学生创造性思维的过程有三点基本要求。第一,对周围的事物要有积极的态度;第二,要敢于提出问题;第三,善于联想,善于理论联系实际。因此在数学教学中构建学生的建模意识实质上是培养学生的创造性思维能力,因为建模活动本身就是一项创造性的思维活动。它既具有一定的理论性又具有较大的实践性;既要求思维的数量,还要求思维的深刻性和灵活性,而且在建模活动过程中,能培养学生独立,自觉地运用所给问题的条件,寻求解决问题的最佳方法和途径,可以培养学生的想象能力,直觉思维、猜测、转换、构造等能力。而这些数学能力正是创造性思维所具有的最基本的特征。

第6篇:常用的数学建模方法范文

关键词:运筹学;数学建模;教学;案例

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2012)08-0106-03

运筹学应用分析、试验、量化的方法,对经济管理系统中人、财、物等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。该课程主要培养学生在掌握数学优化理论的基础上,具备建立数学模型和优化计算的能力。本文提出一种新的教学改革思路,将运筹学和数学建模两门课程合并为一门课程,即开设大容量交叉课程《运筹学与数学建模》来取代《运筹学》和《数学建模》两门课程,采用案例教学和传统教学相结合的教学方法,数学建模和优化算法理论并重的教学模式。这样既可以避免出现极端教学和随意选取教学内容的现象,又可以将新颖的教学方法与传统方法相结合,按照分析问题、数学建模、优化算法理论分析及其方案制定、实施等解决实际问题步骤展开教学。下面就该课程开设的必要性、意义、可行性、注意事项及其存在问题等方面进行分析。

一、开设《运筹学与数学建模》课程的必要性

1.一般院校的运筹学课程的教学课时大约为64或56(包含试验教学),所以教学中不能囊括运筹学的各个分支。一方面,由于课时量不足,教师选取教学内容时容易出现随意性和盲目性;另一方面,教学中为强化运筹学的应用,消弱理论教学,从而导致学生对知识的理解不透彻,在实际应用中心有余而力不足。

2.运筹学解决实际问题的步骤是:(1)提出和形成问题;(2)建立数学模型;(3)模型求解;(4)解的检验;(5)解的控制;(6)解的实施。大部分教学只涉及步骤(3),即建立简单数学模型,详细介绍运筹学的算法理论,与利用运筹学解决实际问题的相差甚远。因此,学生仍然不会应用运筹学解决实际问题,从而导致学生认为运筹学无用。

3.数学建模课程包含大量的运筹学模型;运筹学在解决实际问题的环节中包含建立数学模型步骤。目前两门课程分开教学,部分内容重复教学,浪费教学课时。

二、开设《运筹学与数学建模》课程的意义

1.激发学生的学习动机,培养学习兴趣。该课程包含数学建模和运筹学两门课程的内容,内容容量大,教学课时丰富,教学过程中能够以生产生活中的实际问题为案例,分析并完整解决这些问题,创造实际价值,使学生认识到该课程不但对未来的工作很重要,而且还有可以利用运筹学知识为企业或个人创造价值,改变运筹学“无用论”的观念。从而激发学生的学习动机,产生浓厚的学习兴趣。

2.合理处理教学内容。运筹学与数学建模的课时量相对充足,能够安排更多的内容,能够系统、完整地介绍相关知识,在一定程度上避免了运筹学内容安排的随意性和盲目性。

3.促进教学方法改革。运筹学与数学建模的教学不再是简单的数学建模和理论证明,教学内容丰富、信息量大,传统的一支笔一本教案一块黑板的模式不再适用,需寻找新的教学方法,促进了多种教学方法的融合。

4.培养学生综合能力。实际案例源于社会、经济或生产领域,需要用到多方面的知识,但学生不可能掌握很多专业知识。因而,在解决实际案例的过程中,需要查阅大量的相关文献资料,并针对性阅读和消化。而且,实际案例数据量大,需要运用计算机编程实现。因此,通过该课程的学习,可以提高学生多学科知识的综合运用能力和运用计算机解决实际问题的能力。

5.改变教学考核方式。教学改革后,教学内容已延伸到运用优化知识解决实际案例的整个过程。教学过程中既有对实际案例分析、建模,又有算法介绍、求结果的检验及其最终方案的实施。因而,传统的单一闭卷考试改为笔试和课后论文相结合的方式。

三、开设该课程的可行性

1.运筹学和数学建模互补性、递进性使得开设该课程在理论上可行。数学建模是利用数学思想去分析实际问题,建立数学模型;运筹学是利用定量方法解决实际问题,为决策者提供决策依据。由此可见,建立数学模型为运用运筹学解决实际问题的重要步骤。所以,运筹学可以认为是数学建模的进一步学习。同时,运筹学模型为数学建模课程介绍的模型中的一部分,并且运筹学处理实际问题的方法为数学建模提供了专业工具。因此,运筹学与数学建模在内容上是互补的。由此可知,开设该课程在理论上是可行的。

2.计算机的发展使得开设该课程在操作上可行。随着计算机的发展,能很快完成大数据量的计算,实际案例的数据分析、数学建模及其求解能快速实现,从而使得该课程的教学工作能顺利开展。

3.大学生的知识储备使得开设该课程在基础上可行。学习该课程的学生是高年级学生,通过公共基础课和专业基础课的系统学习,分析问题、解决问题的能力得到进一步提高。同时,运筹学和数学建模所需基础知识类似,学习该课程所需的线性代数、概率论与数理统计、高等数学及微分方程等课程也已经学习,运用运筹学与数学建模知识解决实际案例所需的基础知识已经具备。因此,开设该课程是可行的。

第7篇:常用的数学建模方法范文

关键词: 高中数学 建模思想 建模能力

在高中数学教学中,如果能给学生渗透一些诸如函数、不等式、数列模型等基本模型,对提高学生的数学应用意识,培养他们将数学理论知识和现实生活相联系,激起他们学习数学的动力,都大有裨益。在实际课堂教学中,我们应不拘泥于教材,尽可能通过形式多样的活动增强学生的数学应用意识,在教学设计上多费心思,设计开放性的问题情境,引领学生感受实际问题数学化的过程,让学生体验数学应用的成功和数学建模的乐趣。

一、渗透建模思想,激发学生的学习兴趣

在平常的学习和生活中,就蕴含着很多数学问题,如果我们能注意捕捉,将此作为课堂上数学建模的例子,将数学知识拓展延伸到生活应用中,学生就更容易产生兴趣,也乐于探究。比如,银行存款贷款的利率问题、商场促销折扣问题、彩票中奖概率问题等,都与学生有着这样那样的联系。在授课过程中适当巧妙地引入数学建模,让学生体会到数学知识在实际生活中的应用,提高学生学习数学的兴趣。

例如,在学习“数列”这一章内容时,我给学生举了一个教育基金的实例:父母从孩子出生那年开始,每年在孩子生日时都会存一笔钱,作为他以后读大学的费用,假设按现在的收费标准来看,四年大学每年需要10000元费用,四年就是四万元。而如果大学所需费用以每年10%的速度增加,而银行的现行利率恒定为4%,如果是18岁上大学,那么父母每年存多少钱最划算呢?因为这个问题涉及学生的实际生活,他们参与的积极性就很高,课堂气氛也活跃起来。如果按照传统方式计算,则题目运算量非常大。这时,我顺势引导学生利用数学建模思想将此问题转化为数列问题,以数列规律去计算。这样,通过精选贴近学生生活的实例,提供给学生直观、感性的材料,学生学习的兴趣和欲望便被充分调动起来,以最佳的切入点将数学模型引入教学过程中,逐步培养学生的数学建模思想。

二、渗透建模思想,提高学生的数学能力

在生活中有很多类似于求解效率最高问题、用料最省问题等优化问题的实例,可以利用导数建模求解,提高学生的数学能力。

例如:生活中我们经常用海报去做一些宣传,现请你设计一张竖向张贴的长方形海报,具体要求:版心面积是128dm,上、下两边留出2dm,左、右两边留出1dm。应如何选择海报的尺寸,以使周边区域最小?

解析:如果假设版心高为x,则宽为dm,周围区域空白面积便为:S(x)=(x+4)(+2)-128=2x++8,(x>0)求导数,得:

所以版心的宽为:

当x∈(0,16)时,S′(x)<0;当x∈(16,+∞),S′(x)>0。

因此,x= 16是函数S(x)的最小值,即最小值点。得出结论:当版心高为16dm,宽为8dm时,能使四周空白面积最小。

这样的教学注重学生将实际问题转化为数学模型的能力。不仅让学生打下坚实的数学理论基础,而且培养了学生思维的灵活性和创造性,使学生学会解决实际问题,发现捷径,发现事物之间的关联性,构建合理的数学模型,提高数学解题速度,化繁为简,开发学生的智力。

三、渗透建模思想,培养学生的应用能力

通过渗透数学建模思想,逐步培养学生数学应用意识,使学生学会数学建模的方法,为他们今后解决学习、工作中遇到的实际问题奠定基础。比如教给学生统筹建模方法,就是统筹安排时间和工序的方法,这种方法能解决生活和生产的过程中许多安排时间和工序的问题,并且基本原理非常简单,所以应用非常广泛。

例如:现在我们从开发商手里买新房时大都是毛坯房,在入住之前需要室内装修,但装修的工序多而复杂,具体工序和所需时间见下表,你能帮助家长合理地安排装修队的工序吗?

模型假设:根据工序时间和顺序,先绘制出工序流线图如下,然后根据流程图确定具体时间计划表。

这样将数学建模活动与生活中的具体实例相结合,培养学生的建模意识,注重数学建模思想的渗透,使学生养成应用数学知识,方法,观察,分析和解决实际问题的习惯和意识。

总的来说,每一个数学知识、定理的形成都是一个建模的过程,学习数学其实就是学习建模的过程。新课改倡导让学生经历知识的发现和形成过程,真正培养其应用能力。所以教师在教学过程中要创设丰富的问题情境,在问题情境中抽象出数学知识定理,让学生感受数学建模的过程。坚持以学生为主体,发挥其主观能动性,以提高学生的创新能力为出发点,逐渐渗透符合实际的建模教学,为高中数学课改开创一条新路,也将为培养更多更好的创新型人才提供新的方向。

参考文献:

第8篇:常用的数学建模方法范文

关键词:数值分析;教学实践;数学建模;案例教学

中图分类号:G643文献标识码:A文章编号:1009-3044(2012)01-0228-03

The Practice of Mathematical Modeling in Numerical Analysis Teaching

LI Jun-cheng1, CHEN Guo-hua1, SONG Lai-zhong2

(1. Department of Mathematics, Hunan Institute of Humanities, Science and Technology,Loudi 417000, China; 2. College of Science, Chi? na Three Gorges University, Yichang 443002, China)

Abstract: For the effective implementation of the practice teaching of numerical analysis course, this paper analyzes the necessity of the or? ganic integration of mathematical modeling and numerical analysis course teaching. And then, several selected mathematical modeling cases are introduced according to the different teaching contents in numerical analysis. Through the integration of mathematical modeling in nu? merical analysis teaching, it can not only make students better grasp of the theory and method of numerical analysis, but also can cultivate students’ ability of mathematical modeling.

Key words: numerical analysis; practice teaching; mathematical modeling; case teaching

数值分析作为高等院校应用数学专业、信息与计算科学专业的主要基础课程和很多理工科专业的公共课,主要研究求解数学模型的算法及有关理论,是求解数学模型的不可缺少的途径和手段。在信息科学和计算机技术飞速发展的今天,数值分析课程中所介绍的数值方法更显得极其重要。与其它数学课程的最明显的区别在于,数值分析是一门更注重应用的科学,特别注意在方法的精确性和计算的效率之间的平衡。传统的教学模式只注重讲授数值方法的原理,算法的理论推导占据了整个教学过程的大部分时间,再加上缺乏实践环节的教学,就使得学生不能很好的运用所学的理论去解决实际问题[1]。

既然数值分析主要研究数学模型的求解算法及有关理论,因此将数学建模思想融入到数值分析的教学中是可行的[2]。为有效地实施数值分析课程的实践教学,本文主要介绍了几个针对数值分析不同教学内容的数学建模实践教学案例,这些精选的案例都涉及到相关的数值分析理论和方法。通过对实际问题进行数学模型的建立和求解,将数学建模思想和数值分析教学进行有机的融合,不但可以激发学生的学习积极性和学习兴趣,提高了学习效率,而且可以培养学生运用数值方法求解实际问题的能力。

1数学建模思想与数值分析课程教学有机融合的必要性

数值分析是一门理论抽象但实践性较强的课程,传统的教学模式一般只注重理论证明和公式推导,再加上学时的限制,很少会利用数学软件进行相应的实践性教学,导致学生只掌握了数值分析中的基本方法和原理,而运用数值方法解决实际问题的能力没有得到较好的锻炼。也正因为如此,学生的学习积极性不高,大部分学生不知道或者根本没有想过可以利用所学的数值方法去解决很多实际的问题。因此,针对数值分析课程的特点,采取可行的教学改革是有必要的。许多从事数值分析课程教学的工作者在这一方面作了很多的尝试和探索。例如,文献[3]讲述了任务驱动教学法在数值分析实验课教学中的实施步骤及过程,并给出具体实例。文献[4]以MATLAB作为工作语言和开发环境,开发了一个能有效地辅助数值分析课程教学的软件。

从数值分析课程的特点和教学目标来看,培养学生运用数值方法解决问题的能力是该课程的重点所在[5]。而数学建模主要考察的是学生将实际问题抽象成数学模型,然后利用综合知识求解数学模型的能力。通过对历年来全国大学生数学建模竞赛进行分析发现,许多数学模型的求解都会用到数值分析课程中的各种数值方法。因此,将数学建模思想与数值分析课程教学进行有机的融合是非常必要的。在数值分析课程的各个教学模块中,通过实际的数学建模案例进行数值方法与理论的讲解,让学生觉得所学的知识在实际工程问题中具有很大的应用价值,这样既可以吸引学生的眼球,提高学习效率,同时也可以培养学生运用数值方法解决实际问题的能力。

由表2可知两点三次Hermite插值多项式计算断面面积的误差最小,其次是三次样条插值多项式,误差最大的是三次Lagrange插值多项式,即所得结论与理论是相符的。

通过此案例,不但可以让学生掌握不同插值法的基本原理,而且还可以让学生体会到不同插值法的特征:三次Lagrange插值多项式(三次Newton插值多项式)分段光滑,两点三次Hermite插值多项式整体一阶光滑,而三次样条插值多项式整体二阶光滑。

2.2数据拟合的案例教学实践

所谓数据拟合是指已知某函数的若干离散函数值,通过调整该函数中若干待定系数,使得该函数与已知点的差距最小,最常用的数据拟合方法为最小二乘法。在数据拟合的教学中,可采用下列数学建模问题的求解进行案例教学。

例2:数据拟合教学案例――上海市就业人口预测

已知2000年~2009年上海市每年的就业人口数,如表3所示,现要预测2010年上海市的就业人口数,并与2010年真实的就业人口数(1574.6万人)进行对比分析。

表3上海市就业人口统计(单位:万人)

图2上海市就业人口数拟合图形

通过此案例的教学,不但可以让学生理解最小二乘曲线拟合的基本原理与步骤,而且还可以为学生参加数学建模竞赛时进行数据处理打下基础。

2.3数值微分的案例教学实践

所谓数值微分是指根据函数在一些离散点的函数值,构造一个较为简单的可微函数近似代替该函数,并将简单函数的导数作为该函数在相应点处导数的近似值。常用的数值微分公式有差商公式、两点公式、三点公式等。在数值微分的教学中,可采用下列数学建模问题的求解进行案例教学。

例3数值微分教学案例――人口增长率[7]

已知1950年~2000年每10年中国人口的统计数据如表1所示,试计算这些年份的人口增长率。

表4中国人口统计数(单位:亿人)

3结束语

为有效地实施数值分析课程的实践教学,本文主要介绍了几个针对数值分析不同教学内容的数学建模实践教学案例。通过对实际问题进行数学模型的建立和求解,将数学建模思想融入到数值分析的教学中,不但可以让学生较好的掌握数值分析的有关理论与方法,而且还可以培养学生的数学建模能力,为参加数学建模竞赛时打下一定的基础。

参考文献:

[1]赵景军,吴勃英.关于《数值分析》教学的几点探讨[J].大学数学, 2005, 21(3): 28-30.

[2]郭金,韦程东.在数值分析教学中融入数学建模思想的研究与实践[J].广西师范学院学报(自然科学版), 2008, 25(3): 124-127.

[3]杜廷松.摭谈数值分析实验课程中的任务驱动教学[J].中国电力教育, 2008, 1: 118-120.

[4]王强,金珩. MATLAB环境下的数值分析教学软件开发[J].内蒙古民族大学学报(自然科学版), 2004, 19(2): 176-179.

[5]刘艳伟,司军辉.数值分析课程教学改革若干问题探讨[J].黑龙江教育学院学报, 2010, 29(6): 75-76.

第9篇:常用的数学建模方法范文

(1)学会提出问题和明确探究方向;

(2)体验数学活动的过程;

(3)培养创新精神和应用能力。

其中,创新意识与实践能力是新课标中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。

数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义。

数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是应用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题,自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。但是《新课标》虽然提到了“数学模型”这个概念,但在操作层面上的指导意见并不多。如何理解课标的上述理念?怎样开展高中数学建模活动?

数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

一、在教学中传授学生初步的数学建模知识

中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。

二、培养学生的数学应用意识,增强数学建模意识

在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。

三、在教学中注意联系相关学科加以运用