前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的公路隧道照明设计主题范文,仅供参考,欢迎阅读并收藏。
关键词:隧道;照明设计;重要性;可行性
中图分类号:U453 文献标识码:A
在隧道内,过高的照明亮度,不仅会造成隧道建设时造价的提高,同时也会造成运营和维护时成本的提高,而且会造成电的浪费等情况;而过低的照明亮度,又会造成车辆行驶时的安全隐患,因此,合理确定隧道的设计速度,在二级公路隧道照明设计中是相当重要的。二级公路的设计速度主要有80km/h、60km/h、40km/h。笔者依托怒江州六丙公路某隧道工程,通过对隧道照明在60km/h、40km/h设计速度下,灯具、过渡段长度等的不同配置进行分析比较,得出二级公路隧道照明设计采用40km/h设计速度的重要性及可行性。
1 工程概况
某隧道起止点桩号为K180+342~K180+940,隧道全长598m;隧道进口端K180+342位于直线段上,隧道出口端K180+940位直线段上;隧道所在路段纵坡为-0.3%;隧道最大埋深约为158m。此隧道为双向交通,设计交通量为7723 pcu/d,设计小时交通量为522 veh/h。
2 计算分析
2.1 计算公式及计算参数的选取
本文对路面照度的计算采用《公路隧道通风照明设计规范》JTJ026.1-1999中的利用系数曲线图计算方法。使用公式(1)进行路面照度计算,使用公式(2)进行入口段长度计算,计算参数见表1。
(1)式中:Eav为路面平均水平照度;N为灯具布置系数;η为利用系数;W为隧道路面宽度;S为灯具间距;M为灯具的养护系数;Ф为灯具额定光通量。
(2)式中:Dth为入口段长度;Ds为照明停车视距;h为洞口内净空高度。
2.2 计算结果分析
通过以上计算,得出隧道照明灯具的数量及入口段与过渡段长度,详见表2、表3。
从表2、表3可知,在采用60km/h设计速度时,全隧道照明灯具数量为235套,灯具总功率为23.89kW;入口段及过渡段长度为165m,布灯方式上需采用双侧对称布置。在采用40km/h设计速度时,全隧道照明灯具数量为75套,仅为60km/h设计时速下灯具数量的31.9%;灯具总功率为5.81kW,仅为60km/h设计时速下灯具功率的24.3%;入口段及过渡段长度为80m,布灯方式上采用中线布置就能满足要求。由于布灯方式的不同,还可以节约大量的电缆、电缆桥架等工程量。所以,在二级公路隧道段采用40km/h设计速度,不仅能节约建设费用,还能节约运营时的能耗及费用,是建筑节能设计很重要的一个环节。
3 二级公路隧道采用40km/h设计速度可行性分析
3.1 从设计规范上来讲,二级公路隧道采用40km/h设计速度可行
根据《公路工程技术标准》JTG B01-2003,《公路路线设计规范》JTG D20-2006等规范于二级公路设计速度的规定。
二级公路作为干线公路时设计速度宜采用 80km/h。二级公路作为集散公路时混合交通量较大平面交叉间距较小的路段设计速度宜采用60km/h。二级公路位于地形、地质等自然条件复杂的山区经论证该路段的设计速度可采用40km/h。
隧址区一般都处于地形、地质等自然条件复杂的地区,所以在二级公路中选取隧道设计速度为40km/h是可行的。
3.2 从目前隧道运营情况来讲,二级公路隧道采用40km/h设计速度可行
在二级公路实际运行过程中,为了保证行驶车辆的安全,在进入隧道时,一般均要减速行驶。且隧道限速均为40km/h。所以在二级公路隧道段,选取40km/h设计速度是可行的。
3.3 从改造技术上讲,二级公路隧道采用40km/h设计速度可行
在隧道运营过程中,在需要满足公路提速的要求时,隧道的照明技术改造极为简单,主要是增设部分灯具及改变布灯方式,同时还会增加部分相应工程量,但总体来讲,不会涉及到隧道结构的改造,所以改造技术简单。
4 结论及建议
(1)二级公路隧道采用40km/h设计速度是可行性的。
(2)当设计速度为60km/h时,在入口段及过渡段需采用双侧布灯的方式,而设计速度为40km/h时,仅采用中线布灯的方式,可以节约大量的电缆、电缆桥架等工程量;
(3)二级公路隧道段采用40km/h设计速度,不仅能节约建设费用,还能节约运营时的能耗及费用,是建筑节能设计很重要的一个环节。
参考文献
[1]JTG D60-2004,公路隧道设计规范[S].重庆交通科研设计院.
[2]JTG B01-2003,公路工程技术标准[S]. 交通部公路司.
[3]JTG D20-2006,公路路线设计规范[S].中交第一公路勘察设计研究院.
关键词:公路隧道照明“低碳经济“节能减排”
中图分类号:U459.2文献标识码: A 文章编号:
1 前言
在高速公路建设中采用隧道节能照明技术可以节约电能,降低运营成本,提高高速公路的经济效益和社会效益。目前隧道照明的节能,主要是采用高功率因数的照明灯具(配高效电子镇流器)、隧道内两侧铺反射率高的装修材料、尽量缩短供电电缆长度以减少线路损耗、合理布置配电房的位置、集中调光控制、减少洞外亮度等方法。为了进一步节能,设计者还把隧道内的灯具分为全日灯、黄昏灯、白日灯和应急灯等几个回路进行人工或自动的控制。这些方法,虽然有一定的节能效果,但在实际营运中电能的浪费还是十分严重,营运过程中为了节约电能产生了照明与行车安全和隧道监控之间的矛盾等问题。
2公路隧道运营照明存在问题
近20年来,我国交通运输部门投入大量科研经费,围绕公路隧道照明工程的实际问题开展技术研究并取得许多重要成果,强有力地推动了我国公路隧道照明技术的进步。但在工程设计、运营管理中仍存在诸多问题,主要表现为以下方面。
2.1 照明设计参数有待完善
《公路隧道通风照明设计规范》颁布实施至今已有10余年,在这期间,我国公路隧道数量、规模及类型都发生了较大变化,同时新理论、新技术、新设备、新材料不断涌现,因而部分照明设计参数有待进一步修正和完善 ,如短隧道照明设计方法、洞外亮度L。 (s)参考取值、各照明区段亮度指标等。国际照明委员会(CIE)制定的《公路隧道和地道照明指南》 固然对我国公路隧道照明设计有借鉴之处,但并不完全适用。
2.2 照明控制方式较为落后
部分高速公路中、短隧道照明无法实现远程人工现场实时自动控制,甚至需要隧道管理人员在现场人工控制,若高速公路全线中、短隧道数量较多,则每日现场工作量较大:一方面,造成不必要的电能浪费;另一方面,耗费较大的人力、物力去开关照明灯具,运营管理效率太低 。绝大多数公路隧道照明采用时序分级调光控制法,虽然其控制模式简单、可靠,但无法结合天气、洞外亮度、交通量等时变参数从宏观层面对整个隧道照明系统进行自适应控制,同时受照明配电回路所限,只能实现3~6级照明控制等级,“过度照明”、“无效照明”现象较为严重。
2.3 照明节能理念存在误区
公路隧道照明节能并非简单地开关某些灯具,而是要求建立在行车安全基础上的最大节能,即公路隧道照明节能不能以牺牲交通安全为代价。部分隧道管理人员一味追求节电省钱,致使公路隧道照明控制方案的随意性、主观性很大 ,这种做法其实忽视了公路隧道照明的特点和本质,对隧道行车安全危害极大。
2.4现有隧道照明控制营运中节能与隧道监控的矛盾
隧道监控是隧道管理的重要组成部分,目前隧道照明与监控之问产生的矛盾主要在夜问。部分营运者为了省电,夜幕降临时关闭隧道内所有的灯,由于目前国内隧道普遍采用非红外线摄像头,隧道内部一片漆黑,使得无法发挥有效监控,夜间直接造成从摄像头到监视器之问大量设备电能的浪费。这种问断的监控也不符合重要隧道内所需的监控要求。夜间,在有人进入隧道或发生偷盗、破坏等现象,很难被及时发现,在车辆发生故障或发生交通事故时,不但监控不到,而且在处理时不能提供必要照明。在设计中应考虑在隧道发生紧急情况时,隧道内灯具能够根据需要自动控制照明亮度。比如隧道内发生火灾或拥挤堵塞时,为帮助隧道及时排除危险,系统自动将全部灯点亮,系统的手动控制应能够可以在多处实现,如监控中心,隧道管理房或隧道内的其他位置等。从安全、监控,节能及所能提供便利等方面综合考虑,夜问隧道内提供适当的照明是必要的。
3 公路隧道照明节能技术应用
针对新建公路隧道和在运营公路隧道不同的照明节能需求,本文给出了上述节能措施的应用方案。工程实践表明,综合运用公路隧道照明节能技术,可实现公路隧道照明综合节能20 %以上的总体目标。
(1)采用先进的隧道照明控制和管理系统在隧道实际运营过程中,隧道照明取值与车速、车流量、洞外光照有密切的关系。隧道照明控制参数研究的一个目标,是在确保安全的前提下,实现隧道照明的高效节能。隧道照明节能综合控制系统,以检测得到的洞外亮度、车速、车流量等交通参数为输人,以照明节能控制器为执行设备,开发照明节能控制系统,该系统能够根据交通参数和环境参数,自适应调节控制灯具亮度,使隧道进出I:1段的加强照明的自动调光系统与外部光线的强度对应,设置信号反馈控制装置,力求做在保证安全行驶条件的前提下,实现灯具照明的最优控制。
(2)采用隧道照明分区控制方法
在隧道照明系统中,除按照规范要求,分为入口段,过渡段,中间段,过渡段,出口段外,并设置灯光分区域分组控制系统,当夜间车流量减少时,自动采集跟踪筛选调整照明灯具数,从而减少照明能耗。
(3)增大光反射比
选择合适的灯具,设置合理的安装角度,并且处理增大顶棚和墙壁的反光比,使隧道顶棚、墙和路面之间产生多次反射作用,预计可使隧道照明反射光增量系数比表面未作处理的隧道约增大20% ,即可达到节电20%左右的效果。
(4)制定有效的管理维护操作规程
管理维护操作规程应有效的制定长效机制,对隧道内光源、灯具等按规定进行维护,对灯具进行定期清洁工作,对光源和附件进行检修,尤其是检查气体放电光源的无功补偿电容有无击穿,此外还需要对照明控制装置进行调整等,提高照明灯具的维护系数,使照明系统处于良好的工作状态下,使隧道照明系统不但满足照明要求,而且达到节能要求。总之,隧道照明系统从以上角度,可以有效达到隧道照明管理节能。
关键词: 高速公路隧道照明 设计参数节能措施 控制措施管理措施
目前,陕西省高速公路总里程已突破了3000公里,到2015年高速公路总里程将达到4100公里。陕西多山,随着陕西省高速公路隧道照明的费用逐年增加,目前,陕西省的高速公路隧道约占总通车里程的2%,2008年我省高速公路隧道照明费用为4500万元,当我省高速公路里程达到4100公里时,隧道的照明费用预计将到达2亿元,隧道照明的运营成本将成为一个不容轻视的问题。如何在保证行车安全的前提下,尽可能地节约照明费用,是高速公路建设和运营中必须解决的问题之一。
陕西省交通厅和陕西省交通建设集团及陕西省高速集团对隧道照明的节能和行车安全历来非常重视,从2004年起,陕西省交通厅对隧道照明节能进行了应用研究,开展了多项的课题研究和项目攻关,并将研究的结果在随后的全省高速公路的建设中推广应用,有效地将科研成果迅速转换为生产力。本文对高速公路的隧道照明节能技术应用做进一步研究提供参考和经验借鉴。
一、设计参数的节能调整
设计是工程的根本,准确合理地采用设计参数,能避免较大的能源浪费,是非常有效的节能途径之一。我省高速公路建设起步较晚,隧道照明节能设计中的措施与高速公路的飞速发展极不适应,大多数的隧道照明设计都存在过度设计问题,设计出的隧道照明系统设计值偏大、保守,对此,我们从设计上就着手考虑合理的节能。
1. 选取合适的洞口亮度
一公里的隧道,其加强照明的总功率,约占整个隧道照明功率的70%,而加强照明设计取决于洞外亮度L20(S),因此洞外亮度L20(S)是隧道照明系统的设计基准之一,洞外亮度L20(S) 的正确设定,对工程投资和运营电费都有极大的影响。在隧道照明设计阶段,隧道洞外亮度L20(S)在多数情况下无法实测得到,一般按查表法获取洞外亮度L20(S) 值。查表获取的洞外亮度L20(S) 值与实际值存在很大的偏差。根据《公路隧道通风照明的设计规范》要求,当土建施工的隧道洞口成型后,设计人员应对洞外亮度L20(S)进行实测,设计的L20(S) 值与实际值误差大于±25%时,必须对设计的值进行修正。但在实际工程设计中很少做到,基本上洞外亮度L20(S)以4000cd/m2取值。为此,2005年8月起,我们组织联合课题组历时半年对公路隧道照明基本设计参数进行研究。课题研究主要包括5个方面内容:
(1)洞外亮度值传统测试方法分析;
(2)利用数码照片进行洞外亮度测试研究;
(3)隧道洞口段自然光利用研究;
(4)隧道洞外亮度数据库的编制与应用;
(5)对实体工程照明设计优化及建议。
通过测试和研究得出,目前陕西省高速公路山区高速公路隧道洞口亮度的取值采用端墙式洞口取值为3500 cd/m2,削竹式洞口亮度取值为3000cd/m2进行隧道照明设计,引入端利用自然光后可以减少隧道入口照明灯具,优化后的照明设施和运营费用比原设计节约10%-15%,并且该结果在随后的高速公路的设计得到推广和应用。
2. 根据流量调整基本段的亮度,分期实施照明系统
隧道基本段照明可根据时间、交通流量等信息,合理控制照明的运行和停止。在早期的隧道照明设计中,均采用的车流量大于2400辆/小时来设计的,但是在实际的统计中,我省高速公路绝大部分车流量都小于2400辆/小时,特别在山区的高速公路其车流量远远小于700辆/小时,因此造成建设资金和运营费用的大量浪费。通过调查统计得出近期内福建省高速公路隧道(除沿海高速公路外)车流量都相对较小,大多数日平均流量小于100辆/小时,中远期车流量在700到2400辆/小时之间,因此在对隧道照明设计时,采用配电线路一次设计,变电设备和照明设备分期实施原则,从而达到安全节能的目的。目前陕西山区高速公路隧道的照明系统按交通量小于700辆/小时来实施,在满足行车安全的条件下大大节省了建设和运营的费用。
二、线路上的节能措施
1. 增设自动调压设备
在上世纪在90年代的初期,在照明系统上兴起一种调压节能的方式,当时主要针对农网电压不稳定的情况,即通过在线路上设置一限压或稳压设备,使高压钠灯工作在220V以下,同时利用高压钠灯的光通和电压的非线性,将电压适当降低到200V, 基本保持保持一定的光通,达到一定的节能效果。该方式在业界也有一定的争议,高压钠灯工作在220V的额定电压的下,其效果最高,灯具的工作状态最好,改变灯具的工作电压,是否节能,要看在具体的电网环境;增设的调压设备,自身的功耗,也是考虑的一大重要因素。
自动调压设备主要采用可控硅调压和自耦调压两种方式。可控硅是传统的电力电子器件,后来开始应用到道路照明的节能上,采用可控硅斩波原理,通过控制晶闸管的导通角,将电网输入的正弦波电压斩掉一部分,从而降低输出电压的平均值,达到控压节电目的,但其缺点是可控硅交流调压会产生高次谐波和线路震荡,降低灯泡寿命,还会产生电力污染。
自耦调压是通过一个自耦变压器机芯,根据输入电压高低情况,接连不同的固定变压器抽头,将电网电压降低或升高5V、1OV、15V、20V等几个档,克服了可控硅调压产生谐波的缺陷,实现了电压的正弦波输出,结构和功能都很简单,可靠性也比较高,但是由于其核心部件是一个多抽头的变压器,变压比是固定的,当电网电压波动时,调控装置的输出电压也会上下波动,这样照明的工作电压仍处在不稳定波动状态,还有当设备损坏时有可能会造成电压过高导致灯具大面积烧坏。
通过目前陕西省高速公路使用的电网基本上都是专网,电压稳定,可控硅调压现基本上已不采用,而自耦式调压也只在个别边远山区且电网不稳定的高速公路上使用。
2. 中压隧道中压供电
在早期高速公路长隧道的供电方式大体上均采用在隧道两端设立独立的变电站,由两端向隧道供电,当隧道长度较长(超过2000米)时,这种低压长距离供电,线损较大,末端电压也将会受到很大的影响,为了保证供电质量和降低损耗,往往需要选择截面积很大的电缆进行供电,无疑会增加了大量的投资。陕南高速公路的长隧道多,如果采用传统供电模式,将产生巨大的投资,同时在实际运营中,低压电缆经常性的被盗。针对陕西高速公路的特点,自2005年起对高速公路供配电系统进行了不断的技术攻关,并吸收了国内外先进的中压供电技术,从2005年开始在新建的高速公路上采用了将10kV中压引入隧道且结合地埋式变压器应用的供电模式,保证了隧道长距离供电的需求,成功地解决了长隧道供电的问题,同时采用中压供电,可节省大量的建设资金,降低了线缆的损耗。
三、灯具布设的措施
在设计规范中,中间段灯具的布设方式有中线布置、两侧交错布置和两侧对称布置等三种形式。早期的福建省高速公路隧道照明设计中,中间段灯具布设方式采用中线布置和双侧对称布设两种方式,中线布设效率最高,但是维护不便,需要封闭整座隧道才能进行,对高速公路通行影响很大;双侧对称布设需要两侧都铺设线缆,灯具密度大,造成建设资金的增加,也加大了运营维护的费用。通过了大量的研究、灯具配光计算和试验,在新建的高速公路隧道照明中采用新型的布灯方式:单侧布灯方式。此种布设比中线布设方式好维护,只需封闭单个车道即可进行维护作业;与双侧布灯相比,可节省一半的线缆,并且减少了灯具的布设密度,大大节省了建设和运营的费用。单侧布灯会存在路面照度不很均匀情况,通过了现场的实际检测,单侧布灯路面照明均匀度尚能满足规范的要求。但单侧布灯也存在着光通利用率不高的问题,从设计规范上看,隧道照明的重点在路面及隧道壁2米以下,而2米以上的空间不做要求,高压钠灯的单侧布灯,应受限于灯具的配光曲线,较大一部分光照射到2米以上的空间,通过几年的观察、研究以及人群的调查,总结中间布灯、双侧布灯、单侧布灯的优缺点,目前修改为中间偏右的方式,安装示意图见图1。
图1 隧道内基本段单侧灯具安装示意图
四、灯具的节能措施1. 采用高压钠灯电子整流器
高压钠灯是高强度放电灯中的一种,其具有极好的光效(120lm/W)和合适的光波长,但是,传统高压钠灯采用的电感式镇流器存在功率因数低和自身损耗大的缺点,严重影响高效光源的利用,虽然各高压钠灯均采用了电容补偿,但由于补偿电容的寿命都短于灯具的寿命,且当电容失效时不影响灯具的工作,在通车的隧道特殊环境中,不易发觉电容效。大量低功率因数电器的使用,对电网造成污染,电能得不到充分利用。
为解决电感式镇流器的缺点, 2005年开始在西汉高速公路隧道进行电子镇流器的试点应用,电子镇流器不但可以做到很高的功率因数(0.97以上),自身损耗小,具有显著的节能效果,而且还能在很宽的电压范围内点灯工作,很好地解决了电感式镇流器的缺点。但是电子式镇流器的工作频率一般在20kHz 以上,高压钠灯在这个频率下极易发生声谐振, 使得放电管中原来的热力学平衡状态被破坏,对外直接表现为光强不稳,亮度闪烁, 严重影响照明效果, 甚至造成灯管炸裂,对大多数电子镇流器而言, 其输出多呈恒流特性, 严重声谐振时, 电弧可能突然熄灭, 导致电路中产生过电压, 如果保护功能不够完善, 就有可能造成镇流器的彻底损坏,同时由于电子整流器目前还不能够完全通用,存在与光源匹配问题,给设备维护造成很大的麻烦。由于吉坑隧道外电压波动大,灯具损坏严重已恢复原来的电感式整流器,其他几个试验段灯具损坏率在2.3%左右,目前还在使用。
电子整流器技术还不完全成熟,特别在高速公路隧道这种恶劣的环境下,存在问题更多,因此到目前为止依然难以在我省高速公路隧道照明中得到大规模的推广应用。
2. 采用电磁感应无极灯
无极灯是近几年国内外电光源界着力研发的高新技术产品,综合了电子学、等离子学、磁性材料学等领域最新科技成果。它通过以高频感应磁场的方式将能量耦合到灯泡内,使灯泡的气体雪崩电离形成等离子体,等离子体受激发原子返回基态时自发辐射出254nm的紫外线,灯泡内壁的荧光粉受紫外线激发而发出可见光。它与传统高压钠灯光源最大的不同之处在于无电极、寿命长(50000小时)、光衰低、恒功率输出,可大大节省维护费用。此外,无极灯可采用智能控制技术,实现自身调光控制。
2007年开始,在陕西省高速公路隧道应急照明和短隧道进行无极灯试点应用,当时一方面考虑无极灯的最大优点是寿命长,而陕西隧道中的应急灯照明24小时工作,在2007年以前建设的隧道中采用的普通荧光灯和高压钠灯寿命(即稳定光通时间)有限,普通荧光灯寿命一般在5000小时,高压钠灯寿命在15000小时,特别是普通荧光灯维护量较大,给运营管理带来较大的麻烦。另一方面考虑电磁感应无极灯灯泡内壁采用的是荧光粉,其光线的波长不像高压钠灯那样具有透雾性,而在隧道中因通风问题、汽车尾气等,常有烟雾出现,因此在长隧道的基本照明仍采用高压钠灯,以利于行车安全。
经过了几年实践总结,笔者认为无极灯寿命长的优点更大于节能的意义,从光学指标上看,无极灯的光效尚低于高压钠灯,在实测中无极灯的照度也低于高压钠灯。当然,目前在学术上还有白光照明和高压钠灯照明对人眼视觉影响的争议,主要在测试的照度仪表和人眼瞳孔所接受照度的差异,我们也在对白光照明在隧道中的应用做进一步的研究。目前我们认为无极灯适用于应急灯、紧急停车带、横洞等,在陕西省高速公路后续新建的隧道中的应急照明、紧急停车带照明均采用无极灯,并在已运营的隧道应急照明也逐步采用无极灯代替荧光灯和高压钠灯。
经过多次的实验和调查,无极灯作为白光照明,不适用于隧道入(出)口段的加强照明,隧道口采用无极灯并不能有效的消除黑洞效应。无极灯也不适用于短隧道的基本照明。
3.采用LED照明灯具
LED作为一种新型光源, 具有寿命长、发光效率高、功耗低、启动时间短、显色指数高、工作温度低、方向性好、工作电压低、无紫外辐射、环保等众多优点,已经在一些照明领域应用。隧道照明应用新型LED隧道灯具有其他灯源无法比拟的优势,LED做为半导体照明,虽然目前工程应用中的芯片光效还达不到高压钠灯的光效,但其定向性强,灯具光通利用率高,特别在隧道应用中,较好的将照明的重点控制在路面及隧道壁2米以下,带来了很大的节能的空间,目前在国内已经有部分隧道照明工程使用了LED隧道灯。从2007年4月起,陕西省高速公路也开展了LED隧道应用研究工作,跟相关单位联合成立了课题研究小组,对全国16个LED厂家进行跟踪测试,并选用了两家灯具分别安装在高速公路部分隧道左右洞,进行各个照明段的跟踪测试,从近一年的跟踪测试,LED照明基本上能达到30%的节能。但我们发现目前LED隧道照明还存在着一些问题,目前市场上LED灯具的质量差距较大,从吴子高速公路隧道对全国16个LED厂家一年的跟踪测试看,灯具完好未发生故障的仅有3家;光衰较大、色温漂移严重,上述16个LED厂家一年的光衰均在50%以上,各别厂家的灯具色温漂移达1000以上,两家灯具光衰达5%;驱动电源寿命短,上述16个厂家电源不合格的占一半以上,两厂家灯具3个月内也发生过部分灯具的质量问题。
虽然,LED照明灯具存在一些问题,但LED照明是节能照明的发展方向,随着芯片技术发展和成本的进一步下降,特别是隧道白光照明理论的深入研究,LED隧道照明将会在高速公路隧道照明中得到更广泛的应用。
五、控制措施
陕西省高速公路长隧道都设有隧道洞口加强照明闭环控制系统,其结构为:在隧道的洞外设置亮度检测设备,在入口段设置照度检测洞内照度,检测设备自动检测洞内外光亮度值,由本地控制器上传送入监控分中心计算机,经计算机处理后产生控制方案,并将控制指令下传到本地控制器,由本地控制器控制照明驱动单元执行,分别控制相应的照明回路。这种动态的控制可达到既安全,又可节能。控制流程图见图2。
图2隧道洞口照明闭环控制
但该系统在照明控制中没得到很好的应用,一方面,在建设阶段,洞口加强照明闭环控制系统均通过简单的设置阀值以达到控制目的,但实际应用中,由于种种的边界因素,是要通过较长时间的洞口环境调查,建立一定的数学模型,才可实现适用的控制。目前在控制系统的建设实施阶段,基本做不到上述的程度,运营中,系统适用差,营运人员都转为时间控制形式,因此系统长期不用。另一方面,闭环控制系统中的亮度计和照度计设置在隧道洞口,其环境较差,特别是洞外的亮度计,常年风吹雨晒,而且还会经常性的雷击,因此日常需要良好的养护和维修,但目前由于种种原因,养护总是不到位,实际运营中基本上以时控或人控方式代替。
由于隧道洞口照明的功率占隧道中功率的大部分,而运营中洞口照明又要根据季节、时间、隧道朝向、气候等因素调节,隧道照明的难点就在洞口照明,也是隧道节能的重点和关键。2008年,我们在陕西高速终南山隧道左洞进行自动调节照明亮度试验和重点研究,该课题采用无极灯的电子镇流器实现无极照度调节,控制系统采用DALI总线方式,无极灯的镇流器组合与调光控制DALI分控制器(Slave)制造成一体,通过DALI主控制器(Master)可对每个镇流器(Slave)分别寻址,实现单灯无极调控。该系统已初步能实现随洞口照度无极调节的功能,为考核系统的可靠性和稳定性,目前系统还在进一步的测试中。
六、管理措施
良好的管理措施对隧道照明的节能起到相当大的作用,根据我们近十年的运营经验,管理措施可归纳几个方面:(1)彻底了解和领会隧道照明的设计意图和相关的规范要求;(2)控制好隧道洞口照明是实现隧道照明节能的关键;(3)基本照明应根据车流做合理的调整;(4)制定合理的照明方案;(5)隧道照明的灯具的清洁维护是隧道照明管理的重点,保证灯具较高的养护系数;(6)定期批量更换光源,使照明光源运行在高效的工况。总之,通过对隧道照明系统进行维护,使照明系统始终处于良好的工作状态下,满足隧道照明要求,达到管理上的节能。
七、结语
高速公路隧道照明节能涵盖的内容是多方面的,要实现系统节能,就要在各个环节都要实施节能措施。设计环节的节能是节能的基础,消除过度设计、选择合适的参数、根据车流情况分期实施等都是实现节能的基础工作。管理环节是实现隧道照明节能的关键,提高养护系数,制定合理照明方案等都是隧道照明的重点。采用各种控制方式和消除中间损耗,以及终端光源的研究创新是实现隧道照明节能的重要手段,尤其是节能型光源和灯具的采用。
关键词LED 照明 公路隧道 节能 调光
中图分类号: U459.2 文献标识码: A 文章编号:
1 前言
交通运输行业是国家确定的节能减排的重点行业之一,国务院明确要求加快建设以低碳排放为特征的交通运输体系,发展资源节约型、环境友好型交通行业。作为交通领域节能减排重点,隧道节能备受社会关注。
以湖南省某3km长高速公路隧道为例,其照明总功率接近300kw,按照每天有一半左右的灯工作,电费按0.6元/度计算(实际电价还在不断升高),每年的电费大约是80万元,每天平均是2160元,如果将3km的隧道折算成多座中短隧道,例如换成10座300m的隧道,由于这些隧道主要都是加强照明,其照明总功率接近1400kw,按照每天有一半左右的灯工作,电费按0.6元/度计算,每年的电费大约是307万元,每天平均是8400元,电费的支出将更是惊人。
隧道照明成了困扰公路运营单位的沉重经济负担。而为节约隧道照明费用,减少电费支出,国内部分隧道,特别是刚建成通车且车流量不大的高速公路隧道,出现了运营管理部门关闭部分隧道灯,或关闭一侧灯光,甚至全部关闭的极端现象,严重影响安全行车。如何解决安全行车与节约能源之间的矛盾,达到“安全行车与高效节能的完美结合”,是摆在当前隧道管理者、建设者、运营者面前一项急需解决的重大任务。
2 隧道照明光源
隧道照明中一般选用的光源主要有荧光灯、高压钠灯、低压钠灯和高压汞灯以及新兴的LED灯等。隧道常用光源性能对比如下表所示
从表格数据得出LED灯具有显色性好,色温高,寿命长,电源效率高,光效出众的优势,可见LED灯具作为隧道灯具具备先天的优势。
3 隧道照明节能控制方式
3.1 隧道照明节能控制一般原理
隧道照明最根本的要求是:满足司机视觉要求,满足人眼适应曲线。
隧道照明节能控制原理,即是在一定隧道条件下,不同运营工况及外部环境条件下最优计算隧道照明需求并实时精确控制照明输出的方法。这主要包含了两个方面的内容:一是,照明需求的最优化计算;二是,实时精确的照明控制输出。
“照明需求的最优化计算”实际是要满足规范的要求,是对现有规范的执行。设计中以交通量、车速参数为基础,设计参数一般考虑了远期的照明需求,目前也有采用分期实施的做法。
“实时精确的照明控制输出”实际是理论与实际的有效结合,实现一种结构简单、可靠性高、性价比高、控制精度高照明系统。
实时精确的照明控制输出对于节能的一般原理,如下图示(x 轴时间T,y 轴亮度需求L)。传统的分级控制方式(曲线C1)照明亮度等级少,控制响应及调整频率低,造成能源浪费。动态调光方式整个照明控制输出接滑曲线,可以快速响应跟踪照明需求曲线,可以得到最优的控制效果并能够达到节能的目的。
Q 照明计算需求曲线,C1 传统分级照明供给控制曲线,C2 节能照明控制供给控制曲线
3.2 隧道照明节能控制方法
1) 传统的回路分级节能控制
在隧道设计时,采用规范中的算法表计算所需的调光回路;属于静态控制,即只能按固定模式进行控制,主要根据人工或者传感器反馈的固定阙值来进行判断。
具体做法分为两个部分,一部分是对于隧道口部照明的控制,根据室外亮度检测装置,对隧道口部加强照明灯具经行部分关闭,来降低隧道口部的亮度。
另一部分就是隧道基本照明灯具根据隧道的运营时段需要(白天、夜间、午夜)对基本照明灯具进行批量的关闭,以实现对亮度的控制。
2)智能化的亮度精确节能控制
在隧道设计时,按最高标准进行计算;属于动态控制,即能根据隧道的实时状态进行相应的精确亮度控制输出,控制范围从10%-100%,涵盖了任何参数的影响范围(各类参数的细小变化都能直接反应到控制结果上),并且能与其它机电系统进行联动控制(如消防系统联动应急照明)。
亮度节能控制方法现在主要有两种控制模式:
分级调光LED控制系统
无级调光LED控制系统
在亮度控制方法上建议采取无级调光方式,相比分级调光,无级调光在精确度上更高,更能满足环境参数变化范围大的隧道,节能优势更显著,控制方式更合理。
3.3.回路控制方式与智能化控制方式的对比
传统的回路控制方式之所以没有智能化的亮度控制方式节能、安全、高效,是因为:
a.洞外亮度指标固化,对适应季节、时间段变化方面不够灵活。
隧道加强照明标准值是根据隧道洞外亮度乘以一个系数得来的。以80km/h的双车道单向交通为例,若设计交通量大于等于2400辆/h时,其入口段的亮度折减系数为0.035。下图为不同的洞外亮度情况下加强照明能耗相对百分比,以4000 cd/为100%。从图中可以看出,洞外亮度对隧道能耗影响相当大。这也给节能带来了相当大的空间。虽然在设计隧道照明时,我们要求按照夏天中午时的最大洞外亮度进行计算,并考虑到足够的冗余,以确保运营期间的每一天且灯具的亮度衰减到额定值的下限时,洞内照明强度依旧能够满足规范要求。但在实际运营期间,洞外亮度会随着天气、季节和时辰的不同而每时每刻都在变化,而且肯定不是一个固定数值,相关参数、要求也对应的在变换。
从上图我们也可以看出晴天分级调光系统与LED无级调光系统的调光功率、能耗对比。图中曲线上部的面积即为浪费的电能,它是实际需求能耗的三倍以上。即使是应用传统四级调光系统的LED灯,其晴天的能耗也是实际需求的2倍。
夜晚加强段的过度照明
对于东西走向的隧道而言,若入口位于隧道的东侧,则上午阳光照射到东面,使洞口亮度较高。午后东面山体转为阴暗面,洞外亮度急剧下降,这使得入口段加强照明的强度较上午又大幅减小。采用亮度智能无级控制后,洞内照明就会顺应下图的这种变化,其LED功耗夏至晴天照明能耗仅为钠灯的18%,冬至时仅为12%,节能高达80%以上。
b.设计维护系数和冗余所产生的电能浪费
通常在设计灯具功率时,必须考虑一定的维护系数,以确保运营过程中当光源亮度衰减和灯具受到污染而使亮度下降30%以上时,其照明强度依旧能够满足规范要求。在《公路隧道通风照明设计规范》中,维护系数取0.7。如某一隧道基本照明选用100W的灯具亮度刚好满足规范要求,则在实际设计时必须选用功率大于143W的灯具。即使这样,也还是会有风险,因为倘若光源光效稍微差一点,就有可能造成运营一段时间后亮度低于规范要求。因此为了确保隧道照明始终能够满足规范要求,通常设计时还需要考虑一定的设计冗余。一般在1.2倍左右。上面100W刚好满足的灯实际的设计功率应在170W左右才符合要求。在实际运营期间,如果单侧开灯,则亮度不够,如果双侧开灯,则过度照明现象严重,这是恒定亮度灯具的一大弊端。
夜晚的过度照明
如果采用LED亮度无级控制,即可有效地防止由于设计维护系数和冗余所产生的电能浪费现象。
c.隧道照明的分时、分路控制造成频闪效应的再次出现,严重影响安全
在设计隧道照明方案时,要考虑到人的明适应和暗适应因素,重视过渡空间和过渡照明的设计,避免频闪效应。但在实际隧道的设计中,隧道照明多采用分时、分路控制。在运营过程中,为节约能源或降低晚间的照明,往往会关闭部分照明,使得频闪效应再次出现,对行车的安全造成了威胁。
LED亮度智能无级控制系统采用的是无级智能单路控制,无须分路控制,且全天候总体照度调节,可根本上解决频闪效应的再次出现,实现减排的目的。
分路控制造成的照明不足和频闪影响行车安全
d.隧道照明灯具的质保期过短、更换频繁、日常维护费用高昂
荧光灯应用于隧道照明中,虽然新购灯具的费用相对较低,但一般情况下需隔年更换一次,最长也不过三年。有的隧道即使采用了LED灯具,因其全天候的满负荷(100%功率)工作,光衰较为明显、导致其不得不提前更换,且目前国内厂家的质保期多为18-24个月。灯具的频繁更换与当今节能低碳的主题不符。
LED亮度智能无级控制系统因是根据洞外亮度采用无级调光控制,60-80%的照明时间的功率仅为满负荷的40-50%,可大大延长发光体寿命,延迟光衰。故系统质保期为5年完全可以实现。
e、传统分级照明控制系统与智能无级调光照明控制系统对比表
4 智能无极调光控制方式更利于节能
智能无级调光控制系统较普通分级控制系统控制方式灵活,系统结构简单,全程自动控制,节能性能卓越。智能无级调光控制系统的优势主要体现在:
(1)由于隧道照明系统的加强照明功率能够根据洞外亮度实时调整,因此一年中只有夏天的中午灯具才接近满功率工作,大多数时间均在10%-60%的功率下工作,而基本照明的设计冗余留到远期再用,近期的工作功率也低于灯具的额定功率。这使得灯具和电源的长期工作温度非常低,不仅可大幅减少LED的光衰,还延长LED和电源的寿命。
(2)下半夜功率可同步减半,灯具配光特性保持不变,避免了关灯过多所产生的危及行车安全的频闪效应。
(3)系统设计简单、可靠,只须2个控制回路,一个基本照明回路和一个加强照明回路。且为保障安全,控制与供电系统在物理结构上分离,互不影响,当控制系统失效时,有5种冗余方案可供应急使用;最差的情况下,当控制系统整体瘫痪失灵,所有的照明设备将满功率工作,不会使隧道处于黑暗之中。
(4)当隧道未达到设计车流量时,可依据规范对洞内照明强度进行相应折减,折减量可根据需要任意设定,以确保在满足规范的前提下最大限度地节约电能,避免过度照明,使系统真正实现了设计师所追求的按需照明的设计理念。
(5)联动性强,可与其它子系统兼容并联动,完全达到建设机电一体化综合控制平台的要求。
(6)完全智能化的控制机制,可自适应调整控制方案,无需人工干预,可远程进行维护和监控,减少人工,提高管理效率。
隧道照明能耗浪费巨大,绝非照明设计的不合理。相反,隧道照明设计绝大多数都是合理的。归纳起来,电能浪费的根本原因在于:现有控制节能方式无法适应洞外亮度变化,光源光衰较大导致维护系数取值较低,传统及大部分LED灯具亮度无法控制使之不能实现按需照明以及精确的控制。因此,在公路隧道照明领域,采用亮度可控的灯具以及精确的控制方法是消除过度照明的最佳途径。
LED亮度智能无级控制系统应用于公路隧道照明,既可起到安全通行的目的,又可起到节能降耗的目的。
参考文献
[1] 中华人民共和国行业标准. JTJ 026.1―1999 《公路隧道通风照明设计规范》
关键词:隧道照明节能;节能措施
Abstract: according to the needs of lighting technology field has been lighting pursuit of the ideal form, as the traditional lighting source is difficult to control, and again when the design must be considered enough design redundancy, therefore highway tunnel lighting and power are common excessive waste huge phenomenon, excessive lighting energy consumption as high as 50% ~ 90%. Along with the development of LED lighting, bright brightness intelligence without level control has become a reality.
Keywords: tunnel lighting energy saving; Energy saving measures
中图分类号:TE08文献标识码:A 文章编号:
1.引言
目前对于隧道照明的节能措施,主要是采用高功率因数的照明灯具(配高效电子镇流器)、尽量缩短供电电缆长度以减少线路损耗、合理布置隧道配电站的位置、集中调光控制、减少洞外亮度等方法。为了进一步节能,设计者还把隧道内的灯具分为全日灯、黄昏灯、白日灯和应急灯等几个回路进行人工或自动的控制。纵观现有的这些方法,虽然有一定的节能效果,但在实际运行中还是存在着电能的浪费现象。
2.隧道照明系统功耗偏高的因素
影响照明功耗的主要因素有控制模式、洞外亮度。本文主要针对这几个因素进行讨论。
隧道照明设计者依据规范通常把隧道分为入口段、过渡段、中间段和出口段等四个段来设计照明。各段的长度和照度(lx)是从全年行车安全要求出发,对洞内最大照度的设计是以全年洞外最大亮度和最高行车时速来确定隧道内各段的灯具功率和灯具分布密度。能够实现照明自动控制的非常有限,通常因线路布线回路的限制,只能做到2、3级人工或自动控制,对于如天气、车速、车流量等参数只是在设计阶段给予以最大值考虑,最终各段照明的长度和照度也始终是处于最大值状态。对于天气、车速、车流量等时变参数无法从宏观上对整个隧道的照明进行自适应方式调制。因此,目前这种传统设计与使用的隧道照明系统存在着大量电能浪费问题。
隧道内加强照明的标准值都是根据隧道洞外的亮度乘以一个系数得来的。以80km/h的双车道单向交通为例,若设计交通量大于等于2400辆/h时,其入口段的亮度折减系数为0.035。(图1-1)为不同的洞外亮度情况下加强照明能耗相对百分比,以4000 cd/为100%。从图中可以看出,洞外亮度对隧道能耗影响相当大。这也给节能带来了相当大的空间。根据《公路隧道通风照明设计规范》,入口段亮度可按下式计算: Lth=k•L20(S) (式1-1)
(图1-1)
式中,Lth为入口段亮度,k为入口段亮度折减系数,L20(S)为洞外亮度。虽然在设计隧道照明时,我们要求按照夏天中午时的最大洞外亮度进行计算加强照明的亮度,并考虑到足够的冗余,以确保运营期间的每一天且灯具的亮度衰减到额定值的下限时,洞内照明强度依旧能够满足规范要求。但在实际运营期间,洞外亮度会随着天气、季节和时间的不同而每时每刻都在变化,即式(1-1)中的L20(S)时刻在变化,它会从几十坎德拉变化到几千坎德拉。L20(S)变化了,依据公式Lth也应随之变化,这种照明方式才是合理的。如果L20(S)变化而Lth不变或者仅简单地分几个等级进行变化,都会造成巨大地电能浪费。
3.LED照明亮度无级控制
目前隧道照明的能耗有70%左右是浪费在过度照明上。因此,隧道照明节能,首先必须从减少过度照明着手。若要减少过度照明,就要求照明灯具的功率能够根据需要进行调控。调整照明强度有两种方式,一是采用多回路进行分级调光。通常最多只分到6级,即白天4级,夜晚2级。这种简单分级方式依旧存在较为严重的过度照明。二是采用无级调光。这种方式只需要二个回路,即基本照明回路和加强照明回路。这种无级调光方式是基于LED光源基础上实现的。它可使灯具亮度根据需要任意调整,隧道内需要多亮,照明灯具就提供多大的亮度,在满足规范的前提下避免了过度照明,最大限度地节约了电能。
图(2-1)为隧道LED照明亮度智能无级控制系统方案。洞外亮度监测装置将检测到的隧道洞外亮度信号传送至控制装置上,再由其换算后输出0~5V直流模拟信号去控制LED灯具的输出功率,从而达到控制被照场所亮度的目的。
图(2-1)
3.1控制方式
隧道内照明的特点是工作时间长,根据这一特点,在设计照明亮度时考虑了足够的冗余量。但在使用时,我们并不需要将设计冗余全部用上,而是需要多少功率就提供多少功率。在未来若干年内,当灯具出现一定的光衰时,可通过控制系统相应增加灯具的输出功率,使隧道内的基本照明强度始终都能满足规范要求而又不会产生过度照明。
3.2 LED调光控制的优越性
隧道采用LED照明亮度智能无级控制系统后,节能只是其优越性的一个方面。由于节能,它的工作温度绝大部分时间都处在一个较低的水平。而工作温度的降低,又会衍生出其他的效益:
(1)亮度无级控制,比分级控制的同类灯具更节能40%,比钠灯照明节能70%~90%。
(2)由于一年中只有夏天的中午,加强照明灯具才接近满功率工作,大多数时间均在10%~60%的功率下工作;而基本照明的设计冗余留到远期再用,近期的工作功率也低于灯具的额定功率。这使得灯具和电源的长期工作温度非常低,不仅可大幅减小LED的光衰,还延长了LED和电源的寿命。
(3)下半夜功率可同步减半,灯具配光特性保持不变,避免了单侧关灯所产生的危及行车安全的斑马效应。
(4)系统设计简单,只须2个回路,即一个基本照明回路和一个加强照明回路。基本照明又兼应急照明;当市电断电时,所有基本照明的功率均降至额定功率的10%,从而确保了照度的均匀性。
(5)当隧道未达到设计车流量时,可依据规范对洞内照明强度进行相应折减,折减量可根据需要任意设定,以确保在满足规范的前提下最大限度地节约电能,避免过度照明,使系统真正实现了设计师们追求的按需照明的设计理念。
(6)与分级调光系统相比,该系统可节约相当数量的电缆、控制箱及相应电气的费用。4.结束语
采用LED隧道照明可简化供电回路设计,节约电缆与变压器的投资;LED调光控制可基于洞外亮度与交通量,实现按需照明,大大减少照明能耗;虽然目前LED隧道灯比高压钠灯贵,但实现调光控制后这具有显著的经济效益,投资回收期一般为3年左右。
参考文献
[1]中华人民共和国行业标准,《公路隧道通风照明设计规范》(JTJ 026.1―1999),北京: 人民交通出版社.2000
1.1传统的隧道照明会造成大量的电能浪费隧道的照明设计,根据传统方法往往会把隧道分为入口段、过渡段、中间段、出口段这四个阶段来进行照明设计。全年的行车安全要求决定了各段的长度和照度,对于洞内最大照度的设计是全年洞外最大亮度和最高行车的时速来确定隧道内各段的灯具功率和灯具分布密度。这种设计方法对于实现照明自动控制的能力十分有限,因为常常受到诸如线路布线贿赂的限制,所以暂时只能做到2、3级自动控制。在设计过程中对于如天气、车速、车流量等参数,通常是考虑最大值,这就导致隧道照明系统无法在天气、车速、车流量等常变参数在变化时对整个隧道的照明进行合理的调试,这就是传统方法设计出的隧道照明系统会造成大量电能浪费的原因
1.2传统的隧道照明能耗控制与隧道运营安全相矛盾传统的隧道照明系统的运营往往都但是依靠手动控制的方式进行工作。运营者在考虑到电能浪费时,往往会在隧道内只开基本灯,或者白天全开灯,晚上关闭加强灯。这种控制方式看似能起到一定的节能效果,但事实上却对隧道的车辆运行造成安全隐患。由于隧道内外亮度差异很大,司机在进入隧道直至穿出隧道的整个过程要经历好几个阶段的视觉适应期。例如,司机在进入洞口时,洞口必须保持足够的照明亮度,否则在进入隧道时,司机的视觉无法适应如此大的亮度差异,产生“黑洞效应”,在这种情况下驾驶员所驾驶的车辆极易与前方行驶较慢的车辆或障碍物产生相撞,从而造成交通事故。所以,实现隧道内的照明节能绝不是能通过简单的开关灯具就能完成的,照明节能必须要建立在行车安全的基础上。
1.3传统的隧道照明能耗控制与隧道内的安全监控相矛盾夜间是传统隧道照明的能耗控制与隧道安全监控矛盾最为尖锐的时刻。隧道运营者在夜晚时常常会关闭隧道内的高功率灯具,以达到节省电能的效果。而我国目前对于隧道的监控通常是采用非红外线摄像头等设备,这种设备在照度低的环境中使用效果并不理想,十分影响监控效果。当在隧道内发生偷窃、破坏等违法犯罪行为时,无法被管理人员及时发现,尤其是当隧道内发生交通事故的时候,不仅无法对事故进行有效的监控,而且过于低的照度还会在救援和调查时无法提供足够的照明。所以在设计中应当对节能、照明、监控、安全等因素进行综合考虑。
2提高隧道照明节能控制以及安全监控能力的措施
2.1隧道照明节能控制的措施实现隧道节能控制的基本前提就是在隧道处在不同的运营情况(交通事故、正常运营、火灾等)和外部环境(车速、亮度、车流量等)等各种条件下,作出最符合现状的照明设置。该控制系统由照明控制计算机、车辆检测器、光亮度检测仪、传输网络、无级调光控制器和LED灯组成。根据LED灯的控制特点及排布设置的方式,无级调光控制系统可以将整个隧道分解成基本照明控制和加强照明控制两个方面。运用这种方式来对隧道的照明区域进行分解是因为隧道的入口段、过渡段加强照明直接受到了洞外亮度、车流量、车速等因素的影响。而只实行基本照明的区域只需要考虑车速以及车流量两个因素。根据这些特点,在隧道入口前可设置两个断面(VD1,VD2)、隧道出口处设置一个断面(VD3)的车辆检测器,该检测器可以用来隧道内车辆通行的情况,从而避免了隧道内无车辆通行时的无效照明。以上描述可以得出一个结论:无级调光控制系统可以根据隧道洞内外亮度的实测值来调节LED灯的即时照明亮度,以满足司机进出隧道时视觉适应的需要。在调节洞内的照明亮度时,为了避免灯光亮度过于频繁地转换,故应考虑灯光转换的时间延迟。
2.2隧道照明安全监控的措施目前大部分隧道照明都是采用逻辑开关法,该方法通常以最大亮度进行照明,会造成电能的大量浪费。因此我们可以考虑结合逻辑开关法和无级调光法,研究人员从此种职能监控的方案中提出模糊控制方法的概念。模糊控制,是以模糊集合论、模糊语言变量以及模糊逻辑推理为基础的一种计算机判定方法。该种方法可以通过逻辑开关对照明子回路进行控制,既比逻辑开关法降低了能耗,提高了照明光线对于人眼的舒适度;又比无级调光法降低了照明控制的复杂程度,对可靠性也有很大的提高。
3结语
关键词:隧道;机电安装;看法
Abstract: This paper analyzes the characteristics of the road tunnel mechanical and electrical installation, it raised a few comments do a good job of tunnel mechanical and electrical installation.Key words: tunnel; mechanical and electrical installation; views
中图分类号:TU85文献标识码: A 文章编号:2095-2104(2012)
我国的交通机电系统研究起步较晚,但发展十分迅速,目前已基本实现了高速公路的智能化控制与管理。但在隧道交通机电系统的设计建设中的还存在一些问题。国外已经出现的很多先进技术在我们国家还没有得到运用,这就严重制约了我国隧道交通机电系统的发展。
1 机电安装技术的创新的重要性
我国正处于现代化建设时期,经济飞速发展,但是也正是这种发展使得各种矛盾的出现,其中道路问题也在这个时候体现出来,正是基于技术创新和机电安装项目技术创新的理念,介绍项目技术创新的一般程序、工作方法和规章制度等,重点阐述了如何抓好项目技术创新的要求,包括高度重视技术创新工作、以科学的态度对待技术创新以及调动技术人员的积极性、充分发挥专业技术人员的作用。
2 机电安装技术要点与创新
2.1 照明设计
隧道照明是为了保证隧道内交通顺畅而设置的功能性照明,其照明的目的是为了给驾驶员在隧道行驶过程中提供一个安全、舒适的视觉环境,保障交通运行,提高运输效率。由于隧道是一个半封闭空间,隧道在行车视觉特性上要比其他照明复杂得多,它不仅需要24h不间断照明,而且白天照明要比夜间照明更复杂。
2.1.1 人眼视觉特性。当从一个明亮的环境短时间内转到一个暗环境中时,人想要看清物体,必须要一段适应的时间,这就是暗适应,同样当人眼从一个暗环境短时间内转到一个明亮的环境中时,也需要经过一段时间才能看清亮环境中的物体,这就是明适应。
2.1.2隧道照明设计。隧道照明可分为引入段、适应段、过渡段、中间段和出口段,人眼的视觉特性决定了各区段应不同位置上的亮度检测器的实测值设计不同的长度和亮度值。其中按照人眼适应曲线,调节隧道过渡段、出口段亮度是隧道照明设计的关键。驾驶员进入长隧道后需要一些时间将人眼调节到能适应中间段较低亮度水平,过渡段照明的目的就是过渡段亮度从最高到最低的变化逐步进行,来使得人眼及时得到调整。
实现过渡段亮度调节,有两种控制方法,一是无级调节法;二是逻辑开关法。无级调节法是由可控硅为基本控制元件的电子控制器完成无级调光的。随着洞外光强的变化,整个照明控制系统会处在动态平衡状态下,从而得到合适的亮度。从理论而言,无级调光是一种很好的方法,它能得到连续性很好的光,但存在如下弱点:线路复杂,调试困难;故障率高、维修保养不便;洞内亮度检器需要量大,工程量大,增加投资;最适合无级调光系统的执行元件是白炽灯,但是白炽灯光线不好,寿命短。因此,目前的隧道照明工程很少采用无级调光。而选择光线较好的照明灯具,利用灯具的不同排列组合和现场控制器提供的数字信号对照明灯进行逻辑控制,使其产生阶跃式的亮度调节,这就是逻辑开关法。由于控制程序和线路设计简单,灯具选择灵活,维修保养容易,目前的隧道照明大都采取这种方法。
2.1.3应急照明的设置有以下几种方案。
第一,利用基本照明灯作为应急的方案和单独设置应急灯的方案。这两种方案都可以满足要求,由于大部分隧道采用高压钠灯照明,而高压钠灯(包括其他气体放电灯)断电后再起动时间较长(5-8min),很难作为应急照明灯。现在国内外在采用高压钠灯作为照明光源在隧道中的常规做法是单独设置应急灯,这样会造成重复投资,并且影响美观。因此采用的是利用基本照明灯作为应急照明的方案。平时应急照明作为基本照明的一部分,当基本照明出现故障后应急照明灯继续工作,以保证隧道内行车安全。
第二,从应急电源选用上有集中设置应急电源和分散应急电源方案。分散应急电源一般应用于规模较小的建筑中,而在大型建筑中由于应急灯具数量较多,考虑到维护和投资方面的因素,一般采用集中应急电源装置。
2.2供配电问题
在很长的隧道中,隧道的正常使用由照明、监控、通风、消防等设施决定,他们缺一不可。而作为隧道附属设施的供配电系统,正是这所有设施的基础,关系着隧道内所有设备的运行,对整个隧道正常使用起着至关重要的作用。某隧道机电工程,其中供配电系统采用四路外线电源,分别从两端洞口引双路电源,组成环网。这样能保证在外线3路电源同时停电的情况下,仍然能保证隧道内基本的应急照明和其他一类负荷的正常使用。在整个供配电施工的初期,第一个是土建方,供配电系统的施工界面不成熟,尚不具备具体的实施条件。在这个阶段首要任务就是要配合土建单位的管线预埋,以及对已经预埋的管线进行疏通处理,这部分工作看似简单,但是实施起来却很复杂,并且也是相当重要的。在机电进场的初期,隧道内土建方的施工仍在持续进行,很多机电需要使用的管线都没有进行埋设。我们进场后就需要对这些界面进行仔细调查,积极和土建方进行协调,配合土建的施工。我们采取了每天巡查施工现场的方法,查看土建的施工内容是否涉及到机电的界面,对正在预埋的管线进行指导配合作业,以达到供配电后期正常使用的目的。而且要及时发现已经预埋的管线存在那些不合适的地方,积极沟通,并予以纠正。并要求土建对埋设的管线采取一定的保护措施,如用塑料袋或棉布堵住管口以防杂物进入管道导致永久堵塞,标识管口位置防止遗忘等。
2.3 通风系统
2.3.1 有害气体的排放量。《公路隧道设计规范》“条文说明”中给出的CO排放量是当时国产汽车的CO排放量,使用时应考虑到有害气体的年递减因素,否则计算的新风量可能偏大很多。解决的方法一般有两种:一是考虑CO排放量的年递减因素;二是按照隧道通车后十年的预测交通量进行计算,通常第一种方法更为常用。
2.3.2 隧道洞口的废气扩散和回流。由于纵向通风的特点,在隧道通风的出口形成较高浓度的有害气体,对隧道洞口周围的环境可能会造成一定的影响。因此,当隧道洞口位于居民区或自然风景保护区等地区时,应采取设置竖井对有害气体进行高排等措施使之满足国家卫生标准。在双洞单向行驶时隧道的出口和入口,可能会产生排出废气的回流问题。因此必须引起设计人员的十分重视。对于可能排出废气回流的双洞隧道,在隧道之间建一隔墙,可以有效减少废气的回流量。
2.3.3 自然风的影响在通常情况下,隧道自然风的自然反风计算是按照2.5m/s进行计算的。但是在实际工作中发现,如果自然风作为阻力,对于常年受季风影响严重的隧道,需要对隧道所处地区的风速、风向及频率具体分析,否则可能形成有害气体难以排出的情况。
3 机电安装技术的创新
逻辑开关法,是目前的隧道照明工程最常用的方法,无级调光已经基本被淘汰,由于逻辑开关法控制程序和线路设计简单,灯具选择灵活,维修保养容易,因此逻辑开关法被大部分国家采用。它能按照人眼适应曲线,合理调节隧道过渡段、出口段亮度。使得过渡段亮度逐渐变化,从而人眼及时能够得到调整。为了满足洞内通风量的要求,保证施工作业正常进行,采用吊顶压入式巷道通风代替了常规的风筒压入式通风技术,即用彩钢板将隧道斜井分为进风道和排风道,进而通过一系列辅助手段实现通风。实践证明,采用新的通风技术完全能够满足洞内通风需求。而原来在每个隧道斜井口必须设置的通风机则可以省去。技术创新成果可以用专利技术、技术创新专题报告、学术论文、施工技术总结、科技成果等各种形式进行总结,并在类似工程项目中推广使用,在类似工程项目中节约施工成本、加快施工进度、提高工程施工质量、保证施工安全等方面出效益。技术创新成果可以在工程项目施工过程中进行总结,也可以在工程项目竣工后进行汇总。
4 结论
机电安装技术运用到高速公路建设中时,一定要有强烈的事业心和责任感,仔细认真,不怕麻烦,深入现场,严格技术管理。总结出隧道施工方面注意的事项大致有照明问题、供配电问题和通风问题,从而使得今后的施工方能在施工时重点关注这三个问题,最终形成我国独特的、创新的高速公路隧道机电安装技术。
参考文献:
[1]周正.隧道交通机电系统构成与技术研究[J].河南科技,2010(7).
【关键词】隧道,机电系统维护,管理
中图分类号: U45 文献标识码: A 文章编号:
一.前言
本文通过对山区隧道机电工程养护的管理,分析养护模式的选择,预防性养护以及养护过程中重大问题处置,剖析双电源切换装置的设置、绝缘监察装置异常和照明跳闸原因,提出相关解决方案。以对特长公路隧道仍至小隧道群的机电工程建设和养护提供借鉴。公路隧道的机电工程是一个系统复杂、技术集成度高、运行安全可靠性要求高的综合性大型机电工程,特别是很长的公路隧道。一直以来也是隧道养护管理重点。如何搞好隧道机电工程的养护管理,是公路经营管理部门及养护企业面前一项长期而艰巨的任务。
二.隧道机电维护的基本内容
我对隧道机电系统做以下几个分类,并对各个分类下设备进行归类,有针对性的给出维护方案,及一些日常维护中的实际案例。并做到故障预先判断,排除发生较大事故的隐患。保证司乘人员的出行安全。
1.交通监控系统
本系统包括以下设备:隧道监控系统(含可控摄像机,固定摄像机及其视频传输链路);车辆及事件检测设备(含隧道内车检摄像机,及管理公司端视频分析单元);交通信号灯;双向车道指示器;LED光电诱导标志;隧道内可变信息标志;交通区域控制单元(含PLC设备及通讯链路)。
2.隧道机电交通监控系统的维护方法:
隧道内实行全程监控,笔者在维护中要对每个摄像机清晰度及角度做调整,保证监控的无缝连接。交通信号灯及车道指示器控制准确,显示清晰。LED光诱导标志光点连续,指示方向清晰可辨。隧道内可变信息标志字体清晰,串口通讯正常,发送内容方便可靠。
PLC交通区域控制单元要保证CPU主机、模拟量模块、数字量模块、光纤通讯单元工作正常,控制信号、模拟量信号、反馈信号接受发送正常,对有报警的模块及时用软件分析报警原因及时处理。
3.通风与照明系统
隧道照明设计。隧道照明可分为引入段、适应段、过渡段、中间段和出口段,人眼的视觉特性决定了各区段应不同位置上的亮度检测器的实测值设计不同的长度和亮度值。其中按照人眼适应曲线,调节隧道过渡段、出口段亮度是隧道照明设计的关键。驾驶员进入长隧道后需要一些时间将人眼调节到能适应中间段较低亮度水平,过渡段照明的目的就是过渡段亮度从最高到最低的变化逐步进行,来使得人眼及时得到调整。
公路隧道正常运营时一氧化碳允许浓度和烟雾浓度等装置性能良好,其控制应符合《公路隧道养护技术规范》(JTG H12)的规定。隧道内的风速应按《公路隧道设计规范》(JTJ026)的规定执行。隧道内出现火灾时,控制设备能及时变换送风方向,疏导烟雾。机械通风应具有手动和自动装置,且主备用工作正常。
4.紧急呼叫设施
隧道紧急电话设施(含紧急电话、紧急电话亭(含门、照明灯)、中继器);有线广播设施(扬声器、功放)。
隧道机电系统应该配备应急救援设备,日常维护应保证紧急电话设施连通正常,通话质量良好,无杂音。有线广播设施喊话音质清晰,调整号角扬声器角度减少隧道内回声。5. 隧道消防系统。
在而今的隧道事故中最多的要属火灾。隧道内火灾引起原因较多,车辆引擎或车上货物着火、车与车相撞、危险品运输事故都可以引起火灾。由于隧道内环境封闭,火灾一旦发生,就会造成严重后果。因此,设置隧道消防系统非常重要。隧道消防系统包括:一整套火灾检测监视系统;一套有效的报警通信系统;一套高效灭火设施和应急排烟方案;长隧道还应设计好应急出口和行车横洞。在隧道的施工中要设置贯穿隧道的消防给水总管。并且按一定间隔设置消防与通风设备,保证消防管道与隧道内消防设施的可靠连接,以保证消防安全。
6.中央控制管理系统
本系统由管理公司中心机房设备和监控中心计算机组成包含以下设备:信息采集系统设备(含视频处理单元;中心事件检测单元);信息控制系统设备(信息(广播、情报板、照明、风机、隧道交通灯);紧急电话控制台、串口服务器、数据光端机等);视频传输及控制设备(视频光端机、叠加器、监视器、矩阵、传输、控制、数字录像机等);中心计算机控制系统软件(录像管理软件、视频监控软件、火灾监控报警软件、隧道监控软件、通风照明软件、电力监控软件、事件检测软件);中心计算机及网络(隧道管理服务器、录像管理计算机、视频监控计算机、火灾报警控制计算机、隧道监控计算机、通风照明控制计算机、电力监控计算机、打印机)。
7.隧道指示标志
设备包含隧道内各种指示标志,如:紧急电话指示标志,消防设备指示标志,行人横洞指示标志,行车横洞指示标志,紧急停车带指示标志,疏散指示标志等日常维护中要保证标志亮度均匀,无变形扭曲。
三.隧道机电工程养护管理
1.养护模式的选择隧道的机电齐全,基本涵盖了交通工程强、弱电的全部单项工程。系统集成化程度、技术含量非常高。要求维护人员的素质和专业技术水平达到较高的水平。隧道养护机构引进社会专业协作单位,通过“自主+协作”的养护模式,两者相互配合,相辅相成。充分借助专业公司的技术力量,对隧道机电系统运行中存在的故障进行预防,及时排除隐患,保证系统正常运行。在专业维修单位选择上,主要考虑维修公司资质、实践经验、技术实力、人员配备以及服务信誉等,通过招投标或邀请比质比价的方式的予以确定。
在设备维修质量上,维护管理流程分为五个阶段,即养护计划阶段、现场配合维修阶段、中间报验整改阶段、交工验收总结阶段、后续跟踪评价阶段。通过双方合作,缩短了问题处理时间,提高维护工作质量,从而降低了运营风险,间接控制了运营成本,树立我国隧道建设的良好形象。
2.机电设施预防性养护公路隧道机电系统维护大致分为:日常巡查、经常性检查、定期检查、特殊检查和预防性维护、故障诊断及排除。日常性巡查、保养只能对外在环境、设备外观、照明功能进行粗略巡视和简单功能测试,但对设备内部以及渐进式隐患无从知晓。电气设备的绝缘部分是薄弱环节,最容易被损坏或劣化。
电气设备处于长期运行状态,其技术性能会逐渐降低,而处于间断运行或长期停运状态,其绝缘特性和机械性能受温、湿、尘等环境影响也会劣化。通过预防性检测这一重要环节,主要诊断电气设备的绝缘状况和机械特性,发现运行中设备的隐患。对试验结果进行综合分析,判断缺陷发展趋势,以便分轻重缓急对设备有序地更新、修理,从而保证设备安全运行。电气设备预试试验的依据是国家《电力设备预防性试验规程》、行业的有关标准、规范及设计资料。包含三部分内容,即电力设备的检修和绝缘试验及继电保护装置的调校。
四.结束语
针对传统高速公路隧道照明系统的诸多不足以及安徽省高速公路山区区段的地理环境特点,引入了新型节能技术,包括无级照明控制技术和风光互补发电系统。在对新型节能技术的原理和特点分析的基础上,研究了基于新型节能技术在安徽省高速公路隧道照明系统中应用的可行性和实用性。新型节能技术已完成阶段性应用,其中的关键技术都得到了验证。
参考文献:
[1] 陈彦华,谭光友.公路隧道照明光源的选择[J].灯与照明,2006(3)
[2] LED隧道灯在隧道照明工程中重点技术指标的分析[N].中国灯饰报,2008】
[3] 公路隧道养护技术规范(JTG H12)[S],2003
[4]赵卫平,周正兴.老山隧道的供电解决方案.江苏宁淮高速公路老山隧道环保型建设技术暨大跨径隧道建设技术学术研讨会论文集.人民交通出版社,2006.
关键词:节能评估;能耗分析;研究意义
1 节能评估背景
2010年9月,国家发改委制定《固定资产投资项目节能评估和审查暂行办法》(国家发展和改革委员会令〔2010〕第6号,下文简称《暂行办法》)并施行。按照《暂行办法》的规定,各级人民政府发展改革部门管理的在我国境内建设的固定资产投资项目,均应对项目的能源利用是否科学合理进行分析评估,并编制节能评估报告书、节能评估报告表(以下统称节能评估文件)或填写节能登记表。
2 高速公路节能评估方法和流程
《暂行办法》主要考察运营期能耗水平,按照项目建成投产后年能源消费量实行分类管理,具体分类办法如下:
(1)年综合能源消费量3000吨标准煤以上,或年电力消费量500万千瓦时以上,或年石油消费量1000吨以上,或年天然气消费量100万立方米以上的固定资产投资项目,应单独编制节能评估报告书。
(2)年综合能源消费量1000至3000吨标准煤,或年电力消费量200万至500万千瓦时,或年石油消费量500至1000吨,或年天然气消费量50万至100万立方米的固定资产投资项目,应单独编制节能评估报告表。
(3)上述条款以外的项目,应填写节能登记表。高速公路建成通车后,项目的主要耗能体现在以下两个方面:第一,为维持项目正常运行,照明、监控、收费三大系统所消耗的能源,这部分主要消耗电能;第二,服务区、养护维修等附属生产与生活设施所产生的能源消耗,主要为电、煤、成品油及耗能工质。
文章以湖北某山区高速公路项目为案例,计算项目运营期耗能,评估项目能耗水平。
3 案例
某山区高速公路项目路线全长43km,全线采用80km/h设计速度,双向4车道的高速公路标准设计。其中,拟建特长隧道11541m/2座,中隧道3592m/5座,短隧道829m/2座;互通式立体交叉3处(其中枢纽互通1处),主线收费站1处,匝道收费站2处,养护工区1处,服务区1处。
3.1 隧道营运期耗能计算
隧道运营期耗能主要包括隧道照明、通风和监控。
(1)隧道照明。隧道照明分为入口段、过渡段、中间段、出口段、洞外引道照明等几大部分。根据各段照明亮度要求的不同,照明灯具功率规格有100W、150W、250W和400W四种。灯具均采用显色性好、光效高、寿命长、对烟雾有较强穿透能力的高压钠灯光源,安装于隧道二侧壁上方。
灯具配置间距及规格采用公式计算。
Eav=η×Φ×M×N/(W×S) 公式
式中,Eav-路面平均水平照度;η-灯具利用系数,本项目取值0.6;Φ-灯具额定光通率;M-灯具养护系数,本项目取值0.65;N-灯具布置系数,本项目隧道灯具对称布置,取值2;W-隧道路面宽度(m),本项目隧道行车道宽度7.5m;S-灯具间距(m)。
隧道照明系统应根据不同时段洞外亮度的变化相应调整洞内照明亮度,隧道白天调光分为四级,分别为晴天、云天、阴天、重阴天,对应洞外亮度分别为L20(S)、0.5L20(S)、0.25L20(S)、和0.13L20(S)。另外,夜晚时段洞内也需相应减光,届时隧道全段洞内亮度与中间段亮度相同。由此确定白天四级及夜晚共5个时段的隧道各段亮度、照明控制及年耗电量。
本项目隧道照明年耗电量合计为395.3万千瓦时/年。
(2)隧道通风及其主要设备。隧道通风规划设计应根据交通量、隧道进出口气压、风向、风速以及地形、地质等因素进行充分调查。由于节能评估和审查需在项目审批或核准前完成,因此一般仅能根据项目工可研究成果,初步判定隧道通风方式。
根据《公路隧道通风照明设计规范》(JTJ026.1-1999),单向交通隧道,当符合公式的条件时,宜设置机械通风。
L×N≥2×106 公式
式中,L-隧道长度(m);N-设计交通量(辆/h)。
经计算,本项目有2座隧道(隧道长度分别为6.0km和5.5km)应设置机械通风;其余隧道20年运营期内均可采用自然通风。2座隧道均采用射流风机分段式纵向通风,在隧道拱部每间隔一定距离设2台一组的射流风机。经计算,项目隧道通风年耗电量合计为102.9万千瓦时/年。
(3)隧道监控及其主要设备耗能。隧道监控系统主要是由车流监控系统、照明亮度监控系统、空气检测系统、火灾检测报警系统及风速风向检测系统等组成,根据《高速公路隧道监控系统模式》(GB/T18567-2001)等规范要求布置隧道主要监控设备。经计算,本项目隧道监控及其主要设备年耗电量合计为97.7万千瓦时/年。
3.2 互通立交区照明
互通式立交区宜在互通区范围内设置高杆照明,本项目选用35m升降式高杆灯,单杆功率7kw,保证互通区路面平均水平照度为101x。照明时段为夜间12个小时。经计算,本项目互通立交区照明设施年耗电量合计为57.0万千瓦时/年。
3.3 收费站收费监控、照明及其主要设备耗能
收费站的能耗主要分为两类,一类为监控与收费系统;一类为收费广场照明系统。
本项目全线设置匝道收费站2处、主线收费站1处。经计算,项目收费站收费监控及照明系统年耗电量合计为30.3万千瓦时/年。
3.4 管理监控分中心主要设备及耗能
管理监控分中心的主要能耗分为两类,一类为监控与收费系统能耗;一类为办公区建筑及场区照明系统。
本项目设置管理监控分中心1处。经计算,项目收费站收费监控及照明系统年耗电量合计为19.6万千瓦时/年。
3.5 服务区主要设施及耗能
服务区为连续行驶的用路者提供相应的车辆及生活服务,应设置综合服务主楼、加油站、停车场、汽车维修、公共厕所等设施,其能耗设备主要为场区及建筑照明系统。
本项目设置服务区1处。经计算,项目服务区照明系统年耗电量合计为20.7万千瓦时/年。
3.6 高速公路日常养护及大修耗能
养护工区自身的能耗设备主要为场区及建筑照明系统。本项目设置养护工区1处,其照明设备年耗电量合计为4.4万千瓦时/年。
同时,养护工区所承担的日常养护及大修工作,是高速公路运营期间能源消耗的主要方面之一。由于工可阶段尚无法对项目运营期养护、大修的具体工程量及消耗能源实物进行统计,文章根据省内已通车运营的其它高速公路的养护大修工程量匡算出本项目此类工程能源实物消耗量。经计算,在运营通车20年间,项目运营养护能源消耗总量为2583.3吨标准煤,平均每年消耗能源129.2吨标准煤,其中耗电50.4万千瓦时/年,石油44.7吨/年,煤0.3吨/年,耗能工质(水)14775.1吨/年。
3.7 员工生活耗能
员工生活耗能设备主要有照明、空调等电器设备,主要消耗电能,按人均每月消耗电量30千瓦时计算,经计算,本项目年耗电量合计为6.1万千瓦时/年。
3.8 汇总计算
项目运营期年平均能耗总量折算为标准煤为1030.5吨标准煤,其中年电力消耗量784.4万千瓦时,占总消耗量的93.6%,年石油消耗量44.7吨,占总消耗量的6.3%。
根据《暂行办法》文件规定,本项目属需单独编制节能评估报告书的项目类别,需编制节能评估报告书,报送相关部门审查。