公务员期刊网 精选范文 气候变化对土壤的影响范文

气候变化对土壤的影响精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的气候变化对土壤的影响主题范文,仅供参考,欢迎阅读并收藏。

气候变化对土壤的影响

第1篇:气候变化对土壤的影响范文

关键词:气候变化 水土保持因素 人类因素

中图分类号:P46 文献标识码:A 文章编号:1007-3973(2010)09-103-03

气候变化问题是当今世界非常重视的一个全球性热点难题。气候变化不仅和各种自然因素有关,例如太阳辐射的变化、宇宙沙尘浓度的变化、地球轨道的变化、大陆漂移、火山爆发和植被变化等,并且还受到各种各样的人类活动的影响。人类对气候的认识也经历了一个从静态到动态,从稳定到突变的过程,并且仍然处于发展阶段。这是因为气候变化的原因十分复杂,因为不仅每种影响因素都难于定量定性研究,而且这些复杂的影响因子还是多尺度重合的。

THOMAS研究了近一千年的全球气温变化,认为在工业革命之前的气候变化主要由太阳辐射和火山爆发等自然因素控制,而工业革命之后人类活动的影响则成了主要原因。例如,人类的工业排放和土地,土地覆盖变化等改变全球地表反照率和生物地球化学循环过程,进而改变大气的成分和地表能量交换过程,最终对全球气候产生了广泛而且巨大的改变。另外拉迪曼认为,人类活动对于气候的影响在农业诞生时就开始了,欧洲、印度和中国的早期农民砍伐森林是造成二氧化碳增加的原因,同时,种植稻谷和驯养牲畜产生的大量的甲烷,也在一定程度上增加了温室气体。而人类活动引起的气候变化与自然变化的最大不同是他的变化趋势是非周期循环和单调发展的,其积累效应是不可低估的。

在2009年,EOS发表了一份关于地球科学家们对于气候变化的观点的研究概要。有一个问题是:“你们认为人类活动是影响全球气候变化的决定性因素吗?”地球科学家们达成统一认识后认为,虽然自然因素造成气候变化是毋庸置疑的,但是人类的影响也很重要,出了人类排放的二氧化碳以外,这些影响还包括各种各样的第一级影响因素,并且这些关于人类对于区域和全球气候的影响将会在接下来的几十年中被持续关注。POGER PIELKE和KEITH BEVEN等在EOS中建议,在今后的气候评估中要包含所有的人类对气候的影响因素。这些影响因素除了温室气体排放之外,还包括人口膨胀、城市化、土地覆盖和土地管理的变化、动物和昆虫的动力学影响、区域和地区的水源可利用性变化、水污染和极端水文现象(洪水和干旱)等。实际上,水土保持对上述多个因素都有涉及,并且甚至会有重要的影响。比如在城市化的过程中的绿化与城市生态建设、土地植被的变化、土地利用、水污染和水土流失后激发的极端水文灾害。

1、土地利用对区域气候的影响

在我国,由于历史上的长期垦伐,以及近代的过度开垦、放牧和深林砍伐等,引起了植被覆盖状况的巨大变化。土地利用变化引起的气候变化的研究,是当今全球气候变化研究中的热点之一。在中国所有的土地利用情况中,四川的旱耕地又是其中很典型的情况之一。四川地域辽阔,地貌以山地和高原为主,农耕地分布广泛,早耕地比重大,水土流失和与之相关的旱、洪灾害等生产。生态问题突出,既导致农作物产量低而不稳,又给长江中下游带来安全隐患。像这样的土地利用不当而造成当地生态破坏的例子在我国比比皆是,积小成多,这些土地利用情况的改变必将引起我国甚至全球气候的改变,因此土地利用的变化一定是预测气候变化时不得不考虑的因素。

如新疆地区的生态环境从过去的接近60年以来,已经迅速向荒漠化发展。虽然在这个过程中存在自然因素,但是人类活动在这个过程中极大的加快了荒漠化的发展,主要包括过度放牧和过度开垦、以及不合理的对自然资源的过度开发,从而加剧了天然植被的破坏。水土流失、土地沙化和土壤盐碱化。例如塔里木河下游泰特杩湖和玛纳斯河的玛纳斯湖的干涸,两大沙漠的流沙面积和土地荒漠化面积的扩大以及天然植被的退化,均与人口的不断增长、现代工业的快速发展、对水土资源的开发利用与日俱增等有密切的关系。根据对新疆地区气候变化参数的分析表明,新疆的气候增暖不仅与中国甚至于全球的气候变暖趋势基本一致,但是在年内变化中冬季升温最明显:另外新疆沙尘暴灾害的发生频率与强度也与全球的变化一致。因此可以看出,某一地区的环境变化,不仅对当地,甚至会对全球的气候产生同步影响。然而这一地区的气候变化较之全球又有其特殊性,比如新疆年内变化中冬季升温最明显,因此也反映出气候变化的复杂性。

由于全国的土地利用情况在这些年发生了巨大的变化,为了探讨其对我国气候造成的变化,高学杰等使用RagCM3区域气候模式,嵌套欧洲数值预报中心在分析资料,分别进行了中国区域在实际植被和理想植被分布情况下各15年时间长度(1987-2001)的积分试验。他们估算的结果是:中国地区冬、夏季的季风环流加强;植被改变引起长江以南降水增多,黄淮、江淮气温降低,华南气温上升;中国北方降水减少,气温在西北部分植被退化的地区升高。这样的结果和我国的气候现状基本一致,也可以看出土地利用的情况的变化在研究气候变化时是不可忽视的,而且是相对重要的。

2、植被覆盖变化对于区域和全球气候影响的预测

植被对气候的影响已经得到了广泛的认识,研究认为全球气候中已经包含了植被对气候的反馈作用。就全球来说,植被的存在降低了反射率,增大了对太阳辐射的吸收,同时,蒸发的增大,加强了全球水循环,在行星尺度上,植被的存在加强了经圈环流,还影响了季风环流。目前各国科学家都对各地的气候变化做了各种各样的预测,使用的模型主要有美国的NCAR模型和陆气双向耦合模式等。例如吕世华等对三江源的草地荒漠化做的预测。他们利用美国NCAR中尺度非静力平衡模式MM5V36模拟分析了三江源区草地荒漠化对局地气候的影响。三江源位于我国青海省南部,是长江、黄河、澜沧江的发源地,总面积31万km2,占整个青海省的总面积的43%,是世界上海拔最高、面积最大的湿地生态系统。根据预测,草地荒漠化后,地表反照率增加引起地面辐射平衡变化,昼夜温差加大:土壤湿度和空气湿度明显减小,不利于现有植被生长:潜热通量减小。总的来说,三江源的草地荒漠化后区域气候变得更加干燥,不利于植被生长和水土保持,气候变得更加恶劣。陈玉春等也使用NCAR区域气候模式RegCM2研究了西北植被覆盖面积变化对我国区域气候变化的影响,他们分别设计了三组试验,植被面积扩大试验、控制实验和植被面积缩小试验。结论认为,植被变化对气候的影响是明显

的,它对地面温度、环流场、降水和土壤湿度、径流量等都有明显的影响。植被扩大,有利于高原及华北地区的降水,改善气候环境,其模拟结果符合实际情况,比较可信,对于开展水土保持有一定的参考意义。

实际上,植被不仅会影响区域的气候,还会对全球气候造成影响。曾红玲等利用陆气双向耦合模式R42 AVIM,通过有无植被覆盖的对比试验分析,总结了全球植被分布对气候和大气环流产生的潜在影响。认为全球植被的变化会对气候和大气环流产生影响。而且这种影响不只是局限在陆地表面及近地层,还可以向上延伸到对流层的中高层。植被的存在还增强了三圈环流,从而使现有的气候和植被分布更加稳定。

3、生物土壤结皮对全球气候的响应

作为一种特殊的生态现象,生物土壤结皮在干旱、半干旱和极地、亚极地区等脆弱生态区广泛存在,生物土壤结皮对脆弱生态系统的稳定、碳氮循环和生态平衡都具有重要意义。在沙地生态系统中,生物结皮是随着沙地的逐渐固定而渐渐出现的,它的形成过程是:沙地中的蓝藻随风流动,先是流动性较大的丝状蓝藻在不稳定的沙地上定居,随着沙地的固定,形状较小的蓝藻出现,然后早期的地衣和苔藓出现,然后随着沙地固定时间的延长,演替进一步发展,最终形成地衣、苔藓伴随着藻类结皮的生物结皮。虽然在沙地生态系统中,苔藓不是最初的沙丘定居者,但是它确实固沙的主要贡献者,一次有人提出可以将苔藓植物作为生态系统稳定或者退化的重要指针之一。

实际上,在全世界的干旱与半干旱地区都广泛存在着生物结皮系统,在那些植物生产力较低的生态系统中,结皮的常常成为当地的主要植被覆盖,因此它对生态脆弱区的生态系统的维持和发展起着重要的作用。另外,许多研究者都认为生物结皮是干旱与半干旱生态系统至关重要的碳源和氮源,例如在阿拉斯加的北极海岸的苔藓和地衣组成的结皮的平均覆盖度达到25%,在极地地区他们因其产生的大量的泥炭更成为了陆地生态系统的主要碳源:究指出,在北极和亚北极地区,地衣的种类已经由于气候变暖而减少,这更说明了生物结皮各项生理功能和新陈代谢与气温变化密切相关;随着人类活动对臭氧层的破坏,进入到大气层之类的紫外线也大量增多,而其中的UV-B对地衣会有较强的影响,因为有研究表明UV-B会对脱水地衣的光和作用、色素系统及DNA造成损伤:面对当前的气候变化,特别是降水的改变,对生物土壤结皮也有重要的影响,因为土壤结皮仅在合适的水分条件下才能进行正常的新陈代谢。研究证明,在美国、澳大利亚和中亚,随着气温的升高和夏季降水频率的增多,地衣的生态多样性急剧下降。

现在沙地和荒漠草原生态系统的研究成为了国内外研究的特点。而一方面,结皮在沙地草原和荒漠生态系统中具有极其重要的作用:另一方面,生物土壤结皮的生长极其缓慢,需要几十年甚至几百年。一旦破坏,荒漠和沙地生态系统将在很长一段时间内难以恢复,对区域乃至全球的生态系统产生不可估量的影响。因此研究土壤结皮和气候的关系具有十分重要的意义。所以,解决干旱与半干旱区域尺度下生物土壤结皮空间分布特征和规律极其对全球气候的影响也成了一个亟待研究的问题。

4、结 语

由于当前世界上大部分的气候变化的风险评估都是基于全球气候模型的,是不全面的,因此我们今后应该加入基于环境和社会资源的地区性的风险评估。比如说,通过提高洪水频繁地区或者台风地区的发展规划和调整,做到不管发生什么样的气候变化,我们都能成功的有效适应。

第2篇:气候变化对土壤的影响范文

关键词:气候变暖;农业生产;影响因素

气候是一种综合性的自然现象,是人类和地球生物生存活动最重要的环境因子之一。人类的生产活动,特别是农业生产活动受到气候的极大影响。在全球范围内,农作物的分布、产量的高低、品质的优劣以及种植的方式有明显的地域性差异,从一定的意义上讲,都是气候条件制约的结果。当气候发生异常时,往往造成严重的灾害,例如气候变暖所造成的大范围的水灾和旱灾,是全球数以亿计的人口面临着饥饿和生存威胁。

1 气候变暖对农业的影响

1.1 CO2浓度增加对作物生长的影响 大气中CO2浓度增加可以提高光合作用速率和水分利用率,有助于作物生长,小麦、水稻、大麦、豆类等作物产量显著增加,但对玉米、高梁、和谷子等作物助长效果不明显。现有研究指出,在二氧化碳浓度倍增,可使小麦、水稻、大麦、豆类作物生长且产重增加10 %~50 %,玉米、高梁、和谷子等作物生长且产量的增加在10 %以下。然而,二氧化碳浓度增加对植物生长的助长作用(也称“施肥效应”),受植物呼吸作用、土壤养分和水分供应、固氮作用、植物生长阶段、作物质量等因素变化的制约,这些因素的变化很可能抵消二氧化碳增加的助长作用。

1.2气候变暖对农业气候条件和种植制度的影响 气候变暖使我国年平均气温上升,从而导致积温增加、生长期延长,且种植成片北移。当年平均温度增加1 ℃时,大于或等于10 ℃积温的持续日数全国平均可延长约15天。气候变暖还将使我国作物种植制度发生较大的变化。据计算,到2050年,气候变暖将使大部分目前两熟制地区被不同组合的三熟制取代,三熟制的北界将北移500 km之多,从长江流域移至黄河流域;而两熟制地区将北移至目前一熟制地区的中部,一熟制地区的面积将减少23.1 %。

1.3气候变暖对作物品种布局的影响 华北目前推广的冬小麦品种,因冬季无法经历足够的寒冷期以满足春化作用对低温的要求,将不得不被其他类型的冬小麦品种所取代。比较耐高温的水稻品种将在南方占主导地位,而且还将逐渐向北方稻区发展。东北地区玉米的早熟品种逐渐被中、晚熟品种取代。可见如果不考虑水分的影响,那么在未来热量资源较为丰富的情况下,若仍维持目前的品种和生产状况,不但不能充分利用这种丰富的热量资源,而且还会导致不同程度的减产。

1.4气候变暖对作物产量的影响

气候变暖对我国农作物产量的影响,有些地区是正效应,在另一些地区是负效应。我们利用三种大气环流模式预测的气候情景,计算了我国主要作物水稻、小麦和玉米产量的可能变化。在不考虑水分的影响下,早稻、晚稻、单季稻均呈现不同幅度的减产,其中早稻减幅较小,晚稻和单季稻减产幅度较大。气候变暖对春小麦产量的影响大于冬小麦;对灌溉小麦的影响小于雨养小麦,也就是说灌溉能减小气候变化对小麦产量的不利影响。但是对水资源比较缺乏的北方麦区而言,灌溉并不是解决问题的根本途径,适当改变种植方式,选育抗旱、耐高温的品种等也许是更为合理有效的对策。

气候变暖将使春玉米平均减产2 %~7 %,夏玉米减产5 %~7 %;灌溉玉米减产2 %~6 %,无灌溉玉米减产6 %~7%左右。也就是说,气候变化将使我国玉米总产量平均减产3 %~6 %,灌溉条件下减产的幅度比无灌溉的要小。总体来说,气候变化对我国玉米生产的影响是弊大于利。产量减少的主要原因是生育期缩短和生育期高温的不利影响。

大气中二氧化碳浓度倍增时,温度升高、作物发育速度加快和生育期缩短是作物产量下降的主要原因。气候变暖对不同地区和不同种类作物的产量影响不同,我国水稻、小麦以及玉米品种多,品种间差异也很大,因此要有意识地调整农业种植制度、选育抗逆性强的品种和选择适当的生产措施等,使之适应气候变化。

1.5气候变暖对施肥量的影响

在较暖的气候条件下,土壤有机质的微生物分解将加快,长此下去将造成地力下降。在高二氧化碳浓度下,虽然光合作用的增强能够促进根生物量的增加,在一定程度上可以补偿土壤有机质的减少,但土壤一旦受旱后,根生物量的积累和分解都将受到限制。这意味着需要施用更多的肥料以满足作物的需要。

肥效对环境温度的变化十分敏感,尤其是氮肥。温度增高1 ℃,能被植物直接吸收利用的速效氮释放量将增加约4 %,释放期将缩短3.6天。因此,要想保持原肥效,每次的施肥量将增加4 %左右。施肥量的增加不仅使农民增加投入,而且对土壤和环境也不利。

2 结语

第3篇:气候变化对土壤的影响范文

[关键词] 气候变化 农业生产 影响 对策

[中图分类号] S162 [文献标识码] A [文章编号] 1003-1650 (2016)12-0297-01

地球气候变暖是当今世界的重要问题,它严重影响着农牧业、自然环境、生态环境以及人类的生存空间和生产生活,气候的变化对农业的生产的影响尤为重要,引起了社会各界的高度重视,因为农业是我们生存的基石和保障。对于气候的变化对农业生产的影响,我们要做成科学合理的分析,并针对分析做出相应的对策,来解决气候对农业生产的不利影响。

1 气候变化对农业生产的影响

近些年来,由于人类的大量生产活动,二氧化碳排量急剧增多,温室效应加剧,导致全球的气温普遍且持续升高,总而产生一系列的蝴蝶效应,对南北极的影响,对自然体系的影响以及对陆地海洋生物系统都产生了影响。

1.1 由于温度的上升,水的蒸发速度加快,使水的循环速度上涨,大量的降水不能的到产生充分的合理利用。除此之外,最近几年世界不同地方的雨水量和蒸发量由于气温的变化,而产生了明显的变化,有的地方降水量下降了,蒸发量上升了或没变,导致干旱产生;有的地方降水量上升了,蒸发量下降了或者没变,导致涝灾发生。这些不稳定性越来越凸显,雨水的季节性变化,雨水量和蒸发量的变化,都严重打乱了地区农业的平稳发展,是影响农业的严重问题。

1.2 在气温上升的大事态下,使大陆、大洋和大气之间的相互影响也发生了复杂的变化,自然灾害的发生较五十年前有了大幅度提高,干旱、洪涝、台风、海啸频繁发生,这些都严重影响着各地的农业发展。

1.3 气温的上升也导致了南北极冰川的融化,大量的水进入海洋,是海水量增加,进而导致海平面上升,淹没陆地和沿海城市,一些岛屿消失,人类的陆地空间较少,也导致海水倒灌,破坏了地下淡水,使土壤盐渍化。

1.4 气候对农业的影响是复杂的,对农业有利的影响我们加以利用个,对农业有害的影响我们要努力克服,农业对气候的变化是非常敏锐的,农业生产是人类生存繁衍的基本保障,农业生产的不确定性,极大地影响着人们的粮食安全。光照、热量、水资源、和土壤都是农业生产的重要因素,气候的变化,都将对这些因素产生重要影响,而阳光是否充足、水量的多少、热量的高低这些都影响某一特定区域内的生物系统,通过这些要素,对土壤中的营养成分、微生物的存活和繁殖能力都有影响,而这些都决定这该区域的土壤肥沃性。

1.5 气候的变化、延长了农作物的生长时间。气候变暖是我国的平均气温升高,热量资源增多,然后由于水资源的减少,热量得不到充分利用,从而导致对农作物生长产生不利影响,最终影响产质产量,以河南新密市为例,冬小麦作物在生育期内的自然降水只是需求量的三分之一到三分之二。如果不采用人工灌溉,冬小麦的生长将收到灾难性的损害,最终影响作物产量。

1.6 气候变化影响着农作物的生长周期和农作物的空间布局。由于气候变暖,以往一年一熟的地方可能发展成一年两熟,一年两熟的地方可能出现一年三熟。一些植物可能不适应气候的变化,发生了空间格局的改变,随着北方气温的升高,偏向温度高,喜欢水分充足的水稻开始在北方种植,玉米的培育已经向北向东扩展,小麦这种喜凉的作物也受其影响,向北退去。

1.7 气候变化影响着作物的产量和质量,新密市的冬小麦由于气温的增加而提前进入发育期,导致生长期减少,产量减少了将近四分之一。气候变化也影响着农作物的质量,由于气温的升高和二氧化碳浓度的增加,使小麦、大豆、玉米等农作物营养品质的合成明显下降,淀粉含量升高,最终导致农作物质量变低。

1.8 气候的变化对农业应对灾害能力的影响。由于气候的逐年升高,旱灾、涝灾、台风、暴雪等恶劣天气的频繁发生且有逐年升高的趋势,其中以旱灾和洪涝占主导作用。气候的变化也促使农作物的病虫害增加,影响农作物生长的其他植物也快速的生长延伸。由于气候的变暖,害虫快速生长,且寿命也随着温度的升高而加以延长,导致害虫对农作物的危害更大。

2 由于气候变化对农业的巨大影响,我们针对这种情况 在农业领域制定出相应的措施,来保证农业生产生活的正常进行

2.1 针对农作物由于气候原因而导致的农作物种植制度和空间发生变化,在合理研究和预测气候变化的前提下,适时改变农作物的种植制度,改良农作物种类的空间格局,加大重复种植的概率,适当调整农作物对季节变化的适应程度,比如说北方地区由于气候变暖,可以种植水稻作物了,西北地区由于可以减少用水量比较大的农作物种植,增加土豆等需水量比较小的农作物

2.2 针对气候变化影响着农产品的质量和数量,我们要在农业生产区,选择培育优质的农作物产品,培育能够应对气候变化的农产品种子,培育能够抵抗不利环境的种子这样我们可以避免由于气候变化而出现的恶劣影响,还能够变害为利,提高农作物的质量和数量,例如,我们利用气温变暖,现在已经培育出玉米的早熟品种,产量更高。针对新密市小麦生产存在的发育过早而导致的小麦产量下降问题,培育出能够适应气候变暖的弱冬性小麦,来避免过早发育带来的危害。这些都保障了农产品的质量和数量。

2.3 增大对不利气候和灾害的预防和应对措施,对气候可能产生的水旱灾害和病虫害的威胁,一方面做好实施监测和防范措施,做出科学系统的防灾抗灾体系和保险措施。加强农一方面进行生物科学研究,控制和预防病虫害的发生。

2.4 加大对农业生产的基础设施和农业设备的投入,加快农业的现代化进程,告别传统农业仅仅靠天吃法的劣势。对于干旱比较严重的地区,推行滴灌、喷灌技术并进行灌溉设施的建设,来克服干旱带来的影响。开展坡改梯和沟坝地农田基本建设等,提高农业领域应对气候变化的物质基础与适应能力。

总结

针对气候对农业生产的不利影响,为了确保农业健康平稳的发展和国家的粮食安全,我要做出合理的分析和判断,以清楚气候变化对农业生产系统的全方位、多层次影响为基本前提,充分利用科学的方法来缓解和适应气候的变化,甚至变害为利。

参考文献

[1]周义,覃志豪,包刚.气候变化对农业的影响及应对[J].中国农学通报,2011,27(32):299-303.

第4篇:气候变化对土壤的影响范文

(一)大气中二氧化碳浓度增加

陆地生物圈通过光合与呼吸作用与大气不断交换二氧化碳气体。经过漫长的时间推移,大气中二氧化碳浓度达到了相对稳定的时期。但是自工业革命以来,人类对石化燃料的大量使用、森林破坏、人口与饲养家畜数量的急剧增加等人为因素的作用,引起全球大气二氧化碳浓度增加的速度比过去任何时期都快。

(二)全球气温升高

有报告指出,近100年来全球温度升高了0.74℃。这是近1000年来温度增加最大的一个世纪,尽管气候变暖问题仍然存在科学上的不确定性,但有90%的可能性是人类活动造成的。如果人类继续按照目前速度排放温室气体,那么二氧化碳有效倍增将在几十年内到来,届时全球平均气温将增加1.4~5.8℃。全球温度增高将改变各地的温度场,影响大气环流的运行规律,各地的降水量和蒸发量的时空分布也会改变;增温造成的海冰、冰川融化和海水受热膨胀还会使海平面上升,将给地球水资源、能源、土地、森林、海洋以及人类健康、物种资源、自然生态系统和农业生产带来巨大冲击,造成许多目前仍无法估计的重要影响。

(三)区域间降雨的不均衡

国家评估报告指出,近100年来,我国的年降水量有微弱的减少,虽然近50年来降水量呈现小幅度增加趋势,但区域间变化明显。未来降水频率和分布将发生变化,旱涝等极端天气事件发生频率会增加,强度会加大,对经济社会发展和农业生产等产生很大影响。气候变化将加剧水资源的不稳定性与供需矛盾,气温每上升1℃,农业灌溉用水量将增加6%~10%。

二、气候变化对农作物生长的影响

气候变化对农作物生长的影响是多尺度、全方位、多层次的,农业对气候因素变化非常敏感脆弱,是受气候因素变化影响最大的行业。光、热、水、二氧化碳是农作物生长发育所需能量和物质的提供者,它们的不同组合对农业生产的影响不同。温度增高将促进作物的生长发育,提早成熟,从而影响作物籽粒灌浆和饱满,降低作物营养物质含量和品质。

(一)二氧化碳浓度增加对农作物生长的影响

大气中二氧化碳浓度增加可以提高光合作用速率和水分利用率,有助于作物生长,小麦、水稻、大麦、豆类等C3作物产量显著增加,但对玉米、高梁、小米和甘蔗等C4作物助长效果不明显。现有研究指出,在二氧化碳浓度倍增,可使C3作物生长且产量增长10%~50%,C4作物生长且产量的增长在10%以下。然而,二氧化碳浓度增加对植物生长的助长作用(也称”施肥效应”),受植物呼吸作用、土壤养分和水分供应、固氮作用、植物生长阶段、作物质量等因素变化的制约,这些因素的变化很可能抵消二氧化碳增加的助长作用。

(二)降水对农作物生长的影响

农作物对降水存在类似倒U型曲线的敏感性关系。当降水严重不足时,农作物对水分的需求得不到满足,会出现干旱症状,从而影响作物的正常生长;当降水量增加到一定范围内,加上温度及光照的配合,作物得以茁壮成长;当出现连续大雨、降水量超过一定范围时,又会对作物产生不利的影响。在开花期出现阴雨会影响作物授粉,造成落花落果;长期阴雨还会诱发病害;降水量过多会造成农田渍害,严重时作物会被淹死。农作物各生育阶段对水分的需求是不同的,对水分的敏感性也不一样,也就是说敏感临界点和敏感性曲线的峰度都会发生变动。作物对水分最敏感时期,即水分过多或缺乏对产量影响最显著的时期,称为作物水分临界期。

(三)气候变化对农作物光合作用的影响

二氧化碳是植物光合作用的底物,其浓度升高必然会对植物的光合作用产生重要影响。当二氧化碳浓度增加时,植物光合作用增强、光合时间延长、光能利用率提高、光补偿点明显下降,而此时气孔阻力增加、气孔导度减小、蒸腾速率减少、呼吸速率降低,使单位叶面积土壤水分耗损率降低,提高了植物水分利用效率,从而提高了植物避旱能力。

(四)气候变化对农作物生育期的影响

温度和二氧化碳浓度的升高,可使大多数植物开花提前几天不等,一些主要农作物如小麦、水稻、大豆等在高浓度二氧化碳条件下,均提前数天开花。

(五)气候变化对农作物生长的区域水热要素分布和土壤肥力变化的影响

气候变化,无论变暖还是变冷以及温室气体浓度变化,都将导致光照、热量、水分和风速等气候要素的量值和时空格局发生变化,势必对农作物的生长产生全方位、多层次的影响。光照、水分、热量等条件决定着区域生物量,气候因素变化通过光、热、水等要素变化影响土壤有机质、土壤微生物的活动和繁殖而影响土壤肥力,温度升高或降水量减少会减少土壤有机碳含量,降低土地资源的生产力;温度降低或降水量增加有利于土壤有机碳的增多,其中以温度变化对土壤有机碳的影响起主导作用。

三、气候变化影响的对策

第5篇:气候变化对土壤的影响范文

(中国农业大学农学与生物技术学院,北京100193)

摘要:作物生产潜力的研究对提高作物产量、评价地区粮食的生产能力和人口承载能力,以及为合理进行农业生产规划提供依据。气候变化(包括温度、降水、日照时数等)和极端天气(如干旱、洪涝和暴风雨等)已经对农业产生了深刻的影响。综述了目前国内外气候变化对作物生产潜力的影响的研究方法,以及气候变化对中国小麦、水稻、玉米等主要粮食作物的生产潜力的影响,分析了目前研究中存在的问题与展望,以期为提高中国主要粮食作物的生产潜力和适应气候变化提供理论依据。

关键词 :作物生产潜力;气候变暖;研究方法;影响

中图分类号:S3 文献标志码:A 论文编号:2014-0508

Summary of the Effects of Climate Change on Crop Production Potential

Zhang Yaoyao, Liu Jiangang, Yang Meng, Chu Qingquan

(College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China)

Abstract: The study of the crop production potential can provide the basis for increasing crop yields,evaluating food production capacity and population carrying capacity of the region, as well as rationalagricultural production planning. Climate change (including temperature, precipitation, and sunshine hours)and extreme weather (such as drought, floods and storms etc.) has exerted a profound impact on agriculture.This article summarized the research methods of climate change on crop production potential domestic andforeign, and the effects of climate change on China’s major grain crop (wheat, rice and maize) potentialproduction, and analyzed the existing problems and prospect in the present studies, aiming at providing atheoretical basis to climate change adaptation and crop production potential boost.

Key words: Crop Production Potential; Global Warming; Methods; Effects

0 引言

气候变化已经成为全球公认的环境问题,气候变化及其对经济、环境和社会发展的影响是当前人类面临的严峻挑战,尤其是近10 多年来全球范围的气候异常给许多国家的粮食生产、资源和环境带来了深刻影响[1-2]。农业对天气和气候变化是非常敏感的,包括温度、降水、光照和极端天气(如干旱、洪涝和暴风雨等)。有研究表明,温度增加扩大了作物生长区域范围[3]、延长了作物生长季[4]、缩短了作物生育期[5-6]、调整了种植结构和作物种植熟制[7]。但不同地区作物对气候变化的响应是不同的,如冬小麦生长季内增温1℃,其生育期在欧洲延长约10 天;在日本中部延长约8 天[8],而在中国华北地区缩短约4 天[5]。全球气候变暖背景下,中国东北地区水稻种植面积明显增加,玉米的早熟品种将逐渐被中、晚熟品种取代;西北地区负积温减少,喜温作物的种植面积扩大,越冬作物种植界限北移西扩;华北地区喜温作物生育期延长,种植区域逐渐扩大[9]。这些变化为作物种植结构调整提供了机遇,可能提高单位面积作物生产能力、增加农作物种植面积的潜力[10],但会使原有作物发育进程加快,生育期缩短,光合作用受阻,呼吸消耗加大,导致主要粮食作物产量下降[11]。因此,气候变化对不同地区作物生产潜力的影响不同,即使在同一地区气候变化对不同作物的生产潜力影响差异也很大。光、热、水资源的变化会直接影响作物的生产潜力,理论上作物生产潜力与温度、日照时数呈正相关;与降水关系复杂,在缺水地区呈正相关,在水分充足地区降水过多可能会引起负作用。因此在诸多气候变化产生的不利影响中,其对农业的影响被认为是最重要的[12],尤其是在那些以农业为根本、高度依赖农业的发展中国家[13]。

国内外许多专家学者研究和探讨了气候变化对作物生育期、产量和粮食安全的影响[14-15],也有学者分析了作物生产潜力时空间变异评价以及气候变化对作物生产潜力、产量差的影响[16],但关于气候变化对作物生产潜力影响的综述还较少。气候变化通过改变作物生长发育进程中光、温、水的匹配状况,对农作物的生产潜力将会产生巨大影响。因此,整理前人的研究方法和成果,综述气候变化对中国主要粮食作物生产潜力的影响,以及研究气候变化对作物生产潜力的影响的方法、问题与展望,为进行农业结构调整、解决粮食自给问题和制定农业发展长期规划提供重要的理论依据。

1 气候变化对作物生产潜力的影响的研究方法

关于气候变化对农业的影响,目前国内外的研究方法主要集中在模型模拟和观测实验影响2个方面[17]。模型模拟方法包括统计分析(回归模型)和作物生长模型模拟。观测实验方法主要用于研究气象因子变化对作物生理生态、形态结构及化学组成等方面的影响,分为田间试验和温室/人工气候室实验2种方法。

1.1 实验室模拟方法

关于CO2浓度升高对作物生长发育的影响多采用田间试验或顶部开放温室,通过人为控制CO2浓度来研究其对作物的影响。Leadley[18]率先论证了开顶式气室(OTC)在观测试验研究方面的可行性,徐玲等[19]利用这一装置研究表明CO2浓度增加有利于春小麦增产。借助各种实验模拟装置和监测技术,可在人工模拟CO2浓度增加的大气环境中对作物生长发育、生理生态及形态结构的动态变化进行研究,分析作物对CO2倍增的反应机理等。但在这种人工控制性试验中温室内的温度、湿度等微气候条件与自然条件差异较大,观测到的作物对CO2浓度变化的响应结果与自然条件下作物对CO2 浓度的响应结果不尽相同[20]。因此,FACE方法和设施应运而生[21],即在田间设置一定面积的FACE 处理圈,直接输入高浓度CO2来进行研究。FACE方法是在自然状态下研究作物对CO2浓度的响应的理想方法之一,其不足之处是不能同时模拟CO2引起的升温。直接实验模拟可以获取许多重要数据,用来评价因果关系或检验假设等,是一种重要的研究方法。但鉴于时空尺度变化和气候变化对作物影响的复杂性,该方法存在很大的局限性。

1.2 作物生长模型模拟方法

作物生长模拟模型理论性强、机理明确,不受时空间、品种和栽培技术差异等的限制,因而在资源生产潜力评价中应用广泛。目前已经有至少100 种不同的模拟模型,应用较为广泛的有DSSAT 模型、WOFOST、APSIM 模型以及EPIC 等[22]。利用作物生长模拟模型进行作物生产潜力研究,一方面可以计算不同情景下的潜力产量,如光温生产潜力、气候生产潜力、灌溉条件下的气候生产潜力、光温水肥生产潜力等;另一方面,可以通过作物模型估算环境因素(土壤、天气)、生物因素(品种)和技术因素(耕作方式、种植密度、施肥和灌溉等)对作物生长发育和产量的影响。Verdoodt等[23]模拟南非干旱地区作物的光温生产力、水分限制下的生产力和自然生产力,得出光照、温度是不同生产系统的重要影响因子,但最大生产潜力往往取决于降雨量,因此干旱可能会使作物生产系统变得非常不稳定,进而影响产量。国际半干旱研究所(ICRISAT)利用Cropinfo 模型对印度尼西亚地区小麦、水稻、棉花以及油菜产量潜力及产量差进行了研究。

作物生长模拟模型的优点是能对任意地点(土壤、气候)作物产量潜力进行预测,综合考虑作物生长过程中的各种影响因素,缺点是需要收集大量数据进行品种特性参数校正,包括气象数据、土壤数据及作物管理数据等。另外,作物生长模型的开发是以假设单位区域面积内环境条件在水平方向上一致为前提的[24],因此更适用于小面积的作物生产潜力估算[25]。20世纪80年代以来,大气环流模型(GCM)和作物模型相结合成为评价气候变化对农业生产影响的最基本方法,如Moriondo等[26]用区域环流模型(RCM)评估极端气候对冬季和夏季地中海农作物的影响,得出近年来极端气候的变化频率和强度的增加,对作物产量、潜在产量以及整个农业生产都产生不同程度的消极影响。之后的大多数研究中,作物模拟模型开始与作物估产区划、空间数据库及空间信息技术相结合[27],主要包括2个方面:一是模拟模型与GIS结合,系统的模拟结果全部可用GIS地图来表示;二是模拟模型与INTERNET技术结合。

1.3 经验-统计分析

这是一类建立在气候与作物之间的非动态的经验-统计关系基础上的数学模型。一方面,为研究未来气候变化对作物生长、发育和产量潜力的影响,需以当前和未来的气候、环境及社会经济为基准,构建未来气候情景:第1 种方式是综合构想,即统一假定未来增暖或降水变化趋势,但只适用于范围较小的区域性研究;第2 种方式为(时空间)相似构想,主要是通过历史相似或类比法获得;第3 种方式是大气环流模式构想。这是目前模拟全球气候变化过程最可信的方法,但鉴于模式有很多不确定的地方,各类模式间模拟/预测的结果差别很大,因此根据其结果所作的影响评价差别也很大,可比性较差[28]。另一方面,气候变化对作物生长、发育和产量潜力影响具有一定的复杂性,经常需要同时分析多种变量因子与相应的数据,主要通过模型模拟来研究,包括经验统计分析和动态模拟方法。研究气候变化和产量的关系,通常采用回归分析、主成分分析、判别分析、方差分析和周期分析中一种或多种组合[29]。如根据年平均温度和降水量建立的Miami 模型和改进了的Thornthwait 模型;半经验半理论模型,如Chikugo 模型。利用气温和降水变化与作物生产潜力的关系式,可对气温、降水变化对作物生产潜力的影响作定量评估[30-31]。

2 气候变化对中国主要粮食作物生产潜力的影响

2.1 气候变化对冬小麦生产潜力的影响

过去40 年的气候变化对中国南北麦区影响截然不同。北方麦区冬小麦的生长发育及产量形成经常受到低温冻害的影响,所以气候变暖、气温升高可能对这些地区的冬小麦产生有利影响;但对于南方地区,气候变暖很可能在短时间内使气温超过冬小麦生长的最适范围,冬小麦生育期缩短,影响干物质积累时间,致使潜在产量下降。有研究表明,在作物品种、耕作措施、土壤特性不变的条件下,中国南方麦区模拟的1961—2005 年冬小麦光温潜在产量呈下降趋势,下降幅度为54.1 kg/(hm2·10a);北方麦区大部光温潜在产量增加,但总体也呈略下降趋势,下降幅度为11.1 kg/(hm2·10a)。虽然冬小麦生育期内降雨量明显减少,但春季降雨量没有明显的减少趋势,因此降雨量变化对北方冬小麦产量潜力影响不大,1952—2005 年中国北方冬小麦气候生产潜力变化趋势与光温潜在产量变化趋势基本一致[32]。由于总辐射的下降以及积温增加使得冬小麦生长季缩短,1961—2007 年华北地区冬小麦潜在产量总体呈下降趋势,河北下降趋势最明显,河南次之,山东的德州、惠民和临沂等极少数站点呈上升趋势,每10年下降175.0 kg/hm2[33]。还有研究表明华北地区不同年代冬小麦不同品种的光温生产潜力均呈显著下降趋势,当前品种的下降幅度较高;不同年代冬小麦不同品种的雨养产量均呈不显著增加趋势[32]。同时,日照时数减少也会对冬小麦光温潜在产量产生影响,全国大部分麦区日照时数缩短会对冬小麦生长发育及产量形成产生不利影响[34]。总体而言,冬小麦的潜在产量是温度、降雨和日照时数等因子综合作用的结果,近50年气候变化对华东、华中和华南区域小麦总生产潜力都产生负面影响,而对东北和西南小麦总生产潜力都产生正面影响[9,35]。

2.2 气候变化对中国水稻生产潜力的影响

温度升高对水稻产量的影响存在显著的地区差异,温度升高对东北、西北地区水稻生产的影响最大,其次是中南地区,再次是华东和华北地区,对西南地区的影响最小。东北地区水稻生长期内光、热、水资源同步,且昼夜温差较大,水稻种植面积明显北扩[36];虽然水稻生育期缩短,但光温潜在产量呈增加趋势,这是由水稻生长季内≥10℃积温逐渐增加造成的,但这种增加趋势主要发生在20世纪90年代末以后;虽然东北地区水稻生育期内降雨量呈减少趋势,但气候生产潜力由于受自然降水的影响较小,仍旧呈明显增加的趋势[37]。在南方稻区,单季稻的产量略增,主要得益于CO2的增益效应;但华中和华南地区的双季稻(特别是早稻)将大幅度减产,原因是温度升高缩短了水稻生育期和光合时间、增加了呼吸消耗,同时对水稻抽穗扬花和籽粒灌浆不利,这些负效应明显超过了CO2的增益效应[38]。石全红等[39]研究表明,自1980 年以来南方稻区早稻光温生产潜力均呈不同程度的增加趋势,其中安徽、浙江、福建、江西增幅最为明显,而湖北、湖南2 省增幅较小;气候变化对南方稻区水稻光温生产潜力的负面影响主要体现在对一季中稻和晚稻的影响,影响的主要区域有东南部的浙江、江西、福建3 省以及西北部的湖北、河南两省。胡清宇[40]指出,江淮地区近30 年水稻光温生产潜力呈线性下降的趋势,递减速率为每年24kg/hm2。另外,极端性天气/气候导致长江中下游稻区(夏季极端高温)和东北稻区(夏季极端低温)产量波动性加大[41],光照日数和有效辐射强度降低也是水稻减产的普遍因素[42]。

2.3 气候变化对中国玉米生产潜力的影响

气候变化对中国玉米生产的影响因不同产区而异。温度升高和作物生长季延长对部分高纬度地区、高海拔地区(尤其是黑龙江省)的玉米生产总体呈有利影响,但是对其他玉米主产区的影响总体上仍以减产为主。钟新科等[43]指出,近30 年来中国春玉米气候生产潜力倾向率为-887~1689 kg/(hm2·5a),东北地区西部、黄淮海地区北部及黄土高原部分地区的气候生产潜力呈减少趋势,黄淮海平原南部及南方大部分地区呈增加趋势;夏玉米气候生产潜力倾向率为-589~1768 kg/(hm2·5a),除黄淮海平原北部呈减少趋势外,其他地区夏玉米气候生产潜力呈增加趋势。陈长青等[44]报道,在气温不断升高的情形下,1971—2007 年东北地区春玉米的光温生产潜力呈增加趋势,但由于各地区降水的差异,东北地区春玉米的气候生产潜力在各地区间变化差异较大,相对于20 世纪70 年代,21 世纪以来南部地区气候生产潜力降低,而中部地区增加。黑龙江省玉米光温生产潜力伴随着温度的升高,表现为增加趋势,每年增长52.675 kg/hm2;气候生产潜力则随着降水量的减少而呈减少趋势,每年减少45.446 kg/hm2;气候生产潜力的减少则主要归因于有效降水量减少和作物需水量的增加[45]。张强等[46]研究表明,尽管整个黄土高原年平均温度呈升高趋势,但玉米生长期内的温度反而有所下降,因而玉米光温生产潜力呈下降趋势;受降水变化的影响,除陕西省外,其余地区年代间气候生产潜力均呈增加趋势。黄川容等[47]以黄淮海平原气象数据、土壤数据和作物数据为基础,应用WOFOST作物生长模型,得出黄淮海平原夏玉米光温潜力、气候潜力均呈现下降趋势。

3 未来气候条件下作物生产潜力的变化

关于未来气候变化对作物生产潜力的影响的研究,大多是在CO2 浓度倍增的前提下模拟进行的。IPCC 第4 次评估报告认为,在世界范围的气候变暖背景下,各国农业生产都将出现大幅度波动,粮食供给的不稳定性明显增加。如果不考虑CO2的肥效作用,以中国现有的生产水平和保障条件,预计到2030 年中国种植业产量可能减少5%~10%[48],三大主要粮食作物均以减产为主(主要原因有温度升高、旱涝加剧、水资源短缺等);到2071—2100 年,中国冬小麦生产潜力将下降10%~30%,玉米和水稻生产潜力也将分别下降5%~10%和10%~20%[49]。郑国光等[50]也指出全球气候变暖将导致中国主要粮食作物生产潜力下降,如果不采取措施,到21 世纪后半期,中国小麦、水稻和玉米等主要粮食作物的年产量下降幅度最多达37%。熊伟等[51]研究表明,如果不考虑CO2的肥效作用,未来中国小麦、水稻和玉米生产均以减产为主,灌溉可以部分地减少减产幅度,如果只考虑CO2的肥效作用,3 种主要粮食作物的产量将以增产为主。

4 问题与展望

气候变化对作物生产潜力的影响存在一定的复杂性,目前尚有许多不确定的地方。当所有其他因素,如土壤肥力、土壤水分和杂草、病虫害能很好的控制时,天气和气候决定了作物的产量潜力。其影响因素不仅有温度和CO2,太阳辐射、降水、蒸发、温度、日较差、风等也对作物生产潜力有影响;其影响程度不仅与气象因素变化幅度、时空间分布有关,还与所在区域原气候条件及其农业生产水平相关。不同区域的土地利用、土壤类型和土壤特性有很大的差异,而且作物对生长条件的响应也是非线性的,因此作物对气候变化的响应在时空间分布不同,这将取决于区域、季节和作物类型,而且不同方法和模型之间统一性差、可比性差。目前关于气候变化对作物生产潜力的研究以站点观测和模型模拟为主,代表性不足,缺乏大面积多年连续的能代表区域特点的相关资料、数据,这种以点代面的方法造成潜力分析结果失真,应以多面多点的田间试验、模型模拟与宏观区域调查研究相结合的方法研究生产潜力。同时科学家应加强在气候变化减缓与适应方面的研究,开发极端气候事件的防御及防灾减灾技术,构建适应气候变化的技术体系,加强适应技术的集成与应用推广。中国地域广阔,种植类型、作物类型多种多样,气候变化对中国农业的影响是非常复杂的,且以负面影响为主。但作物产量的变化不仅与气候变化有关,在很大程度上取决于作物田间管理。因此应充分认识各气象因子的变化规律及其对作物生产潜力的影响,通过调整种植结构、选用适宜的品种和栽培管理等措施,趋利避害,提高作物的现实生产力。

参考文献

[1] 秦大河,丁一汇,苏纪兰,等.中国气候与环境演变评估(Ⅰ):中国气候与环境变化及未来趋势[J].气候变化研究进展,2005(01):4-9.

[2] Piao S L, Philippe C, Yao H, et al. The impacts of climate changeon water resources and agriculture in China[J]. Nature,2010(467):43-51.

[3] Song Y, Linderholm H W, Chen D, et al. Trends of the thermalgrowing season in China, 1951- 2007[J]. International Journal ofClimatology,2010,30(01):33-43.

[4] 徐铭志,任国玉.近40 年中国气候生长期的变化[J].应用气象学报,2004,15(03):306-312.

[5] Liu Y, Wang E L, Yang X G, et al. Contributions of climatic andcrop varietals changes to crop production in the North China Plain,since 1980s[J]. Global Change Biology,2010,16(08):2287-2295.

[6] Tao FL, Yokozawa M, Xu Y L et al. Climate changes and trends inphonology and yields of field crops in China, 1981- 2000[J].Agricultural and Forest Meteorology,2006(138):82-92.

[7] 赵俊芳,杨晓光,刘志娟.气候变暖对东北三省春玉米严重低温冷害及种植布局的影响[J].生态学报,2009,29(12):1-8.

[8] Yoshino. The effects of climatic variations on agriculture in Japan[M]. Assessments in Cool temperature and cold regions,1988(1):725-868.

[9] 熊伟.气候变化对中国粮食生产影响的模拟研究[M].北京:气象出版社,2009.

[10] 杨晓光,陈阜.气候变化对中国种植制度影响研究[M].北京:气象出版社,2014.

[11] 刘颖杰.气候变化对中国粮食产量的区域影响研究[D].北京:首都师范大学,2008.

[12] Kurukulasuriya P, Mendelsohn R. How will climate change shiftagro- ecological zones and impact African agriculture? [J]. WorldBank, 2008(01):4717.

[13] World B. World Development Report 2008: Agriculture forDevelopment[M].Washington D.C: TheWorld Bank,2007.

[14] Miraglia M, Marvin H J P, Kleter G A, Battilani P, et al. Climatechange and food safety: an emerging issue with special focus onEurope[J]. Food and Chemical Toxicology,2009(47):1009-1021.

[15] Olesen J E, Bindi M. Consequences of climate change for Europeanagricultural productivity, land use and policy[J]. European Journalof Agronomy,2002(16):239-262.

[16] 江抒琳.浦城县气候和土壤时空变化对耕地粮食作物生产潜力的影响[D].福州:福建农林大学,2010.

[17] 孙白妮,门艳忠,姚凤梅.气候变化对农业影响评价方法研究进展[J].环境科学与管理,2007,32(06):165-168.

[18] Paul W L, Bert G D. Open top chambers for exposing plantcanopies to elevated CO2 concentration and for measuring net gasexchange[J]. Plant Ecology,1993,104-105(01):3-15.

[19] 徐玲,赵天宏,胡莹莹,等.CO2浓度升高对春小麦光合作用和籽粒产量的影响[J].麦类作物学报,2008,28(05):867-872.

[20] George Bowes. Facing the inevitable: plants and increasingatmospheric CO2[J]. Annual review of plant biology,1993(44):309-332.

[21] Lieffering M, Kim H Y, Kobayashi K, et al. The impact of elevatedCO2 on the elemental concentrations of field- grown rice grains[J].Field Crops Research,2004,88(02):279-286.

[22] 王纯枝,李良涛,陈健,等.作物产量差研究与展望[J].中国生态农业学报,2009(06):1283-1287.

[23] Verdoodt E, Van R, Van A W. Modelling crop production potentialsfor yield gap analysis under semiarid conditions in Guquka[J].South Africa. Soil Use and Management,2003(19):372-380.

[24] Schulze R. Transcending scales of space and time in impace studiesof climate and climate change on agrohydrological response.Agriculture[J]. Ecosystems and Environment,2000(82):185-212.

[25] Olesen J E, Bocher P K, Jensen T. Comparison of scales of climateand soil data for aggregating simulated yields of winter wheat inDenmark[J]. Agriculture, Ecosystems and Environment,2000(82):213-228.

[26] Moriondo M, Giannakopoulos C, Bindi M. Climate change impactassessment: the role of climate extremes in crop yield simulation[J].Climatic Change,2011,104(3-4):679-701.

[27] 褚庆全,李林.地理信息系统(GIS)在农业上的应用及其发展趋势[J].中国农业科技导报,2003(01):22-26.

[28] 林而达.全球气候变化对中国农业影响的模拟[M].北京:中国农业科技出版社,1997.

[29] 石全红.南方稻区水稻产量差及缩减产量差的技术需求研究[D].北京:中国农业大学,2012.

[30] 陈浩,罗怀良,李勇.气候变化对四川省盐亭县主要农作物生产潜力的影响[J].河南师范大学学报:自然科学版,2009(03):100-104.

[31] 陈峪,黄朝迎.气候变化对东北地区作物生产潜力影响的研究[J].应用气象学报,1998(03):59-65.

[32] 宋艳玲.气候变化对中国农业影响研究[M].北京:气象出版社,2012.

[33] 李克南,杨晓光,刘园,等.华北地区冬小麦产量潜力分布特征及其影响因素[J].作物学报,2012(08):1483-1493.

[34] 杨再洁.品种更替和气候变化对华北冬小麦-夏玉米生产力的影响[D].北京:中国农业大学,2013.

[35] 田展,梁卓然,史军,等.近50 年气候变化对中国小麦生产潜力的影响分析[J].中国农学通报,2013(09):61-69.

[36] 王媛,方修琦,徐锬,等.气候变暖与东北地区水稻种植的适应行为[J].资源科学,2005(01):121-127.

[37] 张旭光.气候变化对东北粮食作物生产潜力的影响[D].长沙:湖南农业大学,2007.

[38] 金之庆.论气候变化对我国粮食生产的影响[A].中国气象学会农业气象与生态学委员会,江西省气象学会.全国农业气象与生态环境学术年会论文集[C].中国气象学会农业气象与生态学委员会,江西省气象学会,2006.

[39] 石全红,刘建刚,陈阜,等.长江中下游地区水稻产量差及分布特征研究[J].中国农业大学学报,2012(01):33-39.

[40] 胡清宇.近30 年江淮地区气候变化对主要作物生产的影响[D].南京:南京农业大学,2012.

[41] 刘娟,杨沈斌,王主玉,等.长江中下游水稻生长季极端高温和低温事件的演变趋势[J].安徽农业科学,2010(25):13881-13884,13901.

[42] 潘根兴,高民,胡国华,等.气候变化对中国农业生产的影响[J].农业环境科学学报,2011(09):1698-1706.

[43] 钟新科,刘洛,徐新良,等.近30 年中国玉米气候生产潜力时空变化特征[J].农业工程学报,2012(15):94-101.

[44] 陈长青,类成霞,王春春,等.气候变暖下东北地区春玉米生产潜力变化分析[J].地理科学,2011,31(10):1272-1279.

[45] 王秀芬,杨艳昭,尤飞.黑龙江省气候变化及其对玉米生产潜力的影响[J].干旱地区农业研究,2012(05):25-29.

[46] 张强,杨贤为,黄朝迎.近30 年气候变化对黄土高原地区玉米生产潜力的影响[J].中国农业气象,1995,16(06):19-23.

[47] 黄川容,刘洪.气候变化对黄淮海平原冬小麦与夏玉米生产潜力的影响[J].中国农业气象,2011(S1):118-123.

[48] 陶战,蔡罗保,杨书润.气候变化对我国农业的可能影响及对策[J].农业环境与发展,1994(03):1-7.

[49] 钱坤,刘和俊,吕凯,等.全球气候变暖对我国粮食作物生产的影响[J].农技服务,2011(10):1485-1486.

第6篇:气候变化对土壤的影响范文

关键词:土壤湿度 气象因子

农田土壤湿度随着气象要素的变化而变化。因此分析气象因子对农田土壤湿度变化的关系可知,作物生长发育受农田土壤墒情变化十分明显[1.2]。本文以南阳市为例,利用近30a土壤湿度观测资料和气象观测资料,分析南阳地区主要气象要素对土壤湿度的变化影响,得出气候变化对土壤湿度变化影响的规律。近30a南阳市因为平均气温上升,降水量减少致使各层土壤湿度为下降趋势,特别是春季农作物开始生长后,降水量较少、气温升高等因素影响,加之作物需水量大,土壤相对湿度变化呈下降趋势;夏季(6~8月)受各种气候因子的影响,土壤湿度为多波动;冬季由于降水稀少,温度较低,土壤湿度变化不大。

1、资料来源和分析方法

1.1 资料来源

本文所用的气象资料和土壤湿度资料均为1981~2010年南阳市气象局观测站测定的逐旬资料,土壤湿度资料为0~100cm深土层,每10cm一个测定数值,用土壤相对湿度表示(%)。

1.2 分析方法

序列时间变化趋势采用倾向率法,用一元线性回归方程拟合求得各要素的倾向率;用相关分析和回归分析法求得土壤湿度和气候因子的关系[3]。季节划分为:3-5月为春季,6-8月为夏季,9-11月为秋季,12月-次年2月为冬季。

2、结果与分析

2.1 土壤湿度的垂直变化[4.5]

2.1.1 土壤湿度的年际变化趋势

为了说明30年来南阳市土壤湿度的总体变化趋势,我们把1981~2010年逐旬土壤湿度资料进行年平均,绘制出南阳市年平均土壤相对湿度的年际变化曲线(图略)。可以看出南阳市的土壤湿度呈逐年下降趋势。气候变暖导致蒸发加剧,在降水量少的情况下,加剧了土壤干旱化程度。受长年受气候影响累积影响土壤湿度最低值下降趋势更大,这不利作物的生长。

2.1.2 土壤湿度的垂直变化特点

根据南阳市的气候变化特点(主要是气温和降水量的变化),把1981~2005年分为1981~1985、1986~1990、1991~1995、1996~2000、2001~2005、20061~2010年六个时段,分别计算六个时段的土壤相对湿度逐层平均值并绘制垂直变化曲线图,分析不同年代土壤湿度的垂直变化特点。

从综合变化来看,以80年代前期土壤湿度最大,80年代后期次之,至90年代前期急剧变小,90年代后期又较前期有很大增加,而21世纪前期土壤湿度又开始下降。南阳市土壤湿度的变化规律和气候变化特别是降水量的变化表现一致。

另外,从土壤湿度的层次变化看,土壤表层(0~20cm)的变化幅度较小;而深层(40~100cm)的变化比较明显。

2.2 土壤湿度与气候的关系

2.2.1 土壤湿度与气温、降水量的关系

为了分析各层土壤湿度与气温变化的关系,分别将逐年0~20cm、0~50cm、0~100cm平均土壤湿度与年平均气温进行相关分析,建立回归方程。土壤湿度与蒸散的相关关系分析蒸散是温度的函数,用降水与气温的比值可以建立较好的土壤湿度模拟方程。春季气温回升,降水仍偏少,土壤湿度较低;夏季降水与气温的比值变化基本上反映了农作物生长季土壤湿度的变化。也就是说植株生长发育和地面蒸发受气温变化的影响明显,而随着层次的增加,其相关性逐渐减小,气温变化对浅层土壤湿度的影响较大,用浅层土壤湿度反映气温的变化比深层更好。从降水量对不同层次土壤湿度变化的影响来看,达到了极显著相关水平,但降水量主要影响深层土壤湿度的变化。

2.2.2 土壤湿度与日照的关系

通过分析近30年来南阳市的日照和土壤湿度的变化资料,可以得出:日照主要影响蒸散量的大小。日照时数多,说明天气晴好,农作物生长旺盛,蒸腾耗水多,同时,日照时间长,蒸发量也相应增加,因此土壤湿度随日照时数的增加而减少;反之日照时间短,土壤蒸发量及作物蒸腾耗水少,土壤水分损失少而变化较小。

2.2.3 气象要素与土壤湿度的综合分析

用逐步回归分析,建立了土壤湿度与气象因子降水、日照的模拟方程,分析气象要素对土壤湿度的综合作用,可以得出气象因子的变化对土壤水分有明显的影响,回归达到显著的水平。即:土壤湿度仅与日照呈负相关;与降水量与土壤湿度呈显著的线性正相关。南阳站土壤湿度剖面图分析,雨量多有利于土壤湿度的增加。表层土壤湿度增加的幅度要大于深层的增加幅度。

3、结语

(1)南阳市近30年来的土壤湿度呈明显下降趋势。

(2)南阳市不同层次土壤湿度与气温的关系均达到极显著相关,随着层次的加深,其相关性逐渐减小;不同层次土壤湿度与降水量的关系也达到极显著相关,随着层次的加深,其相关性逐渐增大。

(3)南阳市土壤湿度随日照时数的增加而减少;反之日照时间短,土壤蒸发量及作物蒸腾耗水少,土壤水分损失少,土壤湿度增加。

参考文献

[1]柏晶瑜,施小英,于淑秋.西北地区东部春季土壤湿度变化的初步研究.气象科技,2003,31(4):226-229.

[2]覃峥嵘.南宁日照时数减少的气候特征及成因分析[J].广西气象,1999,20(2):38-40.

[3]陈怀亮,胡鹏,张雪芬等.农业气候资源多时间尺度分析——以郑州市小麦玉米为例[J].自然资源学报,2006,20(1):1-8.

第7篇:气候变化对土壤的影响范文

另一方面,气候变化已成为人类所面临的最大挑战之一,它几乎影响到我们社会的所有方面,包括食物供应,并给食物安全带来严重后果。温度上升是气候变化最显著的特征,它直接从生理角度影响作物生长,并因此影响粮食生产的能力。例如受气候变化的影响,南非的主要作物玉米的产量到2030年预计会下降30%。气候变化还会导致土壤微生物的活动增加,这将会导致土壤中的有机物质和氮素损失,加速土壤退化、侵蚀和碱化,减弱农业生态系统抵御自然灾害的能力。由于气候变化引起环境变化还可能会加重植物病害、害虫和杂草生长的蔓延。

对食品和生物燃料的需求的增加,以及由于自然灾害而造成的全球作物产量和储量的减少,已导致全球粮食价格暴涨。气候变化可能会让局势进一步恶化。目前世界上有9.25亿饥饿人口,而由于气候变化,这一数字到2030年可能会再增加6亿。而随着人口总数不断增加,对食品的绝对需求量仍会逐年增加,因此面临的挑战将更加巨大。在气候变化的威胁面前,系统改变才是最重要的。

生态农业按自然原理进行生产,保护并合理利用自然资源,适应当地的环境并提供高度多样化的操作模式。与当前严重依赖于农业化学投入的生产模式相比,生态农业可有效降低温室气体排放量。此外,由于其特性,生态农业更容易适应气候变化以及与之相关的问题,可以帮助确保国家的粮食生产和粮食安全。通过使用更多生态无害的方法可持续发展农业,为农民加强自己的土地使用并增加粮食产量提供了可选途径。2011年3月,联合国食品方面特别报告员Olivier De Schütter了一份报告,呼吁全球转向生态农业,将其作为提高产量和改善农村贫困状况的方法,以迎接未来我们将面临的气候挑战。

本文将介绍生态农业优势和发展现状,并列举一些先进生态农业理念的实例,以期对我国进一步发展生态农业提供思路。

生态农业的优点及发展现状

生态农业最早受关注是在20世纪60年代。1973年,美国土壤学家W Albreche首次提出了“生态农业(Eco—agriculture)”一词。20世纪80年代,世界环境与发展委员会(World Commission on Environment and Development)出版了《我们共同的未来(Our Common Future)》一书,首次认真地、高调地试图将减少贫困与自然资源管理和环境状况相联系。1981年,英国农学家M. Worthington将“生态农业”定义为生态上能自我维持、低输入、经济上有生命力,并且在环境、伦理和审美方面可接受的小型农业。1992年,联合国环境与发展会议在里约热内卢举行。在会议的主协议“21世纪议程(Agenda 21)”中,对可持续发展农业的原则,即最小化对环境和人类健康的危害,达成了协议。

生态农业与自然合作而不是与之对抗,可以大大减少温室气体排放量。而且,与今天的破坏性化学成分和化石能源集约型农业相比,生态农业能更好地适应气候变化影响并从中生存。目前,有很多资源节约型的技术和做法,可以用来改善农田及其周边生态系统的供给和使用,例如综合虫害管理、综合养分管理、保护性耕作、覆盖作物、农地林业、干旱地区集水、农业系统中融入家畜和水产养殖等。增加水的利用效率、固碳以及减少农药使用这些事实,都证明生态农业不仅可以增加产量,也能减少对环境的不利影响,同时为重要的环境问题做出了贡献(如减缓气候变化)。

通过生态农业实践增加作物产量方面的数据很多:在非洲,约1.25万户采用可持续发展农业的埃塞俄比亚家庭均表示,其农作物产量增加了60%;将池塘养鱼集成到低投入农场系统中的2000多个马拉维农民表示,其蔬菜产量从2700千克/公顷增加到了4000千克/公顷,同时每公顷鱼塘能产出1500公斤的鱼,成为家庭的新食物来源。在拉丁美洲,恢复传统的印加梯田导致秘鲁的旱地作物增产150%;水土保持和有机肥料已经使洪都拉斯的作物产量增加了三到四倍。在亚洲,参与式灌溉管理使菲律宾的大米产量增加了20%左右;采用农业生态使得尼泊尔农场的产量增加了175%;采用诸如地膜覆盖、免耕生产、在双挖床进行果树堆肥与种植等生态农业技术,巴基斯坦的芒果和柑橘类水果的产量增加了150-200%。

在生态农业中,通过增加耕地中的生物多样性,植物疾病可以通过不同的物种之间的自然竞争而被有效控制,从而大大减少对农用化学品的需要,进而减少污染。例如将莴苣与黄瓜共同种植、稻田养鸭和稻田养鱼系统都可以有效地控制疾病、害虫和杂草,而农民的收入也会提高。同时,这些方法也有助于减少因使用除草剂和杀虫剂而对自然生态系统造成的人为干预。连续四年的稻田养鸭模式可以控制99%稻田杂草,将水稻根系的稻纹枯病染病率降低56%、稻条纹叶枯病的感染率降低57.7%。

生态农业系统往往还具有一些景观和经济职能,它们在为农民和市场生产食物和其他物品的同时,也会有一系列的公共贡献,如洁净水、有益生物的栖息地、土壤固碳、防洪、地下水补给、景观美化价值和休闲旅游等。稻田养鱼系统显示,它能改善土壤的氧化还原状况,并显著减少甲烷排放量。稻田养鸭系统表明,它能改善小气候领域并减少甲烷排放量。有机化肥的使用还可以减少对含氮化肥的依赖,并减少氮氧化物的排放量。

很明显,生态农业高产,并具有满足食品安全需要的潜力。此外,生态农业方法可以让农民以较低的成本和现成的技术及投入来改善当地的粮食生产,而不会造成环境破坏。

虽然当前目前有很多资源节约的技术和方法正在被使用,但全世界使用这些技术方法的农民总数仍相对较小,因为要采用它们,对农民而言不是一个不花钱的过程,农民要付出代价。例如,农民不可能简单地削减现有的肥料或农药的使用却希望保持同样的产出,从而获得更多的利润;他们也不能在耕作体系中引入一种新的生产要素就希望它成功。另外,最近和当前的政策倾向于促进创新能力较低的专业化、非自适应系统,所以农民要花时间学更多的多元化的做法和措施,以适应生态农业发展的需求。在转变的过渡时期,农民必须做更多的尝试,并承担可能的错误以及获取新知识和信息所产生的成本。

先进生态农业理念案例

经过几十年探索和实施各种形式的生态农业,许多农场记录下了他们的经验。在此列举一些先进生态农业理念的实例,从中我们可以了解自己与他们之前情况的不同,从而创造适合自己的特定地区和社区的生态农业模式。

【物种多样性】未来的经济、社会、生态和恶劣的气候将需要超级强大的农业恢复能力。要实现这一目标,唯一的途径就是常年的粮食作物冗余性和互补性,即用多种作物物种解决每种食物营养细分,并尽可能解决更多的营养细分。在美国密歇根州13英亩的农场上,Ken Asmus的木本作物目录是生态农业的宝库。他种植、传播并销售各种各样的多年生木本粮食植物,并提供非常好的常年蔬菜和固氮细菌。不仅他的农场的物种多样性令人惊叹,每个物种内还都有令人印象深刻的遗传多样性。在他的农场中,采用主食作物种植时补充一系列不同的树木和灌木的方法,这不仅能提供水果、坚果、可食用的叶子、燃料和纤维,而且还能保护土壤,采集雨水,并积累养分。、另外,他纳入了自由授粉多样性,虽然这意味着牺牲了产量最大化,但是能获取产量规律性和复原能力。而要让木本作物育种适应当地环境,并保证在未来古怪的天气条件下为家庭提供食物,这两点正是关键。

【混养】面对安装资源稀缺和气候不稳定,农田生态系统将需要更有效地营养捕获能力,同时需要更强的适应力来应对越来越频繁的中断。只有在地面上和地上都具有遗传学和结构上的高多样性才能达成这一目标。如果我们希望在以后的世纪继续有食物可吃,就需要模仿自然生态系统的冗余性和互补性。作为永续农业创始人Bill Mollison的门生,Geoff Lawton可以说是“地球的园丁”。在他加盟的澳大利亚的农场中,模仿自然的森林生态系统的结构、适应性和功能,在多样性混养中为子孙后代生产粮食、燃料和纤维。

【在土壤中捕获雨水】在美国大多数地区,降雨变得越来越不均衡,经常是长热干旱中夹杂着短暂而强烈的降雨。虽然平均降雨量可能仍算“正常”,但农业和土壤的水分动态都发生了巨大的变化。所以当雨水用这种奇怪的方式出现的话,我们需要让它放缓、分散并渗透。这样,更长的干旱都可以被安然度过,洪水会被最小化,溪流中的基流能被保持,山坡上的泉水会汩汩地起死回生,从而土地兴旺。Mark Shepard是一名工程师,他运用工程师的眼睛和生态敏感性处理在威斯康星州106英亩的农场上的降雨。通过相对较小但精心布置的土方工程,将轮廓洼地、底土翻地和集水池塘相结合,利用天时地利,Shepard能够捕获在农场的土壤中和池塘里的大多数降雨,并让雨水一直保持在它所属的农场,减缓其径流,将其分散出去,并在粮食作物、草、动物和家人需要时让它渗透到土壤中。该方法不仅只适用于大农场,因为水管理策略对0.1英亩的土地也同样重要。

【适应性的一年生作物】在向常年农业的必要过渡期间,具有弹性、适应地方特点的一年生作物是必要的。在某些地方,可能会有挑战性的时期,而那时只有一年生作物有效。例如,如果预期未来干旱变得非常严重,木本作物枯萎,则我们需要求助于短季的一年生作物,因为它们即使在短时间内也能茁壮成长。另外,如果气候灾害、社会动荡、战争或严重的污染事件迫使我们远离常年种植,我们可以使用并运送一年生作物的种子,从而确保食物安全。美国生物学家Carol Deppe发现,在她所在的地方,适应地方特点的作物品种大多已被人们遗忘,而留下的品种因管理不善,导致许多重要品质(口味、营养、存储能力等)逐渐下降。为此,她开始培育对太平洋西北地区弹性食物供应最关键的多种一年生作物,包括南瓜、玉米、豆子、和土豆等。这无疑是当地多年生作物的有力补充。

【农田池塘】低投入的农田池塘能够提供额外的食品安全,即在其他来源变得紧张时,能提供另一种补充的食物来源(植物和动物)。另外,当我们从沉重的工作中脱身回到家庭、社区和生态系统的时候,池塘还可以带来令人耳目一新的家庭和社区乐趣。Gene Logsdon在离家不远的地方有32英亩的农场。在家人的帮助下,他在农场打造了一个小的低投入池塘。这个小池塘不仅带来了高产的粮食,对周围的生态系统和他的家庭也十分重要。池塘已成为农场扩展环境的一部分,在雨水管理和生态系统丰富性方面发挥极其重要的作用。这样的农场只有在自我维持的动物和植物环境下才可能继续扩大,而供电和运作几乎完全依靠太阳。

【可食用和治病的真菌】真菌可以通过其丰富的营养物质和有效的药物特性帮助我们增强人类健康。它们可以通过建立土壤、协助植物生长、过滤水径流和土壤解毒来帮助我们增强土地健康。Paul Stamets是杰出的真菌学家,在华盛顿州的农场,Stamets正试图改变人们对真菌的看法。他用碎木片和原木生产食用菇和药用真菌,这两者正是以植物为基础的食物和药物的重要补充。他也开拓了用真菌来让土地恢复健康的方式,如使用菌丝过滤水并减少水土流失,使用菌根真菌再生森林,使用强真菌酶和超浓缩危险元素为土壤解毒,使用某些真菌威慑害虫侵蚀等。

【养殖发酵物】我们可以与微生物结为盟友,改善食物的存储寿命、营养和味道等。目前使用的用于食品保鲜的能量密集型工业方法不久将不会存在。我们的食物将不再能根据需求,从冷库中直接转到烤箱,然后放到盘中。因此,我们需要能在室温下让食物保存较长时间仍可食用并保持美味的方法。用微生物发酵不仅可以做到这一点,同时还能提高食物营养及更好的肠道健康。Sandor Katz在他的小厨房里养育的微生物,它们的数量比全世界现存的牛、羊、猪和鸡还要多。Katz更像一个美食人类学家,将我们与工业化前的旧世界相连,在那时,大量的吃和喝的食物都是发酵的。发酵食品持续时间更长,口味更丰富,包含更多的营养物质。这种对食物的“控制腐烂”对门外汉来说有点可怕,一旦我们学会信任古人的方式,它的光芒将会展露给我们的味觉(甚至是肠道)。

第8篇:气候变化对土壤的影响范文

关键词:粮食生产;气候影响;河北省

中图分类号:P464 文献标识码:A 文章编号:1674-0432(2010)-08-0169-1

应对气候变化与保障粮食安全成为全球关注的热点问题。作为农业大省,河北省的粮食生产对全国粮食安全具有重要的作用。

1 气候变化对河北省农业生产的影响

极端天气事件的增多使粮食产量波动加大,农业生产面临巨大的自然风险。气候变化导致河北省主要粮食作物生产潜力下降、不稳定性增加。在气候变暖背景下,河北省农业气象灾害、农业病虫害等都呈加剧趋势,造成粮食生产能力降低、减产幅度增加。同时,气候变化增加了土壤水分、有机质和氮的流失,加速了土壤退化和侵蚀,削弱了农业生态系统抵御自然灾害的能力。研究结果表明:河北省冬小麦气候适宜度下降,速率为每10年下降0.012;冬小麦气候产量波动性逐年增大,近年波动最明显;气候产量呈下降趋势,平均每十年亩产减产3.5kg。因此,对于河北省粮食安全问题,必须采取必要措施,增强粮食综合生产能力,为社会长期安全稳定的持续发展提供有力的科技支撑。

2 气象灾害对河北省粮食生产的影响

河北省每年因气象灾害造成的农作物受灾面积达600万公顷,直接经济损失100亿元以上。主要灾害有干旱、洪涝、风雹、低温冻害等,其中旱灾影响最为明显。

干旱造成河北省农作物受灾、成灾面积逐渐扩大。近50年来,河北省干旱影响范围呈增加的趋势,尤其是夏季干旱影响范围扩大趋势明显,速度为每十年增加3.2%,作物受灾(成灾)面积呈逐年上升趋势。

河北省暴雨年际变化大,严重洪涝对粮食生产危害严重。河北省属于季风气候,年降水量大多集中在盛夏的几次强降水过程,由于降水时间集中、持续时间长等特点,易造成局地农田排水不畅,使土壤水分长期处于过饱和状态,从而导致农作物受害。

风雹是河北省夏半年主要气象灾害之一,灾害影响仅次于旱涝。全省每年因遭受风雹袭击而造成农作物减产和绝收面积平均在9万公顷以上。据统计,1990~2006年,全省因风雹灾害受灾面积每年达60万公顷,部分年份超过100万公顷,造成粮食大幅度减产。

在气候变暖背景下,自80年代开始河北省冬小麦冻害发生频率呈下降趋势,冻害发生时间也发生了明显变化。80年代以前冻害主要发生在越冬中期,进入90年代后冻害易发生在越冬初期或越冬末期,返青至拔节期出现冻害的次数逐渐增加,对冬小麦生长影响很大,1980年、2006年河北省冬小麦就因冻害而严重减产。

3 气候变暖导致水资源短缺加剧,影响到农业生产水平

目前,河北省水浇地仅占耕地的2/3,其余1/3的耕地并无水源保障。在气候变暖背景下,农业生产需要更多的水分供应,而河北省自然降水量呈下降趋势,大部分地区自然降水都不能满足作物生长需求,需要开采地下水来补给。同时,可利用水资源量也处于减少的态势,地表水资源和地下水资源均逐年减少。研究表明,降水减少、气温升高是造成水资源减少的根本原因。在气温升高、降水和水资源减少的情况下,水资源的短缺将严重影响河北省农业生产水平。

4 气候变暖导致河北省农业生物灾害危害加重,损失增加

气候变暖将使河北省小麦、玉米等主要粮食作物病虫害发生面积扩大,危害加重。1986年以来,河北省大部分年份出现暖冬天气,造成主要农作物病虫越冬基数增加,病虫发生或迁入期提前,危害期延长。

在气候条件适宜的年份,小麦条锈病将有“南下”发展的趋势,高温高湿型纹枯病病情将向北扩展,有可能发展成为发病最广、危害最大的农业病害。农业气象灾害的频发,加重了部分病虫害的发生、蔓延。

5 河北省农业生产应对气候变化的对策建议

5.1 把适应气候变化作为河北省应对气候变化的优先战略,把促进农业生产和保障粮食安全作为河北省应对气候变化的首要任务

高度重视和着力防御减轻极端气象灾害对粮食生产的不利影响,加强农业气象灾害应对防范体系建设,加大农业抗御自然灾害的投入力度,提高农业抗御自然灾害工程标准。科学调整农业种植布局,合理配置粮食生产最优资源。

5.2 要特别注意应对极端气象灾害对河北省农业生产和粮食安全的威胁,并适时加大粮食储备,以备万一

立足于防大灾、防巨灾、防持续性灾害,克服丰年麻痹放松、歉年紧张过度的思想,在提高河北省粮食储备的同时,根据不同时期天气气候形势和粮食生产形势,科学调整粮食收购政策和储备决策,以备不时之需。

5.3 重视农业气象灾害监测、预测和防御,最大限度地减轻农业气象灾害造成的粮食损失

第9篇:气候变化对土壤的影响范文

[关键词]气候变化经济学;减缓;适应性

[作者简介]傅东平,广西师范学院经济管理学院副教授,博士,广西南宁530001

[中图分类号]F08 [文献标识码]A [文章编号]1672-2728(2011)0l-0009-04

一、导论

气候变化经济学及经济政策是一个刚刚起步的研究领域,伴随着科学家们对气候变化认识加深和国际社会特别是联合国的大力推动,初步形成了自己独特的研究内容。目前气候变化经济学一般包括全球变暖、节能减排、对气候变化的适应性等内容。

气候变化经济政策的研究主要是在三个框架中进行的。一是收益一成本框架。气候变化政策成本即减少温室气体或增强对气候变化的适应性的机会成本。气候变化政策的收益指削减排放以降低气候变化风险以及在增强对气候变化的适应性方面所得收益。Cline(1992)和Stem(2007)认为富裕国家需支出其GDP的2%来采取行动。二是国际公共品框架。气候变暖源于跨国外部性效应的影响,但气候变化问题并不是传统外部性问题的一个简单拓展,一个国家的行为使其他国家获利或受损,无法通过市场来进行弥补(Sandier&Hart-ley,2001)。因此,气候变化需要国际间有效合作。“京都议定书”就是国际合作的一项成果。三是博弈论框架。该框架主要用于国与国之间气候变化责任与义务的确定,强调每一个参与主体都是自利的,只有一个有效合作博弈才是对所有参与者有利的策略(Schelling,2005;Carraro&Siniscalco,1993)。

气候变化政策分为适应性气候政策和减缓性气候政策。前者强调用低成本政策来适应气候的变化,后者强调用低成本政策来减缓气候变化(Stem,2007)。减缓性政策研究较多的是碳税和限额,限额有助于达到预定的政策目标,碳税则有利于减少碳排放价格的波动(Metealf,2009;Ka-plow,2010);适应性政策主要是在改善基础设施建设,完善气候变化信息,调整产业结构和调整经济的地理分布等方面展开(Stem,2007)。

近年来国内直接针对气候变化的研究有所增加,但集中在气候变化对敏感性行业的影响上(吕亚荣,2010;国家农业综合开发办公室,2010;刘恩财等,2010),经济政策方面的研究集中在财政和货币政策应对气候变化的必要性以及相应思路(刘晨阳,2010;张丽宾等,2010)。

气候变化对人类社会经济发展产生的影响越来越大,正在形成应对气候变化的新的国际经济和贸易规则。广西经济发展相对落后,农业占GDP比重较大,是气候变化的敏感地区。近50年来,年平均气温升高了O.69℃,冬季气温上升趋势明显。1986年到2009年间,广西经历16个暖冬。极端天气气候事件发生的频率和强度不断增加。研究广西应对气候变化的经济政策,主要是希望通过制定合理有效的财政、金融、产业政策,减少排放,提高广西对气候变化的适应性,促进广西经济的可持续发展,对广西抓住机遇、实现经济和外贸的可持续发展具有重要的理论和现实意义。

二、气候变化对广西的主要影响

(一) 气候变化影响广西农林业

气候变化对广西农业生产的负面影响正在显现,农业生产不稳定性增加。广西局部干旱和洪涝的频率有所增加,危害不断加大。气候变暖引起农作物发育期提前,暖冬现象加大了病虫害现象。气候变化对广西农业未来的影响虽有正面效应,但可能仍以负面为主。气候变暖以及降雨量分布变化引起的干旱和洪涝将减少甘蔗的产量、蚕桑生产的产量和使其质量下降,水稻和玉米也可能以减产为主。广西农业生产布局和结构将出现变化。土壤有机质分解加快,农作物病虫害出现的范围可能扩大,畜禽生产和繁殖能力可能受到影响,畜禽疫情发生风险加大。

随着全球变暖,亚热带、温带北界北移,物候期提前,未来广西大部分地区可能进入热带地区,部分地区林带下限上升,广西北部的林业种类将发生变化,广西动植物病虫害发生频率上升,分布变化显著。

未来气候变化将使广西生态系统脆弱性进一步增加,主要造林树种和一些珍稀树种分布区缩小。森林病虫害的爆发范围扩大,森林火灾发生频率和受灾面积增加。广西境内湖泊将进一步萎缩,湿地资源减少、功能退化,生物多样性减少。

(二) 气候变化影响广西渔业和水产养殖业

广西是海洋大省,气候变暖导致海平面上升加剧,引发海水入侵、土壤盐渍化、海岸侵蚀,损害了滨海湿地、红树林和珊瑚礁等典型生态系统,降低了海岸带生态系统的服务功能和海岸带生物多样性;气候变化引起的海温升高、海水酸化使局部海域形成贫氧区,海洋渔业资源和珍稀濒危生物资源衰退。

人类食用的水生动物绝大多数属于变温动物,水温升高能够明显地影响到动物的新陈代谢、生长速度、繁殖情况以及对于疾病和毒素的抵抗能力。气候变化使广西依托海洋的水产养殖业将受到较大影响,可用于水产养殖的海域萎缩,养殖品种减少。由于气温升高,海水蒸发速度加快,表层海水中的盐分不断增加,引起鱼类的生理发生改变,进而影响到水产养殖业的种群和数量。

(三) 气候变化影响广西的水资源分布

气候变化已经引起了广西水资源分布的变化。就全国来看,近20年来,北方黄河、淮河、海河、辽河水资源总量明显减少,南方河流水资源总量略有增加。广西洪涝灾害更加频繁,但由于降水量分布不均,干旱灾害更加严重,极端气候现象明显增多。气候变化加大了水资源年内和年际变化,气候变暖使得中国西部地区的冰川融化加速,未来广西干旱的可能性进一步加大。水资源的供需矛盾将更加突出。

(四) 影响广西人的健康

气候变化对广西人健康的直接威胁包括由热应力引起的疾病和死亡、传染病(疟疾和登革热)、与水有关的疾病如腹泻和营养不良。气候变化会间接造成伤害甚至死亡,如泥石流、山洪爆发和热带气旋(强风)造成的结果。因日益恶化的空气污染造成的呼吸系统疾病也可能是气候变化引起的。

三、广西应对气候变化的政策思路

(一) 加大对气候变化问题科学研究的支持

科学研究是应对气候变化决策的基础和依据。现有关于气候变化经济学理论分析主要以适应和减少排放绝对量为目的,且宏观层面讨论为主,这为进一步研究应对气候变化经济政策提供了良好

的视角和方法。然而,气候变化的政策措施一定要考虑本地区的实际情况,结合广西的实际情况讨论气候变化的影响及相应的对策,才更具适用性。因此,广西要积极开展有关气候变化及其影响的相关科学研究,尽快取得相应的研究成果和基础数据,为政策决策服务,并在此基础上,制定适合广西自身特点的政策措施。

(二) 抓紧制定应对气候变化的政策措施

随着全球温室气体排放量的不断累积,全球气温呈缓慢上升态势,极端天气发生的概率不断加大,世界各国政府在应对气候变化方面的合作将不断加强,节能减排的政策措施将不断强化,能否降低能耗、提高资源利用效率将成为广西能否稳定发展的重要条件。目前,国际合作框架内,主要集中在减缓性行动,如发展低碳经济、减少碳排放。此外,广西应对气候变化既是国际、国内压力的体现,更是广西经济发展的一种内生要求。随着气候的不断变化,广西的发展环境正在不断变化,为了可持续发展,广西必须制定合适的政策措施,并不断地进行调整。在市场经济环境下,气候变化作为一种外部性,在时间和地域上已超出了经典经济学范围,需要用一种更大的视角进行研究。市场仍是配置应对气候变化资源的基础性方式,广西应抓紧制定应对气候变化的政策措施,影响和优化资源配置。由于气候变化的外部性特点,仅仅依靠广西自己并不能有效遏制气候变化,通过适应性政策影响资源配置,在较小的政策成本下,提高广西对气候变化的适应性尤为重要。

(三) 积极响应国家号召,推动减缓性行动

当前,全球将主要精力集中在减缓性行动上,广西应对气候变化的政策应积极响应国家号召,调整产业结构、发展低碳经济,减少温室气体排放。随着北部湾经济区和“两区一带”建设的不断推进,我区正处于资本密集型工业化和城市化加速发展阶段,投资规模在我国乃至世界历史上都是前所未有的,特别是资源富集区经济发展的加快,大的铝、锰等有色金属的冶炼厂的建设和扩能,能源消耗总量不断增加,温室气体排放量加大。如果只按传统常规技术的建设模式,一经投入,便有一个投资回报期技术和资金的锁定效应,将来大规模的二氧化碳排放不可避免。因此,我国未来发展技术路径的选择,对国家乃至全球节能减排、减缓气候变化具有重要意义。在节能减排的历史潮流面前,不论从对全球负责的角度,还是从实现我区可持续发展的角度,都必须积极探索节约发展、低碳发展之路,从法规制度、经济结构、能源利用、技术创新等多个层面,加快推进低碳经济发展。只有这样,才能以实实在在的事实,展现广西在应对气候变化问题上的决心和魄力。

(四) 把提高对气候变化的适应性放在突出位置

自气候变化问题提出来以后,在联合国的推动下,国际气候的努力主要集中在减缓,即减少温室气体的排放量,以防止危险的气候变化。广西也在外在压力下把发展低碳经济、完成减排任务作为应对气候变化问题的重中之重。实际上,由于气候变化的外部性特点,减缓性气候政策的效果取决于国际合作程度,哥本哈根、坎昆气候大会进展缓慢,“巴厘路线图”的谈判至今没有完成,“京都议定书”第二承诺期的实质性内容并未落实,国际气候谈判越来越艰难。此外,根据斯特恩报告,即使全球停止排放,由于气候变化的惯性,十年内全球气温仍将上升O.5-1度,减缓性行动不能根除气候变化问题。而且,减缓性行动的不断推进需要适应性的行动支持。在这样的背景下,广西应结合自己的实际情况,应对气候变化的政策要考虑提高广西对气候变化的适应性,以促进广西经济的可持续发展。

四、政策建议

(一) 加快结构调整步伐。切实转变发展方式

广西应加快结构调整,减少温室气体排放。大力发展服务业,推进循环工业,改善农业效益,提高林业的固碳效果。具体来说,广西应综合利用财税、产业、金融政策,积极推进产业结构,不断提高服务业的比例,降低工业比重。工业内部,应着力发展低碳经济减少温室气体排放。具体措施包括淘汰落后设备和产能,建立健全和完善节能、清洁生产、综合利用的各项机制,落实各级政府成立节能执法机构、加强执法队伍建设、节能工作常态化、市场化等。同时,积极承接东部沿海的高技术和高附加值、低能耗的产业必将向广西转移,如技术密集型产业、劳动密集型产业、新兴产业等。大力发展林业,提固碳效果。

(二) 加大财政资金在气候变化研究领域的投入

广西应对气候变化,关键依靠技术进步,通过新的技术降低排放,通过新的技术发展清洁能源,通过技术进步提高对气候变化的适应性。有关气候变化问题的科研工作在广西还没有引起足够的重视,科研资金严重不足,研究成果较少,与气候变化相关的基础数据和资料严重缺乏,与气候变化相关的新技术创新能力不足。广西应设立专门的研究资金,通过政府委托形式进行专题研究,加快共性技术进步。通过激励和约束机制,鼓励企业发展实用技术。同时,在各类科研经费的分配中,向气候变化问题的研究倾斜,提高广西区内关于气候变化的科研能力,为制定适合广西特点的气候变化政策打下良好基础。

(三) 提高广西对气候变化的适应性

广西应利用经济政策,优化气候变化的资源配置,提高广西对气候变化的适应性。一是要加快气候变化趋势和影响相关知识的研究。目前,对气候变化最大的共识就是气候变化的不确定性,即气候变化对经济所产生的影响及对未来气候变化的预测都存在很大的不确定性,使得气候变化政策的成本和收益难以确定,政策评价和选择变得非常困难。加强对气候变化趋势的研究,给公众提供更多的气候变化信息,有利于公众做好准备,提高自我适应能力。二是财政资金大力支持适应性技术的研发。如开发耐干旱的品种、推广适合较高温度的物种,通过新技术应用,提高应对极端天气条件的能力、提高对自然灾害的监测能力等。三是加大适应气候变化的基础设施建设。特别是对敏感地区和敏感行业,如加强农田灌溉设施、加高沿海的防水墙,激励和补贴农村建设储水设施等。四是推行有关气候变化的保险,以加强经济系统应对气候变化的稳定性。

[参考文献]

[1]国家农业综合开发办公室.农业综合开发适应气候变化的实践与探索[J].中国财政,2010,(4).

[2]刘晨阳.中国实施应对气候变化的政策内外部动因及效果初探[J].现代财经,2010,(10).

[3]刘恩财,等.关于农业应对气候变化的适应能力建设问题[J].农业经济,2010,(1).

[4]张丽宾,等.气候变化与公共财政政策的理论分析[J],环境经济学,2010,(5).

[5]cline,w.R.“The Economics of Global Warming.”Washington:Instutute for Intenmllonal Economics.1992.

[6]Kaplow,L.“Taxs,Permits,and Climate chaege”[N].NBER Working Paper 16268.2010.

[7]Metcalf,G.E.“c08tcontsinment.in climate ChangePolicy:Alternative Approaches to Mitigating Price Volmility[N].NBER Working Paper 15125,2009.