公务员期刊网 精选范文 纳米技术的新了解范文

纳米技术的新了解精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的纳米技术的新了解主题范文,仅供参考,欢迎阅读并收藏。

纳米技术的新了解

第1篇:纳米技术的新了解范文

1纳米医药发展前景分析

纳米医药是最近才出现的一个多学科交叉的领域。虽然目前已经进入市场的纳米医药产品不多,而且这一高风险高回报的领域还并没有充分确立,但是,利用纳米技术的药释系统、诊断方法和药物研发方法正在使药物的版图发生革命性变化,尤其是靶向特异性药释系统很有可能解决许多医学问题。尽管人们对纳米医药的预测是十分鼓舞人心的,但是纳米医药研发也面临着巨大的挑战,主要包括:①成本高。②在没有相关的安全指南出台前,很难得到公众的信任。③能得到的风险投资相对较少。④人们对纳米材料与活细胞之间关系(如生物相容性问题和纳米材料的毒性)了解较少。⑤大型制药公司不愿意向纳米医药投资。⑥生产缺少质量控制,重复性差等。⑦专利局(如美国专利与商标局)和药物审批部门(如FDA)管理措施混乱和滞后。⑧媒体对纳米材料尤其是纳米医药负面影响(尤其是环境、健康和安全性)的关注。为了在政策上适应并促进纳米医药的发展,各国政府也采取了各种措施,希望解决上述问题。各国专利局都在不断改进对纳米医药相关专利的审查,各国政府管理部门也正在制定纳米药物的相关安全指南,以便适应纳米医药产品的发展需求。下面将对美国纳米医药审查体系进行详细介绍和分析。

2纳米医药专利发展现状

在过去十年中纳米医药领域的研究文献和专利申请都迅速增长。欧洲专利局的一项调查显示,向欧洲专利局提交的纳米医药专利已经由1993年的220件上升到了2903年的2000件。根据欧洲专利局的统计结果,在纳米医药专利申请方面,美国一直处于全球领先的地位,从1993—2003年间,其专利申请约占全球总申请量的54%,随后依次是德国占12%,日本占5%,法国和英国均占3%。我国目前只有清华大学材料系研究的纳米人工骨在美国获得了专利。从全球纳米医药专利申请所涉及的领域来看,药释放系统专利最多,约占全球纳米医药专利申请总数的59%,接下来依次是体外诊断方法、成像技术和生物材料专利,分别占14%,13%,8%,药物、治疗和活性移植物方面的专利相对较少,各占3%左右。无论是研究人员、生意人还是专利从业者都意识到纳米医药专利的重要性,都在努力获得尽可能广泛的纳米高分子材料的专利保护。市场上的纳米医药产品相对缺乏也推动了纳米医药专利工作的发展。制药公司认为获得专利是证明自己实力、吸引风险投资的最佳途径。有一些公司认为如果他们不去抢先申请尽可能多的专利,就很可能会因为被别人抢先申请而使自己处于被动地位。同样,研究人员为了提高学术地位也感到申请专利的必要。大多数发明者发现在纳米医药专利出现的早期,PTO对纳米医药专利的管理是比较混乱的,但这正是对有价值的上游技术获得广泛专利保护的绝佳时期。在今后的几十年中,纳米医药将会不断的走向成熟并获得突破性的成果,专利将会给公司带来大量的实施许可费并成为公司交易和合并的杠杆。

3纳米药释系统专利的申请

3.1纳米药释系统专利开发的优势和方法

纳米医药对药释系统已经产生了重大影响,制药公司目前已经意识到药释系统的研究是他们研发过程中必不可少的一部分。根据来自《NanoMar-kets))的一份市场报告的测算,到2012年,纳米技术将使药释系统产生48亿美元的收入。该报告还指出,到2009年全球药释产品和服务市场的收入将超过670亿美元。另外一份来自《NanotechnologyLawBusiness))的市场报告也指出纳米技术能使药释系统市场的销售额从2005年的12.5亿美元增至2010生国堑堑苤查!!塑生塑!!鲞箜!!塑年的52.5亿美元,2015年会增至140亿美元。固体纳米微粒是尺度在1—1000nm的颗粒,能用于药释系统。由于它具有能将各种药物基团运送到身体不同位点,并延长药物作用的性质,因此在药释系统研究中具有重要作用。纳米颗粒的大小和表面性质决定了它在体内的活性。纳米颗粒的物理性质也决定了它在体内能够达到大颗粒所不能达到的地方。另外,粒子大小也影响药物在体内各部位的分布。粒子变小,它的表面积就会呈指数增加,溶解速率和饱和度都大大增加,从而改变在体内的性质。在某些情况下,纳米颗粒药物还能够帮助降低血浆药物浓度峰值,也能防止血浆药物浓度降低至有效治疗浓度之下。目前美国的专利法允许对老药的新剂型申请专利,纳米技术就能够为已经存在的化合物提供新的剂型。这些新剂型能够获得FDA和PTO的批准。只要老药的纳米剂型能够满足专利性的要求,就能申请专利。在美国,创新性的药释系统本身也可以申请专利。创新性的药释系统能够帮助制药公司对已经专利过期或即将过期的化合物设计出新剂型。这种策略能够拖延或打击非专利药对过期专利药的冲击,尤其是当改进剂型的药物优于原专利药时。实际上,这种策略也延长了原专利药物的生命周期,通常也被称为“常绿化”策略。

3.2纳米药释系统专利的审批和申请

3.2.1纳米药释系统新药的审批应当指出的是,把已有药物改造为纳米药物通常会导致产生创新性的新化学实体(NCE),因为纳米药物与原药物的药代动力学数据是完全不同,换句话说,就是不具有生物等效性,因此纳米制药公司并不能通过缩短的新药申请(ANDA)来通过FDA的审批。

3.2.2纳米药释系统专利的专利性审查标准我们现在还很难判断,纳米颗粒专利是否也将会面临电子商务和生物技术曾经面临的专利障碍。电子商务与生物技术专利最初是被认为不具有专利性的。无论如何,基于纳米颗粒的药物剂型和其他纳米发明一样,只要满足专利性的要求就可以申请专利。在美国,大小本身并不是专利性的标准,某个装置或方法如果只在大小上发生了改变,并不能使其具有专利性。事实上,法条中已经明确规定:如果仅对某种物质、装置的大小加以限定并不足以使其与现有技术相区别而具有专利性。美国联邦巡回法院(CAFC)也认为:如果权利要求中描述的发明仅大小上与现有技术相区别,而在作用上与现有技术没区别,那么,这项发明就不具有新颖性。也就是说,具有纳米级量纲的物质也必须具有新的功能才具有专利性。此外,产品发明者还必须能够证明他们的发明对于本领域普通技术人员来说,不是显而易见的。

3.2.3纳米药释系统专利申请中的困难——证明具有非显而易见性嵋。对已有药物的新剂型申请专利,最大的困难就是证明该项发明的非显而易见性。FrO常认为,新的药物剂型不过是药物的优化,因此,并不具有可专利性。如果剂型中改变的只不过是成分,并且新增的成分曾经被用在其他的剂型中,产生能够预期的作用,这种观点当然是很有道理的。专利申请者要想说服审查员所申请的剂型不具有显而易见性,就必须证明该剂型具有意想不到的优点或改进。例如,降低毒性、增加生物利用度或改变生物利用度、改变药物稳定性、溶解度或活性。这就需要在专利申请中递交相关的试验数据,其中还包括与申请的剂型最接近的现有技术中的剂型的试验数据。这样,专利申请者就能够证明自己的发明具有创新性。由于纳米微粒药物的现有技术还不是很成熟,纳米微粒的性质也常常是很难预测的,因此证明纳米药物与传统药物相比具有意想不到的优点,从而获得专利授权是相对容易的。然而,随着纳米药物现有技术的不断增加,这种专利申请的趋势终将会改变,也将会有越来越多的有关纳米技术的专利、法律问题显现出来。

4美国纳米医药专利体系存在的问题

4.1纳米技术的定义不准确纳米技术面临的一个问题是专家们对纳米技术的定义见仁见智。纳米技术是个概括性用语,它被用于定义产品、过程和特征,并覆盖了物理、化学和生命科学。美国国家纳米技术计划(NNI)中采用的纳米技术的定义是被引用最广泛的一种定义:“1~100nm尺寸问的物体,其中能有重大应用的独特现象的了解与操纵。”然而,一些专家反对给纳米技术限定如此严格的定义,他们认为应该强调数值范围的连续性而不是纳米到微米的界限。很显然,NNI的定义排除许多微米级的方法和材料,而许多纳米科学家都把微米量纲也纳入了纳米技术的范畴。实际上,许多政府机构都面临如何选用纳米技术的定义的问题。例如,FDA、PTO都采用了小于100nm的定义,也就是NNI的定义。这种定义就带来了许多麻烦,这不仅给纳米专利统计工作带来了困难,同时也给正确评估纳米技术的科学、法律、环生垦堑垫盘查!!塑生笙!!鲞篁!!塑境、管理和伦理学问题带来了麻烦。由于纳米技术需要许多技术的集合,每项技术又都有不同的特征和应用。小于100nm的大小可能对于纳米成像公司来说非常重要,因为量子效应直接依赖于粒子的大小。但是,这种大小的界限对于制药公司可能并不十分重要,因为从成分、剂型和有效性的角度来说,大于100nm的尺度也许才能获得某些理想的性质(如提高生物利用度、降低毒性、减少剂量、增强溶解度等)。有些专家指出,纳米技术并不是什么新的概念,因为许多生物分子都与纳米物质具有相似的大小。例如,肽分子的大小与量子相当(<10nm),一些病毒与用于药释系统的纳米微粒的大小类似(<100nrfl)。因此,大多数分子药物和生物技术都可以纳入到纳米技术的分类中。因此,一些研究者建议纳米技术的定义中对纳米微粒的定义不应仅仅局限于大小本身。欧洲科学基金会对医药领域的纳米技术作出了如下的定义:“采用分子手段和知识用于诊断、预防和治疗疾病,改善人们健康的科学和技术。”这种定义没有局限于分子的大小,而是强调了对纳米材料的可控性操作是否能够带来医疗效果的改进。对于这个问题,也有学者提出,在纳米医药领域,不应该采用NNI的有关大小的限制,而应该把纳米技术应被称为“微型技术”更加合适,这样才能把纳米技术和显微技术都包括在内。

4.2纳米技术的定义不准确导致专利分类产生偏差2004年11月,PTO公布了一个纳米技术的初步分类(被称为第977类),并且还正在不断补充977类下面的小类。2006年,12月,PTO把大约4500项专利申请纳入了第977类中。然而,这个数字实际上只是很粗略的估算,低于实际的纳米技术专利申请数量。这主要是因为FrO借用了NNI的非常狭窄的定义用于专利分类,就导致了专利分类系统产生偏差,尤其是对纳米医药和生物纳米技术有关的发明进行分类时,偏差就更加明显。另外,这种分类标准既不能很好地体现纳米医药发明特有的特征,也很难体现出纳米医药所包含的跨学科特征。PTO利用这种具有明显偏离的分类系统筛选出的几千项专利并没有达到当初建立977分类的目的,而当初的目的是:统计纳米技术领域的专利申请数量和授权数量、方便专利审查员和专利人进行纳米技术专利的检索。

4.3在纳米医药领域的现有技术检索中存在的问题和挑战

4.3.1审查员的检索资源和水平有限在纳米医药领域的检索中也存在着各种各样的问题。例如,一些专家认为PTO缺乏有效检索纳米医药现有技术的自动检索工具。另外,他们的数据库可能存在数据遗漏的问题。虽然,纳米医药专利的申请已经有显著增加,但是大多数的现有技术都被发表在杂志或书中。网站中的信息和公开的专利文献只是作为辅助的信息。而很多非专利文献,专利审查员是很难获得的,一方面是由于PTO并没有订购相关的商业数据库,另外一方面有些审查员在检索方面还不是非常专业。结果,专利审查员很可能会漏掉一些现有技术。这个问题可能并不仅仅是纳米医药专利审查中存在的问题,在其他技术领域的专利审查中也很常见。

4.3.2检索词难以确定由于目前广泛使用的纳米技术的定义常常相互重叠,就使对纳米技术相关专利的检索比其他技术领域的检索更加复杂。不同的检索词可能指的是相同的纳米材料和结构。例如,“nanofibers”、“fibrils”和“nanotubes”都可以代表多层碳纳米管,“singleshellnanocylinders”,“bucky—tubes”,“nanowires”and“nanotubes”都可以代表单层碳纳米管,因此要想精确作出纳米技术的专利地图是非常困难的。

4.3.3有些文献存在“假象”事实上,有些发明者在专利或出版物常常会把自己的发明撰写得十分隐蔽,以使自己潜在的竞争对手不会注意到他们的技术。另一方面,有一些具有商业头脑的发明者或发明的受让人,会把带有纳米的词汇加纳入到他们的专利或出版物中,以便获得较强的市场竞争力。因此,要在现有技术中找到真正的纳米技术,不但需要在检索专利和商业数据库时巧妙地选择关键词和专利分类代码,还要经过纳米技术专家的筛选,才能检索到最全面、最可靠的现有技术。十几年来,许多国家的专利局都面临着接受大量纳米医药相关专利申请的问题,PTO也不例外。随着纳米医药专利申请量的增多,其授权量也在不断猛增。但是由于PTO没能很好地解决审查工作质量低、专利授权量失控性猛涨以及职业道德降低的问题,将会对越来越紧迫的纳米医药的专利问题带来严重影响。归纳起来,PTO目前正面临的问题有:①审查员由于所能接触到的现有技术和检索水平有限,不能保证对每项纳米医药专利申请进行充分审查,做一】556一生垦堑堑苤查!!塑生笪!!鲞箜!!塑出授权决策依据的信息也往往有限。②审查员缺乏。③资金缺乏。④审查员的薪水只与审查数量挂钩,而不考虑审查质量,所以,审查质量低。⑤除了聘请过少数专家开展有关纳米医药讲座外,几乎没有聘请过外部的法律和技术专家。⑥Fro并不要求其审查员具有很高的学历。⑦没有专门针对纳米医药专利审查的培训教程和审查指南。

第2篇:纳米技术的新了解范文

从迄今为止的研究来看,关于纳米技术分为三种概念:

第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。

第二种,是把纳米技术定位为微加工技术的极限。也就是通过纳米精度的"加工"来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。

第3篇:纳米技术的新了解范文

关键词:物理知识;生活;应用分析

引言

物理学科是自然科学的重要分支,与生活有着密不可分的联系。对物理课程的学习是我们从自然到物理、从生活到物理的认识过程,在学习物理的过程中,一定要经历基本的科学探究实践,注重物理学科与其他学科的融合,让我们的思维得到开拓。物理学理论是人类对自然界最基本、最普遍规律的认识和概括。因此,加强物理知识与生活实际的联系,对我们高中生学习物理知识、认知物理知识、运用物理知识都是极为重要的。加强两者的联系,不仅可以提高自己的学习兴趣,也可以增加物理学习的直观性,更具有对生活的指导意义,提升生活技能。

一、生活实际与物理的关系

在生活中,我们看到的很多现象都被归类为物理的方面,比如说树叶会漂在水上,而石头会沉入水底;氢气球可以飞上天,但吹出来的气球却会掉在地上;水往低处流;水底石穿的现象;航天员在月球行走是漂着走;冬天毛衣容易起静电;指南针的工作原理……这些生活中常常容易被忽略的小事情,却无一例外都可以用物理学的知识来解释,而我们高中生在学习物理的过程中,也正是对生活进行深入了解的过程。物理是最早的物理学家们对自然界的现象的总结,后来逐渐形成了物理这一专门的学科,物理科学家们研究的范围越来越广,也越来越深入,但物理还是从相对简单的现象入手的。物理和生活之间的联系,物理课本中就有很多生活化的小例子,但是,更多地与生活实际相联系,可以增加学习物理的乐趣,我们学习起来会更好理解,同样的,将我们学到的物理知识应用在生活中,也能够开发我们的创造力。

二、物理知识在生活中的应用

1、纳米技术

纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术。纳米技术在高中物理中,属于分子学的范畴,所以,了解纳米技术的应用,对我们学习分子学有很大的帮助。在生活中,我们经常接触到的纳米技术如下:

(1)在纺织和化纤制品中添加纳米微粒,可以除味杀菌。化纤布虽然结实,但有烦人的静电现象,加入少量金属纳米微粒就可消除静电现象。

(2)利用纳米材料,冰箱可以抗菌。纳米材料做的无菌餐具、无菌食品包装用品已经面世。利用纳米粉末,可以使废水彻底变清水,达到饮用标准。纳米食品色香味俱全,还有益健康。

(3)纳米材料可以提高和改进交通工具的性能。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,能大大提高发动机效率,延长发动机工作寿命。

(4)利用纳米技术制成的微型药物输送器,可携带一定剂量的药物,在体外电磁信号的引导下准确治疗。纳米机器人,其体积小于红细胞,能疏通脑血管的血栓,清除心脏动脉的脂肪和沉淀物,还可“嚼碎”泌尿系统的结石等。

2、车辆速度计

在我们高中物理第一册第二章《运动快慢的描述速度》中讲到速度计是来测定运动物体的瞬时速度,本文来解释一下它是如何来测定机动车的瞬时速度。

当车以一定的速度行驶时,对应着车轮的一定转速,这时经过变速机构也使软轴以一定的转速转动,从而由电磁感应使感应盘也转动,使指针偏转一定的角度,那么在刻度盘上对应的位置刻上对应的车子速度,由于指针的转动角度与感应盘的转动角度是相等的,而感应盘的转动与软轴的转动成正比,而软轴的转动与车轮的转速成正比,而车轮的转速完全与车速成正比,所以速度计上指针所指的速度值完全由汽车的行驶速度来决定,所以测出的速度就是这个时刻车子的瞬时速度。速度计中应用了很多的物理知识,电磁感应、力矩转动、力矩平衡及仪表的刻度刻制和实际数据的处理.这都是物理知识的应用和能力体现。

3、航天技术

针对航天技术学习高中物理力学,就是在充分利用教材上的航天技术的所有内容,了解我们所感兴趣的领域。我们在学习的时候,可以进一步充分利用各种媒体,获得大量的有关航天技术的资料,包括古代的,现代的,当代的,中国的,外国的,视频的,文字的,图片的,在此基础上进行删减,最终获得那些形象的,有趣的,励志的等等对我们学习高中物理力学有价值的资料,除了课堂上教师的讲解内容,我们还应该利用课外的时间多多关注一些航天技术,感受物理知识所带来的强大的力量,明白物理知识与实际生活的联系,与科技进步的联系。我们在学习的时候,要结合我们自己了解到的航天知识,在课堂上积极主动学习,勇于质疑,敢于挑战权威困。在航天技术中所应用到的力学知识如下:

(1)天体力学和轨道力学

为了开发宇宙,我们必须对各个行星的运动规律有进一步的认识。因此,必须用近代的力学知识进一步描述天体的运动规律。另一方面,为了节约能量,必须对各种航天器的轨道进行优化。关于这方面,我们可以举例子。比如AOTV,就是气动辅助变轨转移飞行器。大家知道,要改变航天飞行器的飞行轨道,需要很大的能量。有时几乎是做不到的。一些力学专家提出了一些新的想法,即利用航天器在再人大气层中所受的气动力,来改变飞行轨道,就可以节省许多能量。

(2)大气层飞行力学

大气层飞行力学的重点是空天飞机的上升段轨道优化。由于空天飞机使用吸气式组合发动机,在整个飞行过程中,它受到很大的阻力和气动加热。为了节省能量,必须对上升段的轨道进行优化。

(3)结构动力学

不论是航天器,还是运载器,都存在大量振动问题。例如,运载火箭的长细比例较大,就必须进行振动塔试验和结构动力学的计算。建造振动塔是非常费钱的。随着今后火箭直径的加大和长度的进一步增加,进行全尺寸的振动试验变得越来越困难。为此,必须在建立正确的模拟火箭结构的结构动力学模型,进行分析计算。运载火箭还存在一些复杂的振动现象,若处理得不好,就可能造成发射的失败。

结语

总之,物理知识在生活实际中的应用十分广泛。我们在学习的时候要理解物理知识的重要性,认识物理知识在当代社会中的重要作用,更要关注物理学的最新发展,坚持与时俱进,利用物理知识推动社会和谐发展,更好地造福于人类。

参考文献

第4篇:纳米技术的新了解范文

纳米科技和纳米材料是20世纪80年代刚刚诞生并正在崛起的高新技术,它是研究包括从亚微米、纳米到团簇尺寸(从几个原子到几百个原子以上尺寸)之间的物质组成体系的运动相互作用以及可能的实际应用中的科学技术问题,研究内容还涉及现代科技的广阔领域。世界各国都对纳米技术给予了极大关注,美国、日本、德国等发达国家,都将纳米技术和纳米材料作为研究开发的热点课题,并得到政府的资金支持。随着科技发展进步,人类对纳米科技的研究日益广泛深入,纳米技术也已开始得到了较大范围的应用,并越来越深入地影响和改变着人们的生产、生活及思想,而对经济、政治及社会的影响则更多地体现在各国间对纳米科技及其应用的激烈竞争上。具有特异功能的各种纳米材料越来越多,由纳米材料制备的功能性产品也不断地被开发出来,开始形成一个新型的纳米功能性产品的产业领域。在众多的纳米材料中,一些高性能的纳米陶瓷粉体材料,也就是广义上的无机非金属纳米材料的开发应用最为广泛和活跃,并已在多种产业和实际产品中得到应用,出现了高性能多功能性纳米产品,从而使得许多传统产业正在发生一场新的技术革命。随着纳米技术和纳米材料进入更多的传统产业和传统产品中,纳米科技将会给整个社会带来更大的经济和社会效益,并对人类社会的发展和进步产生深远地影响。

纳米是一个长度单位,1纳米等于十亿分之一米,20纳米相当于1根头发丝的三千分之一。20世纪90年代起,各国科学家纷纷投入一场“纳米大战”,在0.10―100纳米尺度的空间内,研究电子、原子和分子运动规律和特性。

中国科学界不甘人后,1993年中国科学院北京真空物理实验室操纵原子成功写出“中国”二字,标志着中国开始在国际纳米科技领域占有一席之地,并居于国际科技前沿。研究材料学的专家学者也不甘人后,纷纷把眼光瞄准了“纳米”这一新技术领域,使得纳米科技和纳米技术取得了迅速地发展。随着纳米材料和纳米技术进入更多的传统产业和传统产品中,纳米科技将会给整个社会带来更大的经济和社会效益,对人类社会进步产生深远的影响,同时发展纳米科技是转变经济发展方式,实现可持续发展的关键。战略性新兴产业是新型科技和新型产业的深度融合,代表着科技创新的方向,也代表产业发展的方向,使战略性新兴产业尽早成为国民经济的先导产业和支柱产业,要大力推动自主创新、提高原始创新能力和关键核心技术创新能力,着力突破制约经济社会发展的关键技术问题。加快推进自主创新,紧紧抓住新一轮世界科技革命带来的战略机遇,更加注重自主创新能力,加快科技成果向现实生产力转化,加快科技体制改革,加快建设宏大的创新型科技人才队伍,谋求经济增长与发展主动权,形成长期竞争优势,为加快经济发展方式转变提供强有力的科技支撑。

太原高科公司及企业技术中心简介

太原高科耐火材料有限公司于1989年由高树森董事长基于创新耐火材料,服务产业经济的梦想而发起创立。在成立之初,这只是一家简易的小型耐火材料厂,经过几年的艰苦奋斗,企业取得了初步的发展。1992年经山西省高新技术委员会认定、国家太原高新技术开发区管委会批准,成立了太原高科耐火材料有限公司(简称太原高科)。公司建立了耐火材料生产厂和专门的耐火材料技术研究中心,并被山西省科技厅确立为山西省耐火材料工程技术中心,成为耐火材料行业唯一的国家级高新技术企业。并承担山西省高端重点行业用耐火材料的技术研究与开发工作。先后研究开发出多种耐火材料高新技术产品,及时将研究成果转化为生产力,大大促进了企业的发展,同时为技术研究和自主创新提供了雄厚的资金支持,形成了生产与科研相互促进的良好局面。公司与国内多所高等院校、科研机构在产品开发、技术交流等领域建立长期的合作关系,使公司在新产品技术性能、使用性能、技术储备等方面不断创新,形成了产学研联盟,具备研究、开发、生产高技术特种耐火材料能力,形成了自主研发、自主创新和自我实现产业化的良性循环。经过20年的发展,在实现了公司的管理升级和稳步、持续、快速发展的同时,确立了以“以科研为依托,市场为导向”的科技兴企的发展战略。

目前,太原高科已通过ISO9001-2000国际质量体系认证和ISO14001:2004环境管理体系认证,被山西省科委确定为“山西省科技先导型企业”、太原市科技局授予“太原市科技创新示范单位”、太原高新区授予“十佳技术创新项目企业”及“质量管理先进企业”、山西省认定为企业技术中心。最近,中国耐火材料行业协会授予太原高科耐火材料有限公司、山西省耐火材料工程技术研究中心“行业纳米材料产业化示范基地”的称号。

实践证明,坚持科学发展观,坚持走自主研发和自主创新的道路是太原高科发展的根本。通过多年的努力,太原高科公司已走出了自主研发、自主创新、自主生产科研成果的路子,由“中国制造”变为“中国创造”,而且实际效益十分突出,在这次金融危机的冲击下,该企业也受到一定程度的影响,但在高董事长的带领下克服重重困难,企业产值利润仍得到了较大增长,并且由于纳米科技、纳米材料开发成功和应用,企业潜在产值利润发展空间十分广阔。这同时也从一个侧面说明,我国科技体制改革中建立以企业为主体、产学研结合的技术创新体系,并将其作为全面推进国家创新体系建设的突破口,只有以企业为主体才能坚持技术创新的市场导向,有效整合产学研的力量,确实增强国家竞争力,以企业为主体的创新机制,对科研成果迅速转化为生产力具有重要的推动作用。

纳米耐火材料研究成果概述

耐火材料是钢铁、有色金属、建材、石化、能源、环保、电子、国防等基础工业领域重要的基础材料,是高温工业热工设备不可缺少的重要支撑材料,与钢铁等高温工业的技术发展相互依存互为促进。为了开发21世纪新一代耐火材料,迫切需要运用尖端的纳米技术和纳米材料开发后续的纳米耐火材料。随着科学技术进步的日益加快和对纳米技术广泛深入的研究,作为高新技术,纳米技术得到了迅速发展和广泛应用,并且越来越深入地影响和改变着人们的生产、生活及思想,而对经济、政治及社会的影响则更多地体现在各国间对纳米技术及应用的激烈竞争上。耐火材料作为高温工业,特别是钢铁工业服务的基础材料,它一直伴随着高温技术和材料科学的进步而发展。如何应用尖端的纳米技术和纳米材料来改变耐火材料的组织结构,特别是微观显微结构,全面提高耐火材料的各项性能指标,更好地满足钢铁等高温工业发展及使用需求,一直是广大耐火材料工作者所关注的热点问题。因此,高科公司和技术中心研究人员在高树森董事长的带领下,对纳米技术、纳米材料及其在耐火材料领域中应用开展了长期的、多方面的探索与尝试,并且在此工作基础上还进行了专题研究和自主创新工作;结果表明,采用纳米技术制备的纳米陶瓷粉体材料所具有的功能特性,在纳米耐火材料领域中应用都能够充分地显示出来且得以确认;采用纳米技术和纳米材料制成的纳米耐火材料产品,在钢铁工业新技术(如炼钢二次精炼)中使用,也显示出令人振奋的使用结果。

近年来,我们对纳米技术和纳米材料进行了深入研究和自主创新,自2008年至今,在将近两年的时间里,共申报了六项纳米耐火材料发明专利项目,涉及耐火材料的主要品种,前五项发明专利均已公布,并经有关部门严格筛选后评定,被列为年度国家重点发明专利项目,并纳入国家发明专利实施转化项目中,还被国家知识产权局出版社编入发明人年鉴中;前两项发明专利获第九届香港国际发明博览会金奖,又获第十二届中国北京国际科技产业博览会第三届中国自主创新杰出贡献奖。2010年这些纳米发明专利在第十三届中国北京国际科技产业博览会上又获“中国自主创新杰出贡献奖”,并在“中国高新企业发展国际论坛”上做了《关于发展纳米科技和纳米耐火材料自主创新及其产业化》的重要报告。六项纳米发明专利项目分别是:

纳米耐火材料发明专利之一

纳米复合氧化物陶瓷结合铝―尖晶石耐火浇注料及其制备方法(公布号:101397212A)

纳米耐火材料发明专利之二

纳米Al2O3薄膜包裹的碳―铝尖晶石耐火浇注料及其制备方法(公布号:101417884A)

纳米耐火材料发明专利之三

纳米Al2O3、MgO复合陶瓷结合尖晶石―镁质耐火浇注料及其制备方法(公布号:101544505A)

纳米耐火材料发明专利之四

纳米Al2O3、MgO薄膜包裹的碳―尖晶石镁质耐火浇注料及其制备方法(公布号:101555153A)

纳米耐火材料发明专利之五

纳米Al2O3、SiC薄膜包裹碳的Al2O3-MA-SiC-C质耐火浇注料及其制备方法(公布号:2101767999A)

纳米耐火材料发明专利之六

纳米SiO2、CaO复合陶瓷结合硅质耐火浇注料及其制备方法(申请号:201010165554.9)

纳米耐火材料系列发明专利的公布,是纳米技术和纳米材料在耐火材料领域中成功应用的重要标志,也是纳米技术和纳米材料在传统产业中自主研发、自主创新的重要发展方向,对钢铁等高温工业的发展和高新技术的应用,作出了重要贡献。同时,发展纳米科技是转变经济发展方式,实现可持续发展的关键。具有战略性的纳米新兴产业是新兴科技、新兴产业的深度融合,代表着科技创新的方向,也代表产业发展的方向。使纳米战略性新兴产业尽早成为国民经济的先导产业和支柱产业,要大力推动自主创新,着力突破制约经济社会发展的关键技术问题。加快推进自主创新,紧紧抓住新一轮世界科技革命带来的战略机遇,更加注重创新,加快自主创新能力,加快科技成果向现实生产力转化,加强科技体制改革,加快建设宏大的创新型科技人才队伍,谋求经济增长与发展主动权,形成长期竞争优势,为加快经济发展方式转变提供强有力的科技支撑。太原高科纳米耐火材料的研究及其发明专利成果,大大推动了我国纳米技术、纳米材料的进步与发展,为耐火材料的发展开辟了一片新天地,也为开发更长寿、更节能、无污染功能化的新型绿色耐火材料带来了发展空间。为了进一步深入发展纳米技术在耐火材料领域中的应用研究,使纳米技术在耐火材料领域中得到更广泛的应用,太原高科将研究开发更多更实用的纳米耐火材料发明专利成果,以满足钢铁等高温工业发展需求,也为钢铁等高温工业技术的实施与发展提供了最佳服务。

发展“绿色耐材” 节能减排

耐火材料是高温工业的重要基础材料。在全球大力发展低碳经济形势下,实现高温工业的“绿色化”与耐火材料工业自身的“绿色化”不无关系。绿色耐火材料战略是关系到我国当前和今后耐火材料行业可持续发展的重要发展战略。我国在耐火材料总产量和品种数量上是当之无愧的世界第一。但就“绿色度”而言,差距却甚大,表现在诸如:炼钢耐火材料的平均比消耗高出国际先进水平1倍以上,高性能、长寿命产品比例少,质量稳定性欠佳,技术附加值不高,能耗高,存在环保和公害问题,某些原料资源短缺等。

我们研究开发的新型纳米耐火浇注料及其整体浇注技术,大幅度提高浇注的整体炉衬的使用寿命,节省资源,且节能环保,生产成本相对较低,经济适应性强,无粉尘,无排放有害气体,特别是无纳米粉体的污染,是真正的绿色耐火材料,适应循环经济发展要求,具有显著的经济效益和社会效益,已达到国际先进水平。该系列项目的大力推广也将为我国丰富的耐火矿产资源在现代耐火材料应用中提供广阔的发展前景,将资源变为产品,推动市场效益,可带动资源产业的更快发展。

建立纳米耐材产业化示范基地

我国钢铁产量巨大,2009年钢产量达5.7亿吨,位居世界首位,约占世界总产钢量的47%以上,钢铁生产的高速增长是伴随着流程优化与结构调整来实现的,其重要的就是对加快推进生态文明建设是从清洁生产总体高度上,加快科技创新与进步,继续将纳米技术纳入到耐火材料尖端技术之中,进行深入的研究开发和自主创新,并实施产业化,对钢铁等高温工业发展、高新技术的采用与实施、节能减排、提高质量、创新品种都将发挥非常重要的作用。

纳米科技和纳米材料是21世纪最有发展前景的高新技术,它对国家经济发展、经济转型、传统经济改造、自主创新等均具有重要意义。然而,纳米科技和纳米材料只有在生产实际应用中才能体现出自身的重大价值。国外多个国家都对纳米产品的产业化给予特别关注,并且作为纳米科技发展水平的重要标志。纳米材料制备技术由实验室转移到工厂生产势在必行,在纳米技术产业化过程中存在多方面制约纳米发展的瓶颈问题。为了解决纳米耐火材料产业化中出现的各种瓶颈问题,我们开展长期的专项研究并取得了较好的效果,这就为纳米耐火材料产业化铺平了道路,为加快推进产业结构调整,完善现代产业体系,加快推进传统产业技术改造,加快发展纳米战略新兴产业,全面提升产业技术水平和国际竞争力,都具有重大意义。

为此,建立纳米耐火材料产业化示范基地,对当前和今后耐火材料工业和钢铁等高温工业的发展是非常有意义的,而且也是十分紧迫和刻不容缓的。此外,国际间纳米技术和纳米材料的竞争更多体现在工业生产的纳米产品上,太原高科对纳米科技和纳米耐火材料的研究开发和自主创新作了长期的艰苦努力,并取得多项发明专利成果,并且对纳米科技和纳米耐火材料继续开展深入研究和产业化基地建设将会取得更多、更大进展,为我国纳米科技发展作出贡献。产业化示范基地建立后,太原高科将运用多项高新技术,谋求与尖端的纳米技术整合,加速纳米耐火材料的理论与实际应用研究,为耐火材料行业的纳米化发展创造条件和奠定基础,完成开发成果后,可积极推进开发和创新成果的产业化,及时服务于钢铁等高温工业生产中,使纳米技术及早地显现出经济效益和社会效益,为科技发展和进步作贡献,努力把21世纪纳米尖端耐火材料的开发与生产做好、做成功;为国家高温工业的发展继续作研发与服务;加快传统工业的改造,促进我国经济的平稳、快速发展。■

第5篇:纳米技术的新了解范文

纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。

1.在催化方面的应用

催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。

光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的TiO/SiO2负载型光催化剂。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。

2.在涂料方面的应用

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米TiO2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米SiO2是一种抗紫外线辐射材料。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。

3.在其它精细化工方面的应用

精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。国外已将纳米SiO2,作为添加剂加入到密封胶和粘合剂中,使其密封性和粘合性都大为提高。此外,纳米材料在纤维改性、有机玻璃制造方面也都有很好的应用。在有机玻璃中加入经过表面修饰处理的SiO2,可使有机玻璃抗紫外线辐射而达到抗老化的目的;而加入A12O3,不仅不影响玻璃的透明度,而且还会提高玻璃的高温冲击韧性。一定粒度的锐钛矿型TiO2具有优良的紫外线屏蔽性能,而且质地细腻,无毒无臭,添加在化妆品中,可使化妆品的性能得到提高。超细TiO2的应用还可扩展到涂料、塑料、人造纤维等行业。最近又开发了用于食品包装的TiO2及高档汽车面漆用的珠光钛白。纳米TiO2,能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有机污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。在环境科学领域,除了利用纳米材料作为催化剂来处理工业生产过程中排放的废料外,还将出现功能独特的纳米膜。这种膜能探测到由化学和生物制剂造成的污染,并能对这些制剂进行过滤,从而消除污染。

4.在医药方面的应用

21世纪的健康科学,将以出入意料的速度向前发展,人们对药物的需求越来越高。控制药物释放、减少副作用、提高药效、发展药物定向治疗,已提到研究日程上来。纳米粒子将使药物在人体内的传输更为方便。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织;使用纳米技术的新型诊断仪器,只需检测少量血液就能通过其中的蛋白质和DNA诊断出各种疾病,美国麻省理工学院已制备出以纳米磁性材料作为药物载体的靶定向药物,称之为“定向导弹”。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由流动,因此可以用来检查和治疗身体各部位的病变。对纳米微粒的临床医疗以及放射性治疗等方面的应用也进行了大量的研究工作。据《人民日报》报道,我国将纳米技术应用于医学领域获得成功。南京希科集团利用纳米银技术研制生产出医用敷料——长效广谱抗菌棉。这种抗菌棉的生产原理是通过纳米技术将银制成尺寸在纳米级的超细小微粒,然后使之

附着在棉织物上。银具有预防溃烂和加速伤口愈合的作用,通过纳米技术处理后的银表面急剧增大,表面结构发生变化,杀菌能力提高200倍左右,对临床常见的外科感染细菌都有较好的抑制作用。

微粒和纳粒作为给药系统,其制备材料的基本性质是无毒、稳定、有良好的生物性并且与药物不发生化学反应。纳米系统主要用于毒副作用大、生物半衰期短、易被生物酶降解的药物的给药。

纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。在金属铁的超细颗粒表面覆盖一层厚为5~20nm的聚合物后,可以固定大量蛋白质特别是酶,从而控制生化反应。这在生化技术、酶工程中大有用处。使纳米技术和生物学相结合,研究分子生物器件,利用纳米传感器,可以获取细胞内的生物信息,从而了解机体状态,深化人们对生理及病理的解释。

第6篇:纳米技术的新了解范文

2006年3月14日,BenQ正式于北京划时代的Joybook笔记本电脑新品Joybook S61/S73“笔记本数字电视”(Notebook Digital TV)。只要打开内置TV Tuner电视卡(选配),接上随附的专用电视天线,Joybook S61/S73就能随时观看高清晰数字电视节目。Joybook“笔记本数字电视”S61/S73的诞生为人们开创了一个全新的“移动影音娱乐”时代。

明基Joybook笔记本产品经理表示,目前北京、上海和广州已经开通了DTV数字电视广播业务,随着DTV业务开展的城市越来越多,今后笔记本将有可能标配数字电视接收模块。随着产品的改善,下一记本数字电视将可能实现天线内置,并提高对信号的适应性

一周事件回顾

HD-DVD遭遇尴尬

华纳近日宣布,由于技术上的原因,将无法按期于3月28日推出基于新一代DVD标准HD-DVD格式的影片。该消息引发了业界对HD-DVD前景的担忧。 据悉,华纳是惟一一家已明确HD-DVD影片发行日期的好莱坞工作室。另外两家支持HD-DVD标准的好莱坞工作室――派拉蒙和环球目前还尚未确定影片的发行日期。

对此,HD-DVD阵营代表东芝公司表示,将按期于本月底两款HD-DVD播放器。东芝发言人Alejandro Arango称:“有关HD-DVD的任何计划都不会因此而改变。” 但是,从目前情况看,市场上将只有HD-DVD播放器,而没有相应格式的影片。这种情况将至少持续一段时间。而且,据了解,东芝本月首发HD-DVD播放器的数量只有1万部,远远低于业内预期。

微软将视频服务

微软近期将Windows Live Video视频服务,就像现在的Google提供的视频服务一样,其上的内容也可以买卖。据悉,这项新服务4月就将公开。微软当前提供的视频服务MSN Video提供有来自内容合作伙伴和网络的新闻、娱乐和体育等节目,不过这些以广告收入做支持的流视频并不用来出售。现在还不清楚Windows Live Video是否会影响到MSN Video服务。

微软博客服务MSN Spaces的一位名叫莫兹・胡赛因(Moz Hussain)的产品设计师在接受采访时流露出了Live Video计划。胡赛因说,未来Windows Live和Spaces的结合,将能够“把在不同地方张贴的内容收集在一处,无论这些内容是一处旅馆的景色,或是旅游时照得相片还是我喜欢的视频短片和电影――所有这些东西我都可以收集起来并拿来与全球共享。”

该服务将是微软正在稳步推出的Windows Live系列产品中最新的一个组成部分。微软董事长比尔・盖茨去年11月公布了Live计划,目的是最终将微软所有的软件产品作为一项网络服务提供给用户。

三星80纳米技术DDR2内存量产

三星日前宣布,已开始采用80纳米技术批量生产512M DDR2 DRAM。据了解,从90纳米技术过渡到80纳米可以使生产效率提高50%,从而使它可以满足市场对DDR2不断增长的需求。

三星半导体DRAM营销主管汤姆・特里尔(Tom Trill)表示:“市场对DDR2的需求正处于2004年推向市场以来的最好水平。80纳米技术的采用将为今年预计中的持续增长提供有效的保障。” 据Gartner预计,今年DDR2内存将占有整个DRAM市场的一半以上。

英特尔挑战MIT

第7篇:纳米技术的新了解范文

与英美等工业发达的国家相比,我国制造业的现状不能令人乐观,需要更多的人一起努力。社会的进步,使得如今的人们对产品的要求发生了极大的变化。人们更多的希望品种多样化、快捷的更新速度、高档的产品质量、方便的使用模式、合理的价位,靓丽的外形、完善的售后服务,要满足人们这些日渐增长的需求,就必须采用先进的机械制造技术。加入WTO之后,我国的机械制造业遇到了前所未有的机遇和挑战。要把握住机遇、应对和挑战,就决不能再沿着20世纪的发展模式,必须全面拓展,步入全球化、网络化、虚拟化、自动化、绿色化的“五化”发展模式。只有这样,才能走出一条中国自有的先进机械化道路[2]。

机械制造技术的特点

机械设备的设计、研发、生产,是促进国民经济发展、推进企业创新的一个重要因素。因为无论是新产品的制造,或是新技术的推广,都离不开新的、高科技的机械设备的支持。要想使机械设备的设计研发工作更加合理、科学,要想促进机械水平的整体快速提高,就必须清楚的了解和掌握机械制造技术的特点,只有这样,才能设计出符合规范的大中小型机械设备[3]。

作为一项先进的制造技术,往往在机械产品设计制造、生产组织、管理销售以及售后服务等方面,特别强调计算机技术、信息传感技术、自动化技术以及现代系统管理技术的应用。其原因在于,它要不断使一直以来的传统制造技术和最近的高新技术成果相结合,从而使机械制造技术成为能够驾驭生产过程的物质流、能量流和信息流三者合一的系统工程。

促进国家经济和综合实力的增强、提高我国企业在国际市场上的竞争能力是先进的制造技术应用的两大目标。因此,它往往并不限于制造过程本身,而是涉及了产品从市场调查、产品研发、工艺设计、生产准备、制造加工以及售后服务等一般产品涵盖的所有内容,在此基础上,将它们结合成为一个有机的整体。最终,提高制造业在所有行业的综合经济效益和社会效益。

怎样提高企业的生产率,是企业参与市场竞争的核心问题。20世纪80年代以后,随着全球市场的进一步融合及发展,制造业要想在市场上拥有一席之地,就必须以侧重提高劳动生产率为根本,转变为侧重时间为核心的时间、质量和成本三者的有机统一为根本。只有达到了三者的统一,机械制造技术才能真正的进步,才能在日渐激烈的市场竞争中处于不败之地。

上世纪80年代开始,全球市场逐步形成,以欧美为首的发达国家通过金融、科技等手段争夺其在全球的市场份额,利用其自身优势,向不发达国家倾销商品、输出资本,导致市场的竞争趋于白热化。为了不被激烈的市场大潮冲垮,各个国家争相发展本国的机械制造技术。只要一个国家的机械制造技术能够赶超世界先进水平,并能成为该国制造业赢得全球市场的支撑力,整个国家的经济实力才能有所提高。与此同时,机械制造技术是21世纪的高科技技术,它理应和最先进的科技成果相集合,理应有明确的新的技术领域。

我国机械制造技术的未来发展

制造技术分为传统制造技术和先进制造技术。显然,先进制造技术是由传统制造技术发展而来的,它保留了传统制造技术中的有效部分,又源源不断的吸取各种新的高技术成果,之后将二者结合到生产的所有领域及其全部过程[4]。扫描显微镜的发明和使用,使人类认识和改造世界的能力进入纳米的尺度。纳米技术是指产品能够实现纳米级精度,是在纳米尺度范围内研究物质原子和分子结构、物质特性及其相互作用和运动,最终运用这种技术为人类服务的高新科技。纳米技术对制造业的发展进程产生了极其深远的影响,就目前来说,它的应用范围十分广泛,包括纳米材料技术、纳米加工技术、纳米装配技术以及纳米测量技术等等。2000年,超精密加工的加工精度已经达到纳米级。而在21世纪初开发的分子束生长技术、离子注入技术和材料合成、扫描隧道工程可使加工精度达到0.0003-0.0001μm。目前的精密工程正向其终极目标——原子级精度的加工逼近,即可以做到移动原子级别的加工[5]。

1)对于现代机械制造技术的未来发展,将主要体现在两个方面:(1)精密工程技术。它以超精密加工的前言部分、微细加工、纳米技术为代表,目的是将来进入微型机械电子和微型机器人的时代。(2)机械制造的高度自动化。它以CIMS和敏捷制造等的发展为代表。

2)飞速发展的网络通讯技术的发展和普及,给从事机械制造业的众多企业的生产经营活动带来了翻天覆地的变化。因此,必须加速技术信息的交流、加强产品开发的合作和经营管理的学习,从而推动机械类企业朝着良性竞争和多方合作的方向发展。

3)未来还需要注意产品生产过程中的模拟和检验,即制作过程中的虚拟技术。计算机仿真是机械制作虚拟化的核心,它通过仿真软件来模拟真实系统,以此来保证产品设计和工艺的合理性,同时,也确保产品制造的成功,并及时发现设计、生产中不可避免的缺陷和错误。

第8篇:纳米技术的新了解范文

关键词:物理技术;农业;增产;优质

农药化肥虽然能够在最短时间内提高农作物的产量,但是长期使用会导致土地对农药化肥的过分依赖,甚至导致土地本身的营养不断下降。大量实践证明,近年来自然环境被污染、农作物的品质指标在不断下降,直接影响了人们生活品质,同时也阻碍了我国现代农业的可持续发展[1]。为此,笔者结合实际,提出尽可能地将更多的物理技术应用在农业生产过程中。

1电磁场效应在农业中的应用

1.1提高种子发芽率

利用电磁场处理农作物的种子能够增强种子的呼吸度,增加种子的根系活力,提高种子的发芽率以及发芽效果。同时还能够净化环境,但是将电磁场效应应用在农业中,还需要考虑到不同类型种子其自身的品质、成熟程度等有着一定区别,种子中所蕴含的化学成分也会有所差异。因此在对种子进行电磁场效应时,一定要了解种子自身的导电率、电阻率、电容等一系列特征,明确在同一静电场运动过程中,种子的运动轨迹会有所差异。结合上述参数对该品类种子的电磁场能够去除破碎的种子,并且清除杂质,获取更多高品质的种子,使得种子的纯度得到提升。与此同时,利用磁化水浇灌农作物,也能够增强矿物质在水中的溶解度效果,提高营养物质和水分的吸收速率,对于农作物在生长发育以及增产抗逆能力中都有着极为重要的促进作用[2]。实践证明,对小麦进行电磁场处理,能够增加小麦的产量,同时也能够去除小麦种子中品质低劣的种子。利用电磁场对农作物或种子进行处理的过程中,在使用时利用磁场处理水,将种子放在磁场中进行磁化作用,由于微弱的磁场可以在最短时间内激发种子中各种不同酶的活力,进而提高种子的发芽效果,种子的幼苗也会不断地茁壮成长,其整体根系会十分发达。磁化水不仅能够增强小麦的处理效果,同时也能够帮助种子进行有丝分裂,确保细胞体积增大,增强了作物在水肥吸收过程中的效果。在植物生长过程中,电磁场一直以来都是不可或缺的条件,更是整个植物生产过程中的最重要物理环境因素之一。如果直接把植物与接地用的细金属网连接起来,会导致该金属网直接屏蔽了大气电场,植株就无法实现正常的生长和发育,但是如果在植物中添加适宜的电场,则可以促进植物生长和发育。一直以来在植物生长过程中,电磁场对其的作用都是毋庸置疑的,但是电磁场对于植株生长而言,其所带来的作用需要进行进一步的分析,由于物理环境因素多样且复杂不同,因此在利用电磁场增加植株的生长质量时,不仅要考虑到电磁场的作用效果,还需要考虑其他的综合因素。

1.2减少病虫害

很多研究人员都在利用电磁场本身的作用使得电场发生定向移动,可以将电场直接附着在作物表面或者是地面、墙壁等等,起到的作用就是在第一时间阻碍病虫害的传播,降低病虫害对农作物带来的负面影响[3]。无论是水肥的吸收或者是光合作用能力均会在此得到增强,能够有效地提高种子抗病虫害的处理能力,使得农作物在生长过程中更加健壮,进而实现农作物的增产和高产,而适当地利用磁化水浸泡小麦、水稻等一系列作物,能够确保自身具有明显的促进作用。

2声波效应在农业中的应用

在农业发展过程中,声波助长技术也是近几年新兴起来的一种全新的农业高新技术。该技术在科技发展中展现了其独特的效果,声波助长仪可根据不同植物本身所具有的声学特性,提高植物自身的光合效率,提高植物的产量。

2.1促进植物健康成长

利用音箱发出对该种植物所产生的特定的声波,这种声波频率能直接增加植物内活细胞电子流的运动速度,同时也可以通过声波促进植物对各种不同营养元素的吸收、转化以及输入,也可以加快茎叶等营养器官的生化反应速度,促进植物健康成长发育。并且可以针对同一营养物质增加植物的吸收量,使得植物的果实或者是营养体在形成的过程中合成数量不断增多,促进在植物体内出现大量的有机物质。例如蛋白质和糖的合成,使得植物本身的细胞一直以来都处在较高的氧化水平,而如果出现了毒素则具有极强的破坏作用,能够确保植物自身的能量供给以及中间产物的产量。声波的存在如同电磁场一样,能够发挥出极强的作用,并且增强植物在进行代谢时的代谢质量,提高植物的活性。事实上,声波作为一种物理技术,应用在农业生产过程中时间较早。

2.2减少病虫害

声波助长仪的作用是让植物在短时间内快速地生长,提高农作物的产量,增加各类不同的营养物质,增强植物本身的抗病能力,有效地去除植物中的敏感虫害,实现提早开花、提早结果,延长植物的储藏时间[4]。对某一些植物而言,还能形成隔离区,能够确保出现植物病虫害时,病虫害得到有效的控制。这些植物声波也可以让一些本身相对敏感的害虫在听到植物声波后产生厌恶感和恐惧感,不会出现在植物上繁殖的状态,甚至有一些害虫会主动离开,以此达到有效去除敏感害虫的功效。根据植物本身的发生状态,实现自发声,这种自发声具备极强特殊的声波,利用声波共振技术让声波仪模拟出与植物自发声相同的声波,提高植物自身的光合效率,提高植物的产量[5]。在农业生产过程中,声波助长物理技术的实施能够进一步完善当前的农业生产技术,提高农业生产科技水平,促进农业发展。

3纳米能量效应在农业中的应用

近年来,我国的纳米肥料研究呈现出蓬勃发展的趋势,纳米技术的出现也能够有效地改变种子中存在的微小裂口和破损,纳米包装可以更快速地适应不同环境的发展需求、不同环境的状态,在食品变质时第一时间提醒消费者。纳米技术也可以改善包装的渗透,能够提高阻隔性,改善耐热和抗损技术,阻止食物变质。在纳米技术应用过程中,其应用在包装技术上,对功能产品以及互动食品的发展带来了积极的促进作用,利用纳米包装能够促使这些食品为人体提供更加有效、更加科学的营养[6]。在分析农业技术中应用纳米技术时,我们发现其具有以下优点。

3.1提高种子的出苗率

出苗率一直以来都是农产品提高产量和质量的重中之重,利用纳米技术处理后的种子可以直接吸收自然界的光波,将光波直接转化成为电磁波接入,使得种子体内的大分子团渐渐分离,成为小分子团。如果在空间没有出现改变的情况下不断增加这一条件,能够使得分子团的运动速度更加剧烈,并且分子团与分子团相互碰撞时,其概率更大,活性也会随之增加,能量也会不断地增强,其对种子的破土能力而言,会带来积极的影响。

3.2促进植物的新陈代谢

通过纳米处理后,幼苗的长势飞快,并且幼苗本身的根系发达,利用纳米处理技术能够对种子进行有效的调节,加快植物体内的新陈代谢,提高植物的抗逆性,促进植物的生长,根系活力得到显著的提升。通过大量的实验分析,发现植物的根系活力甚至可以达到82.3%。在农业上利用纳米生物农药也能够使得植物的生长速度得到提升,而这一种农药不溶于水的复杂体系属于非均相体系,其物理化学和生物学也会在第一时间内出现改变。

3.3减少病虫害

利用纳米技术可以让植物的细胞壁出现破壁的情况,脂溶性和水溶性的杀虫物质也能够释放,直接作用于害虫,提高了农药在使用时的药效。纳米物质的表面效应十分明显,这是由于粒度越小,表面就越大,减少农药使用量[7]。随着纳米技术发展,促进农业系统环境的监控能力得到提升,确保农业实现精准生产,可以有效地挖掘植物中存在的潜在营养物质,进一步提高农产品的产量以及农产品的附加值,而使用纳米农药精准改变杀虫剂,有效地减少农药使用量,降低农药的残留,最终能够实现绿色农业发展,提高农业发展的整体质量。同时,去除土壤中存在的有害物质,清洁水质,保护我国农业生态属于生态健康状态。

4等离子处理技术在农业中应用

等离子技术也是农业发展过程中常见的技术之一,而使用等离子技术能够通过物理方法提高种子在使用时的活力,激发种子自身的潜能,实现提高种子发芽率,达到增产的效果。通过大量的实验分析可知,将等离子技术应用在农业发展过程中,大豆平均增产12.2%,玉米平均增产11.3%,而水稻则能够增产11.5%,这是一种以单项的技术就能够提高农作物产量和品质的农业技术[8]。等离子技术为我国粮食安全、粮食品质保障带来了极为正向的影响,而物体的存在状态与物体的温度有着直接密切的关系,温度的变化能够直接改变物体存在的状态,而物体存在的状态也会改变物质本身的特性。通过等离子技术能够让种子具有极强的抗逆性以及生命力,将使得农作物的产量得到提升,有效改善农作物品质,但是在使用等离子技术处理种子时需要考虑已经萌动的种子一定不可以利用等离子处理技术,等离子处理种子的目的和意义是打破原本种子的休眠状态,使得种子自身的活力得到增强。已经萌动的种子不再是真正意义上的种子,其内部物质已经出现了改变,种子已经变成了一个生命体,正在进行生命发展,而在这一阶段应用等离子体对其进行刺激,并不会对种子的生长、发芽带来正面影响,反而会带来负面影响,甚至会直接影响到种子的出苗。利用等离子处理技术不能处理有杂物的种子,这是由于等离子机在处理种子时,是根据种子的粒度处理,即能够流畅地确定各种尺寸,机器结构在满足最大力度通过的情况下间隙最小,只有保证种子在机器内部能够实现多次有效的翻转,并且获得充分的照射,才能提高处理效果[9]。但是如果在处理种子过程中存在杂物则有可能会导致杂物直接进入到机器内,使得机器内部出现堵塞的状况,等离子技术在处理种子过程中要保证种子的流通状态顺畅,按照正常的流动速度进行设计,才能够获取最佳状况,如果流速处理不当,会影响到在后续处理时的处理效果[10]。等离子处理技术自身的科技含量高,实用性强,具有非常多的综合优势,能够满足我国农业发展需求,既能保护环境,也可以增加社会效益以及经济效益。

5小结

第9篇:纳米技术的新了解范文

Abstract: China is at a critical period of economic development, manufacturing technology is the weak link. Only to keep up with the world trend of advanced manufacturing technology and put it in a strategic priority, and sufficient strength to be implemented, in order to narrow the gap with developed countries, in order to remain invincible in the fierce market competition.Key words: machinery manufacturing; technical characteristics; the direction of development

中图分类号:TH16文献标识码: A 文章编号:2095-2104(2012)04-0020-02

前言

机械制造技术不仅是衡量一个国家科技发展水平的重要标志,也是国际间科技竞争的重点。本文对我国机械制造技术的现状及技术特点进行分析,并简述了21世纪机械制造技术的发展方向。一、我国机械制造技术发展的现状分析机械制造技术是研究产品设计、生产、加工制造、销售使用、维修服务乃至回收再生的整个过程的工程学科,是以提高质量、效益、竞争力为目标,包含物质流、信息流和能量流的完整的系统工程。20世纪70年代以前,产品的技术相对比较简单,一个新产品上市,很快就会有相同功能的产品跟着上市。20世纪80年代以后,随着市场全球化的进一步发展,市场竞争变得越来越激烈。20世纪90年代初,随着CIMS技术的大力推广应用,包括有CIMS实验工程中心和7个开放实验室的研究环境已建成。在全国范围内,部署了CIMS的若干研究项目,诸如CIMS软件工程与标准化、开放式系统结构与发展战略,CIMS总体与集成技术、产品设计自动化、工艺设计自动化、柔性制造技术、管理与决策信息系统、质量保证技术、网络与数据库技术以及系统理论和方法等均取得了丰硕成果,获得不同程度的进展。但因大部分大型机械制造企业和绝大部分中小型机械制造企业主要限于CAD和管理信息系统,底层基础自动化还十分薄弱,数控机床由于编程复杂,还没有真正发挥作用。因此,与工业发达国家相比,我国的制造业仍然存在一个阶段性的整体上的差距。目前,我国已加入WTO,机械制造业面临着巨大的挑战与新的机遇。因此,我国机械制造业不能单纯的沿着20世纪凸轮及其机构为基础采用专用机床、专用夹具、专用刀具组成的流水式生产线――刚性自动化发展。而是要全面拓展,面向五化发展,即全球化、网络化、虚拟化、自动化、绿色化。二、机械制造技术的特点做好基础自动化的工作仍是我国制造企业一项十分紧迫而艰巨的任务。但加工中心无论是数量还是利用率都很低。可编程控制器的使用并不普及,工业机器人的应用还很有限。因此,我们要立足于我国的实际情况,在看到国际上制造业发展趋势的同时扎扎实实地做好基础工作。