公务员期刊网 精选范文 人工智能医疗问题范文

人工智能医疗问题精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的人工智能医疗问题主题范文,仅供参考,欢迎阅读并收藏。

人工智能医疗问题

第1篇:人工智能医疗问题范文

在业内人士看来,人工智能不是一项单一的科技产业,而是将其他行业进行融合的工具,例如将机器人和保姆结合产生的“看家机器人”,将导航和汽车结合产生的“车联网”等。在人工智能技术逐步成熟的当下,谁率先在应用上实现突破,谁就有可能在智能时代的竞争中占据优势,“人工智能”有望成为可触摸的新增长点之一。

发展迅猛

身体不舒服,想要打开手机淘宝问问医生,但是怎么样才能从几千个在线等待咨询的医生中间找到最匹配的那一个?

阿里健康已经开发并在手机淘宝上线了健康小蜜――医药健康智能问答引擎。这个类似于智能问答机器人的引擎,可以回答普通用户的一般性医药健康问题,然后根据用户的需求进行选择,将用户自动匹配给相应的医生或者药师。

事上,目前,从医疗健康的监测诊断、智能医疗设备,到教育领域的智能评测、个性化辅导、儿童陪伴,从电商零售领域的仓储物流、智能导购和客服,到应用在智能汽车的自驾技术,都能看到人工智能的身影。

人工智能等技术是助推自动驾驶发展的关键技术。例如,人工智能在帮助汽车解读传感器数据时起决策作用,通过阅读驾驶者的驾驶行为和表情,能及时提醒驾驶员在疲劳驾驶时切换至自动驾驶模式。

“人工智能”一词,通常被认为是1955年8月31日在达特茅斯(美国一所院校)会议上诞生的,61年来,人工智能的研究和实践一直处于不断增长的趋势。当今,人工智能技术的突破带来了席卷全球的技术革命风暴,创造出了一个无比广阔的市场,中国的很多公司在这股大潮中抓住机遇,表现亮眼。有观察者认为,中国的人工智能已成为一张令世界瞩目的闪亮名片。

过去的一年里,长虹、TCL、创维等中国家电企业都纷纷人工智能家电产品,希望借助人工智能打破家电行业的销售难题。

不久前,搜狗公司2016全年财报,搜狗借助人工智能技术实现了较大的业绩增长。未来会把人工智能应用到更多的产品中,让用户表达和获取信息更简单,让人工智能真正惠及人类。

全球人工智能研发的脚步正在加快,中国也不甘示弱。近年来,百度先后成立了大数据实验室、深度学习实验室和硅谷人工智能实验室,并通过架构调整全面发力人工智能。2016年百度世界大会上,“百度大脑”推出,该项目将对语音、图像、自然语言处理和用户画像、无人驾驶等领域进行重点关注和研发。

在腾讯,人工智能研究项目包括WHAT LAB(微信-香港科技大学人工智能联合实验室)、优图实验室、微信模式识别中心、智能计算与搜索实验室等多个部门。

人工智能犹如新的科技革命,为长期低迷的世界经济注入新的活力。去年诸多关键技术突飞猛进,无疑是人工智能发展史上浓墨重彩的一年。诞生半个多世纪以来,它终于走到了从科技研发到行业应用的临界点,蓄势待发。

为发展更新“发动机”

人工智能技术的重大突破必将带来新一轮科技革命和产业革命,对人类生活的方方面面将产生深远的影响。大力发展人工智能技术是中国经济转型升级的重要动力。

众多研究表明,人工智能是对传统行业商业模式、产业链和价值链的全面颠覆,将为全球经济、社会生活的方方面面带来质的变化。

发展人工智能的最大意义在于为现代化发展更换“发动机”。咨询公司埃森哲研究了美国、芬兰、英国等12个发达国家并作出预测,到2035年,人工智能将帮助这些国家的生产率提高40%左右。

对于中国而言,人工智能带来的好处将是多方面的。就经济来说,借助人工智能新技术实现自动化,将极大提高生产率,节省劳动成本;优化行业的现有产品和服务,提升其质量和劳动生产率;通过创造新市场、新就业等,将促进市场更加繁荣,开拓更广阔的市场空间。

而在产业升级方面,中国的传统制造业大而不强的问题亟待克服,人工智能恰恰为制造业转型升级提供了便利和动力,一是这些企业拥有行业海量的数据和大量资金;二是在生产力水平急需提升、传统人口红利逐渐消失的情况下,传统企业有迫切的意愿来改造升级自己的工厂、业务,提高收益,降低企业成本。因此,制造业既是人工智能可以大有作为的领域,也是中国发展人工智能的优势领域。

《全球人工智能发展报告2016》显示,中国人工智能专利申请数累计达到15745项,列世界第二;人工智能领域投资达146笔,列世界第三。

据艾瑞咨询预计,2020年全球人工智能市场规模将达到1190亿元,年复合增速约19.7%;同期中国人工智能市场规模将达91亿元,年复合增速超50%。人工智能发展前景极为广阔。

就制造业而言,“中国制造2025”计划的实现就需要很多人工智能。比如过去在技术上难以克服的问题,就可以通过深度学习,在工程上快速地取得一些新的突破。人工智能技术的发展与应用,对于有效实现“中国制造2025”目标至关重要。

面向未来长远布局

在人工智能这场科技浪潮中,中国与其他国家已经站在了同一起跑线上。针对未来产业竞争,中国政府已在多个方面对人工智能产业做出布局,“人工智能+”的发展,需要面向未来,做出长远布局。

未来5到10年,人工智能将像水和电一样无所不在,可以进入到教育、医疗、金融、交通、智慧城市等几乎所有行业。

目前,在驾驶领域,通过依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,电脑可以在无人主动操作下,自动进行操作;在个人助理领域,通过智能语音识别、自然语言处理和大数据搜索、深度学习神经网络,可以实现人机交互;在金融领域,通过分析、预测、辨别交易数据、价格走势等信息,人工智能可以为客户提供投资理财、股权投资等服务;在电商零售领域,主要是利用大数据分析技术,智能的管理仓储与物流、导购等方面,用以节省仓储物流成本、提高购物效率、简化购物程序。此外,在安防、教育、医疗健康等众多领域,人工智能都有着广泛的用途。

第2篇:人工智能医疗问题范文

【关键词】计算机;人工智能技术;应用

1引言

人工智能技术已经成为目前最受社会关注的新兴科技之一,随着该技术在各行业和领域中的应用不断深入,人们的工作和生活方式不断向智能化方向发展,工作和学习效率都得到了质的飞跃,未来,人工智能技术也必然会获得更加广阔的发展前景。

2人工智能技术概述

人工智能是计算机科学的一个分支,这门学科的主要目标是了解人类智能的本质,并通过将人类智能转移到智能机器中,使智能机器能在不同应用场景下做出类人思维的反应。人工智能是一项综合了多项高新科技的综合性学科,包含5项核心技术,分别是计算机视觉、机器学习、自然语言处理、机器人技术和生物识别技术。其中,机器学习是实现计算机人工智能技术的核心技术,该技术使智能机器在算法复杂度理论、凸分析、统计学等学科的支持下,能自主模拟人类行为。目前已经发表的机器学习策略主要包括模拟人脑的机器学习和采用数学学习方法2种策略。其中模拟人脑的机器学习策略又可细分为符号学习和神经网络学习,符号学习是以认知心理原理为基础,在机器中输入符号数据,用推理过程在图或状态空间中搜索并进行符号的运算,对概念性和规则性知识的学习能力较为突出,如示例学习、记忆学习、演绎学习等;神经网络学习是从微观生理角度对人脑活动进行模拟,利用函数结构模型代替人脑神经网络,以函数结构进行数据运算,并在数据迭代过程中在系数向量空间中搜索,对函数型问题具有较好的学习能力,如拓扑结构学习、修正学习等。采用数学方法的机器学习主要是利用统计机器,建立相应的数学模型,拟定超参数,输入样本数据后根据不同的运算策略对模型进行训练,最后根据训练结果进行结果预测。

3人工智能技术的发展历程

3.1人工智能技术的兴起

虽然新兴技术的兴起获得了广泛的关注,但由于人工智能技术涵盖的学科和技术范围过大,兴起阶段的该技术的理论知识、产品应用、发展应用等均存在明显缺陷。除此之外,计算机技术在当时也并不成熟,当时的计算机编程和计算水平较为落后,很多超前的想法以当时的技术水平来说实现较为困难。在多种因素的影响下,人工智能技术在兴起阶段并未得到快速发展。

3.2人工智能技术的高速发展

人工智能技术这一概念在提出后近20年的时期中其发展始终处于停滞状态,直至20世纪70年代,该领域的专家研发出全新的人工智能专家系统DENDRAL,该系统的诞生带动人工智能技术迈向新的发展阶段,并且在这之后进入高速发展时期。日本始终重视本国科学技术的发展,并且在20世纪80年代提出“科技立国”的政策,此后很长一段时间,日本依托此国策使经济得到迅速恢复和发展。在1982年,日本国内对第五代计算机的研究以失败告终,但此次研究中提出了新的计算机算法和逻辑程序语言Prolog,Prolog在处理自然语言过程中具有比LISP语言更好的应用效果,这一创新进一步促进了人工智能技术的发展。人工智能技术的发展建立在多项先进学科共同发展的基础上,与其他技术相比,人工智能技术在处理数据、整合资源方面具有更大优势。

3.3人工智能技术的发展现状

3.3.1专家系统

专家系统指的是一种智能计算机程序系统,是人工智能技术应用最为广泛也最为重要的领域之一,系统中涵盖大量某领域专家水平的知识与经验,通过应用人类在该领域中的专家级别知识来为用户解决在该领域中遇到的问题。专家系统有效地将人类智能延伸到专业领域中,实现了理论研究向实际应用方向过渡的目标,大幅提高了人类对专业问题的处理效率,并且专家系统依托复杂的算法能对专业问题未来发展的可能性进行更全面的计算,工作效率甚至会比人类专家更高效、更准确。随着对专家系统研究的不断深入,目前很多专家系统都能依据对人类行为的模拟在不同的应用场景中作出智能化的反应和判断,并且能够利用知识库,深入挖掘复杂问题的内在联系。专家系统已经在多个领域中都得到了广泛的应用,帮助企业更客观地摸索市场规律,从而作出正确的生产决策、调度规划、资源配置计划等,大幅提高了企业经营的科学性,使企业能在节省生产成本的同时,获得更好的经济效益。

3.3.2模式识别

模式识别是利用计算机技术将识别对象按一定特征归类为不同类别,目前人工智能技术在模式识别中的主要研究方向包括语音语言信息处理、计算机视觉、脑网络组等,希望通过人工智能技术实现对复杂信息的识别和处理,这一应用能促进多个行业向智能化方向发展,如军事领域、医疗领域等。

3.3.3机器人学

机器人学的主要研究方向是机器人的设计、制造和应用,随着人工智能技术的成熟与应用,机器人的智能水平不断提高,并且在不同行业中的应用已经较为普遍,日常生活中常见的机器人包括扫地机器人、迎宾机器人、快递机器人、早教机器人、无人机等,人们可以利用可移动设备对其进行操作,极大程度地提高了人们生活的智能性和便捷性。

3.3.4机器学习

机器设备并不具备自主思考能力,在不同应用场景下的反应主要是依托计算网络技术和算法对人类思维模式进行模拟,并将人类行为进行充分消化以使自身性能得到优化,能对不同问题进行处理。机器学习是一项涵盖多个学科且复杂程度很高的科学,包含统计学、概率学、算法复杂度理论等,是人工智能的核心技术,也是推动计算机向智能化方向发展的关键技术。

3.3.5人工神经网络

人工神经网络是人工智能技术自进入高速发展时期后广泛研究的重点内容。利用计算机算法将人脑神经元进行简单化、抽象化、模式化,并构建成与人脑神经元网络相似的网络结构。人工神经网络技术的成熟与发展为专家系统、模式识别、机器人学、生物、经济等多个学科的发展提供了技术支持,解决了很多人工智能技术发展中的实际难题。

4人工智能技术的应用

4.1人工智能技术在计算机网络技术中的应用

4.1.1计算机网络安全管理

人工智能技术与计算机网络技术互相依存、互相促进、共同发展,在计算机网络技术的多个方面都有深入的应用。其中,在网络安全管理方面主要有如下应用:①智能防火墙技术。防火墙技术随着计算机的普迅速发展,应用人工智能技术的防火墙技术比传统防火墙技术的性能更加优异。智能防火墙技术具有智能记忆功能,能自动记录并储存历史处理病毒的记录,在后续应用过程中依据记录直接优化计算机匹配环节,减少计算机数据量,提高防火墙的隔离病毒能力。另外,智能防火墙还能结合用户的需求,对用户不需要的弹窗功能、访问权限、有害信息等进行智能化拦截。②计算机入侵检测。防火墙的主要功能就是为计算机设备创造安全的运行环境,保证系统和内部数据不被侵害。计算机入侵检测功能是保障防火墙正常工作的基础功能模块,对提高计算机数据的安全性和可靠性具有直接的影响。应用人工智能技术的入侵检测功能,能对计算机系统进行智能化分析和处理,根据预定算法将处理数据整理成为入侵检测报告,让用户能全面地掌握计算机设备的安全状态。③垃圾邮件智能化处理。该技术依托人工智能技术中的模式识别功能,对接收邮件进行扫描和归类,发现垃圾邮件后直接将其标注为垃圾邮件,为用户发出风险警告,避免用户因误操对计算机系统造成损害。

4.1.2计算机网络管理

人工智能技术的发展和应用促进计算机网络技术向智能化方向发展。在实际应用中,除计算机网络安全管理模块外,还能解决多种网络管理问题。随着计算机技术的普及,网络数据呈爆炸式增长,网络管理工作量和工作难度都达到了空前高度,通过应用人工智能技术,能大幅提高计算机网络管理效率,优化网络管理效能。

4.2人工智能技术在企业管理中的应用

企业是市场经济活动的主要参与主体,是维持市场经济稳定运行和发展的关键要素,在企业生产活动中科学地应用人工智能技术,能有效提高企业的生产能力,促进企业获得更高的经济效益和社会效益。具体应用渠道如机械自动化、智能监控、推荐系统、用户购物行为分析、零售分析、数据提取、文本归类、文章摘要等,从员工工作的细微之处实现工作效率上的提升,进而提升企业整体的运行效率。对工业行业来说,应用机械自动化技术还能有效降低传统工业生产中对人工的依赖性,大幅提高工业企业的生产能力,在行业发展的过程中起到了非常积极的促进作用。

4.3人工智能技术在航空航天技术中的应用

航空航天技术是目前人类最高科技的集合体,涵盖众多学科,如信息技术、卫星技术、生物技术、天文学、生命科学等,对提高国家的国防力量、提高国家的国际地位、促进国家经济增长都具有非常重要的意义。航天器设计是航空航天领域中的关键工作之一,而远程控制又是航空航天技术长久发展以来研究的重点,因我国对该技术的研发起步较晚,我国对航空航天技术的研发存在重重困难,但经过国家和科技工作者的不懈努力,目前我国航空航天技术已处于世界先进水平。将人工智能技术应用于航天远程控制中,利用智能系统对数据进行自动采集、处理和储存,如通过采集航天器的轨道信息,并以此分析航天器的运行状态,根据分析结果制定运行决策,对提高航天器的运行安全性和运行质量都是非常重要的举措,推动国家航空航天事业获得进一步发展。

4.4人工智能技术在医疗领域中的应用

目前,人工智能技术在医疗领域中的应用已经非常广泛,使医护人员的工作内容不断得到优化,提高工作效率,还有效提高了国家医疗水平。具体应用包括以下几项内容:①在电子病历中的应用。传统就医诊断环节,医生都需要以手写方式记录病患病例,并根据病例详细列出治疗方案,工作量大,且效率较低,病例保存便捷性较差。通过应用电子病例,不仅能大幅减少病例记录的工作量,还能在医疗系统中直接勾选治疗所需药品,完成病例及用药的勾选后打印即可,既能大幅提高工作效率,还能将病例在计算机中进行储存,且现阶段病例文件的储存格式不再局限于文字,语音和图像也可被添加到病例中,提高医疗诊断的准确性。②在健康管理中的应用。在现代医疗中应用人工智能技术,对病患的病情进行智能化分析,能使医生对疑难病症的分析更加全面准确,制定针对性更强的医疗方案,提高医疗水平,为改善患者的健康状况提供辅助。

5结语

综上所述,计算机人工智能技术的应用,对社会各行业都产生了不同程度的影响,人们的工作和生活方式得到优化和改变,国家科技水平也不断提升。加强对计算机人工智能技术的研究,推动人工智能技术在各个行业中的应用,让人们能切身感受到科技为生活带来的改变,对促进人类社会的发展具有非常重要的意义。

【参考文献】

【1】辛颖楚.计算机人工智能技术研究进展和应用分析[J].信息与电脑(理论版),2019(9):121-122+125.

【2】陈长印.计算机人工智能技术研究进展和应用分析[J].计算机产品与流通,2019(12):5.

【3】杨坤,顾兢兢.计算机人工智能技术研究进展和应用分析[J].电脑知识与技术,2019,15(33):197-198.

【4】郑骜.浅谈计算机人工智能技术研究进展和应用[J].科学与财富,2019(19):276.

【5】赵智慧.计算机人工智能技术研究的进展及应用[J].信息与电脑(理论版),2019,31(24):94-96.

【6】李子青.计算机人工智能技术的应用与未来发展分析[J].科技经济市场,2019(10):9-11.

【7】罗柱林,韩文超,吕文杰,等.计算机人工智能技术的应用及未来发展探究[J].中国航班,2019(16):90.

【8】李乔凤.计算机人工智能技术的应用与未来发展分析[J].数字技术与应用,2020,38(3):91+93.

【9】肖梅.计算机人工智能技术的应用及未来发展初探[J].缔客世界,2019(1):39.

第3篇:人工智能医疗问题范文

关键词:人工智能;大数据;交叉领域

自二战时期阿兰•图灵破解恩尼格玛密码机带来胜利的曙光之后,人工智能初见苗头,1956年“人工智能”一词首次由约翰•麦卡锡等科学家在达特茅斯研讨会上提出,时至今日,人工智能经历了60多年的浪潮和洗礼,其中有曙光、有冰封,也有期望。纵观当下,人工智能不仅仅是机器智能,在深度学习和推陈出新的算法推动下,其携手云计算、大数据、卷积神经网络等,攻破了自然语言语音处理、图像识别的瓶颈,像潘多拉的盒子一样在认知科学、机器人学、机器学习等领域全面开花,人工智能涵盖了从基础层、技术层到应用层等多个方面,为人类文明带来了翻天覆地的变化[1-2]。人工智能包罗万象,在其基础上衍生的大数据“洪流”对人类社会的方方面面进行冲击,这些数字的价值已然超越了诸如金钱、财产、黄金、石油,甚至是土地。然而,大数据技术也如同普罗米修斯盗得的圣火,一方面给人间带来温暖和光明,另一方面也有可能使自身被奴役甚至使人葬身火海[3]。因此,当我们沉迷于大数据的海洋中时,我们是否有能力像蓝鲸遨游大海一样自由掌舵,是当今大数据和人工智能时代存在的一个重大问题。是“曲径通幽”还是“会当凌绝顶”,我们如何在大数据中“浮游”,而不是一味地扩充,需要理性看待与合理评价大数据对人类生存和发展的影响。

1.人工智能和大数据与“工业革命”

2020年刚刚结束的新一轮美国总统竞选上演了各种“国家闹剧”,为何特朗普在2016年赢得大选,而4年之后却无法连任?时间推移,2016年他胜利的部分原因在于他利用了面临技术威胁的工业行业中工人们的焦虑,同时指责非法移民对美国及美国人资源和就业机会的占用[4]。但在技术浪潮的挑战中,自动化和人工智能才是占用的“根源”。早在18世纪60年代工业革命时期,机器取代人力,规模化工厂生产取代个体手工生产,即引发了人工智能数据的工业大变革。从机械结构、电气控制等模块的设计和改良,车间机器人的智能化已可以代替人完成生产作业[5]。通过智能化机器人可以减轻劳动负担,还可以用于环境检测[6]和实施救援[7]等,保护我们的人身安全。这些“机器人”在为我们减负的同时确实也引发了“失业危机”,这种现象不仅于美国,日本、韩国和德国亦是如此。我们也许可以形象一下,未来20或30年后,工厂中工伤几乎为“零”,完全实施机器人24小时作业,速度惊人,质量统一,而仅有的几个人使用简单的触摸界面对机器下达“命令”。机器的发展已超乎我们对普通机械的认知,21世纪开发的三大机器人中大狗(BigDog)解决了运动和重载运输问题,特别用于军事领域,被誉为“当前世界上最先进适应崎岖地形的机器人”;亚美尼亚(Asimo)从人类如何移动上展现了机器人仿人运动;Cog具有了人类所特有的思考,由不同处理器组成的异种机互联网络形成了“大脑”。特斯拉——其除了是电动汽车和能源公司外,还是自动驾驶汽车行业的领跑者之一。其2016年已销售具有自动驾驶、自动自制和自动停车功能的电动汽车,但出于法律和伦理层面,驾驶员还是要坐在驾驶位上,但他可以做他想做的其他事,发短信、打电话或是休息,而不再是驾驶汽车。我们可以不用担心酒驾,不用因为时间紧张而疲劳驾驶,不必为新手司机而变得脾气暴躁……汽车自动驾驶将让我们行驶得更规则、更安全和更“无聊”。自动驾驶上的智能进化,使得自驾型派送车为商业化服务成为可能,还有自驾型飞行器也在被研发,通用、宝马、谷歌等公司一直在努力开发,通过无人机在您家门口投送包裹将对电子商务世界带来更多创造性方案。“如果你够走运的话,机器可以把你当成宠物。”虽为戏谑之言,却又饱含心酸。工厂变得越来越自动化,但其仍需要人类专家,他们才知道如何监控传感器,知道在发生故障时如何进行修复,机器的运行离不开人的监控,只有人的思考才能有新产品的诞生以及高效的生产流程,我们与机器共存,是从体力中解放,但要从事脑力工作。

2.人工智能和大数据与金融的未来

“数字蝶变”席卷金融行业各个领域[8],金融行业应用大数据、移动互联网、人工智能等先进信息技术,累积了非常多的客户信息。通过大数据的帮助,金融公司在分析数据下寻找更多的金融创新机会。在商业智能(BI)的辅助下,电信业可以对客服描述和定位及需求进行预测;保险业可以在进行风险分析的同时进行损益判断;银行业可以调整市场活动,建立信贷预警机制等等[9]。人工智能和大数据让金融业形成了“以客户为中心”的模式。与客户最密切的金融即是金钱,但是它们已经被“支付宝”和“微信”以及更多的电子支付方式取代,越来越少的人使用现金,数字金钱是否会完全取代物质金钱,我们很可能会发展为无现金社会。那么首先“下岗”的是谁呢?答案毫无疑问:银行。巴克莱银行前首席执行官安东尼•詹金斯曾预测,对于工业化国家,银行员工和其分支机构在未来10年内会消失;花旗全球视角与解决方案的一项研究预测,美国和欧洲的银行将在未来10年裁减约180万员工;甚至2016年2月的一份丹麦银行家协会新闻稿表示,银行抢劫案数量连续第5年下降。就支付领域而言,在这样的时代背景下,如何利用大数据技术对跨越式发展的支付行业进行监管,成为一个值得深入研究的课题[10]。在人工智能下,我们都有被银行自动回复或自会读取特定问题的“员工”惹恼过。沟通技巧和财务知识同样重要,因此,银行业员工的下岗只是在基础性操作上,对于“专业咨询”,需要更多受过高等教育、具有更好沟通能力的员工。目前,我国的多数银行还没建立“开放、共享、融合”的大数据体系,数据整合和部门协调等问题仍是阻碍我国金融机构将数据转化为价值的主要瓶颈。大数据的整合、跨企业的外部大数据合作不可避免地加大客户隐私信息泄露的风险。有效防范信息安全风险成为商业银行大数据应用中急需解决的问题。

3.人工智能和大数据与“专家系统”

电子病历数据、医学影像数据、用药记录等构成了医疗大数据。医疗数据不仅包括大数据的“4V”特点,即规模大(volume)、类型多样(variety)、增长快(velocity)、价值巨大(value),还包括:时序性、隐私性、不完整性和长期保存性。医疗大数据可以提供预警性,当数据发生异常时,通过一定的机制可以发出警告,从而迅速采取相应措施,及时解决问题[11]。成立于1989年的美国胸外科协会(STS)数据库,至今已经涵盖了美国95%的心脏手术,收集了500万条手术记录[12]。其中的先天性心脏手术(CHSD)数据库是STS数据库的重要组成部分,是北美最大的关注儿童先天性心脏畸形的数据库,被认为是医学专业临床结果数据库的金标准。近年来,基于CHSD数据库所进行的数据挖掘不断增加,大型数据库对提高医疗质量所起到的正向作用正在日益凸显。如Welke等基于CHSD数据库探讨小儿心脏外科病例数量和死亡率之间的复杂关系[13];Pasquali等基于CHSD数据库探讨新生儿Blalock—taussig分流术后的死亡率[14];Jacobs等基于CHSD数据库采用多变量分析方法来研究病人术前因素的重要性[15];Dibardino等基于CHSD数据库采用多变量分析的方法来探讨性别和种族对进行先天性心脏手术结果的影响[16]。这些都是在医疗领域采用人工智能提供的医疗诊断,形成了“专家系统”,专家系统可以说是一种最成功的人工智能技术,它能生成全面而有效的结果。借助医疗大数据的平台,“专家系统”可以智能辅助诊疗、影像数据分析与影像智能诊断、合理用药、远程监控、精准医疗、成本与疗效分析、绩效管理、医院控费、医疗质量分析等。不仅是数据平台,“达芬奇机器人”可以看成医疗的高精尖“人工智能”,它能缩短泌尿外科手术以及术后患者恢复时间,促进患者早期下床活动,减低并发症发生率[17]。达芬奇手术机器人在消化系统肿瘤、泌尿系统肿瘤、妇科肿瘤和心胸部肿瘤等手术中均有运用[18]。正是机器人,还有其他人工智能设备,如插入手表或衣服里的传感器、植入我们皮肤下的芯片,以及智能手机中装有各种“专家系统”的远程医疗、预防医学,甚至是器官的3D打印和虚拟现实治疗等的发展,让医学发生相应的转变,并使其逐步突破人类的传统健康概念,那么是否意味着医学将成为只有科学性,毫无直觉性的学科呢?我们携带的内部传感器和外部应用程序将成为我们的医生吗?“你好,医生”被“嘿,Siri”取代吗?这不尽然。医学必然将是向精准化发展,并更具个性化、参与性、预防性和可预测性。医生不再是疾病的修理工,而是改善我们健康状况的顾问。直观当下,我们还是被“看病难”所困扰,我们提出“分级诊疗”,是在拥有家庭医生、全科医生和专科医生的基础上再加上人工智能,以实现预期的健康监测、辅助诊疗和疾病筛查。

4.人工智能和大数据与教育变革

面对各行业和各学科,教育作为传承文明和创新知识的载体,似乎被排除在人工智能之外。就目前而言,人工智能与教育深度融合发展还存在技术基础不稳、教育数据缺陷、算法能力不足等现实问题[19]。我国目前更想要做到的是在教育上消除“信息鸿沟”,促进教育公平、均衡发展。因此,目前可以看到人工智能的教育多在于语言学习软件,通过虚拟技术和人工智能构建一个灵活的、可扩充的虚拟交互平台,设计多维虚拟场景和智能人工角色,实现不同场景下人机角色的交流和学习,提升学习者的口语能力和语感知识[20]。这使得教师不再是唯一的知识传播者,任何互联网搜索引擎都将提供比教师所有的更多信息,并且可以更快捷地获取。肺炎疫情暴发以来,远程网络教育成了主要教学形式,互联网教育形式其实早在小学、中学和大学中运用,虚拟现实技术在教学领域的研究和探索也在全面展开。谷歌已经开发一款VR纸板视图,并将研发的虚拟课程一起推向市场,使现实生活中在生物课上解剖一只青蛙成为一件容易且有趣的事,通过虚拟青蛙,学生们可以去除心脏和其他器官,而不再是象征性的抽象体验。虚拟现实可以像互动游戏一样,比单一的在教室听老师授课带来更多乐趣和体验,学习效果可能更好。我们的学习是知识的积累,那么教育就是我们的库,荀静等结合自身情况对西安工业大学知识库构建进行探究,认为机构知识库在保存知识资产的同时,更重要的是促进学校知识资产的传播利用和管理,提升学校影响力和学术声誉[21]。刘畅等通过对东北大学机构知识库服务的推广研究,了解到开放获取的概念和实践已经受到了广泛的认可,机构知识库不仅可以成为一个知识的存储库,也可以成为各个学科领域的学者进行在线交流的平台,提供个性化的增值服务,既有利于机构知识库的内容建设,也可以进一步促进学术交流和科研合作[22]。知识库,即大数据的有机整合和有序利用,是学术成果、视频文档、实验数据等进行收集、长期保存、传播和提供开放利用的知识资产管理与教育服务[23]。

5.人工智能和大数据应用的共性需求

人工智能和大数据时代,海量的信息来自“五湖四海”,但都通过互联网络汇聚智能终端。这些数据只会进一步增多,不仅仅是云存储,对于信息的进一步挖掘、处理、分析和利用,目标性结果才是我们最想要的信息。全球包括IBM、微软、谷歌和亚马逊等一大批知名企业纷纷掘金大数据挖掘这一市场,大家都在开拓自己大数据分析平台。数据挖掘是大数据时代孕育的产物[24],是我们的共性需求,与传统的统计分析技术相比,数据挖掘有着自身的本质特征,数据挖掘是在没有明确假设的前提下去挖掘信息并发现知识。数据挖掘所得到的信具有先前未知、有效以及可实用三个特征[25]。数据挖掘的出现不是为了替代传统的统计分析技术,相反,它是统计分析方法学的延伸和扩展[26]。随着信息时代的到来,数据挖掘被越来越多地应用于各个领域。

6.人工智能和大数据的展望

大数据与人工智能相辅相成,在人工智能的加持下,海量的大数据输出优化的结果,使人工智能向更为智能的方向进步,大数据与人工智能的结合将在更多领域中击败人类所能够做到的极限。漫长的人类历史发展和进化,信息和人类一直“缠缠绵绵”“你追我藏”,因此,我们应该明白信息就是信息,我们需要的是“维基百科”,而不是仅仅的“维基”。走出狭隘的信息资源,管理和洞察大数据,才是对数据的有用。因为,我们早已告别了数据库放在一间房间的时代。此刻不得不提蓝鲸法则——大数据之道:了解数据懂得利用数据的“浮力”才是关键;“以简约为目标”将数据最终形成洞察及行为;可以通过“数据”“信息”“知识”流程式、组合式、直通车式各种需要的方式来获取[27],在简约中“印象”处理繁杂的大数据,使之“为我所用”。=数据也是一门科学、一项技术,如果实验不能证明其具有可重复性和一般性,那它是没有科学依据,但是,任何一项科技,如果你坚信它必将改变社会和商业,选择从长期展望其发展并持续付出努力,那么就是一种战略选择[29]。人类社会的政治、经济、文化、思维等固有“态势”被重刷,数据思维将为我们带来一个智能全新的世界观。

第4篇:人工智能医疗问题范文

2016年是世界围棋界极不寻常的一年,3月份在“阿尔法围棋”(AlphaGo,一款围棋人工智能程序)与围棋世界冠军、职业九段选手李世石之间展开的一场人机大战中,“阿尔法”的胜出震惊全球。7月份世界职业围棋排名网站公布了最新世界排名:“阿法围棋”以3612分,超越3608分的柯洁成为新的世界第一。

2016年12月29日到2017年1月4日,一个名叫 “Master”的神秘网络围棋手横扫中、韩、日围棋界。它凭借惊人的稳定性一路高唱凯歌,获胜60场,没有败绩。最终神秘的“Master”揭开了庐山真面目,宣布自己就是“阿尔法围棋”。

2017年1月,谷歌Deep Mind公司宣布推出真正2.0版本的“阿尔法围棋”,成为第一个不借助让子,在全尺寸19×19的棋盘上击败职业围棋棋手的电脑围棋程序,其特点是摈弃了人类棋谱,只靠“深度学习”的方式成长起来挑战围棋的极限。

围棋是人类最具智慧的竞技之一,而人工智能(Artificial Intelligence,简称AI)研发是人类最具挑战性的科技探索。人机大战的经典对决将被同时载入围棋史册和科技史册。它的意义已经远远超出围棋本身,人们热衷谈论“阿尔法围棋”更多是出于对AI技术的关切。从诞生到日益成熟,AI理论和技术的应用领域在不断扩大,不知不觉间渗透到人类当代生活的各个方面。AI时代,互联网、金融、医疗、教育、物流、娱乐、传媒等行业都在加速自己智能化的进程。可以想见,未来人工智能带来的科技产品,将会是人类智慧的“容器”。 而与此同时,人类命运和机器智慧的冲突与共存,已经由人机大战开始不断升温。

“人工智能百年研究”项目

2014年秋季,美国斯坦福大学开启了“人工智能百年研究”(AI100)项目。这是一个超大型长期项目,该项目发起人――美国人工智能发展协会会长、前微软研究员埃里克・霍维茨博士表示,“我们的职责是研究人工智能在2030年前对人类社会生活方方面面所产生的影响,尤其是在北美地区”,而“研究的核心是,人类不能丧失对人工智能的控制能力”。 “人机大战”

2016年9月1日,“人工智能百年研究”项目的第一项成果《人工智能与2030年的生活》。这是一份试图定义北美城市在未来10多年间将要面临的可以模拟人类行为的计算机和机器人系统 (即人工智能)问题的报告,涉及交通、家庭/服务、健康医疗、教育、低资源社区、公共安全与防护、就业、娱乐等关注领域,目的是推动相关政策的制定。业内人士认为,工业界和学术界目前正在联手倒逼政府出台人工智能的相关政策,希望可以获得更大力度的资金和法律扶持。

《人工智能与2030年的生活》所列举的关注领域,均面临着人工智能的影响和挑战。例如开发安全可信赖的硬件的困难(交通工具和服务机器人),获得工作信赖的困难(低资源社区和公共安防),对劳动力可能被边缘化的担忧(就业和职业),以及人际交往减少带来的社会副作用(娱乐)等等。

1.交通:自动驾驶的汽车、卡车、无人机投递将改变城市里的工作、购物和休闲娱乐模式,但需要增加可靠性、安全性和用户接受度,并根据新的交通模式改进当前的相关法规和基础设施。

2.家庭/服务机器人:现在进入家庭的扫地机器人或特种机器人能够为家庭和工作场所提供清洁和安保服务,当务之急是技术方面的挑战和机器人成本过高的问题。

3.健康医疗:个人健康监测装备与手术机器具有极大的发展潜力,人工智能软件将最终对某些疾病自动进行诊断和治疗。目前的关键是获取医疗从业者的信任。

4.教育:互动辅导系统在帮助学生进行语言、数学以及其他技能的学习方面已经发挥出作用,自然语言处理的发展将为这一领域的应用带来全新的方式。当务之急是教育资源分配不均的问题,以及教、学双方直接互动的减少会带来哪些消极影响。

5.低资源社区:投资最新技术领域有助于更充分地发挥人工智能的优势,比如避免铅污染和改进食品分配等,重要的是让公众参与进来以增强相互信任。

6.公共安全与防护:利用相机、无人机和软件进行犯罪模式分析,应用人工智能技术来降低人类判断的主观偏见,与此同时在不侵犯个人自由和尊严的情况下增强安全性。目前需注意的是如何保护隐私和避免固有偏见。

7.就业和职业:随着全球经济的快速发展,传统岗位开始被新岗位取而代之,有关人类如何适应这种新变化的相关工作需要立即展开,比如如何妥善处理劳动力下岗以及人工智能对新工作岗位不适应的问题。

8.娱乐:内容创建工具、社交网络和人工智能的结合,将开创全新的媒体内容收集、组织和分发模式。但问题是新的娱乐方式如何在个人价值和社会价值之间取得平衡。

《人工智能与2030年的生活》在回顾发展历程和展望发展趋势时指出,人类正加速在人工智能领域的研究,试图建立一个能与人高效协作的智能系统。其中最重要的是机器学习的成熟,它受到了数字经济崛起的部分影响――数字经济为机器学习提供了大量数据。此外其他影响因素包括云计算资源的崛起,以及消费者对语音识别和导航支持等技术服务的需求。研究人员认为,不管是从基本方法上还是应用领域,包括大规模的机器学习、深度学习、增强学习、机器人、计算机视觉、自然语言处理、协作系统、众包和人类计算、算法游戏理论和计算的社会选择、物联网、神经形态芯片在内的研究趋势,共同促进了人工智能研究的热潮。

这份报告试图严肃地讨论这样一个问题:如何更好地引导人工智能来丰富和服务于人类生活,同时推动和激励这一领域的创新。因为人类目前并不能清晰而完美地预测未来的人工智能技术及其影响,所以一定要对相关政策进行评估。未来几年公众在交通和医疗等领域内应用人工智能的机会日渐增多,因此必须以一种能构建信任和理解的方式将其引入,确保在尊重人权和公民权利,保护隐私和安全,维护广泛而公正的利益分配等方面措施周备。 世界经济论坛说,机器人和人工智能到2020年可以取代510万个工作岗位。

研究人员指出,传统的人工智能范式已被数据驱动型范式成功取代,对于定理证明、基于逻辑的知识表征与推理这些程序的关注度在降低。作为20世纪七八十年代人工智能研究的一根支柱,规划( Planning )强烈依赖于建模假设,难以在实际应用中得到满足;视觉方面基于物理的方法和机器人技术中的传统控制与制图,正让位于通过检测手边任务的动作结果来实现闭环的数据驱动型方法;还有曾颇受欢迎的贝叶斯推理和图形模式,在数据和深度学习的显著成果前也显得相形见绌。在未来15年中,针对人类意识系统开发,按照能够互动的人类特点进行建模和设计人工智能系统成为人们的兴趣点。在考虑社会和经济维度的人工智能时,物联网型的系统变得越来越受欢迎。数据驱动型产品的数量及其市场规模将会扩大。

“为机器人安装‘死亡开关’”

2017年1月,欧洲议会法律事务委员会召开会议,呼吁制定“人类与人工智能/机器人互动的全面规则”。议公布的报告对机器人可能引发的安全风险、道德问题、对人类造成的伤害等情况进行了讨论,探讨是否需要为机器人安装“死亡开关”、研究机器人抢走人类工作的应对措施等等,要求欧盟为民用机器人制订法律框架。专家认为,这或将是首个涉及管制机器人的立法草案,将有利于人类应对机器人革命带来的社会震荡。

会议认为,人工智能和机器人发动的新工业革命可能影响到所有的社会阶层。机器人可能创造无限的繁荣,与此同时将影响人类未来的就业情况。机器人取代人类在许多行业是大势所趋。在德国,每1万个雇员中就有301个是工业机器人。报告要求欧盟委员会对各国民众的就业情况进行调查,重点关注极易被机器人取而代之的职位。如果机器人成为职位“杀手”,欧盟各成员国应考虑为国民提供基本的生活保障。埃里克・希尔根多夫是一名德国法律教授,他非常认同欧洲议会讨论的这项议题。“这不仅在政治上是可取的,从法律角度也是必要的,这样我们才能及时应对机器人革命带来的社会震荡。”他指出,“即使是银行顾问、教师和记者等要求严格的职业,未来也无法在这场科技洪流中幸免。”

会议强调,因为人工智能在几十年内可能超越人类的智力,将对人类控制机器人构成挑战。随着机器人自我意识的崛起,甚至可能威胁人类的生存。近年来,机器人“杀人”的事件时有发生:2015年6月,在德国大众汽车公司,一名工人安装机器人时反被它抓起推向金属板压死;2016年6月,美国一家汽车零件生产商的一名女员工正在修理出现故障的机器人时,它突然启动,将修理女工活活压死。

报告参照美国科幻小说作家艾萨克・阿西莫夫提出的“机器人学三大法则”,将其作为立法框架,对机器人自我意识觉醒后的行为规范做出规定。“机器人学三大法则”包括: 1.机器人不得伤害人,也不得见人受到伤害而袖手旁观。2.机器人应服从人的一切命令,但不得违反第一法则。3.机器人应保护自身的安全,但不得违反第一、第二法则。由于规则无法转化为代码,欧洲议会正在着手建立一个针对机器人和人工智能研发的机构,为设计、生产和操作机器人的人员提供技术、伦理和监管方面的专门知识等。

报告还提出:1.在设计新型机器人时,设计师应该尊重人类的基本人权,事先获得道德研究委员会的批准。2.必须为机器人注册,以便在调查事故时查找涉事的机器人。3.确保机器人安装有“死亡开关”,可以随时被关闭。4.机器人不能对使用者造成“身体或心理伤害”。如果酿成事故,机器人不能逃脱责任。机器人所负担的责任应该与其接收的实际指令及其自主程度相对应:它的学习能力和自主性越高,那么人的责任就较低;倘若它“受教育”的时间越长,教它的“老师”负的责任就越大。报告还指出,机器人的生产商或拥有者将来需要购买保险,来承担机器人可能造成的损失。

人类与机器人的关系将会引起一场涉及私隐、尊严和安全的大讨论,在欧洲议会投票赞成立法之前,各成员国政府将对此做进一步的辩论和修正。

“机器人应当纳税”

英国牛津大学近期一项调查结果显示,今后数十年间,自动化改变生产线的速度将超过20世纪。在经济合作与发展组织(OECD)成员国,57%的工作岗位有被自动化取代的风险。英国中央银行英格兰银行预测,在自动化浪潮中,危在旦夕的英国工作岗位多达1500万个。美国白宫2016年预测,机器人取代时薪低于20美元以下岗位、介于20~40美元岗位和时薪40美元以上岗位的概率分别为83%、31%和4%。

在美国微软公司创始人比尔・盖茨看来,为暂时性减缓自动化蔓延速度,很有必要向企业为雇用机器人员工而征税,税单将是阻止机器人取代人类工作岗位的杀伤性武器。如果机器人将大范围取代人类工作岗位,那它们至少应为此买单。“目前一个人类员工在工厂中创造了5万美元的价值,这个价值会被征税。人类员工需要缴纳各种税,如所得税、社会保障税以及其他税款。如果一个机器人在工厂做与某个工人同样的事情,我们也应按同等水平向它征税。”

盖茨同时认为,尽管一些工作岗位可能被机器人取代,但人们可以在那些所需技能是机器人无法复制的领域里继续工作。世界需要抓住机遇解放劳动力,让人们从事更好的工作,例如关爱老人和帮扶特需群体。在这些领域,人类具有独特的同情心和理解力。

法国社会党总统候选人伯努瓦・阿蒙也呼吁法国对机器人征税,部分税收用于补贴全民基本收入保障。越来越多的政界人士和硅谷富翁支持推出全民基本收入保障,以化解自动化引发的大范围失业。而反对机器人税的人士则持这样的观点:自动化即使在短期也可以借助提高生产率创造新的就业岗位。

“人类需要成为‘半机器人’”

美国特斯拉汽车公司首席执行官伊隆・马斯克在2017年2月13日迪拜举行的 “世界政府峰会”上表示,未来20年,驾驶人员的工作将被人工智能所颠覆,之后全球12%~15%的劳动力将因为人工智能而失业。“从技术角度讲,最迫切的影响会来自自动驾驶汽车。它到来的速度将远快于人们的预期,当然它会为人类提供极大的方便。”

第5篇:人工智能医疗问题范文

政策驱动也是重要动力,科技巨头抢先布局引发示范效应。智能化时代,各国从国家战略层面加紧人工智能布局,美国的大脑研究计划(BRAIN)、欧盟的人脑工程项目(HBP)、日本大脑研究计划(Brain/MINDS),而我国也在“十三五”规划中把脑科学和类脑研究列入国家重大科技项目。企业布局方面,谷歌、Facebook、微软、IBM等均投入巨资,其示范效应是产业进步的先兆;国内百度、阿里、讯飞、360、华为、滴滴等也加紧布局。15年行业投资金额增长76%,投资机构数量增长71%,计算机视觉和自然语言处理占比居前。

产业链格局已现,上游技术成型、下游需求倒逼,计算机视觉产业应用最成熟。产业链初步格局已现,从基础层和底层技术,再到应用技术,最后再到行业应用,除了近年来底层核心技术的突破,下游行业需求倒逼也是人工智能应用技术发展的重要动力,诸如人机互动多元化倒逼自然语义处理、人口老龄化倒逼智能服务机器人、大数据精准营销倒逼推荐引擎及协同过滤,等等。其中计算机视觉应用技术的发展可能是最先发力的,国内不乏世界一流水平公司。

2B应用首先爆发,“人工智能+金融、安防”应用前景广阔。“人工智能+”将代替之前的“互联网+”,在各行业深化应用,安防、金融、大数据安全、无人驾驶等等。生物识别和大数据分析在安防和金融领域的应用则是目前技术最为成熟、产业化进程较快,如智能视频分析、反恐与情报分析、地铁等大流量区域的监控比对;金融领域的远程开户、刷脸支付、金融大数据采集、处理、人工智能自动交易、资产管理等。相关推荐标的:东方网力、佳都科技、川大智胜,建议关注大智慧、远方光电。

逐渐向2C端应用扩展,看好“人工智能+无人驾驶、教育”。人工智能在无人驾驶领域的应用体现在三方面:(1)环境感知环节的图像识别;(2)基于高精度地图和环境大数据的路径规划、复杂环境决策;(3)车车交互、车与环境交互下的车联网,智能交通管理。教育领域应用方面,人机交互重构更互动性的教学;大数据和深度学习的结合使得个性化教学成为现实,这也是在线教育最重要的突破点;此外包括VR在内的多载体应用和多屏互动也是发展趋势。相关推荐标的:四维图新、千方科技、东软集团、科大讯飞、长高集团、新开普。

第6篇:人工智能医疗问题范文

对于机器人是否比人类聪明、未来是否可能替代人类,假如机器人产业完全替代人类生产,人还能做些什么?新领军者年会开幕第一天专家学者们就对这些问题做了深入探讨。

无所不能的机器人?

在新领军者村中有一排无所不能的机器人,在题为行动中的机器人展示区,记者看到了能够适应各种人类生活场景的机器人,包括协助老年人以及残障人士的机器人队友Ballbots、能够进行语言分析,满足人类情感交流需求的机器人伴侣以及各种生产机器人。

在论坛上,各国专家学者描绘了一幅更大的机器人应用场景。除了生活起居,从法庭判决、医疗诊断到上战场打仗,机器人都可以代替人类。“机器人比人更像人类。”一位设计者说道。

但是,这是否意味着机器人在未来将全方面替代人类呢?在论坛现场,《科学美国人》杂志主编MarietteDiChristina做了一个有趣的实验,让现场的观众举手表决,在哪些场景愿意使用机器人,哪些场景愿意使用人类。最后结果显示在需要精确性的领域如医疗手术上,大部分的人愿意使用机器人,而在法律领域,人们则更倾向使用一位人类法官。对于上战场打仗,几乎全场观众都认为应该使用机器人替代人类。

归结原因是因为一般人认为机器人更为精确,而人类相对来说比较感性。这也印证在机器人的发展上,目前工业、制造业等领域已经广泛应用机器人代替人类在完成流水线组装工作。而在家居照料方面虽然有很多研究但一直未得到普及。

卡内基梅隆大学计算机科学学院教授TomMitchell认为,人类能否大面积运用机器人主要需克服的是信任问题,即能否信任机器人帮助人类进行诊断、完成照料。

这种信任将很快建立起来,根据MarketsandMarkets公司的报告,预计全球服务型机器人市场规模在2017年将达到461.8亿美元,行业空间巨大。在未来的4年里,医疗机器会以每年19%的速度增长,2016年全球市场规模估计会增长到119亿美元。

除了服务性行业,随着无人驾驶技术的日渐成熟,交通运输业也很有可能会被人工智能所取代。

解放生产力激发创新潜能

而人工智能日渐成熟的同时,也催生了一系列问题。未来人工智能是否会完全替代人类,而如果完全替代人类,那么如何解决失业率等社会问题?

届时,人类或许会在更擅长的领域得到发展。哥伦比亚大学研究员AndrewMcLaughlin表示现在还有许多尚未探索和有待开发的领域,这些领域需要人类的创造力,机器人取代人类进行日常生产,大部分人就可以把更多的精力投放到创新性的领域研究上。“我对于人工智能取代人类,没有这么悲观。”他笑着说道。

同时,这也能激发更深入的学习研究。TomMitchell说道:“我们一生当中可能做很多工作,教育流程也将要跟随改变,不是用四年去学一个课程而可能是花费40年或者更长时间去学习。”

除此之外,军队作为未来人工智能发展方向之一,也同样存在不少潜在问题。Tom表示,在武器上,机器人可以缩减军队规模,但是同时,这也是允许更多国家有自己军备,这有可能会带来战乱。

第7篇:人工智能医疗问题范文

关键词:人工智能;智能机器人;模糊控制

中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2012)35-8481-02

1 概述

人工智能作为一门学科,其研究目标就是制造智能机器和智能系统,实现智能化社会。具体讲,就是要使计算机具有自主发现规律、解决问题和发明创造的能力,从而大大扩展和延伸人的智能,实现人类社会的全面智能化。

2 人工智能的应用

2.1 人工智能的应用分类

2.1.1模式识别

识别是人和生物的基本信息处理能力之一。事实上,我们几乎无时无刻都在对周围的世界进行着识别。而所谓模式识别,则指的是用计算机进行物体识别。这里的物体一般指文字、符号、图形、图像、语音、声音及传感器信息等形式的实体对象,而并不包括概念、思想、意识等抽象或虚拟对象,后者的识别属于心理、认知及哲学等学科的研究范畴。也就是说,这里所说的模式识别是狭义的模式识别,它是人和生物的感知能力在计算机上的模拟和扩展。经过多年的研究,模式识别已发展成为一个独立的学科,其应用十分广泛,诸如信息、遥感、医学、影像、安全、军事等领域,模式识别已经取得了重要成效,特别是基于模式识别而出现的生物认证、数字水印等新技术正方兴未艾。

2.1.2专家系统

专家系统是应用于某一专门领域,拥有该领域相当数量的专家级知识,能模拟专家的思维,能达到专家级水平,能像专家一样解决困难和复杂的实际问题的计算机(软件)系统。例如,能模拟名医进行辨症施治的诊断医疗系统就是一种专家系统。

专家系统的特点是其善于解决那些不确定性的、非结构化的、没有算法解或虽有算法解但在现有的机器上无法实施的困难问题。有些专家系统还具有“自学习”能力,即不断对自己的知识进行扩充、完善和提炼。这一点是传统系统所无法比拟的。

2.1.3智能机器人

智能机器人是人工智能技术的综合应用和体现,它的研制不仅需要智能技术,而且涉及许多科学技术和领域,如物理、力学、数学、机械、电子、计算机、软件、网络、通信、控制等等。

一般将机器人的发展分为三个阶段。第一阶段的机器人只有“手”,以固定程序工作,不具有外界信息的反馈能力;第二阶段的机器人具有对外界信息的反馈能力,即有了感觉,如力觉、触觉、视觉等;第三阶段,即所谓“智能机器人”阶段,这一阶段的机器人已经具有了自主性,有自行学习、推理、决策、规划等能力。这也正符合Agent的条件,所以,现在把智能机器人也作为一种Agent。

3 人工智能的研究

3.1 人工智能的研究目标和策略

人工智能作为一门学科,其研究目标就是创造智能机器和智能系统,实现智能化社会。具体来讲,就是要使计算机不仅具有脑智能和群智能,还要具有看、听、说、写等感知和交流能力。简言之,就是要使计算机具有自主发现规律、解决问题和发明创造的能力,从而大大扩展和延伸人的智能,实现人类社会的全面智能化。

第8篇:人工智能医疗问题范文

人类将在与机器的共生共存中,开启一个新的时代?

近年来,人工智能已经从科学的神坛走入了经济的大潮,成为了各大公司争相竞逐的新战场。

在中国,BAT纷纷在人工智能领域布局:李彦宏声称“互联网的未来在于人工智能”,百度的百度大脑、无人驾驶汽车初具规模;腾讯发挥微信、QQ的强大优势,在语音识别、图像识别、人脸支付领域发力;阿里巴巴则以阿里云为基础,将人工智能的基础――数据生态系统做大。而国外的谷歌、微软、FACEBOOK、IBM等巨头,也在人工智能领域全力推进,从当年IBM的深蓝到今天的阿尔法狗,仅仅是巨头们在人工智能领域尝试的冰山一角。 什么是人工智能

尽管随着人机大战,人工智能已经成为了一个耳熟能详的热词,但究竟什么是人工智能,却在行业内都难以有一个确定的定义。其实简单地说人工智能就是对人的意识、思维过程的模拟,但之所以人工智能的定义难以确认,关键在于对“智能”的定义难以确认,在人工智能领域经常有一句话说:我们连人的智能是什么都不知道,何谈人工智能?因此目前大家普遍认可的还是由约翰・麦卡锡(John Mccarthy)在1956年的达特矛斯会议(Dartmouth Comference)上提出的:人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。简单地说,如果说机器人是要在完成人类四肢的工作,那么人工智能则是要完成人类大脑的工作。

人工智能为什么这么火

其实人工智能早在60年前就被正式提出,几十年来也一直在飞速发展,但似乎在过去的日子,普通人更多地是通过《终结者》、《我,机器人》等科幻电影了解到人工智能,但为什么今天人工智能突然成为了大家关注的焦点呢?来自微软研究院的芮勇认为,除了这些年所谓算法的演进和提升外,几个物质方面因素的发展也将人工智能的应用成为了可能。首先在于背后计算能力的飞速发展。人工智能背后需要有强大的计算能力的支撑,我们看到是阿尔法狗击败了李世石,其实阿尔法狗只是一个程序,在背后则是强大的超级计算机的运算。据中国最大的超级计算机制造者――浪潮公司的科学家刘军介绍,目前,超级计算机的性能发展迅速,一台超级计算机已经能够达到一百万台电脑的运算能力,因此,在计算能力上将人工智能需要的超级运算成为可能。其次,人工智能需要对海量的数据进行分析,就必须拥有海量的数据,而几十年的互联网的发展,让人类社会中海量数据的产生于收集成为了可能。第三,4G技术的普及,让数据随时随地的链接已经成为常态,也让大量数据的传输成为可能,使用场景的便利化,给人工智能走进日常生活提供了多种可能。如果说人工智能原来是一粒种子,但阳光、温度、湿度等外在条件还未具备,因此一直蛰伏在科学家的研究室里,那么今天,正是人工智能即将破土而出的时刻。

既然人工智能时代已经到来,那么无论是科学层面、经济层面,还是我们生活中的人工智能三大猜想就无可回避地出现在我们的面前,让我们看看中外人工智能专家将给出什么样的答案。 人工智能是否会比人聪明?

在硅谷的美国宇航局艾姆士研究中心,有一所一出生就声名显赫的大学―“奇点大学”。其校长雷・库兹韦尔认为,伴随生物基因、纳米、机器人技术几何级的加速度发展,2045年左右,人工智能将来到一个“奇点”,跨越这个临界点,人工智能将超越人类智慧,人们需要重新审视自己与机器的关系。人类将在与机器的共生共存中,开启一个新的时代。那么,人工智能真的将比人类聪明吗?

对于这个问题,科大讯飞董事长刘庆峰坚决认为,人工智能一定能够超越人类,因为通过互联网万物互联,可以把所有人类的智慧汇聚到后台,通过深度神经网络来展现,所以人工智能到时候不是跟单个人比,它是把所有人的智慧汇聚在后台,来跟单个人比,所以它在绝大部分场合下会表现得比人类更聪明。微软亚洲研究院院长洪小文则认为人工智能在大多数情况下比人类更具有能力,但它仍旧无法与人类的智能相比,因为,人类最可贵的能力在于创造力,而这一点上人工智能无法与人类抗衡。被称为中国人工智能布道者的搜狗创始人王小川指出,原来我们都认为人工智能缺乏创造力,但现在人工智能的发展已经否定了这一点。拿阿尔法狗在人机大战中的表现来看,它的很多招法都是传统围棋理论所难以接受,对人类棋手而言匪夷所思的。因为以前是人类告诉机器方法该怎么做,到阿尔法狗的时候,人类开始不用告诉计算机方法,只告诉人工智能目标:就是要赢,这个方法和答案让它自己找。但即便如此,也不能认为机器能够比人聪明,因为必须要人类为人工智能设立一个目标,它才能够产生后面的学习。

所以对于人工智能而言,可以在很多时候轻松击败人类,但它仍受到两方面的限制,第一条是它只能从人类已有的各种各样的行为和判断的数据中去学习,创造不了人类没有经历过的全新的方向。第二是机器设计不了规则,必须由人来设立规则或者说是算法。 人工智能是否会取代人类?

当机器有了智能,自然而然就会让人们想到他与人类的关系,所以在《终结者》中出现了“审判日之战”,在《黑客帝国》中出现了人与MATRIX(矩阵)的对决,而科幻作家阿西莫夫则防患于未然地提出了“机器人三定律”,那么,人工智能的发展真的会取代人类吗?

小I机器人的创造者袁辉对此持悲观态度,他认为整个目前人类文明是在走向一个下滑的阶段,所以在这种阶段下面,人类最后会被终结,这可能是一个时间的问题。从本质上说,这是人类自己的问题,人类创造了人工智能这样的一个物种,这个物种与人类是和谐共存还是竞争,完全取决于人类的发展。而搜狗董事长王小川则预测当人类面对人工智能的时候,会与人工智能共同进化,人工智能将最终会成为人类的一部分,人工智能既会帮助人类,也会约束人类,二者将是一种合体的关系,最终人会变成新人类,会进化成新的物种。

科大讯飞董事长刘庆峰承认因为人工智能可以在后台汇聚人类的各种智慧,所以在很多的复杂的活动中可以超越人类,但是最终是被人类所管理和控制的。因为机器没法自己设定规则,所以它一定是在人类定的大规则下来为人类服务的。最后人和机器会相互耦合在一起,推动整个世界的进程。

其实,在人类发展的进程当中,每一个新技术的出现总会伴随着争议、误解甚至是担忧或者是恐惧,在十九世纪工业革命的时候,英国的产业工人担心机器抢了自己的工作,于是纷纷去烧机器、毁机器;两百年前,在美国大约70%的人口都是农业人口,而大型机器和生产线出现后,几乎抢夺了所有的农业人口的工作。但现在美国只有1%的农业人口,而那69%的人并没有因此而失去他们的生活或者是工作,反而在机器创造的更多的新领域创造了新的工作,寻找到了新的生活。相比那个时候,人类进化了,因此人类就是在不断认知自我的过程当中,去拥抱越来越美好的新生活。 人机大PK

尽管有预言人工智能将逐渐地接管人类的种种职业,但那毕竟是未来,现在,人工智能在一些常见的领域到底达到了什么样的水准?让我们看看人机在几个职业上的PK。

项目:语音识别

规则:由人工智能和人类速录师同时听一段声音,并将其转化为汉字,看谁的准确率高。

结果:

1、速度:双方速度几乎一样,都是在语音播放的同时完成了录入。

2、准确率:准确率都达到99%以上。

应用场景:目前,语音技术主要应用领域是:导航和音响系统、智能可穿戴设备、制造业、智能家居、电信领域、医疗领域、教育等领域。预计在2017年以前,全球语音识别市场将达到1330亿美元。

视角延伸

1、在嘈杂的环境,多人对话的情况下,人工智能尚缺乏足够的辨别能力。

2、对于方言,人工智能的准确率明显降低,需要专门的数据库予以支撑。

3、人工智能的语音识别已经拓展到多种语言,已经初步达成了实时翻译功能。

4、在未来万物互联时代,语音识别将成为人机对话、打通各个平台的接口。

项目:驾驶

规则:无人驾驶汽车在高峰期于北京东三环行驶,看行驶的平稳度与安全性;无人驾驶汽车在专业赛车场进行18米S弯绕桩跑,就是赛车手考赛车水平的时候,会有这一段考试,从头到尾如果是人驾驶一般要14分钟,用智能机器人可以做到13分钟多一点,就是说比赛车手还少一点时间。

结果:

1、实地无人驾驶顺利完成,放置于车顶的打火机,硬币等物件没有掉落。

2、专业赛车场进行的18米S弯绕桩跑,人驾驶一般要14分钟,人工智能可以做到13分钟。

应用场景:当前,世界大型汽车制造商都在致力研究无人驾驶汽车技术。该技术在减少拥堵和安全隐患等方面大有作为。根据业内预测到2020年,无人驾驶汽车市场将达到6亿美元。

视角延伸

1、人工智能还不能处理很多复杂的情况,在技术上仍然具有很大挑战。

2、无人驾驶的目标第一是解决因为人为的因素造成的安全性;其次能够将人类从驾驶的烦琐中解脱出来。

3、专家预测,未来五年无人驾驶的发展方向将是“增强驾驶”,即汽车同时具有人类驾驶与无人驾驶功能并存,人与车的关系就如同当年人与马的关系一样。

4、无人驾驶设备能否小型化将成为无人驾驶能否走向应用的一大门槛。

项目:图像识别

规则:由人工智能和人类同时识别三张明星在不同化妆、衣物时的图像,看谁能准确地认出;同时识别三种长得相似的普通人的照片,看是否能够辨认出这是否是同一个人。

结果:

第一次辨认结果人工智能胜过了人类。

第二次因为有一张图片面部有头发遮挡,人工智能表示无法识别。

应用场景:目前,图象识别技术主要应用在:导航、遥感图象识别、天气预报、环境检测、通信、军事和公安刑侦、临床诊断和病理研究等领域。

视角延伸

1、使用图像识别技术,在大量摄像头拍摄的画面中无论要找罪犯还是要找失踪的人口,效率将会比人类识别高出很多。

2、跟人脸识别和语音识别相结合起来,将极大地提高对个人身份的辨识度,在金融支付领域具有广阔前景。

3、图像识别将进一步发展成表情识别,可以在第一时间感知人类情绪,并采取相应措施。如在驾驶中如果智能摄像头能够感知司机情绪不稳定,可以提前采取措施,减少事故发生可能性。 观点大碰撞

对于人工智能,过去很多人定义过,它要有比较高的自感知能力、自主决策和控制能力、对安全和意外的自动预警和防范处理能力等,它要能在较少人为干预的条件下完成工作和服务。但要强调的是未来人工智能跟过去不同的地方,未来的人工智能一定是终端跟云端协同创新实现的智能控制与服务的。有了网络以后,人工智能就不仅是靠机器内的软件硬件系统来操纵,还可以在使用终端和云端之间实施交互协同来实现,它的水平和能力会远远超过历史上单部机器的智能行为。其实阿尔法狗也有很多东西是在云端计算,而不在终端。所以这是一个未来的方向。

人工智能技术可应用的领域是非常广泛的,可以说是无处不在。它可以应用在生产制造业,还可以应用在各种服务领域。比如金融服务、医疗服务等都可以用人工智能技术;学习方面,也可以用来提升学习效率;还有农业领域,可以借助人工智能技术判断施什么样的肥料、怎么样防治病虫害等,快到收获季节还可以通过人工智能技术预测预判市场销售,这对农产品的行销也都会有大的帮助。

“中国制造2025”提出创新驱动、质量为先、绿色发展、结构优化、人才为本,智能制造是核心。制造经历过不同的时代,第一次工业革命以后是机械制造时代;第二次工业革命以后是机电结合了起来;后工业阶段,上世纪80年代以后又加了电子、机械电子一体化;而信息网络出现以后,现在和未来的制造是网络智能的时代的网络协同智能制造,制造过程、运行服务过程都将数字化、网络化、智能化,这是制造业发展的方向和技术创新的核心。

邬贺铨:中国在人工智能应用方面走得很快

人工智能研究的起步,一般被认为是在20世纪50年代,那时候中国还没有开始研究。不过,人工智能在前50年里还停留在科学家的圈子里,没有走向应用。这些年中国人工智能的研究跟其他新生领域的研究一样,取得一些好的成果,但是总体上与国外还是有差距的,在一些有影响的文章发表、人工智能原创的技术,包括支撑人工智能的产业等方面我们还有差距。

不过,应该说中国的人工智能在个别领域做的还是很不错的。比如说,科大讯飞在中文的语音识别上是领先的,百度、阿里、腾讯也在关注人工智能,不但自己在培养专家,也从海外引入一些高端人才,努力缩短我们与国外的差距。

中国机器人也做的不错,严格来说,我们机器人是广义的机器人,传统讲的机器人是工业机器人。我们的机器人产品以面向社会消费应用为主,产能产量已经占到世界较大市场。沈阳自动化所和新松机器人等公司从事机器人研究很长时间了,他们在做工业的机器人,也取得了不少的成绩和应用。但是在大型生产线上,目前应用的工业机器人还是以国外产品为主。

中国在无人驾驶车的应用方面跟美国相比也不会差距很远。现在百度的无人驾驶车,按照现在的水平也有望在未来的一两年内应用了。不过,无人驾驶需要很多技术,而现在国产车内的车载电子系统还是进口的,如果说不能在汽车总线上突破,我们的无人驾驶车在核心技术上还是有不少差距。

总体来说,在人工智能的应用上中国走得很快,展望未来不仅会缩小与国际的差距,也会走在前面。中国正处于经济发展方式转变和两化融合的重要阶段,需要大量的生产自动化手段,中国的人工智能的市场非常大。

张潼:人工智能的核心技术就是让机器学习

现在企业界很多研究院,包括阿里、腾讯、滴滴、360等关心的都是机器学习的核心能力。总体来讲,一个是大数据,另外一个是对于大数据处理和加工的能力。把一个原材料变成你真正所需要的系统或者产品,这是它的能力。从机器学习的技术来讲,如何实现规模更大、创新还有实时更新的效果,这一系列的技术能力使得所有公司都非常感兴趣。

总体来讲,数据处理的核心能力就是机器学习能力,还有高性能计算。处理大数据也要有计算平台,最后是一系列应用,包括广告、无人车,包括其他行业的探索。

此外,现在的医疗有各个环节,其中一个环节和互联网紧密相连,当病人患病的时候,去医院之前往往会自己看看是什么毛病,会有自我诊断或者自我询查信息的过程,但是百度搜索信息不太足够,因为只能找到相关网页,并不直接相关。其他的一系列互联网公司也会有这样的平台去帮助查询者对接,像对接医生和对接专业的知识一样。

从我们的角度来讲,实际上可以利用人工智能的能力去做这种系统,这种系统有几个形式,比如说病人会用口语化的形式表达,医生比较专业,病人不知道很多专业名词。如何把口语化和专业知识对接需要设定自然语言的病症,这也是病人希望交流的形式。

从机器智能角度上要有交互、引导以及对话,另外还要把信息综合起来,这样会有更好的理解。如互联网+零售业,百度怎么和零售业相结合,这是研究院思考的问题。如果打通线上线下,就知道这些客户线上的行为和喜好,以帮助线下的商家找新客户。而利用机器学习建模技术把这些人的喜好或者类别分列出来。

如何理解大数据和人工智能的关系,大数据是它的源泉。世界上很多国家很重视收集数据的能力,因此也使得它在下一阶段将有大大提升。此外还有机器学习,AlphaGO、无人机就是例子,它的核心技术就是智能化,下一个十年也将会有更加细致的发展。人工智能会促进一系列的新技术成为可能,这种可能会推出新的产业。

Jim Lawton:机器人需要更加智能化

长时间以来,机器人只能在不变的工作环境下工作。我们需要为机器人定制适合的工作环境,这个安排在一些工厂行得通,但是大部分工厂的工作环境不一定能配合。

我们通过编程让机器人执行一些任务,机器人会按照设定好的程序工作,但这不是智能机器人。更加智能的机器人是这个行业重要的突破和创新。我们现在拥有更优秀的机器人――能够在不完美的环境下工作。操作任务自动化进程不断地在创新。此外,随着机器自主学习及深度学习等人工智能的进步,认知任务的变化也是日新月异。

人机协作将主要在两个方面发生变化。一方面,以往我们需要请专家为机器人编程,然后执行任务。现在则通过演示来培训机器人。在未来,人类员工将“告诉”机器人去做什么,机器人只需要“看”着去学,从人类那里学习,也可以从另一台机器人那里学习。另一方面,我们深信只有人类能自主工作。制造业的新趋势是结合传达实时遥测数据的机器人和能累积结构化和半结构化数据的软件数据平台,然后供人类理解及诠释信息、并且做出明智的决定以提升工作流程,促进持续创新。

因此来说,人类和机器人将并肩工作,共同解决问题,提升工作流程,并能一起处理更多的任务。操作任务和认知技术自动化相结合是制造业创新时代的必然趋势。

SEARI在去年11月成为Rethink Robotics在华首家分销合作伙伴。协作机器人是Rethink Robotics的核心优势,Rethink Robotics通过其智能协作型的机器人Baxter和Sawyer,可完成目前90%传统自动化方案不能完成的工作,从而不断革新制造业的生产方式。

协作机器人和传统的工业机器人有很大的区别。传统机器人对精准定位、速度、精度、刚性等方面有硬性要求,相对而言,易用性、操作灵活性及安全性正是协作机器人的优势,国内很多企业对两者的比较已经有一定的了解。

在过去几个月,我们的销售团队已经走访一百多家企业,向它们推广Rethink Robotics的方案,获得非常好的反响。但协作机器人真正进入中国市场还需要有一个磨合的过程,现在不少国内制造业的工厂都是几年前、甚至十多年前建好的,当时的厂房设计是按照人手操作的思路来设计的,完全没有把机器人的元素考虑在内。

第9篇:人工智能医疗问题范文

2015年12月,微软亚洲研究院首席研究员刘铁岩博士去蒙特利尔参加了NIPS年会(Annual Conference on Neural Information Processing Systems),这是人工智能领域的顶级学术会议。但与会期间,他印象最深的不是同行的专业进展,而是一位科学家告诉台下的与会者,早些年,他的博士生根本找不到工作,今年却被一抢而空。

这也是中国正在发生的故事。从硅谷到北京,人工智能都是热浪滚滚。这个在上世纪50年代和80年代掀起过两次的技术,现在似乎真的到了产业化的临界点。互联网时代的思想家和预言家凯文·凯利宣称,人工智能是下一个20年里颠覆人类社会的技术,它的力量堪比电与互联网。

人工智能(Artificial Intelligence),缩写为AI。它是研究开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。该领域的研究包括机器人(26.660, 0.12, 0.45%)、语音识别、图像识别、自然语言处理和专家系统等。

人工智能快速进入大众视野,源于今年3月谷歌围棋人工智能程序AlphaGo战胜世界冠军李世石。人机围棋对弈只是普及人工智能的一个秀。它的背后是规模千亿级的人工智能产业市场。BBC预测,2020年全球人工智能市场规模将达1190亿元人民币。

目前看,这一数据远比不上2015年中国移动互联网的产业规模。但人工智能的意义不仅于此,人工智能技术的发展,还将带动云服务、大数据分析、移动互联网和物联网产业的升级迭代。它甚至将超越移动互联网,全面改变人类的生活和工作方式。

离人工智能最近的IT互联网公司敏锐嗅到了这一机遇。从2011年开始,包括深度学习算法、计算资源和大数据产业的成熟令人工智能技术实现飞跃,包括微软、IBM、谷歌、Facebook、BAT在内的国内外企业都开始深度布局人工智能,试图把握风口,成为下一个产业变革的巨擘。

已布局人工智能的IT和互联网巨头们,最有资格成为这一轮革命的获益者。但这终究是一个漫长的耐力游戏,除了技术布局,产业布局和战略视野也是决定成败的关键因素,短视者将随时出局。

BAT保守布局

中国的所有行业中,以BAT为代表的互联网行业在人工智能研究和商业化探索方面走得最早,也看得最远。其中,技术起家的百度走在最前端。

2012年10月,百度董事长兼首席执行官李彦宏参加了内部的一个基于深度学习的语音识别产品研究会。当时该产品的主导者余凯回忆,那是李彦宏第一次知道深度学习,他非常吃惊,并给全公司写信,让所有产品经理都要了解人工智能技术的发展。

当年12月,李彦宏开始和余凯讨论成立深度学习研究院的可行性。次年7月,这个研究院成立,李彦宏任院长,余凯为常务副院长。这是中国公司里的第一个人工智能研究院。

李彦宏很快将相关技术投入到搜索的核心业务中。2014年的百度内部统计数据显示,深度学习技术的应用,让百度和竞争对手的Diff(different,内部叫Diff)指标提升了若干倍。

但人工智能的科研,尤其是基础科学研究,是一个冗长寂寞的过程。此后,迫于财务数据和竞争压力,百度的决策者们更加注重眼前的布局和资源。

“到了后期,太长远项目,或是比较创新的项目,百度总部确实不太支持了。百度i站的项目、百度快搜这样的项目没了。”一位不愿具名的前百度人工智能研究岗位人士评价。一位现任百度相关人士对《财经》记者表示,百度前些年确实剔除了不少经过验证没有商业化前景的分支项目,但最近两三年,百度明显加大了在人工智能上的投入,包括无人驾驶汽车等长期项目。

6月8日,在2016百度联盟峰会上,李彦宏将百度无人驾驶汽车称作“一台带轮子的电脑”。他现场播放了百度无人车路测的实况录像,百度无人车已经可以像正常车辆一样加速、并线、超车,他同时表示,三五年之内,无人驾驶一定可以成为现实。

从整体来看,百度仍是BAT三家中首先完成有关人工智能技术体系整合的公司。目前,百度研究院、百度大数据、百度语音和百度图像等技术都已归入人工智能技术体系。李彦宏多次向外界强调,百度未来的发展将严重地依赖人工智能。

IBM研究院一位人工智能专家告诉《财经》记者,百度是被他们列入竞争列表的唯一中国公司。

硅谷尤其关心“百度大脑”的进展。百度大脑是百度在人工智能领域的核心。百度此前的诸多人工智能产品,如无人驾驶、智能搜索等,都是基于百度大脑的能力。

百度高级副总裁、自动驾驶事业部总经理王劲称,百度大脑已具备视、听、说和预测、规划决策以及行动控制的能力。在数据方面,百度有万亿级的网页、移动和行为数据可供分析。在深度学习方面,百度的万亿参数排在世界第一。

2015年,百度的研发投入超过100亿元。占百度2015年总营收663.82亿元的15%。

百度正在计划将百度大脑在金融、汽车、医疗等领域商业化。李彦宏称,人工智能的“井喷式”创新,将推动互联网进入第三幕,并将重构传统产业。比如“人工智能+金融”,可以快速地实现征信升级,实现“秒放”贷款。

阿里巴巴和腾讯的布局则更加克制。或者说,它们更代表中国公司的普遍做法,从业务驱动开始,逐渐加大档位。

阿里从2011年开始布局互联网医疗,投资收购和战略合作的公司数以百计。围绕医院、医保、医药做了大量布局。最新的统计数据显示,全国已经有超过400家大中型医院加入阿里的“未来医院”计划,覆盖全国90%省份。阿里云人工智能首席科学家闵万里博士告诉《财经》记者,阿里在健康医疗领域的布局快慢,取决于阿里在人工智能领域的技术突破。

阿里的设想是,未来,在阿里遍布全国边远山村的医院医疗点里,病患足不出户,只需拍一张CT,通过远程技术来完成专家级的诊疗过程。这种诊疗,依赖的就是基于阿里云的人工智能医疗系统。随着学习数据的不断增加,机器会变得越来越聪明,最终成为一个“永不退休的医学专家”。

多位接受《财经》记者采访的专家评价,阿里这个技术并不复杂,医疗诊断是基于经验的专家型劳动,是机器擅长的经验学习,三年内该技术便可成熟。

闵万里告诉《财经》记者,要实现这个目标,除了技术平台,还需要整个医疗体系的打通,需要政府和社会共同推动设备和资源的开放。一旦打通,聚合在一个人工智能服务平台之上,就将衍生出更多的应用服务场景,从而实现“商业和技术互为驱动”。

阿里是目前中国所有公司里,数据生态最完善、最健全的公司。iPIN创始人兼CEO杨洋认为,阿里的MaxComputer数据通道,是非常健康的数据大动脉,可以将阿里的所有数据资源非常高效地结合在一起。

此外,阿里云也是目前世界上最接近AWS(亚马逊云服务)的云计算平台。数据生态体系是做人工智能的重要基础。因此,在这场有关未来的布局中,阿里云的主导地位清晰。

阿里的人工智能研究分散在其各个业务分支之中,有待整合。闵万里说,阿里希望在算法能力上有所突破,这需要一个集中的技术机构来整合阿里的所有相关技术资源。

腾讯和阿里的情况类似。腾讯在人工智能上的布局,以IM和SNS业务为基础。例如语音识别主要是在微信部门、图片识别主要是在QQ,支付和金融业务方面植入了人脸识别,搜索部门则关注自然语言识别。

其中一些技术已在腾讯内部实现产品化。SNG(社交网络事业群)的优图团队聚焦图象识别领域,推出了黄图识别功能,并为腾讯内部产品如图片优化工具“天天P图”提供技术支持。WXG(微信事业群)则人机互动领域的拓展,也对图像和语音识别进行了原发。WXG推出了智能机器人“小微”,用户可以用自然语言与之沟通,解决此前语音助手智能机械应答的短板。对于未来,工程师希望“小微”成为一种“连接器”——与微信支付串联起来,接入微信公众号以及钱包内的各种生活服务,打造完整的微信内O2O闭环生态体系。

腾讯高级副总裁姚星在接受《财经》记者采访时表示,腾讯越来越重视在人工智能领域的技术开发,这包括两个路径:一是整合腾讯自身的技术资源,形成体系和重点;二是加快对优秀公司的收购和合作步伐。

腾讯参与了多个人工智能项目的早期投资。腾讯投资并购部一直在为公司寻找需要的标的,服务于腾讯的整体战略。腾讯日前与硅谷风投机构Felicis Ventures领头了人工智能创业公司Diffbot 1000万美元的A轮。这家公司通过人工智能技术,让“机器”抓取网页关键内容,并输出软件可以直接识别的结构化数据。

BAT的人工智能技术研发从第一天开始就是商业需求驱动的,他们从业务入手,收购甚至模仿别人的东西,这种做法避免了漫无目的研究和不必要的失败,但也无法保证在下一轮的人工智能平台大战中胜出。

今年,阿里和腾讯均有组建人工智能研究院的想法。姚星对《财经》记者说,很快,腾讯人工智能研究院就会成立。

国际巨头深入无人区

如果说BAT的人工智能布局处于对标和追赶的状态,那么以IBM、微软、谷歌、Facebook为代表的美国巨头公司已经开始深入科技无人区。

这些公司技术和业务各有所长,面向的用户也不同,但它们的目标一致:把人工智能机器做大、做强、再做没。

IBM和微软可能没有谷歌、Facebook看起来那么酷,但在人工智能领域有深厚的技术底蕴,IBM甚至已经开始用人工智能赚钱。

IBM人工智能研究可以追溯到1997年“深蓝”战胜当时的国际象棋世界冠军卡斯帕罗夫。2011年,代表着IBM在认知计算领域最先进技术的Watson在一个电视节目中一战成名,被认为是人工智能历史上的一个里程碑。

今天可以代表IBM在人工智能领域最高技术水平的,是不断进化中的Watson系统,和已经可以量产的人脑模拟芯片SyNAPSE(超大规模神经突触计算机芯片)。

Watson是一台超级计算机,最初由90台IBM的Power 7服务器并行组成。和Google、微软的人工智能相比,它从硬件芯片构架就开始模拟人类神经元,基于IBM的“DeepQA”技术开发。2014年1月初,IBM宣布组建“Watson Group”,旨在进一步开发、商用和增强“Watson”及其他认知技术,此外还投入10亿美元用于其他相关项目。

Watson已经开始为IBM赚钱了。法国农业信贷银行预测,Watson系统创造的收入将在2018年占IBM总收入的12%以上。Watson已经被部署在IBM去年收购的云计算基础设施业务Softlayer上,成为IBM与亚马逊、谷歌、微软等大型科技公司在云计算领域展开竞争的武器。

另一个代表性产品是IBM在2014年的人脑模拟芯片SyNAPSE。该芯片能够模仿人脑的运作模式、低功耗,在认知计算方面要远胜传统计算架构。和其他芯片公司的纸上规划不同,这款芯片已达到量产要求。

IBM将其技术和商业实力总结为“认知计算体系”。IBM大中华区副总裁、战略部总经理郭继军向《财经》记者表示,IBM推动认知计算体系,目标是把IBM在人工智能、大数据、深度学习、模式识别等所有领域里所做的积累应用到各个行业中去,帮助各行各业客户提升效率,解决他们所面临的现实挑战。

微软人工智能技术的研究已超25年。1991年微软成立研究院,最早的五个研究组,研究方向分别是人机交互、自然语言处理和机器学习、语音识别和语音合成、计算机视觉。这些恰恰是今天人工智能的几个最重要的分支。

微软的人工智能研究方向要宽泛很多,微软研究院拥有超过1000位科学家,在包括深度学习的多个领域的技术布局处于世界顶端。

微软最新的深度学习系统在2015年ImageNet计算机视觉识别挑战赛中,将计算机视觉系统错误率降低至3.57%,相比于人眼辨识的5.1%,这是人工智能首次在识别图像的错误率上超越人类水平。这些机器由微软的Azure云服务提供支持。

微软不仅将人工智能技术应用于如Windows、Azure等核心业务中,还构建开放的平台,将多年的技术积累开放给产业界,它的目标是打造一个人工智能生态圈。

它在无人区走得最远,在现实商业世界中隐蔽得最深。

和前辈相比,年轻的谷歌在人工智能领域做的事情更让外界看得懂,也更兴奋。谷歌一方面不知疲倦地做底层人工智能技术的积累,研发更加高级的深度学习算法,增强图形识别和语音识别能力。另一方面亲力亲为布局了包括智能家居、自动驾驶、机器人(2013年收购了8家机器人公司)等领域,前者为后者带来基础技术支撑,后者为前者提供数据和反馈。

值得一提的是,谷歌在无人驾驶汽车领域的技术积累,已经远远超过传统汽车厂商和其他互联网公司。

更加年轻的Facebook,将人工智能视为未来的三大方向之一。Facebook天然拥有全球范围内的海量社交数据,但在基础科学的研究上依然不遗余力。2013年,Facebook在加州成立了Facebook AI Research (FAIR)。卡耐基梅隆大学机器人系博士、Facebook人工智能组研究员田渊栋称,FAIR的研究方向自由宽松,研究所需的计算资源(如GPU)相对丰富,同时也没有近期的产品压力,可以着眼长远做困难和本质的研究。他称,这样的学术氛围在各大公司是极其少见的。

如果说前述几大巨头都是从人工智能技术出发,结合云计算赋予技术更多势能,那么亚马逊的路径正好相反。亚马逊是全球第一大云服务提供商,它的云服务收入超过微软、IBM、谷歌、Salesforce等所有对手的总和。但亚马逊目前的人工智能技术,多数集中在提升购物体验的深度学习领域。

人工智能技术有两大要素:核心技术平台和数据循环。只拥有技术是不够的,需要业务和数据结合,才能打造好的技术。对循环数据的获取,巨头们也都不遗余力。

以最热衷开源的微软为例,去年,微软了“牛津计划”(现更名为“微软认知服务”),这是一个基于微软云平台的智能API(应用程序编程接口),涵盖了五大方向的人工智能技术,包括了计算机视觉、语音、语言、知识、搜索五大类API。去年夏天火爆的How-Old.net,就是借助该平台快速开发出来的一款应用,一共只有20多行代码。

类似的工具包微软还有很多,例如深度学习工具包(CNTK)和微软亚洲研究院主导的微软分布式机器学习工具包(DMTK)等。

这些对于创业公司和中小企业来说相当实用。他们不用从底层技术一点点学,在小集群上或者是云服务上就可以直接调用。

对于巨头来说,算法已经不再是竞争的障碍,数据和用户习惯才是山头。大量的初创企业会采用开源做很多垂直领域的业务,其中包括海量试错和验证,最终也会反馈回开源,而这正是巨头们所期望的。

做B2B生意的IBM对数据的专业度要求更高,无法仅依赖搜索引擎和大量应用的交互来训练Watson系统,因此通过深度合作和并购来获取专业数据。

以医疗领域为例,IBM和多家世界级顶尖医院合作,向医院部署Watson的智能系统,通过分析这些医院的病历、专家的治疗经验、现有的学术研究等,帮助它们制定、观察和调整癌症患者的治疗方案。在这一过程中,Watson也就有了这一领域的数据积累。

2015年4月,IBM收购了Explorys,它是一家可以查看5000万份美国患者病历的分析公司。类似的收购IBM还有不少,并且出手相当大方。

Watson已经可支持针对乳癌、肺癌和结肠直肠癌、皮肤癌等癌症的初期诊断。在皮肤癌领域,在一项对3000幅皮肤镜检查图像的研究中,Watson识别皮肤癌的准确率高达95%以上。而人类识别皮肤癌的准确率只有84%。

国内的一位人工智能业者调侃,国际巨头在人工智能领域真正有价值的是它们的那些你看不见的、没开源的、国际会议上含含糊糊一笔带过的技术。“那些才是可以颠覆未来的弹药。”

填补断层

人工智能的产业结构可以分为三层:应用层、技术层和基础层。应用层聚焦在人工智能和各行业各领域的结合;技术层是算法、模型和技术开发;基础层则是计算能力和数据资源。

BAT擅长第一层。BAT手中,天然握有全球最大的数据资源。但在第二层和第三层严重断层。中国在人工智能领域的科研水平停留在工程数学、物理算法等工程科学的创新层面,基础理论研究领域的人才和资源很少。

多位接受《财经》记者采访的中外业者认为,BAT的优势在于海量数据,和国际巨头的核心差距在技术。

腾讯高级副总裁姚星告诉《财经》记者,今年初,他和腾讯的投资并购部达成了一个共识,开始大量考察美国的机器学习平台类创业公司。一则中国这类技术公司不多;二则收购这种公司可以快速补足腾讯在算法领域的不足。

姚星向《财经》记者分析,同样提供10万个样本给机器,优秀的算法平台可能只需要几个小时,速度慢的可能需要几天时间。

对于海外收购,搜狗公司CEO王小川则更加直白:“国内适合收购的标的公司很少,因为根是断的,(技术和基础研究)源头在国外,要到国外看。”

在快速迭代的互联网世界里,即便是互联网巨头,单打独斗练独门秘籍也会错失良机。最佳方式,就是拥有数据和拥有技术的公司,通过各种结盟方式形成优势互补,快速抢占市场。

2014年11月,蚂蚁金服宣布和旷视科技战略合作,利用后者的人脸识别技术Face++软件去确认开立在线银行账号的用户身份,即“人脸支付”。

Face++在人脸检测的多项指标评测中接连拿下世界第一。2013年,在极难识别的互联网新闻图片上,获得了97.27%的准确率,这个指标高于Facebook团队。三年后,这一准确率已提高至99.5%。

进行面部识别,需要处理大量来自面部的数据信息,包括结构、五官以及肌肉等方面的数据分析。阿里云为这个合作注入自身的数据和分析能力。

“凡是花钱解决的问题都不是问题,阿里可以自己完成这些事情,但时间成本是相当昂贵的。”闵万里对《财经》记者说,“阿里有1000件同级别的事情要做,能做好的只有其中几件,剩下的用投资+合作,这是时间和资本效率最高的做法。”

技术和数据的结盟并不限于BAT,更多的公司希望通过结盟方式获得未来,新的巨头或许从中诞生。

搜狗CEO王小川的思路是社交化,做更多连接,通过建设社群关系,把人大脑里的智慧表达出来,从而解决目前搜索技术存在的内容不够精准和实用性较差的问题。2013年腾讯入股搜狗后,先后向搜狗开放了微信公众号数据和QQ兴趣部落,为搜狗输入数据资源。除此之外,搜狗还在去年11月战略投资知乎1200万美元,全面接入知乎内容。

王小川想让搜狗的人工智能机器不断学习社群数据,他对《财经》记者说,“人工智能下一个五年不在于人工智能本身,而是让机器找到人。”

今天,技术和数据的天然开放性让各公司之间的竞争变得“我中有你、你中有我”,最终的赢家是可以将技术和数据平衡利用,达到平台效益最大化的公司。

微软亚洲研究院常务副院长芮勇认为,横向对比,中国和国际领先公司在核心技术上确实存在差距,国外更加注重基础研究和技术研发,国内企业可以将国外的研发工具化、商业化;从纵向看,中国在人工智能领域的技术积累近几年确实出现了飞跃,无论是最底层的计算机体系架构,还是智能硬件,或是上层软件应用,都有质的进步。

“只要不太急于求成,持之以恒地投入,中国的人工智能产业相当值得期待。”芮勇说。

挤出泡沫

马云在一次内部讲话中强调:“全球都在讲人工智能,到了风口浪尖,在创新面前,没有第二只有第一,创新落伍了,你就输了。”

焦虑的不仅是BAT,华为公司创始人任正非5月30日在全国科技创新大会上发言提到,“未来二三十年人类社会将演变成一个智能社会,其深度和广度我们还想象不到。如果不能坚持创新,迟早会被颠覆。”

开放趋势之下,人工智能也注定不是一场巨头间的战争。

市场调研机构CB Insights的统计数据显示,2014年风险资本对人工智能的投资增长302%,达到3.09亿美元。

中国人工智能领域已有近百家创业公司,65家获得投资,共计29.1亿元人民币,其中旷视科技、优必选、云知声、SenseTime四家公司登上艾瑞独角兽榜单。

更多初创公司只是打上了人工智能的标签。它们本质上是用国际开源的平台,用数据训练一两个模型,甚至照搬国际模型,这其实潜含危险,最大的风险是产品严重同质化,尤其在人脸识别、语音识别等成熟领域,这些公司的产品没有突破性创新,根本没有继续走下去或被收购的价值。

姚星常常为投资人鉴定真伪人工智能公司。他说,辨识伪人工智能公司有两个关键点:一是这家公司所采用的技术是否是最新、最前沿的技术,如果不是,则是用人工智能概念包装的伪人工智能。

其二,这家公司的技术和业务是否具备可扩展性?若否,则是采用部分机器学习算法或浅层人工智能技术的商业公司,而非真正的人工智能公司。

iPIN是一家拥有文本认知智能技术的公司,从去年开始,iPIN收到了不少投资机构的投资意向,该公司创始人兼CEO杨洋告诉《财经》记者,到目前为止,他还没有遇到真正有能力鉴别人工智能技术水平的投资机构。

“这对于做伪人工智能的公司绝对是一个好消息。”杨洋调侃说。

危险在于,就算是一些初创时期确实手握人工智能独特技术和商业模式的公司,也在资本的胁迫下慢慢走形。

在资本的压力之下,一些人工智能创业公司开始过早商业化,研发投入逐步降低,人员结构也发生变化,销售开始主导公司,最终技术公司变成营销公司,失去了被并购的价值。

投资人工智能公司,需要专业技术知识和长线投资眼光。根据Gartner的“智能机器炒作周期图”,由人工智能驱动的应用中,语音识别产业化最高,自动驾驶汽车和智能顾问处于炒作最高点,智能机器人、自然语言处理/生成和虚拟个人助手则处于爬坡期。这些都属于5年-10年内能广泛普及的颠覆性技术。而神经形态硬件(如神经元芯片等)属于10年以后才能普及的技术,但该技术可能还没研发成熟就被淘汰了。