公务员期刊网 精选范文 纳米技术治疗范文

纳米技术治疗精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的纳米技术治疗主题范文,仅供参考,欢迎阅读并收藏。

纳米技术治疗

第1篇:纳米技术治疗范文

[关键词] 纳米诊断材料;纳米医药;纳米靶向药物传输;环境响应性纳米给药体系

[中图分类号] R446 [文献标识码] A [文章编号] 1673-7210(2013)02(c)-0025-04

作为医学领域中的新兴分支学科,纳米医学主要研究纳米尺度的生命现象,从纳米尺度来进行原来不可能达到的医疗和防治。这是因为当材料的结构基元尺寸小到纳米量级的时候,其性能会有意想不到的变化;同时纳米量级与生命物质的结构单元尺度相匹配,能更加有效的与生物体进行物质和能量交换,从而提高治疗效果。纳米医学可分为两大类:一是传统分子医学的延伸,即在分子水平上进行医学研究,基因药物和基因疗法等就是代表性实例;二是把化学和材料领域的纳米研究新成果引入医学领域,如发展新型纳米材料并用于疾病诊断和医疗等。很多纳米材料都展现出诱人的医学应用前景。这些新方法极大地促进了纳米医学概念的形成,吸引了众多基础研究和临床实验兴趣。经过近二十年的大发展,纳米材料用于诊断的方法学已日趋完善,国际上研究重点正逐渐转移到使用纳米材料进行疾病治疗。国际上纳米医学发展标志性事件包括于2004和2005年分别新出版的专业期刊Nanomedicine、Nanomedicine:NBM Nanotechnology,Biology and Medicine和Int J Nanomedicine等。前些年曾有国内学者分别归纳过该领域进展,如纳米技术在癌症早期诊断和治疗中的部分研究进展[1],叶成红等[2]归纳了纳米技术在止血材料、骨科移植材料、血管支架材料等领域的研究进展。鉴于该领域发展很快,本文将纳米医学诊断与治疗技术研究最新进展进行综述。

1 纳米诊断材料

癌症早期精准检测诊断对其治疗具有重要的意义,目前,许多癌症患者因种种原因未能在早期检出,因而延误了病情。以肠癌为例,我国早期临床诊断率低于20%,超过80%患者确诊时已发展至中晚期。如能发展更为方便灵敏的早期检测方法,早治疗,术后5年生存率可达90%以上。肿瘤发生是多种基因参与的结果,肿瘤的浸润与转移表达能够用一套分子标志物来预测与表征[3]。肿瘤标志物的传统检测方法存在敏感性与特异性方面的问题。对于早期诊断来说,诊断灵敏度是其中至关重要的因素。利用纳米粒子的独特的光、电、热、磁和力学性能,可以显著增强检测的灵敏度与特异性,纳米技术推动了疾病诊断技术的快速发展。

目前,基于纳米粒子的肿瘤疾病诊断技术主要包括早期肿瘤标志物检测技术、活体动态多模式影像诊断技术等。例如,将能够识别肿瘤细胞表面受体的特异性配体与纳米粒子结合,待纳米粒子与肿瘤细胞特异性结合后,利用物理方法如测试传感器中的磁讯号、光讯号等,通过成像系统显影,能够对体内是否存在恶性肿瘤进行早期诊断。除了诊断功能外,利用纳米诊断材料与肿瘤细胞结合的特性,进行肿瘤细胞示踪与捕获杀灭,实现诊断-治疗一体化是肿瘤纳米诊断治疗技术的重要目标,也是本领域的研究热点[4-5]。

量子点又称半导体纳米微晶体,直径1~100 nm,是半径小于或接近于激子玻尔半径的一类半导体纳米粒子。量子点具有一般纳米微粒的基本性质如表面效应、体积效应和量子尺寸效应,在激发光的诱导下会产生荧光,具有宽的激发光谱、窄的发射光谱、可精确调谐的发射波长、可忽略的光漂白等优越的荧光特性,是一类应用于光学分子影像的纳米材料,可以同时使用多种颜色的探针而不会发生波谱重叠现象。量子点被用作荧光探针用于细胞的标记和光学探针,特别适合于活体细胞成像和多组分同时检测。为某些肿瘤的早期诊断提供一种新型分子诊断手段。同时,量子点又可以作为一种新型的光敏化试剂用于某些肿瘤光动力学治疗。化合物半导体量子点尚存在毒性问题,最近发展的碳量子点具有生物相容性优异的特点,有望真正获得临床应用。

金纳米粒子因为其独特的表面等离子共振效应被用作光学造影剂和传感器[6],其具有良好的生物相容性和稳定性,尤其是具有较高的电子密度和X 射线吸收系数,在100 KeV下,金的吸收系数是碘造影剂的2~3倍,可用于肿瘤的诊断等。利用金纳米颗粒结合杂交DN段,能够很容易地穿透细胞膜进入细胞核与核内染色体结合,并具有较高的特异作用。碳量子点是2004年发现的一种新型碳材料[7],与传统量子点和有机染料相比,不仅拥有发光范围可调,双光子吸收截面大,光稳定性好,无光闪烁,而且碳材料毒性小,生物相容性好的优点,易于规模制备和功能化,价廉,是一种临床应用前景很好的新型成像检测纳米材料。

2 药物及基因纳米传递体系

近年来药物控制释放技术的发展使给药具有定时、定向、定位、速效、高效、长效等特点。为了实现这些靶向给药、智能释药的要求,药物控制释放系统逐渐向小尺寸发展,这意味着生物医用材料与纳米技术的结合是这一领域必然的发展方向。目前大部分抗癌药物是疏水性的,很容易被人体内的一系列排斥反应排出体外,如癌细胞的多药耐药和酶降解作用等。这大大限制了癌症等疾病治疗的有效性。而两亲性高分子形成的纳米粒子可以作为药物载体,把药物包埋在疏水核内,表面由纳米粒子的亲水层保护,这样药物便可被输送到肿瘤部位等,从而起到有效治疗癌症的作用。目前临床上使用的大多数抗癌药物,由于缺乏靶向性和特异性杀死癌细胞的能力,导致在治疗癌症的同时对机体正常组织产生严重的毒副作用,已成为癌症治疗面临的棘手问题和最大障碍之一。

通过将药物纳米化,可以显著增加药物的溶解度,提高药物的生物利用度,保护药物或减少药物被降解或清除,延长药物发挥作用的时间,增加药物对肿瘤组织的靶向性等。纳米颗粒被动靶向肿瘤组织的能力基于肿瘤组织中发育不完善的多孔性脉管系统,后者为循环纳米颗粒藉超通透和蓄积效应进入其中奠定了重要的结构基础。目前只有Abraxane(paclitaxel-albumin bound)、Myocet(doxorubicin liposomes)、Doxil(doxorubicin liposomo-PEG)等几种纳米药物进入临床应用于患者癌症治疗[8]。纳米药物的形状对纳米给药系统在血液中循环时间与稳定性存在显著影响[9-10]。对比蠕虫状和球型胶束的血浆清除研究发现其形态对药物的输送过程及疗效均有影响,肝脾对蠕虫状胶束的摄取能力非常低,因而其血液循环时间非常长,但蠕虫状胶束穿过肿瘤毛细血管的能力较差。一般纳米药物载体主要有两部分:起载体作用形成囊泡的惰性组分和生物活性靶向基团。载药量低是通常遇到的问题,如脂质体载药量只有10%,为了实现增加载药量,可将药物分子直接作为载药组分,这样不仅可增加载药量、减少了惰性组分所占比例,而且降低了给药时的暴释,如利用喜树碱(camptothecin,CPT)疏水性,将其接上亲水聚乙二醇(PEG)短链,形成双亲类磷酯大分子,该体系形成囊泡后,CPT载药量可高达58%且无暴释,其空腔中还可载入亲水性抗癌药阿霉素(Doxorubicin,DOX),这样可高载药量实现两种抗癌药同时负载,实现联合化疗,尽可能最大化杀灭癌细胞,减少复发和产生耐药性机会,协同杀死癌细胞[11]。与此类似,还可将姜黄素(curcumin)接上PEG链,大大增加载药量[12]。

3 靶向纳米控释给药

克服耐药性的方法主要有两种:其一是多种药物联合化疗,其二是使用多药耐药抑制剂逆转肿瘤细胞的耐药性,配合抗癌药杀死癌细胞,这两种方法都需要控制药物在肿瘤细胞上定点、定量的精确作用,因此采用纳米给药并靶向传输是理想选择,如何使药物能够高效地到达体内的靶部位一直是药物控制释放的一个关键问题。通过药物传递系统可以将药物运送到与疾病相关的特定的器官、组织或细胞。例如靶向到肿瘤、大脑、肝细胞、巨噬细胞等,可以提高靶部位的药理作用强度并降低全身的不良反应,提高药品安全性、有效性,是治疗癌症等疑难疾病的重要方法。

药物的靶向释放分为被动靶向和主动靶向。一定尺寸范围的微米级、纳米级药物传递系统通常具有被动靶向性,被动靶向给药系统对靶细胞并无识别能力,但可经尺寸效应到达靶部位进行释药。由于疏水性粒子在进入体循环时易被快速清除,如网状内皮系统的巨噬细胞吞噬,从而影响药物到达靶区,通过表面亲水性PEG修饰等方法可以延长其在体内的循环时间。制备体内稳定性好的药物传递系统是实现靶向给药的关键点之一。主动靶向给药系统则具有识别靶组织或靶细胞的能力。通过引入靶向基团可使纳米药物传递系统具有主动靶向能力,可以将药物运送到特定的器官、组织或细胞,是治疗癌症等疑难疾病的重要方法。常见的靶向基团包括多肽、蛋白质类,如抗体及抗体片段、转铁蛋白等,维生素类如叶酸、生物素等,碳水化合物类如半乳糖等[13]。

叶酸是细胞所必需的维生素,参与多种代谢途径的一碳转移反应。叶酸的细胞转运通过两种跨膜蛋白,即低亲和力的还原性叶酸载体和高亲和力的叶酸受体来完成。叶酸具有与叶酸受体的高亲和力、低免疫原性、易于修饰、体积小、高度化学稳定性和生物学稳定性、高的肿瘤渗透性、以及低成本等优点,因此叶酸介导肿瘤靶向的研究得到迅速发展[14]。与单靶向体系相比,在纳米粒子的表面同时引入不同的两种靶向基团可明显提高靶向效果[15]。

具有细胞靶向作用的多肽称为靶向肽。研究最多的是对肿瘤具有识别能力的多肽[16]。例如酪氨酸-异亮氨酸-甘氨酸-丝氨酸-精氨酸五肽YIGSR似的活性有效部分,可与癌细胞表面大量的层粘连蛋白受体识别,具有肿瘤细胞靶向性,另一方面,它通过竞争与肿瘤细胞的相应黏附因子结合,封闭了肿瘤细胞与体内正常细胞的细胞外基质和基底膜上层粘连蛋白结合的可能,抑制肿瘤的转移[17]。

特罗凯(盐酸厄洛替尼片)是2007年罗氏医学部在中国上市的新型高效的靶向治疗药物,用于晚期非小细胞肺癌在既往化疗失败后的三线治疗。这一药物适用于所有非小细胞肺癌患者,是目前世界上唯一被证明能够显著延长非小细胞肺癌患者生命的靶向抗癌药物,分别于2004年11月和2005年9月在美国和欧洲通过审批,用于化疗失败后的非小细胞肺癌的二或三线治疗,在全球超过75个国家批准上市。Zhou等[18]对比特罗凯单药与化疗用于表皮生长因子受体EGFR突变肺癌患者一线治疗的研究最优化方案,最终证实了接受靶向治疗的有效率高达83%,患者中位无进展生存达13.7个月;而普通化疗有效率仅为36%,患者中位无进展生存为4.6个月。

利用生物体内蛋白纳米微结构作为药物载体形成纳米医药是很有意义的方向,有望得到理想的药物传输系统。穹隆体存在于哺乳动物细胞的细胞质中,最大的穹隆体是核糖白复合物,其大小在100 nm以下。内部中空的穹隆体一般为桶形结构,可以封装各种蛋白。由于自身是天然蛋白质,所以不会产生免疫应答。穹隆体可以定位细胞表面受体,并可通过微孔缓慢释放药物。利用穹隆体递送药物的难点在于如何将药物封装在穹窿体内。采用了纳米小碟技术[19],利用可与穹隆体结合的脂蛋白形成纳米小碟的双层脂膜,然后用不溶性的全反式维甲酸封装穹隆体,进而解决了这一难题。这样就把载有药物的纳米小碟装入了穹隆体,从而屏蔽外部介质。由于穹隆体可以容纳很多纳米小碟,大大提高了局部药物浓度。

4 环境响应性给药纳米体系

可以利用癌症细胞和正常细胞组织微小的环境差异,例如癌症细胞内外pH在5.0~6.8或温度稍微高于体温,改变聚合物分子链之间或者聚合物分子链与溶剂之间的相互作用,从而使其本身发生结构、形状或者性能上的改变,来实现药物对癌症细胞的释放而达到仅杀死癌症细胞的目的。近年来,作为一种非常有效的抗癌药物,硼替佐米(Bortezomib,万珂)已经被批准应用于多发性骨髓瘤的临床治疗,且在治疗初治或难治多发性骨髓瘤以及非霍奇金淋巴瘤(NHL)等其他血液系统恶性肿瘤,因其拥有显著的疗效而受到越来越广泛地关注[20]。由于硼替佐米分子上硼酸基团的存在,其可以与含有1,2或者1,3-二羟基的分子或者聚合物在中性或者碱性条件下实现络合,并在酸性条件下可实现解络合。这样的pH依赖性的相互作用,已经利用并报道了含有苯邻二酚基团的PEG对硼替佐米在pH=7.4或者碱性下的有效负载和在pH=5时的可控释放[21]。含有双硫键的给药系统因二硫键对还原物质敏感,在药物释放领域具有重要意义,例如,当包载药物的含二硫键给药体系进入细胞时,二硫键会被细胞内谷胱甘肽酶还原而迅速降解[22],释放出药物。含二硒长链药物载体具有比含二硫基团的体系具有更为灵敏的氧化还原响应性,在很温和的氧化(0.01%双氧水)或还原条件下(0.01%谷胱甘肽)就可实现疏水二硒链段断裂,使纳米微胶囊解离并释放包载的药物,同时,很低剂量的伽马射线(5 Gy)就能使二硒键断裂,为获得的化疗与低损害放疗联合治疗肿瘤提供了一种新途径[23]。

5 结语

纳米技术在预防与控制癌症等疾病方面将大有作为,在纳米医学领域,待解决的问题主要包括以下几点:一是如何拓展在药物治疗方面的用途,目前直接用于治疗的纳米微粒只有有限几种,且集中在对癌细胞的杀灭研究,大多数纳米材料的优良性能还没有得到有效利用;二是开发方便耐用的医用材料和药物,用特定的纳米复合结构和材料实现药物的广谱、速效治疗;三是把纳米技术和基因疗法相结合,降低因基因载体选择不当造成的排异反应。目前具有挑战性的问题是如何提高体内灵敏度,以及消除潜在毒性。此外,纳米材料与人体相互作用的长期后果还不清楚,纳米医学材料生物安全性越来越被人们重视,在设计材料的同时,其生物安全性成为研究工作首要考虑的因素[3,24]。随着今后纳米医药领域深入系统的研究,有望为许多疾病治疗和诊疗进步提供新技术。

[参考文献]

[1] 胡德红,龚萍,马轶凡,等.纳米技术在癌症早期诊断和治疗中的研究与展望[J].癌症,2009,28(9):1000-1003.

[2] 叶成红,奚廷斐.纳米技术在医用材料领域中的应用[J].中国组织工程研究与临床康复,2008,12(45):8897-8900.

[3] 王英泽,黄奔,吕娟,等.纳米技术在生物医学领域的研究现状[J].生物物理学报,2009,25(3):168-174.

[4] Kelkar SS,Reineke TM. Theranostics:Combining imaging and therapy [J]. Bioconjugate Chem,2011,22(10):1879-1903.

[5] Chen X,Gambhir SS,Cheon J. Theranostic nanomedicine [J]. Acc Chem Res,2011,44(10):841-841.

[6] 郑林丰,王悍,张贵祥.纳米金在分子影像学中的应用进展[J].现代生物医学进展,2011,10(4):1983-1986.

[7] 王富,刘春艳.发光碳量子点的合成及应用[J].影像科学与光化学,2011,29(4):316-316.

[8] Wang J,Sui M,Fan W. Nanoparticles for tumor targeted therapies and their pharmacokinetics [J]. Curr Drug Metab,2010,11:129-141.

[9] Geng Y,Dalhaimer P,Cai SS,et al. Shape effects of filaments versus spherical particles in flow and drug delivery [J]. Nat Nanotechnol,2007,2(4):249-255.

[10] Alemdaroglu FE,Alemdaroglu NC,Langguth P,et al. Cellular uptake of DNA block copolymer micelles with different shapes [J]. Macromol Rapid Commun,2008,29(4):326-329.

[11] Shen Y,Jin E,Zhang B,et al. Prodrug lipid forming high drug loading multifunctional nanocapsules for cancer intracellular drug delivery [J]. J Am Chem Soc,2010,132:4259-4265.

[12] Tang H,Murphy J,Zhang B,et al. Amphiphilic curcumin conjugate forming nanoparticles:in vitro and in vive anticancer activity [J]. Nanomedicine(UK),2010,5:855-865.

[13] Torchilin VP. Cell penetrating peptide‐modified pharmaceutical nanocarriers for intracellular drug and gene delivery [J].Peptide Science, 2008, 90(5):604-610.

[14] Yang XQ,Grailer JJ,Rowland IJ,et al. Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging [J]. Biomaterials,2010,31(34):9065-9073.

[15] Quan CY,Chang C,Wei H,et al. Dual targeting of a thermosensitive nanogel conjugated with transferrin and RGD-containing peptide for effective cell uptake and drug release [J]. Nanotechnology,2009,20(23):335101.

[16] 陈荆晓,王慧媛,许小丁,等.用于基因和药物传递的多肽材料[J].高分子学报,2011,8:799-811.

[17] Sarfati G,Dvir T,Elkabets M,et al. Targeting of polymeric nanoparticles to lung metastases by surface-attachment of YIGSR peptide from laminin [J]. Biomaterials,2011,32:152-161.

[18] Zhou CC,Wu YL,Chen GY,et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer(OPTIMAL,CTONG-0802):a multicentre, open-label,randomised,phase 3 study [J]. The Lancet Oncology,2011,12(8):735-742.

[19] Buehler DC,Toso DB,Kickhoefer VA,et al. Vaults Engineered for Hydrophobic Drug Delivery [J]. Small, 2011,7(10):1432-1439.

[20] 臧健,李晨,任道凌,等.套细胞淋巴瘤的治疗进展[J].肿瘤防治研究,2008,3:354-654.

[21] Su J,Chen F,Cryns VL,et al. Catechol polymers for pH-responsive,targeted drug delivery to cancer cells [J]. J Am Chem Soc,2011,133(31):11850-11853.

[22] You YZ,Yu ZQ,Cui MM,et al. Preparation of photoluminescent nanorings with controllable bioreducibility and stimuli-responsiveness [J]. Angew Chem Int Ed,2010,49:1099-1102.

[23] Ma N,Li Y,Xu HP,et al. Dual redox responsive assemblies formed from diselenide block copolymers [J]. J Am Chem Soc,2010,132(2):442-443.

第2篇:纳米技术治疗范文

【关键词】五氧化二钒 纳米材料 金属氧化物

1 引言

过渡金属氧化物V2O5为层状结构,且存在V+2、V+3、V+4和V+5等价态,使得V2O5广泛应用于催化、电致变色、电化学等领域,而纳米结构的V205更可用于场效应晶体管、传感器自旋电子器件和纳米光刻模板等。V2O5具有层状结构层内强的O-V-O-V键结合,案V原子与五个O原子形成5个V-O键,V原子处于畸变的[V05]四方锥的中间,O原子位于顶点处,[VO5]四方锥以共顶点和共边的方式相互连接,形成平面结构。其特殊的晶体和电子结构,赋予了不同的应用。

(1)电学性能及其应用;扶手椅型之字型结构的V2O5纳米管最大能隙分别为2.67eV/2.95eV,且管径缩小,能隙降低,趋于消失,对材料进行表面涂覆贵金属、氧化物纳米粒子或者半导体量子点等处理,还可提高其灵敏度和稳定性。V2O5的层状结构,非常适合于Li+的嵌入和脱出,Wu等利用碳球模板制备了Rattle-type构型的V2O5纳米结构,在锂离子电池方面展现出良好的性能。Dimitra Vernardou采用电化学沉积的方法,在氧化铝表面进行氧化钒电镀,测试了不同种基底材料包括FTO和Ag/AgCl等离子复合,进行了循环次数和电能储量等测试,研究发现钒系材料在多次循环后CV曲线几乎保持不变,同时在持久性也有良好的表现。如图(1-3)所示。

图1 图2

图 3

(2)光学及其应用;对V2O5纳米管进行电致变色、光学吸收、红外和剩曼光谱、光限幅特性等方面的研究,发现其在2.5eV以下有一个宽吸收带,其中心位于1.25eV处,还包含了三个单独的特征吸收峰,分别为0.87、1.25和1.76 eV,光谱吸收阈值为0.55 eV,这是V2O5纳米管的光学带隙随着层间距的增加,光学带隙发生红移,利用V2O5纳米线作为刻他模板制备的AuPd纳米金属线,电阻在lOIdl量级,I-V呈现线性关系,而且能制备纳来空隙,得到与金属纳来线相同的横截面。对V2O5纳米棒阵列进行电致变色研究,发现随着时间延长,波长在700nm左右的光的透过率降低,在3 V电压下,其响应速率要比薄膜快很多。而对V2O5纳米线的电致变色测试表明,波长为415 nm光的透过率改变达到37.4%,1000次循环后仍保持良好的变色特性,且变色时间只有6s,到了电致变色显示器件的要求。

(3)敏感性能应用;V2O5独特的层状通道结构,有利于气体分子的吸附和导通,进入活性位点,且钒价态较多,由此产生的电子传导变化大,作为一种n型半导体,可以在多种气体及可挥发性液体中发挥作用,敏感性能明显,是很好的气敏材料。

(4)催化剂应用;五氧化二钒主要用作接触法制硫酸的催化剂,也可做多种有机化合物氧化反应的催化剂,如蒽氧化为蒽醌等。还用于制造彩色玻璃和陶瓷,同时也可以用作对污染物的降解。因为其带隙在合适的范围,可期在光催化等领域发挥作用。

3 制备方法

3.1 溶胶-凝胶法

溶胶-凝胶法用含高化学活性组分的金属醇盐或无机盐等作前驱体,将其溶于水或有机溶剂制成均质溶液,溶质在溶液中发生水解反应,生成纳米级的粒子并形成溶胶,溶胶又发生聚合形成凝胶,凝胶再经干燥和热处理,制备得到纳米粒子和所需材料。以聚破酸醋多孔过滤膜为模板,采用溶胶-凝胶法就制备得到了纳来级的菱形V2O5,其形状类似刷子上的棕。而将晶体V2O5溶于过氧化复的水溶液,也可形成凝胶,凝胶再经干燥就得到V2O5纳米粉。溶胶一凝胶过程所需的时间较长,通常需要几天或几周,最后凝胶在干燥过程中由于水或有机物的分解会逸出许多气体,导致凝胶收缩,对结构的稳定性产生不利影响。

3.2 水热与溶剂热法

通过加热创造一个高温高压的特殊物理化学环境,使前驱物在其中充分溶解,形成原子或分子生长基元,原子或分子经重新成核、生长,最终形成具有一定结晶形态的晶粒。而溶剂热法采用有机溶剂代替水作介质,过程与水热法类似。水热法制备V2O5纳米粉体,通常以水或水和有机溶剂的混合溶剂作为反应介质,以V2O5粉体、机酸盐或氧化祝凝胶作为前驱体,通过向体系中加入表面活性刻、控制溶液pH、水热温度、水热时间等方法来制备形貌各异的V2O5纳米材料。Fei等以偏钒酸铵和草酸为原料、二甲基亚讽和水作溶质,将装有混合溶液的反应釜180℃下保温24h,合成了由单晶纳米粒子组成的玫瑰状V2O5层状结构。Yu Wang等以偏钒酸铵为原料,用销酸调节溶液pH2-2.5,并在反应荃中置一倾斜放置的铁箱,反应签再在180℃下保温24小时,即得V2O5纳米带阵列。

3.3 气相沉积法

气相沉积法是一种或数种反应气体在加热、激光、等离子体等作用下发生物理或化学反应,最后经冷却、凝聚、长大形成纳米微粒的方法。气相沉积法可以分为物理气相沉积法和化学气相沉积法,物理气相沉积法又可分为热蒸发法、等离子体蒸发沉积、激光蒸发沉积、粒子溅射等,而制备V2O5纳米材料主要采用其中的热蒸发法。Candace K.Chan等将V2O5粉末放置于瓷坩埚中加热到690℃(超过熔点),蒸气由氧气运输至基板位置发生沉积,得到了单晶V2O5纳米带。Yan等通过将覆盖有Si圆片、不加催化剂的钒溶在环境条件下加热到660℃,保温6小时制备得到了细长的V2O5纳米带。Yan等将乙酰丙酮氧钒加热到600℃并在氧气流中保温20min(系统压力大约为0.1毫巴),得到了沉积在SnO2纳米线上的V2O5纳米纤维。

3.4 模板法

材料的多维结构和可控化制备已成为纳米科学的一个热门研究方向,不同形貌的材料展现出来不同的性能,纳米线纳米带以及多级结构正被日益广泛地研究。常用的模板主要有含有有序孔洞阵列的氧化铝模板和含有无序分布孔洞的高分子模板,此外还有金属模板等。Wang等电化学沉积的的聚碳酸酯多孔膜模板替换为ITO基板(ITO化物,涂有银膏),制备得到了管长约10 um,外直径约200 nm,内直径约100nm的V205纳米管阵列。下图(4-5)为Hao Bin Wu等利用碳球为模板获得的氧化钒纳米结构。

图4 图5

4 结论与展望

第3篇:纳米技术治疗范文

扫描透射电子显微分析技术是在透射电子微观领域最有效的成像技术。它是综合了扫描和普通透射电子分析的原理和特点而出现的一种新型分析方法。它在表征包括有机材料和生物材料的纳米尺度材料方面引起了极大的关注,并开始被广泛应用。扫描透射电子显微分析技术发展迅速,在不远的将来将成为透射电子显微技术的主要技术。本书是一本先进的扫描透射电子显微分析技术的教科书。

本书全部内容共分为14章:1.简介,主要介绍了电子显微探针的需求、比较不同类型的显微技术、扫描隧道显微技术的优势和其可能的应用领域;2.扫描透射电子显微仪器发展历程综述,本章图文并茂地介绍了从1932年第一台电子显微镜研制成功到其不断完善,最后成为研究工作中极为重要的手段的发展历程;后面各章共分为3部分,第1部分 扫描透射电子显微分析技术基本知识,含第3-4章:3.扫描透射电子显微分析技术的基本知识,本章作者阐述了扫描透射电子显微镜的基本设计和扫描式电子显微镜的成像原理等知识,同时对扫描式电子显微镜的先进技术做了简要介绍;4.扫描透射电子显微分析技术在纳米材料和生物样品方面的应用,主要对原子级分辨率的扫描式电子显微镜在纳米和生物样品中的应用做了详细描述。第2部分 扫描透射电子显微分析技术成像理论,含第5-8章:5.高角环形暗场像-扫描透射电子像理论和成像模拟;6.环形明场扫描透射电子显微成像技术理论,5、6章主要介绍了扫描透射电子显微技术基于衍射动力学理论的成像原理和环形明场理论近期的发展;7.扫描透射电子显微技术中的电子能量损失谱及其成像,尤其是使用非弹性散射的高空间分辨率成像;8.用密度泛函理论计算子在扫描电子显微镜中获得的电子能量损失近边结构数据以及对一些实际材料的应用。第3部分 扫描透射电子显微分析技术成像的高级技术,含第9-14章:9.像差校正扫描透射电子显微技术;10.扫描透射电子显微技术中的二次电子像,主要介绍了一种最新报道的基于二次电子新的扫描透射电子显微技术的成像形式;11.共聚焦扫描电子显微技术,成像理论及其最新实验进展;12.扫描电子显微分析技术中电子断层成像技术的基本原理及其在无机材料中的应用;13.扫描透射电子显微分析技术中的电子全息术和洛伦兹电子显微技术;14.扫描透射电子显微分析技术的最新热点和未来期望,主要回顾了扫描透射电子显微分析技术的研究现状,如使用EDX进行元素分析、成像理论的完善等,并以作者的视角简要的讨论了其发展前景。

虽然本书不同章节是由不同的相关领域研究者分别撰写,但本书的编辑已经把物理符号和内容合理的编排与调整。本书编辑希望最后呈现的是一本为介于专业和初学者中间的人准备的一本关于电子显微镜学方面的专著。本书旨在为本科生、研究生和早期的研究人员描述和解释扫描透射电子显微分析技术的基本知识。为了达到这个目的,本书使用了大量的数学公式描述在扫描透射电子显微技术和样品中的物理现象。同时对于在理论中的数学有疑问的读者,许多样品很好地解释了相关的理论。

第4篇:纳米技术治疗范文

[关键词] 纳米技术 体育 应用 思考

随着科学技术的发展,如何将纳米科技真正应用于体育运动,使运动训练更加科学化,使运动员的运动能力和运动技术水平得到更充分的发挥,运动成绩的提高更加有保证已经成为研究重点。

一、体育与纳米技术

1.利用纳米技术进行运动员的科学选材。由于纳米科技推动了微观生物学的发展进程,运用人类基因组计划和纳米技术,有助于我们对人类基因组中与运动成绩密切相关的基因加以认识和了解。有研究表明,人类基因组中有某些与人类运动能力密切相关的基因,其多态性的差异,有可能是造成人们运动能力和训练效果巨大个体差异的最终原因。该领域的研究,为人们进行有效的基因选材提供了理论基础,也为提高运动成绩提供事半功倍的方法。例如在运动员的选材方面,利用纳米加工技术进行DNA的分离和提取,可以快速有效地决定其基因序列,在分子水平上对其遗传、发育进行研究,实现更高层次的基因选材。

2.利用纳米科技揭示人体对各项运动能力的适应度和对各项运动能力的遗传度,找到运动训练在人体生长发育过程中的关键阶段(如青春期)的影响及作用机制。通过开发一种可以植入皮下微型生物芯片,模拟健康人体内的葡萄糖检测系统监测机体在运动过程中血糖水平,然后根据人体需要,适时释放糖等物质,维持机体在运动过程中的血糖水平,有效地提高机体的运动能力。

3.利用纳米技术进行体育运动与健康关系的研究。利用纳米微粒技术,可以灵敏地检测各种组织的特异性蛋白,探讨某些运动性疾病的发病机制,有效地对运动员进行医务监督,维护运动员的健康。通过纳米级敏感器可以监视运动训练导致的细胞内结构的形态与数目的变化,以及这些变化所反映各器官功能结构的功能状态。纳米科技在中国传统医学中的应用,使传统中医药对运动损伤与运动性疾病的预防和治疗具有更好的效果。

4.利用纳米技术防止运动性疲劳和加快其恢复过程。关于运动性疲劳发生的机制,目前虽然有许多假说,但确切的疲劳机制还有待于进一步研究。由于纳米科技在医学上的突破,将对运动疲劳机制尤其是在中枢神经系统方面及其靶器官和靶细胞的研究将更加深入,人们可以利用纳米生物芯片直接研究机体在运动过程中骨骼肌、心肌、肝脏和神经等组织的代谢过程,探讨中枢和外周运动性疲劳及其恢复的生物学机制,并且可以通过某些手段(如纳米药物)抑制导致运动性疲劳的基因表达或诱导加速恢复的基因表达。

5.利用纳米技术防止运动损伤与运动性疾病的临床诊断与治疗。纳米医学材料的研制,对于人造器官、人造肌肉、骨骼、关节皮肤等成为永久性的非排斥性。用纳米机械潜入人体的血管和器官,对人体进行检查和治疗,并且可以进入毛细血管以及器官的细胞内,对损伤的细胞进行治疗和处理,甚至可以从细胞基因组中除掉“有害”的DNA,或把正常的DNA安装到细胞基因组中。

6.利用纳米技术对运动员进行机能评定。在人们全面了解运动引起机体产生适应性变化的基因调节机制后,人们可以通过基因工程技术和纳米技术对运动员的疲劳状态、运动训练的适应性及其免疫功能等进行基因诊断。这种诊断一般是在基因的转录水平上进行评定,可以较早地发现运动员在运动工程中的机能变化,具有较好的应用价值。

7.利用纳米技术了解控制运动营养水平,使运动员的营养代谢趋于更加合理和平衡。通过纳米级敏感器使运动员的营养代谢处于一个精细、准确、严密的监控中。运动员所需的营养素完全按照运动项目特点和个人的生理特点进行补充和调配,使运动员的营养变得合理化、科学化。

8.利用纳米技术对体育运动进行精确客观的定量分析。利用纳米技术对运动时人体的骨骼、肌肉、血液组织以及心血管系统、呼吸系统、消化系统等各器官系统对运动训练的适应性进行客观的精确的定量分析,不仅使运动训练更具有科学性,也大大地提高运动员训练的成材率。

二、纳米技术在竞技体育中的作用

1.纳米相材料技术。这是一种通过控制结构纳米颗粒的大小而制造出强度、颜色和可塑性都能满足人们需要的相材料,这种纳米相材料除微观结构与普通材料完全不同外,在宏观上也表现出许多奇妙特征,如纳米相铜强度比普通铜高5倍,纳米陶瓷摔不碎等。这种纳米相材料技术已应用在体育器械、场地和服装的改进方面。就拿撑杆跳运动员使用的撑杆来讲,撑杆跳高最早使用的撑竿是竹竿,1942年美国运动员达姆首次在国际比赛中使用了轻合金撑竿而创下了4.77米世界记录。可以想象应用纳米相技术,将会生产出具有“个性化”(根据撑竿跳项目的特点和竞赛规则的要求及运动员自身的生理和技能特征的)撑竿,使该项目的世界记录再有突破。

2.纳米复合改进技术。少量纳米材料可以综合改善传统材料的性能。例如美国把AL2O3纳米颗粒加入到橡胶中提高了橡胶的耐磨性和介电特性。

3.纳米器件技术。利用纳米器件技术生产的分子自组织结构可用于电子记忆、数据接收、存储器和传递等,这种器件运用于体育训练将大大增加训练的效率和成绩。

三、纳米技术应用于竞技体育所引起的思考

综上所述,随着科学技术的发展,纳米技术在体育运动中的应用显得日益重要,同时,也会引起一些体育道德和伦理道德问题。同时我们要思考的是:器材的高科技化是否会削弱运动员在竞技体育中的主体地位,从而变相剥夺运动员的竞赛权利?若运动成绩的提高在较大程度上依赖于器械和服装的高科技化,这是否会带来一些新的不公平?器材作弊是否会成为兴奋剂的另一种表现形式?这些是我们必须考虑的。可以通过修改某些项目的器械的设计规则,加强一些项目的器械、服装的申报和检测程序,国际奥委会和各国际单项体育联合会要针对纳米技术等高科技的新成就加强新的检测手段,来杜绝运用器械作弊;通过对运动员、教练员、裁判员和科技工作者等进行个体道德教育,以保证竞技体育更好地弘扬奥林匹克精神。

参考文献:

[1]芸世纪之交的我国运动形态学研究.中国运动医学,2000,19(4):340~341

第5篇:纳米技术治疗范文

关键词:纳米技术;食品科学;应用

一、纳米技术

自从上个世纪90年代出现纳米技术后,在纳米技术领域的新概念、新名词、新材料不断涌现,使得人们对纳米技术的理解不够透彻,对其研究也处于初级阶段。其实,纳米技术是一门基础研究与应用研究多学科交叉的科学,不管是在原子、分子或者是在超分子角度上对其分析,纳米技术都堪称是一项新的、空前的技术创新,对今后物理学的发展起着重要作用。纳米技术的目标主要是根据纳米结构所具有的特性和功能,结合人们的需求,对材料进行加工,并制造具有特定功能的产品,给人们带来全新的技术革命。此外,在设计过程中在原子、分子的水平上运用纳米技术进行材料设计,进而制造出具有全新性质和各种功能的材料,从而满足人们日益增长的生活需求。

二、纳米食品的概述

所谓纳米食品,指的是在食品加工、生产或包装过程中采用了纳米技术手段的食品。但是,纳米食品不仅仅是采用纳米技术将食品的尺寸加工至纳米级别,也涉及到通过纳米技术对食品进行了改造从而改变食品性能的食品。从而使经过纳米技术加工的食品在营养、吸收等方面会很大的提高,在这方面应用最广泛主要有维生素制剂、钙、硒等矿物质制剂、豆奶与纳米添加营养素的钙奶茶等。但是,由于人们对纳米技术研究的局限性决定了纳米食品也存在一些问题,从而使得纳米食品的安全日益受到人们的关注。因为,在纳米食品生产过程中主要采用球磨法使食品的尺寸变小而达到纳米级别,从而不可避免地产生粉料污染,同时,纳米技术给食品所带来的危害与不利影响等,目前我们还无法预测,难以判断纳米材料是否对人体有害。目前,我国乃至国际上的纳米食品行业还没有形成一个统一的、有效的标准,无法对纳米食品进行安全性评价,也不利于食品健康的管理与监控。此外,据研究部分纳米食品存在一些有害成分,采用球磨法对食品进行加工,所制备得到的纳米粉末更容易进入细胞甚至细胞核内,进而对人体所产生的危害也没有研究清楚。

三、纳米技术在食品科学中的应用分析

1.微乳化技术和纳米胶囊制备技术

所谓的微乳液,就是通过将两种互不相溶的液体形成的吉布斯自由能最小、状体均匀并且稳定,各向同性、粒径大小为l~100纳米、外观透明或半透明的分散体系,而制备该微乳液的技术也称为微乳化技术。自从上个世纪末以来,人们加大对微乳理论和应用的研究,并将微乳化技术已应用于纳米颗粒、微胶囊和纳米胶囊的制备。采用纳米技术,将微胶囊制备成具有粒径大小在10~1 000纳米尺寸的新型材料。由于纳米胶囊颗粒微小,形成胶体溶液,易于分散和悬浮在水中,并形成清澈透明的液体,从而使所载的药物或食品功能因子改变分布状态而浓集于特定的靶组织,进而有利于提高疗效的目的,增加药品生产效率。

在食品包装行业,纳米技术的应用最为普遍,并且该技术能给人们带来极大的利益。因为,在包装材料过程中,只需加入一定的纳米微粒就能够有效地增加包装材料的抗菌性能与密封效果,从而更好地为食品包装提高质量安全保障。同时,在冰箱制造行业也能看到纳米技术的应用情况,通过纳米技术能够有效地生产出一些抗菌性的冰箱,从而满足人们日常生活需求。此外,由于纳米材料的尺寸微小(纳米级别),并体现出特殊的功能,在食品包装过程中加入一定的纳米微粒有利于改变对现有包装材料的性能,从而进一步保证食品的安全。甚至已有不少人研究纳米技术在玻璃和陶瓷容器等领域的应用,通过加入纳米颗粒,可以有效地增加了脆性材料的韧性与强度,还可以有效地吸收紫外线防止塑料包装由于时间过长而出现老化、变质等现象,进而增加食品包装的使用寿命,促进食品包装行业的发展。

2.纳米技术在超细微粒和纳米粒子制备中的应用

在当今的高新技术研究领域中,超细微粒尤其是纳米粒子已经成为人们研究的热门方向,并是当今急需加大研究投入的领域。经过超细化处理后的物质,粒子之间的接触面积增大,比表面积也大大增加,界面能显著提高,表面能会发生巨大变化,从而显现出独特的物理与化学性能。通常情况下,制备超细粒子的方法为超细碾磨法,例如市场上比较普遍的具有强抗氧化性的超细绿茶粉与具有强结合水能力的超细面粉等。研究表明,粒子越小越有助于人体的吸收消化,约1 000纳米的超细绿茶粉呈现出较好的营养消化和吸收率,其营养价值大大超出普通的绿茶粉。又近年来迅速发展起来的新技术――超临界流体制备超细微粒技术,也属于纳米技术制备超细粒子的范畴,该技术可以较准确地控制结晶过程,对粒子尺寸进行精确的控制,从而生产出的超细微粒粒径小且粒度分布均匀,该技术在医疗药物制造行业较为普遍,具有诱人的应用前景。

3.纳米技术在食品检测中的应用

随着计算机技术的飞速发展,使得纳米传感器技术也得到了惊人的发展,并已在食品安全监测中得到广泛的应用。所谓纳米生物传感器技术,采用选择性结合靶分子的生物探针,对食品进行安全监测的技术。因为,纳米材料本身就是非常敏感,对于不均匀的生物与化学物质反应灵敏,将纳米技术与生物学、计算机技术、电子材料相结合,可以制备新型的传感器件,并提高食品安全监测效率。例如与生物芯片等技术结合,可以使分子检测更加简便、高效的纳米生物传感器。近年来,人们通过纳米生物传感器技术可以实现对食品安全、临床诊断与治疗的快速、有效、灵敏地检测。例如,在传统的检测领域,尤其是监测微量细菌时需要扩增或富集样本中的目标菌,从而无形中增加监测步骤,同时过程繁琐而费时费力,然而,利用纳米技术与表面等离子体共振、石英晶体微天平等研制而成的纳米生物传感器,不仅能够大大减少检测所需的时间,还可以提高检测的灵敏度,进而提高监测效率与精确度。

四、结语

综上所述,由于纳米材料发展比较晚,各方面的研究还不够完善,纳米技术也存在一些不足和缺陷。但是,这并不影响纳米技术在食品工业中的应用,随着人们对纳米技术研究的不断深入,我相信在不久的将来纳米技术将会引发一场新的食品科学的革命,为食品行业带来巨大的经济效益与发展空间,也会使人们的饮食结构和生活方式发生巨大的变化,引领人们走进一个全新的食品行业,进而提在很大程度上提高人们的生活水平。

参考文献:

第6篇:纳米技术治疗范文

1 概述

以制造纳米级新材料为目的的科学和技术应用使得纳米技术有了飞速的发展。“纳米”嘲是指十亿分之一米或10-9米。“纳米技术”最早于1974年由东京理科大学的Norio Taniguchi教授提出,用以描述纳米级材料制造的精度。Feynman教授曾在“There’s plenty of room at the Bottom”演讲中提出了纳米技术的概念。生物纳米技术整合了生物技术和纳米技术用于发展纳米材料的生物合成和环保领域应用。纳米粒子是指尺寸范围在1~100nm的原子簇。“纳米”是一个希腊单词,意指非常的小。纳米颗粒因其独特的化学、光学和机械属性,在21世纪发展迅速。金属纳米颗粒由于其较大的表面积与体积比,显示出了卓越的抗菌活性,因其对金属微粒耐药的微生物、抗生素及耐药菌株所显示出的抗菌能力,使其越来越受到研究者的青睐。不同的纳米材料,如:铜、锌、钛、镁、金和银等均已实现,但与其他纳米材料相比银纳米颗粒在抗细菌、病毒及原核生物效果方面显示出了最佳疗效。然而,纳米银颗粒作为药用消毒剂存在一些危险性,如:暴露在银环境下可导致银中毒,并对哺乳动物细胞存在毒性。目前研究显示,采用银离子或金属银以及纳米银颗粒可用于治疗烧伤、制成牙科材料、不锈钢材料涂层,纺织面料,水处理及防晒乳液等,且对人体细胞毒性较低,具有高热稳定性以及低波动性。

2 银作为抗菌材料

银用于治疗烧伤和慢性伤口已有数百年历史。最早在公元前1000年,银就被用于饮用水的处理。硝酸银是以固体形式被应用的,其有不同的短语形式,英语中称为“Lunar caustic”,拉丁语中称为“Lapis infernale”,而法语中称为“Pierreinfernale”。1770年,硝酸银开始用于治疗性病、唾液腺瘘、肛周脓肿以及骨脓肿。19世纪,采用硝酸银除去肉芽组织,并促进上皮细胞再生,使创面得以愈合。不同浓度的硝酸银可用于新鲜烧伤的治疗。1881年,Crede等使用硝酸银滴眼液治愈了新生儿眼炎。Crede设计了银浸渍敷料用于植皮治疗。20世纪40年代,青霉素诞生后,银在细菌感染治疗中的作用大大降低。20世纪60年代,Moyer采用0.5%硝酸银用于烧伤的治疗,使得银再次得到使用。这一方法不会影响表皮细胞的增殖,同时能够具有抗金黄色葡萄球菌、绿脓杆菌、大肠杆菌的作用。1968年,硝酸银联合磺胺合成了磺胺嘧啶银乳膏,它可作为一种广谱抗菌剂,并被用于烧伤的治疗。磺胺嘧啶银对大肠杆菌、金黄色葡萄球菌、克雷伯菌和假单胞菌均具有有效的抗菌作用。并且,还具有一定的抗真菌和抗病毒活性。近年来,由于抗生素耐药菌的出现,以及临床上抗生素使用的局限性,使得含有不同水平银的银伤口敷料重新得到重视。

3 作用机制

银对微生物的确切作用机制目前尚不完全明了,但根据研究发现在细菌细胞形态和结构方面发生变化,从而提出了金属银、银离子、纳米银粒子可能的作用机制。

3.1 银的作用机制:根据细菌细胞呼吸酶研究的发现结果提示,银的作用机制与银和巯基化合物的相互作用联系在了一起。银可与细菌细胞壁和细胞膜相结合,参与移植呼吸过程。大肠杆菌中,银通过抑制磷的吸收,释放磷、甘露醇、琥珀酸盐、脯氨酸及谷氨酸而发挥作用。

3.2 银离子的作用机制:银离子的抗菌作用机制可能尚不明确,但是可以通过观察细菌结构和形态学的变化情况研究银离子的作用机制。这就提示当DNA分子处于放松状态时,DNA的复制能够有效的进行。但是当DNA处于凝集形式时,就失去了复制能力,当银离子渗透进入细菌细胞内后,DNA分子变为凝集形式并使其复制能力丧失,进而导致细胞的死亡。此外,已有研究报道称重金属通过与巯基粘附,与蛋白起反应,进而使蛋白灭活。银离子在银沸石的抗菌活性中起关键作用。Matsumura等曾报道,银沸石的作用可能是由于细菌细胞摄取了银离子,使银沸石与细菌接触,抑制细胞功能,使细胞破坏。其次,银沸石可以通过产生活性氧分子,抑制呼吸作用。

3.3 纳米银粒子的作用机制:纳米银粒子的抗菌性能要优于其他盐类,这主要是由于其具有极大的表面积,使之能够更好地与微生物所接触。纳米粒子能够附着于细胞膜,也能够渗透入细菌细胞内。细菌细胞膜具有含硫蛋白,而纳米银粒子能够与细胞内的这些蛋白相互作用,同时也能够与含磷化合物相互作用,如DNA。当纳米银粒子进入细菌细胞后,可在细菌的中心形成一个低分子量区域,细菌向该区域聚集,使DNA免受银离子损害。纳米银粒子有效攻击呼吸链、细胞的分化,最终导致细胞的死亡。纳米银粒子可向细菌细胞中释放银离子,增强杀菌活性。

4 应用

已知银以金属纳米形式均具有较强的抗菌性能,因此银已在不同的领域得到广泛使用。Fe3O4附着纳米银粒子可用于水处理并通过磁场可容易清除,以避免对环境造成污染。磺胺嘧啶银由于其能够缓慢而稳定地与血清及其他体液反应,可使烧伤创面较好的愈合。纳米银敷料、药膏及凝胶可减少慢性伤口的细菌感染。含纳米银粒子的聚醋酸乙烯纳米纤维作为创面敷料已显示出了卓越的抗菌性能。报道称,在动物模型研究中,纳米银粒子显示出了较好的创面愈合性能,使创面更为美观、瘢痕愈合。银浸渍医用设备如外科口罩及可植入性医疗设备等均显示出了良好的抗菌效应。环保型抗菌纳米涂料也已得到开发。无机复合材料用做各种产品的防腐剂。硅凝胶微球与硅硫代硫酸混合具有长效抗菌活性。治疗烧伤和各种感染,银沸石被应用于食品的保存、消毒以及产品的净化。纳米银粒子可用于水的过滤。

5 小结

第7篇:纳米技术治疗范文

【摘要】:纳米药物与普通制剂的药物相比,具有较大的表面积、较强的化学活性、较快的吸收速度,在通过生物体的各种屏障、控制药物的释放速度、设定药物的靶向性等许多方面,纳米药物都具有一般药物不可替代的优越性,为药物研究提供了全新的领域。本文从纳米药物的制备、特点、应用等几方面介绍纳米药物的研究进展并展望了纳米药物的前景。

关键词:纳米药物 研究进展 前景

纳米(nanometer,nm)是一种度量单位,1nm为10-9m,相当于10个氢原子排列起来的长度。药剂学一般将纳米粒的尺寸范围界定为1-1000nm,该范围包括>100nm的亚微米粒子。

1.纳米药物的制备方法及特点

1.1 固相法是通过从固相到固相的变化来制造粉体药物。目前很多中药的纳米制剂是固相法获得的。

2.1.2气相法是直接利用气体或者通过各种手段将物质变成气体,使之在气体状态下发生物理变化或化学反应,最后在冷却过程中凝聚形成纳米微粒的方法。

1.3液相法以均相的溶液为出发点,通过各种途径使溶质与溶剂分离,溶质形成一定形状和大小的颗粒,经热解或水解等处理后得到纳米微粒。

2.1.4微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相。

3.1.5纳米给药系统在纳米药物研究中,近年还发展了一种新型纳米给药系统,是以固态的天然或合成的高分子材料为载体,将药物包裹于高分子材料制成粒径为50~1000nm的固体微粒给药体系。

2.纳米药物的特点

2.1 增强药物溶解速率

应用纳米技术的制备工艺,使药物颗粒缩小到纳米级水平,随着单位药物的总表面积增加,而使药物与胃肠道液体的有效接触面积明显增加,药物的溶出速率也随之提高。

2.2 扩大药物在过血―脑脊液屏障,实现脑位靶向。

2.3 稳定药效 有些药物进入消化道或体内后,容易被蛋白酶、酯酶或核酸酶等分解酶降解,失去药效,而制成纳米药物后,可防止被这些分解酶降解,延长药物作用时间。

2.4 控制药物在体内的释放纳米药物制剂不但可以增强难溶药物的溶解速率并改善其吸收,而且按载体材料,还可使一些在体内被快速代谢失效的速溶药物减慢溶出度。

2.5 增强药物作用靶向性纳米药物制剂与以往药物剂型比较,最突出的优点是具有明显的靶向性。也就是说它能将药按设计途径输送到药物的靶位。这样不仅可提高疗效,而且可降低药物的不良反应。

3.纳米药物的应用

3.1 制备智能化药物 所谓智能化药物是指能依据病理变化将药物送到指定的病变部位,发挥出药物的最大疗效,而对正常组织的伤害降到最低限度的药物制剂。

3.2 在诊断和辅助治疗中的应用目前用于诊断的纳米制剂如造影剂、定位剂、染色剂等发展很快,现已有多种应用于临床。如纳米氧化铁造影剂静脉注射后,只被肝脏和脾脏的网状内皮细胞吸收,恶性肿瘤细胞不能大量吸收氧化铁。利用这种正常细胞和恶性肿瘤细胞之间的功能差异发现病灶。

3.3 在中药开发中的应用借助纳米技术,可在纳米中药的制药技术、药效研究等方面建立一系列具有自主知识产权的专利技术和创新方法;纳米技术的应用,可大大提高中医药的现代化和标准化程度,加速中医药与国际医药业发展接轨的步伐,更有利于药物的规范化研究、开发、生产、管理;纳米技术不但可大幅度提高药物的活性和生物利用度,甚至可能产生新的药效及降低毒副作用,并有极强的靶向作用,甚至可以治疗一些疑难绝症;通过纳米技术,可减少病人用药剂量,从而节约有限中药资源。

4.纳米药物的前景展望

纳米医药技术的基础理论及载药纳米粒药物的制备还不完善,应用还处于实验室和动物实验阶段,能在临床应用的还不多。因而,随着纳米制剂技术和新药研究的发展,将有一批作为特殊作用的纳米药物研制成功,如靶向给药,缓释或控释药物,延长药物作用时间,改变作用方式或给药途径,降低或避免不良反应等,将成药物研究提供新的方向。

参考文献

1 丁志平,乔延江. 纳米技术与纳米中药[J]. 北京中医药大学学报,2003,26(4):43-45.

2 王世敏,许祖勋,傅晶. 纳米材料制备技术[M]. 北京:化学工业出版社,2002.7-59,61-105,109-129.

3 Liu JW , Shao MW ,Chen XY,et al. Large-scale synthesis of carbon nanotubes by an ethanol thermal reduction process [J].J Amer Chem Soc ,2003, 125(27): 8088-8099.

4 Manoj V ,Timothy ME ,Dinesh SO, et al. Pluronic mi-croemulsions as nanoreservoirs for extraction of bnpivacaine from normal saline[J]. J Amer Chem Soci, 2004, 126(16): 5108-5112.

5 闫鹏飞,郝文辉,高婷. 精细化学品化学[M]. 北京:化学工业出版社,2004,8-50.

6 Damage C, Michel C, Aprahanian M ,et al. New approach for oral administration of insulin with polyalkycyanoacrylate nanoparticles as drug carrier[J]. Diabetes, 1988, 37: 246-258.

第8篇:纳米技术治疗范文

关键词:纳米材料;纳米安全性;科学发展

一、纳米技术与纳米材料简介

纳米(nano)本是一个长度单位,1纳米为10-9米,即十亿分之一米。大部分原子和分子的尺寸约为0.1-100nm,当很多宏观物质的尺度降低到纳米量级时会表现出很多与我们平时所观察到的不同的现象,所以研究材料在0.1-100nm尺度范围内的性质和应用就形成了当前非常热门的纳米科学与技术。

90年代末,纳米技术在我国也有着快速发展。纳米科技与以往的科技领域有所不同,它涉及物理学、化学、生物学和电子学等科学技术领域,并引发核派生了纳米物理学、纳米化学、纳米生物学和纳米材料学等诸多新领域。其中纳米材料学是研究纳米材料的设计、制备、性能和应用的一门纳米应用科学[1]。如纳米尺度的结构材料能在不改变物质化学成分的情况下,通过调节器纳米尺寸的大小来控制材料的基本性质,如熔点、磁性、强度和颜色等。纳米材料是纳米科技的基础,只有提高纳米材料的性能才能实现需要的功能。所以,纳米材料在整个纳米产业中占有很大的市场份额。

二、纳米材料的健康效应

1、正面效应:纳米医学

纳米材料已经或正在走进我们生活的诸多方面,如生物医学领域的纳米制药和疾病监测的方面。因为纳米材料尺度小、活性强,用纳米材料制成的药物可以准确的杀死病变细胞不会对健康细胞产生影响,这是常规药物所不能实现的。纳米生物芯片技术将传统的生物样品检测实验室集成到一个芯片上来,大大增强了检测速度和精度。

纳米材料技术与生物技术结合为生物医学领域带来了全新的视野,纳米材料也医药学方面和生物芯片方面取得了显著的成绩。随着纳米材料在生物医学领域更为广泛的应用,疾病诊断、临床治疗等将会变得更有效率,治疗费用也会随着纳米技术的不断成熟又逐步降低,从而我们的生命健康保障将会得到很大提高。

2、负面效应:纳米毒理学

尽管纳米材料在生物医学领域产生的革命性的变化,但是纳米材料的安全性问题同时也非常值得我们关注。任何一门技术都具有双面性,即有有利的一面也会存在有害的一面,纳米材料也不例外。

对纳米材料安全性的研究工作最早的是英国牛津大学和蒙特利尔大学的科学家在1997年发现防晒霜中的TiO2和ZnO纳米颗粒会破坏皮肤细胞的DNA。直到2003年3月,美国化学会年会上的有关纳米颗粒对生物可能存在危害的报告才引起了世界对纳米材料安全性的广泛关注。纽约罗切斯特大学的研究者让大鼠在含有粒径为20 nm 的聚四氟乙烯(特氟龙)颗粒的空气中生活15分钟,大多数实验大鼠在随后4小时内死亡;而另一组生活在含120 nm特氟龙颗粒的空气中的大鼠,则安然无恙[3]。

三、纳米材料负面效应的解决方法

1、各国政府的对策和行动

20世纪末才发展起来的纳米科技正在逐步完善,已经应用于关系国家安全和国民经济的许多重要领域。21世纪是科技迅速发展的时代,纳米材料已经应用在众多国防和军事领域,如美国B-2隐形轰炸机的表面涂层材料,新型的特种兵作战服。而且,纳米材料作为其他行业的基础,为传统的制造业带来了新的生机,纳米材料有着巨大的市场前景。纳米材料标准化方面引起了纳米研究大国的激烈竞争,纳米材料的安全性问题正是竞争的交点。为了率先占领纳米科技的未来市场制定纳米材料标准,纳米材料的安全性问题更显得非常重要。

2、结合我国国情的策略

我国的纳米材料科技研究起步较早,与国际领先水平差距不大。纳米材料在化妆品、涂料、纺织业、汽车工业和半导体产业都有着很好的市场前景。就我国纳米材料市场来看,其主要产品为金属纳米颗粒材料、纳米氧化物、纳米碳化物和半导体纳米材料,如银、铜和铁等纳米颗粒材料,纳米氧化锌,碳纳米管和纳米钛酸钡等。2007年出版了纳米毒理学领域第一本专著《Nanotoxicology》。此外,北京大学化学生物学系、北京大学医学部、中国科学院武汉分院、中国医学科学院、中国科学院化学所、军事医学科学院等也都成立的纳米材料安全性方面的实验室开展研究工作。白春礼院士在第243次香山科学会议上指出:"任何技术都是有两面性的,纳米技术也可能同样是把双刃剑。正确的态度是吸取20世纪科学技术发展的经验和教训,以科学发展观为指导,在发展纳米技术的同时,同步开展其安全性的研究,使纳米技术有可能成为第一个在其可能产生负面效应之前就已经过认真研究,引起广泛重视,并最终能安全造福人类的新技术"[3]。

四、科学发展营造绿色纳米世界

纳米材料研究和产业的发展要符合科学发展观的内容,要坚持以人为本,全面发展和可持续性发展。纳米材料安全性的题不仅关系到产业的发展和国家的利益,更关系到人民群众的生命健康。新兴的纳米材料科技要为人民所用,而不是要危害人民的健康。纳米材料产业的发展必将成为我国经济的新的增长点,也会带动制造业、国防产业等领域的发展。健康、绿色的纳米材料是纳米材料科学发展的最基本前提。坚持纳米材料的科学发展观,促进纳米材料、人与社会的和谐发展,实现经济发展、科技发展和人口、资源、环境的协调发展[9]。

当前,传统行业里的"中国制成"已经在世界范围内站住脚,但是在当前世界的利润分配中,制造环节的利润越来越低而且产生巨大的资源消耗和环境破坏,取而代之的是研发和服务环节的利润所占比例越来越大,这就是著名的"微笑曲线"。

我国著名科学家钱学森曾说:"纳米和纳米以下的结构是下一阶段科技发展的一个重点,会是一次技术革命,从而将是21世纪又一次产业革命[1]。"纳米材料的安全性问题是困扰纳米科技进一步走进人生生活的关键,只有解决好纳米技术也人类发展的关系,营造一个绿色纳米科技发展环境,人类才能真正的享受到纳米科技的福音。

参考文献:

[1]徐云龙,赵崇军,钱秀珍.纳米材料科学概论[M].上海:华东理工大学出版社,2008:21.

[2]贾宝贤,李文卓.微纳米科学技术导论[M].北京:化学工业出版社,2007:3.

[3]赵宇亮,赵峰,叶昶.纳米尺度物质的生物环境效应与纳米安全性[J].中国基础科学科学前沿,2005:19-23.

[4]赵宇亮,白春礼.纳米安全性:纳米材料的安全效应[J].世界科学技术,2005,(4).

[5]汪冰,丰伟悦,赵宇亮,邢更妹,柴之芳.纳米材料生物效应及其毒理学研究进展[J].中国科学,2005,(1).

[6]Y.Song, X.Li, X. Du.Exposure to namoparticles is related to pleural effusion, pulmonary fibrosis and granuloma[J].Eur Respir,2009,34:559-567.

[7]Service R F.Nanomaterials show signs of toxicity[J].Science,2003,300,(11):243.

[8]张立德.我国纳米材料研究的现状[J].中国粉体技术,2001,(5).

第9篇:纳米技术治疗范文

关键词:纳米金;生物医学技术;应用现状;

1前言

如今纳米技术随着时代的发展已经得到了很大的发展,成为了科学研究的热点,纳米金是指直径0.8~250mm的缔合金溶胶,它属于纳米金属材料中研究最早的种类,纳米金具有良好的纳米表面效应、量子效应以及宏观量子隧道效应,它具有很多良好的化学特性,比如抗氧性和生物相容性。

2纳米金在病原体检测技术中的应用现状

近些年来生物医学界对于流行病学的研究和对病原微生物的诊断已有了不小的进展,传统的分离、培养及生化反应逐渐被时代所淘汰,运用纳米金的免疫标记技术作为新的高通量的、操作简单的检测技术被广泛应用于临床病原体的检测,这种检测技术快速且准确,十分适合在临床上使用。1939年,两位科学家Kausche和Ruska做了一个小小的纳米金实验,他们将烟草花病毒吸附在金颗粒上,并在电子显微镜下观察,发现金离子呈高电子密度,就此打下了纳米金在免疫电镜中的应用基础。从1939年后生物医学技术不断发展,纳米金标记技术也广受世人关注,成为了现代社会四大免疫标记技术之一。作为一种特殊标记技术,纳米金在免疫检测领域受到了广泛的应用,使用纳米金粒子做探针,观察抗原抗体的特异性反应,放大检测信号,由此检测抗原的灵敏性。纳米金技术具有良好的检测灵敏性,在早期还支持诊断并监控了急性传染性病毒,根据这一特性,秦红设计了快速检测黄热病病毒的技术,在纳米金颗粒上标记上金SPA-复合物的标志,通过免疫反应实验我们发现病毒抗体与纳米金颗粒结合,并形成了人眼可见的红线。这种检测方法的优点有:不需要器材、简单、迅速、廉价、高效,极大地推动了黄热病病毒检测技术的更新,在黄热病的防控事业上有着深远意义。利用纳米金作为免疫标记物来检测的除了黄热病病毒,还有致病寄生虫。我国的民族种类多样,一些少数民族人民由于自身的文化特点,喜食生食或半生食物,这就形成了寄生虫病的传播,我国经济大发展后,人民的生活水平得到了提高,但还是喜食半生动物肉或者内脏,造成了食源性寄生虫病发病率的上升,严重影响人民身体健康。目前我国的临床诊断寄生虫病技术包括三方面:病原学检查、免疫学检查以及影像学检查。运用纳米金检测技术,不仅缩短了取材时间、缩小了取材范围,而且检出率高、创伤性小,受到了患者的广泛欢迎。

3纳米金在核酸、蛋白质检测中的应用现状

纳米金粒子具有特殊的表面等离子体共振现象,被应用在核酸构建和分析检测蛋白质领域中,可以把生物识别反映转换为光学或电学信号,因此人们将其与DNA、RNA和氨基酸相结合,在检测核酸和蛋白质方面收效颇丰,并且这种检测方法制备简单,同时还具有很多优点,比如良好的抗氧化性和生物相容性,下面具体讲一下纳米金检测技术在核酸和蛋白质检测中的应用。首先是在核酸检测中的应用。美国首先利用纳米金连接寡核苷酸制成探针检测核酸,将纳米金做标记与靶核酸结合形成超分子结构,由此来检测核酸。利用纳米金技术检测特定病原体和遗传疾病首先要做的就是检测核酸的特定序列,在芯片点阵上整齐排列纳米金颗粒,利用TaqDNA连接酶识别单碱基突变,等待连接后,就可以经过一系列步骤得出单碱基突变结果,得到所需信息。在临床应用中使用纳米金技术的表现有高灵敏检测谷胱甘肽和半胱氨酸的新型电化学生物传感器,这种机器对于谷胱甘肽和半胱氨酸的检出限值更低,在检测及预防糖尿病、艾滋病等疾病方面具有很大的临床优势。其次是在蛋白质检测中的应用。纳米金与蛋白质的作用方式非常多样,有物理吸附方式、化学共价结合方式以及非共价特异性吸附等等方式,在此背景下,我们可以利用纳米金检测并治疗疾病和检测环境污染。

4纳米金在生物传感器制备中的应用现状

目前纳米金在生物传感器检测中的应用受到了人们的普遍关注,如上文所说,纳米金具有特殊的表面等离子体共振现象,这是制备生物传感器的基础。利用这种特性,科学家们做了许多实验,比如拉曼光谱试验,使用Uv-Vis光谱和拉曼光谱仪测试金纳米颗粒的表征,得出结论是可以根据纳米金颗粒的不同形貌制作不同浓度分子的探针,受外周环境介电特性和颗粒尺寸大小的影响,纳米金颗粒会表现出不同的形貌特征,比如吸收光谱、发生蓝移。纳米金是属于一种非常微小的贵金属,作为贵金属,它具有很好的导电性能,利用纳米金进行免疫检测时会大量聚集纳米金,从而增强反应体系的电导,顺利通过电导检测免疫反应。利用纳米金的高检测灵敏性可以进行电化学免疫传感器的制备。

5其他领域的应用现状

目前纳米技术的研究中,纳米金在生物医学技术中的应用研究是重要研究课题,除了上文中说到的病原体检测、核酸以及蛋白质检测还有生物传感器制备中的应用,纳米金技术同时也被广泛应用于肿瘤的诊断与治疗、药物载体以及CT成像。纳米金具有特殊的组成结构,它可以轻易被修饰并负载化合物,可以用于检测并治疗肿瘤,还可以被用于肺癌的检测及治疗,目前的大量数据都表明纳米金技术在诊断并治疗肺癌上有极大的优势。

6结语