公务员期刊网 精选范文 水体生态修复技术范文

水体生态修复技术精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的水体生态修复技术主题范文,仅供参考,欢迎阅读并收藏。

水体生态修复技术

第1篇:水体生态修复技术范文

摘要:阐述采用生态修复技术治理污染水体的机理及其运用需应注意事项。

关键词:生态修复;食藻虫;水生植物群;水生态良性循环

中图分类号:S718 文献标识码:B随着我国经济的快速发展,湖泊、河涌及水库等水体的污染也日益严重,大量含氮、磷肥料的生产和使用,食品加工、畜产品加工等造成的工业废水和大量城市生活废水,使水中富含氮、磷等植物营养物质。有了充足的养料保证,藻类,特别是蓝藻(主要是铜绿微囊藻)泛滥成灾,严重污染水质。蓝藻细胞外面被一层厚厚的多糖类物质所包围,这些藻胶和多糖类物质几乎不能被任何高等动物的消化酶所分解,国内外许多工程案例都尝试采用高等动物包括鱼类治理蓝藻污染,均未获得理想的结果,蓝藻几乎成了食物链和生物链的盲端。由于蓝藻的爆发,会造成湖内缺氧,沉水植物不能进行光合作用,导致沉水植物灭种,各种水生物缺氧而无法存活,整个水生态系统失衡,藻类成为水体中的主导物种,最终导致水体变绿变黑。

本文介绍完全采用生态修复技术治理污染的水体

一、采用生态修复技术治理污染的水体机理:

1 采用食藻虫处理控制藻类

食藻虫是一种经长期改良驯化的可控制藻类污染的低等甲壳浮游物。

食藻虫能够大量摄取蓝绿藻、腐屑、悬浮物与有害菌类,同时,其本身又是鱼虾蟹贝等水生物所喜爱的食物。这样,处于食物链盲端的蓝绿藻转化成为水产品的途径被有效地打通了,从而使水体的藻类污染得以根治。蓝藻适宜生长在弱碱性的水环境中,经驯化的食藻虫所产生的排泄物具备弱酸性,可有效降低水体的PH值,使蓝藻的生长受到抑制。食藻虫消除藻类后,水体透明度大大提高,有益于其它水生物的生长,同时,由于食藻虫的生物特性,可将微生物等带动在水体中的分布和生长,为沉水植物生长创造条件。食藻虫引导的沉水植被生态修复技术对水体净化效果的稳定性好(见图1)。

2 建立水生植物群,恢复物种多样性:

在水体中种植沉水植被、挺水植物、浮叶植物群落,并通过沉水植被的光合作用把大量的溶解氧带入底泥,使淤泥中的氧化还原电位升高,促进底栖生物及微生物的繁衍,进一步促进水体生态系统恢复多样化。

(1)挺水植物:主要靠根系吸收部分淤泥中的营养物质,光合所需碳源来自空气中的二氧化碳,产生氧气直接排入大气。

(2)浮叶植物:从根系和浮叶背面吸收水体和淤泥中营养物质,但碳源也主要来自大气,产生具备净化力的氧气通过浮叶大部分进入大气;对上层水体有 一定净化力。

(3)沉水植物:根系和整个叶面直接吸收水体和淤泥中营养物质,所需碳源直接从水体中吸收,产生的氧气直接对自下而上对整个水体产生巨大的净化力。 综上所述,恢复沉水植物――“水下森林和水下草皮”,是水域生态恢复自净能力的最优化模式。

目前使用较多的边坡驳岸挺水植物、浮叶植物湿地净化法――这种方法从水域立体造景上意义重大,但从城市景观水体净化意义上来分析,有较大偏差。不同水生植物水质净化作用与自身代谢(二次富营养)百分比:(敞开于屋顶的试验,包括空气污染),(见表1)。

在水体中种植沉水植被,如轮藻群落、篦子眼子菜群落、苦草群落、海菜花群落等,使水体产生制氧功能,水体中的有机物被氧化成无机盐而加速结晶下沉。沉水植物根系将有效吸收底泥养分,使底泥中有机物被矿化,形成表面的矿化层覆盖下部淤泥层,减少有机物进入水体,沉水植被替代蓝绿藻进行水下光合作用,释放出大量的溶解氧,吸收掉水中过多的氮、磷等富营化物质,能形成水域生态“水下森林”和“水下草皮”自净功能, 也能进一步抑制蓝绿藻。沉水植被恢复后,底泥氧化还原电位升高,有利于水生昆虫和水生底栖生物的大量滋生,在沉水植被共生作用下,“水下森林”和“水下草皮”形成底泥营养物质的封存和生态链自净(物质能量的逐步吸收转化)。食藻虫引导沉水植物进行生态修复有利于水体维持高透明度。

3 建立水生动物群,进一步恢复物种多样性:

在水体中投放优选、养殖的水生动物:如鱼、虾、本地螺、贝等水生物,促进水体的微循环,为其它水生物的生长创造更佳条件。水体及底泥中的营养被沉水植物吸收,当植物生长过快时,可以适当收割。同时水体中的鱼虾及螺、贝等水生动物能食用部分植物及食藻虫,当鱼类等过度生长时,可以适当捕捞,从而形成水体养分向水生动植物的转移。通过收获有机水产品把水体水中的氮、磷等富营养物质从水体中转移上岸,彻底降低水体水中的富营养化程度。

4 完整建立健康的水生态良性循环系统

(1)从已有的研究结果看,水生植物可以显著提高富营养水体的水质,对氮、磷污染也有明显的净化作用。同时水生植物能抑制浮游植物的生长,从而降低藻类的现存量。因此,恢复以水生植物为主的水域生态系统是净化水质的合理有效措施和保障生态系统良性循环的重要措施(2)。水体彻底消除水体富营养状态,能使修复后的水体具备了自净功能,一般少量污水(每日排入不超过5%修复水体总量)可以通过水体生态系统所具备的净化功能自净。沉水植物和水生动物成为水中的主导物种,藻类不再有生存空间,水体可以保持长期清洁(见图2)。

二、采用生态修复技术治理污染的水体的优点

1 全生态的水质净化技术体系,不使用任何化学药剂净化水质,不使用诸如杀藻制剂、杀草剂等,无任何生物的或者化学的二次污染;水质主要富营养指标在生态系统稳定后达到国家地表水三类标准,洁净的水体大大减少蚊蝇滋生,提升环境的舒适度。

2 不需要建设水体的净化设备用房(即不需要水域以外的占地)。

3 符合打造节能低碳社会的建设理念水质能持久保持地表水三类标准,终年不需换水,水体本身具有自净功能。修复完毕后,日常使用中不需采用任何电力设备来维持,水生植物本身可以吸收二氧化碳并产生氧气,实现“负碳”。

4 由于水生植被能够固化水底淤泥,吸收底泥中的养分,将底泥中富营养成分彻底转化成水生植物纤维素,所以无需清除水底淤泥,也不需排干水体。

5 景观优美:水底布满水草,鱼虾嬉戏其中,恢复自然优美水景,透明度可以达到2米,水质清澈,水下景观充满生机。

6 效果持久:水体修复后经过合理维护,目前最早完成的项目已长达6年多,仍然保持良好状态。

7 维护简便:运用“食藻虫”治理水体富营养化污染,依靠生态系统食物链关系,形成生态系统良性循环。生态系统建立后,景观得以构建和保持,后期只要加以适当维护,调整物种种类和数量,维持自净的生态,效果即可长期保持。

三、采用此技术治理污染水体的适用范围及应注意事项

1 仅适合相对封闭的水体,一般补充水量不宜超过总体水量的5%,且水质为一级排放标准的A类。如果总水体量很大,可以适当的加大补水量。

2 水体面积的适合范围不宜小于1000平方米,因为水体总容量太小,建立起来的水生态平衡抗冲击能力较弱,且投资成本较高。

3 对水深的要求,水深宜为为0.8~3米之间,最小水深不得小于0.5米。对于我国的南端如三亚,水深不得小于1米,因三亚的气温常年较高,避免水草热死;我国的北端如长春,水深是冰冻深度加上水草要求的生存水深度。因此各地的气候条件也决定了水深要求也也不同。

4 由于我国地缘辽阔,南北气温相差大,相对应的水草习性也有不同。例如在北方的水沉草就需冬眠,当水结冰后,冰下水温一般在2~3℃左右,冰层融化后,水草又可从冬眠状态苏醒;而南方的水草需选用需耐水草。因此根据不同的气候及水质条件,应选择不同的水草种群进行搭配,同时对投放食藻虫的时间和数量都需根据实际情况进行设计调配。

5 整个水生态系统的生命周期,理论上可达到数十年,有待项目运行验证,现目前已运行的水域仅为6年(北京圆明园―凤麟洲64000 水深:0.8-2m 竣工时间:2008年)。

6 比传统污水处理方法一次性投资高,建立一套完整水生态体系,所需费用约250元/ m2,但其后期维护费用较低。

7 应注重水生态体系的维护及保养,对于连续水域,一般10000平方米需配置一名专业的水域保管员。

广州麓湖公园(聚芳园)

施工面积:1300完工时间:2011年5月效果保持至今(见图3-图5,表2)。

结语

在全球气候变化的背景下,“低碳经济”、“低碳技术”日益受到世界各国的关注,所以在条件许可的情况下,应积极广泛的采用生态修复技术治理污染水体。

参考文献

第2篇:水体生态修复技术范文

关键词景观水体;修复;处理方法;

前言

近年来,随着社会的不断发展和人们生活条件的不断改善,景观水已经融入了人们的生活,日益关注以水景为主题的小区、园林、城镇等建设。然而,由于污染导致一些景观水的水质已开始发生变化,湖水正在变黑发臭,某些湖泊还出现了观赏鱼大量死亡的现象,水体的富营养化成为景观水体亟待解决的问题。

景观水体的水质维护主要是控制水体中COD、BOD、TN、TP等污染物的含量及藻类等的生长(使其不过度繁殖),保持水体的清澈、洁净,而景观水体的修复是针对已受污染的水体如何恢复正常功能。任何修复技术必须在可行性研究基础上进行选择,主要考虑的问题包括:技术的有效性;水环境被修复的程度;投资和成本,以及可能的替代方案的有效性与成本比较等[1]。

当前景观水体治理技术可归结为以下几种类型。

1.控制营养物质来源的技术

主要是控制外源性污染:对于工业废水和生活污水这样的点源,应排入城市污水处理系统,严禁排入景观水体;对初期雨水应适当进行处理后,再排入水体;严格控制景

观水体周围化肥农药使用量和使用时间;杜绝生活污水、垃圾进入水体,严禁在河堤、湖岸倾倒堆放垃圾;定期对水面漂浮的树枝败叶及杂物进行清理。只有从根本上控制了外源性污染,才能为内源性污染的治理提供可靠保证。

2.控制藻类的技术

2.1 机械除藻

利用捞藻船、吸藻泵等机械设备捕捞水面上的藻类,间接去除水体氮、磷营养盐。中科院水生生物研究所于2001~2002 年对滇池水华蓝藻进行机械清除,共清除蓝藻360.83t( 干重),相当于从水体中去除了氮37.33t、磷2.71t、有机质200.32t, 水体中的重金属也被部分去除。

2.2 杀菌消毒及除藻技术

为了抑制水中藻类的生长,可加入一定量的硫酸铜 (铜离子含量为1mg/L左右)。当水体滋生了菌类时可向水体中投加氧化剂,如次氯酸钠、液氯、漂白粉、臭氧、异噻唑啉酮等进行杀菌消毒。

药剂杀藻是一种快速见效的技术。昆明世博会期间, 为消除滇池草海蓝藻水华, 采取了一系列应急措施, 包括投加化学药剂杀藻, 基本控制了水华和恶臭,改善了水体景观。

3.生物控制技术

3.1水生生物修复法

水生生物修复法是利用生态系统食物链摄取原理和生物相生相克关系, 通过改变水体的生物群落结构来有效地回收和利用资源,取得水质的净化、资源化和景观效果等综合效益。

3.1.1 水生植物修复法

多种高等水生植物能够有效的吸收水中氮磷等污染物质,抑制藻类的繁殖。水生植物可分为挺水植物、浮叶植物、沉水植物和漂浮植物。南京莫愁湖通过种植莲藕,年产莲藕25万kg ,带出的氮有60多t ,磷达1t多,浮萍在1个月内能将污水中的磷去除90%。北京动物园水体通过种植荷花、水葫芦及芦苇等水生植物,明显提高了水体的透明度和溶解氧,抑制了藻类的生长繁殖,还能带来一定经济效益。利用水生高等植物组建人工复合植被在富营养化水体治理中具有独特优势, 但要注意防止大型植物的过量生长,应及时收割,避免其腐烂。

3.1.2 水生动物修复法

水生动物是以游离细菌、浮游藻类、有机碎屑等为食,通过营养链进行控制,能够在一定程度上调控景观水体的水质。水生动物包括浮游动物、游泳动物和底栖动物。通过定期对游泳动物和底栖动物进行打捞,可以防止其过量繁殖造成的内源污染,同时也将已转化成生物有机体的有机质和氮磷等营养盐从水体中彻底输出。武汉东湖富营养化水体中引入50g/m3的鲢或鳙,使微囊藻水华得到有效抑制。扬州海德公园人工湖、新城河等景观水体内放养了白鲶、螺蛳等能滤食浮游藻类和有机碎屑的水生动物, 用它们摄食水中浮游藻类, 同时还能分泌一些促絮凝物质,使湖水中悬浮物质絮凝,使景观水体透明度提高, 改善了公园内水体水质。

3.2微生物净化技术

景观水体中污染物高效降解菌很少, 补充有益微生物和促进其生长的营养剂可加速水体中污染物的降解,也有助于加快底泥中污染物的分解转化。

3.2.1 投菌法

采用投加菌种方法进行景观水体的生物修复近年来成为国内外研究的热点, 在日本、韩国、澳大利亚等应用较多。人工选育培养出的光合细菌、硝化细菌等复合高效微生物, 能够有效去除氮、磷营养元素和有机污染物, 抑制藻类生长, 增加水体溶解氧, 改善水质。目前较为成熟的投菌技术有美国CBS公司开发研制的CBS技术和日本琉球大学教授比嘉照夫先生开发EM技术。

3.2.2 生物激活法

生物激活法是通过向水体中投加生物促生剂来刺激土著微生物的迅速繁殖,增强水体的自净能力。主要有以下几种投加方式:投加微生物营养盐、投加电子受体与共代谢基质、投加表面活性剂。通过纯天然物质制成的生物激活剂Bio OxidatorTM(Bo),Nutra Complex TM(Nc)对上海植物园兰室和牡丹园湖水进行修复,结果表明,Bo和Nc对水体COD、BOD、TP、浊度等均有显著的去除效果,并可显著提高水中DO。

5.2.3 水生微生物修复技术

水生微生物修复技术包括生物接触氧化法、曝气生物滤池和膜生物反应器等,其中以生物接触氧化法和曝气生物滤池运用广泛。刘书宇[2]等以沸石和煤渣为主要基质,从土著微生物中筛选驯化优势菌群挂膜于基质内构建复合生态床修复黑龙江省太阳岛天鹅湖富营养化景观水体,结果表明:优势菌群使系统很好完成对氮的循环去除,且优势菌群强化系统离子交换去除率及消化去除率延程均显著提高。陆洪宇[3]采用A/O一体式悬浮曝气生物滤池处理苏州园林景观水, COD、NH3-N、TN和TP的去除率分别为56%左右、90%以上、40%左右和接近30%, 出水浊度低于2NTU。

4 生态控制技术

4.1生态稳定塘

稳定塘是经过人工适当修整,设围堤和防渗层的污水池塘,主要依靠自然净化功能使污水得到净化。何龙[4]采用生态砾石接触氧化/稳定塘处理微污染景观水,COD、浊度、TN、TP和蓝绿藻的去除率分别为56%~68%、80.6%左右、44.8%~48.3%、24.6%~31.4%和85%左右。稳定塘运行成本低,但占地面积大,处理周期长,适于附近有天然池塘可以利用的景观水体。此外,稳定塘内也可种植水生植物、放养水生动物以形成多级食物链,组成复合的生态系统。

4.2 “生态岛”修复法

生态岛法就是往景观水体中投入临时性的人工设施来改善、创造一个完整的生态系统,利用厌氧微生物、好氧微生物以及微小动物、植物等组成的生态系统将有机物进行强化分解,最终成为简单的含C、N、P 等无机物,达到净化水质的目的。目前植物浮岛技术已成功应用于滇池草海水域生态修复工程, 建设了植物浮岛生态区78亩, 用毛竹或水竹制成框架, 其底部用聚乙烯网兜住的围栏形成植物载体,其上种植匍匐茎草本植物如凤眼莲等,挺水植物主要为狭叶香蒲、芦苇及风车草等及藤本植物,具有植物根系密实、抗风浪能力强、净水作用明显、景观效果好、维护管理方便等特点。

4.3人工湿地处理系统

人工湿地是利用土壤填料-微生物-水生动植物复合生态系统进行物理、化学和生物的协同净化,通过过滤、吸附、沉淀、植物吸收和微生物分解实现对营养盐和有机物的去除。美国佛罗里达州大型浅水湖―Apopka湖,利用人工湿地去除湖中的悬浮物、氮、磷等,取得了很好的效果。经过29 个月的运行,主要污染物的去除率分别是:总悬浮物89%~99%,总磷30%~67%,总氮30%~52%[5-6]。TANNER等[7]在使用表面流人工湿地对新西兰北部放牧草地潜水径流处理中发现,占径流面积1%的人工湿地可有效降低径流水体的TN和TP。目前,我国的城市湿地已初具规模,有常德市西洞庭湖青山湖国家城市湿地公园等十数处。城市湿地作为城市稀有的自然落资源, 是城市绿地生态系统的重要组成部分,在提供水资源、调节气候、涵养水源、降低洪水危害、降解污染物、保护生物多样性等方面,发挥着重要作用。

4.4地下渗滤系统

地下渗滤系统主要由潜水泵、布水系统、渗滤池、收集管与草坪等组成。原水在渗滤池中通过砾石层的再分布,在土壤毛细作用下上升至植物根区,经过土壤的物理、化学作用和微生物的生化作用以及植物吸收利用后得到处理和净化。在微生物作用下, 有机污染物被吸附、降解,达到净化除臭的目的,通过表面植草来吸收降解后的营养物质如N、P等, 既满足了自身生长的需要,又去除了水中的污染物质。王绍春[8]等将该系统运用于苏州拙政园景观水,测试表明:出水浊度在4~10NTU之间,高锰酸盐去除率稳定在10%~35%,氨氮及正磷酸盐浓度下降,出水水质可达到园林景观水水质标准的B类。

4.5生物栅技术

生物栅技术是利用植物、微生物、水生动物和底栖动物等生态要素的协同作用来实现生态修复功能,在有限的空问内富集巨大的生物量,以达到快速、高效的处理效果[9]。杨清海[10]等设计的生物栅是一种不需要人工曝气的原位修复水体装置,生物栅的水生植物选用根系发达的黄花美人蕉(Canna indica),其发达的二级、三级根系与填料纤维交织在一起,起到固定植物、提供强大的生物附着载体以及为其他生态要素提供氧气的重要作用。用该装置处理上海市苏州河支流华东师范大学校园内丽娃河河水(富营养化水体),在HRT=72h时,TOC、COD、TN和TP的去除率分别为52.2%、57.6%、60.9%和82.4%。NH4+-N在HRT=24h时去除率为32.4%。

5.结论

物化方法净化景观水是目前常规的处理方法,但其前期投资费用相对较高,后期维护费用也较高,且能源消耗较大,并不能从源头上进行控制,是一种治标不治本的方式。且随着耐药性藻类的出现,需要频繁地变换化学药剂,同时药的投加量也会更大,处理费用也较高,且造成二次污染。生物、生态技术则是以生物学以及生态学理论为基础,改善水生生物的生存环境,优化水生生物群落,提高水生态系统的自净能力,维持水生态系统的稳定健康发展,是治理富营养化景观水体的有效途径。生态修复的方法作为一种治理景观水体的新技术,克服了物理、化学方法的不足,因此成为目前景观水处理的应用热点。

参考文献

[1] 张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002.

[2] 刘书宇,马放,姜钦鹏.生物强化生态床修复景观水过程中氮转化积累研究[J].北京工业大学学报,2008,24(6):642-645.

[3] 陆洪宇.改进型曝气生物滤池对景观水处理的试验研究[D].哈尔滨: 哈尔滨工业大学, 2005.

[4] 何龙.复合生态工艺处理城市景观河流的中试研究[D].上海: 上海交通大学, 2003.

[5] 古滨河.美国Apopka 湖的富营养化及其生态修复[J].Lake Sci(湖泊科学),2005,17(1):1-8.

[6] Coveney M F,Stites D L,Lowe E F,et a1. Nutrient removal from eutrophic lake water bywetland filtration [J]. Eeol Eng,2002,19:141-159.

[7] TANNER C C,NGUYEN M I,SUKIAS J P S.Nutrient removal by a constructed wetland treating subsurface drainage from grazed dairy pasture[J].Agriculture Ecosystems & Environment,2005,105(1):145―162.

[8] 王绍春,费忠民,张维佳.地下渗滤系统处理园林景观水的实验研究[J].苏州科技学院学报( 工程技术版),2007,20(3):45-47.

第3篇:水体生态修复技术范文

关键词:淡水池塘 养殖 环境问题 解决途径

目前,淡水养殖业是我国渔业发展中的重点,其产量在水产养殖中逐年呈上升比率,淡水养殖作为水产养殖中的重点,过去传统的密集型养殖方式暴露了诸多弊端,限制了淡水养殖产业的升级,因此,分析和解决目前淡水池塘养殖中所面临的环境问题,寻求更好的解决措施吗,推进淡水池塘养殖业的健康、快速发展是我们需要密切关注的问题。下面我们针对传统淡水养殖中的环境问题略作分析,并结合最近产业研究成果原位修复技术和异位修复技术来分析下其解决之道。

1.淡水吃糖养殖环境问题分析

从目前淡水养殖的局面来看,传统养殖的高密集型所造成的弊端与水体富营养化、氮失衡是造成环境问题的三大主凶之一。

传统淡水养殖采用高密度、高投饵率、高换水率进行养殖,对于环境的危害是巨大的,同时近年因饲料投放问题造成的水体富营养化也是限制淡水池塘养殖行业发展的瓶颈。虽然养殖水平随着技术研究的突破不断提升,单位水体的鱼载力也在提升,但是鱼类代谢与饲料投放的力度也在增加,养殖的高换水率必然会导致污染加重,最终限制行业本身的深入发展。我国以围网养殖和围栏养殖为主要方式对于水体环境的污染是很严重的,近些年来国家一直在不断加强对水体环境污染的治理,实施“退鱼还湖”等政策,这些必然会继续加重淡水池塘养殖的比率,按照池塘养殖在我国淡水养殖业中的比重来看,这种潜在的对环境的污染风险是巨大的,因此,做好淡水池塘养殖问题的环境污染治理,保护好水体资源与鱼类资源,也是淡水池塘养殖业必须解决的关键问题。

作为池塘养殖面临的严峻环境问题之一,氮失衡已经成为了限制池塘养殖发展的瓶颈。目前,淡水池塘水体中的含氮量与含磷量都已经超出了警戒线指标,但是能够支持初级生物循环的有效磷含量却极低,以上两种富营养化的物质无法溶解于水体,只能吸附在淤泥或被重金属络合,这将加重水体负担,加重污染,尤其是现在池塘饲养饵料多使用含氮量较高的有机肥,因此,氮失衡已经成为了必须面对的重要池塘环境问题。氮失衡所带来的危害是内外两个层面的。在内部污染方面,会造成鱼类体内排泄系统和代谢系统失衡,造成过量活动或失去平衡,极易发生昏迷或死亡现象,这对于依靠产量取胜的淡水池塘养殖来说可谓是致命打击。在外部污染上,由于高换水率所排放出来的富营养化水体和氮失衡水体,排放到江河湖海中将会加剧大范围内的水体污染,成为大环境内环境污染的主因,同时对于工农业生产和群众生活造成长期的恶劣影响。因此面对以上这些淡水池塘养殖环境问题,养殖环境生态修复技术成为了近些年来的研究热点与重点。

2.淡水池塘养殖问题解决之道

目前,关于淡水池塘生态环境的修复研究主要集中在两个方面,分别是原位修复技术和异位修复技术。原位修复技术也成成为立体修复,主要是通过在水体环境中营造立体养殖空间实现对超积累物质的吸收和净化,加强淡水池塘环境内的硝化作用,通过水生植物、蔬菜与细菌的立体分布和作用优化水体内的生物循环,同时还能有实现对多种资源的优化利用,达到产业升级,降低排污系数的目的。异位修复技术的重点主要是对养殖水体的净化处理,提升水体利用和循环率,降低污染。

第4篇:水体生态修复技术范文

关键词:富营养化;生物修复;生态浮床;微生物强化技术

中图分类号:X52;X172文献标识码:A文章编号:0439-8114(2012)04-0660-04

近年来,我国农业、工业和城镇化建设加快,大量含有氮、磷元素营养物质的工业、生活和农业废水以点源和面源形式不断排入河流、湖泊中,使水体中藻类大量繁殖,形成恶性循环,加剧了水质下降及富营养化进程,水体中化学耗氧量(CODcr)、总氮、总磷、氨氮等主要富营养化污染指标普遍劣于相应标准1~2类[1,2]。

水体富营养化后,首先危害水产养殖业,水体透明度降低,藻类大量繁殖,水中溶解氧降低,导致鱼、虾、贝类大量死亡;再者,水体生态系统严重退化产生的过量亚硝酸盐和硝酸盐、藻类致病毒素对人体健康产生很大的威胁,水体散发的腥臭味更影响到周边水环境和人文景观[3,4]。所以解决城市水体富营养化现象,恢复河流湖泊的生态和社会功能问题,日益成为城市可持续发展的关键乃至限制性因素。

1水体富营养化控制的方法

消除富营养化的关键在于削减水体中氮、磷的负荷,从而消除水体藻类疯长的基础,达到降低水体中藻类生物量、提高水体透明度的目的,实践中采用多种方法进行综合防治。

1.1外源性营养物质控制

通过减少或者截断外部输入的营养物质,使水体失去营养物质富集的可能性。实践证明,对工业废水、农业生产及生活污水的有效控制是控制水体富营养化的关键措施之一[4]。

1.2内源性营养物质控制

外源性营养物质减少后,对内源性营养物质的控制是消除富营养化、恢复生态系统的关键[5,6]。目前常用的方法有工程性措施、物理化学措施、生物措施等。

工程性措施如底泥疏浚、引水置换和底泥覆盖等,存在的主要问题是工程量巨大,成本高,因此一般仅适用于小型水体[7]。

物理化学措施如利用湖底深层曝气、絮凝沉淀、化学药剂杀藻等达到减氮除磷杀藻的目的,主要的问题是短期内使用易造成二次污染,生态系统不能有效恢复。

相对于传统的工程、物理化学处理方法,生物措施则成本低廉、综合效益高、不易造成二次污染,在消除富营养化及生态修复方面优势明显,越来越受到人们的重视,主要是利用水生生物通过代谢活动去除水体营养物质、抑制藻类生长,研究应用集中在水生植物修复技术[8,9]、微生物强化技术[10]等方面。

水生植物修复技术机理是植物和根区微生物共存,产生协同效应,经过植物吸收、微生物转化、物理吸附和沉降作用,一方面对营养元素的吸收净化可有效削减营养物质负荷,另一方面对浮游植物产生竞争抑制,同时沉水植物能够促使悬浮或溶解在湖水中的污染物向底泥转移,澄清和净化水质,在生态系统恢复中起到了关键作用[11]。其中,人工湿地处理技术和生态浮床技术(也称人工浮岛、生物浮岛)在工程实践中应用广泛。人工湿地利用基质-微生物-植物这个复合的生态系统,实现对废水中有害物质的去除[12],国内学者开展了潜流人工湿地系统净化,总氮、总磷去除等方面的研究[13,14]。而生态浮床技术利用植物在生长过程中对水体中氮、磷等元素的吸收及植物根系微生物和浮床基质对水体中悬浮物的吸附,富集水体中的有害物质,国内外在浮床植物的筛选、浮床的机理、浮床材料应用等方面开展了大量研究。

微生物强化技术主要利用微生物作为生态系统中的分解者,通过氨化、硝化、反硝化作用将氮转化成气体,加快水体中氮的循环;参与有机磷的分解作用,促进水生植物的吸收利用,使磷元素从水体中去除。国内学者在脱氮菌、去磷菌、复合光合细菌、有效微生物群(EM)、溶藻菌以及固定化微生物技术、微生物制剂等的应用上做了许多研究。

2生态浮床研究动态

生态浮床是近年来一种新型的水体生物修复方法之一,特点是不需要搬运或输送污染水体(包括底泥和岸边受污染的土壤),直接利用水生植物、微生物对水体中氮、磷元素进行有效吸附、转化和降解,在受污染区域进行原位处理,最具经济和技术合理性,所以运用的也最为广泛。

2.1浮床植物的筛选

目前已用于或可用于人工生态浮床净化水体的植物主要有:美人蕉、芦苇、荻、多花黑麦草、稗草、水稻、香根草、牛筋草、香蒲、葛蒲、石菖蒲、水浮莲、凤眼莲、水芹菜、水蕹菜、芝麻花、灯心草等[15-22]。在提高浮床植物应用效果的研究上,郭沛涌等[23,24]对冬春季不同植物盖度的浮床研究发现,在黑麦草覆盖率为30%时,系统对NH3-N、TN和TP的去除率都达到最高。周晓红等[25]通过水培试验发现,重度刈割有利于黑麦草生物量的累积,且能有效提高系统对TN、TP等的去除能力。

2.2浮床的机理

林东教等[26]研究发现,浮床净化是一个漂浮植物、微生物、水体及植物根区生理生态特性相互作用的结果;周小平等[27]的研究表明,植物组织累积的N、P量分别占各自系统去除量的40.32%、63.87%,其吸收同化作用是其去除的主要途径;浮床在一定程度上调控了受污染河道中浮游藻类群落种群结构和生物量,明显改变不同水层中的细菌和真菌的数量,提高了水体的自净功能[28,29]。

2.3浮床材料

浮床材料的应用大致经历了几个阶段的发展:第一阶段,是植物水上种植的一种方式,材料以泡沫塑料板、竹排、椰壳、渔用网片、玻璃钢等为材料,无论材料和水生植物都易造成二次污染;第二阶段,重视了成本和材料两个方面,但在耐腐蚀、牢固性及氧的传输功能等方面严重不足;现阶段,浮床制作大多有气体交换区,提高了水体的表面复氧作用,通过水生动物、根际微生物等来提高植物的水质净化能力。

2.4生态浮床应用

国外生态浮床在城市暴雨污水、生活污水、工农业废水的净化上都有应用。我国生态浮床方面的研究从20世纪90年代初逐渐增多,在工农业废水以及河道、湖泊污水治理中都有应用,如应用于北京永定河引渠罗道庄河道、杭州南应加河道、上海华漕杨树湾河道、无锡五里湖工程、上海七宝宝华小区河道、上海青浦区府前河道、巢湖湖水、合肥环城河水、苏州重污染河道、太湖五里湖示范区等,均取得了良好效果[30-33]。

3微生物强化修复污染水体研究进展

3.1微生物修复污染水体

微生物作为生态系统中的分解者,对污染物的去除和养分的循环起着不可忽视的作用,已有的研究表明,通过对氮的氨化、硝化、反硝化作用,脱氮菌(主要包括硝化菌和反硝化菌)驱动着水体中氮的生物地球化学循环,其中硝化作用是指氨经过硝化细菌氧化为亚硝酸和硝酸的过程,是脱氮中的关键环节,但自然界中的硝化细菌是一类好氧化能自养的细菌,特点是自养、好氧和生长速度慢,在高有机物浓度条件下很难形成优势菌种,严重影响其硝化能力,因此高效异养硝化菌、好氧反硝化菌、高效氨氮降解菌等新型脱氮菌群成为最新研究的热点[34,35]。

磷元素对水体环境富营养化程度改善和恶化的影响往往比氮元素更大,微生物参与着有机磷的分解作用,可以促进水生植物的吸收利用,已有研究主要通过植物过滤、吸附、共沉和各种絮凝微生物絮凝沉淀作用,去除效率低下,有研究利用反硝化聚磷菌在好氧条件下摄取磷合成聚磷酸盐而储存于细胞内来达到除磷目的,解决传统利用物理絮凝作用去除磷效率低下的问题[36]。

光合细菌、复合光合细菌可去除富营养化水体的有机质和氨氮[37];有效微生物群(EM)由筛选出的优势乳酸菌、酵母菌、放线菌及光合细菌等功能性菌株组成,具有广泛的应用价值,研究表明可显著抑制“水华”藻类生长,去除水体富营养化[38],采用溶藻菌控制蓝藻[39]。

3.2固定化微生物技术

固定化微生物技术是用化学或物理手段将游离微生物定位于限定的空间区域内,并使其保持活性、反复利用的方法,能够提高微生物密度、稳定性、耐毒害和抗冲击能力等,被广泛应用。

在氮循环菌中,硝化菌为自养细菌,其生长缓慢,易受外界环境影响,对低温异常敏感,固定化硝化菌能够提高硝化菌群浓度,增加硝化菌对温度的抵抗力和有毒物质的耐受性,取得较好的硝化效果[40]。如张爽等[41]采用聚乙烯醇-硼酸包埋法固定经常温富集培养的含耐冷菌的硝化污泥,处理常温和低温生活污水,10 ℃以下氨氮去除率可稳定在80.00%左右。应用固定化氮循环细菌技术(NICB)对富营养化水体原位修复,并在镇江金山湖进行湖泊水体氮污染净化实践,结果表明,总氮和氨氮去除效果明显[42,43]。常会庆等[44]用伊乐藻和固定化细菌共同作用研究表明,对水体中的几种形式的氮素都有不同程度的降低作用。蔡昌凤等[45]在传统的PVA固定化方法中加入麦秸粉末,混合固定硝化细菌和反硝化细菌,对厌氧酸化后的焦化废水进行脱氮,经过12 h的曝气处理后,氨氮浓度去除率高达94.30%,COD去除率为63.15%。

固定化技术除磷研究主要是利用固定化聚磷菌除磷,采用固定化技术,可以提供厌氧和好氧交替的环境,使聚磷菌成为优势菌群,达到除磷的目的[46]。

3.3微生物制剂修复富营养化

近些年兴起的微生物制剂作为以改善环境状况和强化处理系统稳定、高效为目标,通过菌群构建等科学方法得到的具有特殊功能的生物制品[47],在水体修复领域已得到广泛应用。如美国Alken-Murry公司开发的系列微生物制剂Clear-Flo,除了用于修复污染河流外,也用于修复富营养化的湖泊,在国内也有应用[48]。美国生态实验室研发的液可清是一种由32种专性活菌构成的混合微生物制剂,已获得美国环保局、卫生部和农业部的认证,在我国云南昆明城市西南部西坝河进行的水体修复中有应用,3周后,修复河段内的BOD5、总氮、总磷和浊度分别有不同程度的下降[49]。

在富营养化水体的生物修复中,以植物-微生物为基础的原位生物修复体系不但可以降低水体中的营养盐水平;而且还可同步实现生态系统结构的改善与经济效益的获得,被越来越多地应用于实践中。

参考文献:

[1] 吴宇.富营养化:中国湖泊面临的治理难题[J].生态经济, 2008(9):14-19.

[2] 付春平,钟成华,邓春光.水体富营养化成因分析[J].重庆建筑大学学报,2005,27(1):128-131.

[3] 高爱环,李红缨,郭海福. 水体富营养化的成因、危害及防治措施[J].肇庆学院学报,2005,26(5):41-44.

[4] 鄢恒珍,龚文琪,梅光军,等. 水体富营养化与生物修复技术评析[J].安徽农业科学,2009,37(34):17003-17006.

[5] 张志明. 高原湖泊富营养化发生机制与防治对策初探[J].环境科学导刊,2009,28(3):52-56.

[6] 秦伯强.湖泊富营养化治理的技术对策[J]. 环境保护,2007(19):22-24.

[7] 秦伯强,杨柳燕,陈非洲,等. 湖泊富营养化发生机制与控制技术及其应用[J]. 科学通报,2006,56(16):1857-1866.

[8] 杨,吴小刚,张维昊,等.富营养化水体生态修复中水生植物的应用研究[J]. 环境科学与技术,2007,30(7):98-102.

[9] 李先会.水生植物―微生物系统净化水质效应研究[D].无锡:江南大学,2008.

[10] 郑焕春,周青.微生物在富营养化水体生物修复中的作用[J].中国生态农业学报,2009,17(1):197-202.

[11] 厉恩华. 大型水生植物在浅水湖泊生态系统营养循环中的作用[D]. 武汉:中国科学院研究生院,2006.

[12] 张志勇,方向京,周跃. 人工湿地防治湖泊富营养化污染探讨[J].污染防治技术,2007,20(4):38-41.

[13] 刘红,代明利,欧阳威,等.潜流人工湿地改善官厅水库水质试验研究[J].中国环境科学,2003,23(5):462-466.

[14] 唐静杰,周青.生态浮床在富营养化水体修复中的应用[J]. 环境与可持续发展,2009,34(2):24-26.

[15] 卢进登,陈红兵,赵丽娅,等.人工浮床栽培7种植物在富营养化水体中的生长特性研究[J]. 环境污染治理技术与设备,2006,7(7):58-61.

[16] 余俊任,林聪,张新平,等.水生植物在猪场废水净化中的耐污性研究[J].猪业科学,2006 (12):64-66.

[17] 付子轼,邹国燕,宋祥甫.适应近郊污染河道治理工程的生态浮床植物筛选[J].上海农业科技,2007(5):19-20.

[18] 张丽萍,梅朋森,程加丽,等.人工浮岛栽培蔬菜及花卉对水质的净化作用研究[J].三峡大学学报(自然科学版),2008,30(1): 93-96.

[19] 黄田,周振兴,张劲,等.富营养化水体的水芹菜浮床栽培试验[J].污染防治技术,2007,20(3):17-19.

[20] 黄婧,林惠凤,朱联东,等.浮床水培蕹菜的生物学特征及水质净化效果[J].环境科学与管理,2008,33(12):92-94.

[21] 胡细全,李兆华,王春秀,等.复合生态浮岛处理重度富营养化水体的静态试验研究[J].湖北大学学报(自然科学版),2008,30(3):309-312.

[22] 孙连鹏,刘阳,冯晨,等.不同季节浮床美人蕉对水体氮素等污染物的去除[J].中山大学学报(自然科学版),2008,47(2):127-130,139.

[23] 郭沛涌,朱荫湄,宋祥甫,等.浮床黑麦草去除富营养化水体总氮的试验研究[J].华中科技大学学报(城市科学版),2007,24(2):33-35,40.

[24] 郭沛涌,朱荫湄,宋祥甫,等.陆生植物黑麦草(Lolium multiflorum)对富营养化水体修复的围隔实验研究―总磷的净化效应及其动态过程[J].浙江大学学报(理学版),2007,34(5):560-564.

[25] 周晓红,王国祥,杨飞,等.刈割对生态浮床植物黑麦草光合作用及其对氮磷等净化效果的影响[J].环境科学,2008,29(12):3393-3399.

[26] 林东教,唐淑军,何嘉文,等.漂浮栽培蕹菜和水葫芦净化猪场污水的研究[J].华南农业大学学报,2004,25(3):14-17.

[27]周小平,徐晓峰,王建国,等. 3种植物浮床对冬季富营养化水体氮磷的去除效果研究[J].中国生态农业学报,2007,15(4):102-104.

[28] 陈立婧,顾静,张饮江,等.从浮游藻类的变化分析人工浮岛在治理上海白莲泾中的作用[J].水产科技情报,2008,35(3):135-137,142.

[29] 吴伟,胡庚东,金兰仙,等.浮床植物系统对池塘水体微生物的动态影响[J].中国环境科学,2008,28(9):791-795.

[30] 刘士哲,林东教,何嘉文,等.猪场污水漂浮栽培植物修复系统的组成及净化效果研究[J].华南农业大学学报,2005,26(1):46-49.

[31] 邢广彦,万晓丹.水体富营养化及其生物―生态修复技术[J].黄河水利职业技术学院学报,2007,19(1):50-51.

[32] 杨婷婷,操家顺,周勇,等.原位围隔耐寒高羊茅浮床对苏州重污染河道水体的净化[J].湖泊科学,2007,19(5):618-621.

[33] 李英杰,金相灿,年跃刚,等.人工浮岛技术及其应用[J].水处理技术,2007,33(10):49-51,77.

[34] 刘芳芳,周德平,吴淑杭,等. 养殖废水中异养硝化细菌的分离筛选和鉴定[J].农业环境科学学报,2010,29(11):2232-2237.

[35] 朱伟,李娜. 高效氨氮降解菌的筛选、鉴定及降解能力测定[J].安徽农业科学,2008,36(22):9361-9362,9474.

[36] 陈磊.反硝化聚磷菌培养驯化分离方法及菌种特性的研究[D].济南:山东大学,2008.

[37] 郭秒,慕跃林,黄遵锡.复合光合细菌对热带鱼养殖水质净化作用的研究[J].水产科学,2004,23(2):30-32.

[38] 王平,吴晓芙,李科林,等.应用有效微生物群(EM)处理富营养化源水试验研究[J].环境科学研究,2004,17(3):40-43.

[39] 史顺玉,刘永定,沈银武.细菌溶藻的初步研究[J].水生生物学报,2004,28(2):219-221.

[40] 冯雅男,李军, 王立军,等.包埋固定化技术去除水体中氨氮的研究进展[J].辽宁化工,2010,39(2):164-168.

[41] 张爽,姜蔚,徐桂芹,等.固定化硝化菌在不同温度下对氨氮的去除效能研究[J].环境科学与管理,2008,33(5):36-39.

[42] 胡绵好,袁菊红,常会庆,等.凤眼莲-固定化氮循环细菌联合作用对富营养化水体原位修复的研究[J].环境工程学报,2009,

3(12):2163-2169.

[43] 李正魁,张晓姣,杨竹攸,等.基于固定化氮循环细菌技术的镇江金山湖生态工程效果研究[J].环境科学,2009,30(6):67-72.

[44] 常会庆,杨肖娥,方云英,等.伊乐藻和固定化细菌共同作用对富营养化水体中养分的影响[J].水土保持学报,2005,19(3):114-117.

[45] 蔡昌凤,梁磊.混合固定化硝化菌和好氧反硝化菌处理焦化废水[J].环境工程学报,2009,3(8):1391-1394.

[46] 常会庆,杨肖娥,濮培民.微生物除磷研究与工艺技术的发展前景[J].农业环境科学学报,2005,24(增刊):375-378.

[47] 马放,杨基先,金文标,等.环境生物制剂的开发与应用[M].北京:化学工业出版社,2003.9-31.

第5篇:水体生态修复技术范文

关键词:水环境;內源污染;外源污染;修复技术

Abstract: due to the economic development and environmental protection are not well balanced, degradation of water environment function results, become the important problems in the world today. Therefore for degradation of water environment restoration, reconstruction, has become the focus of the current national attention, is also a hot research in the field of the environment. In this paper, from two aspects of endogenous and exogenous summarized the advance of research on surface water environment remediation, and remediation of water environment are discussed.

Keywords: water environment; pollution; exogenous pollution; remediation technology

中图分类号:P641.8 文献标识码:A文章编号:2095-2104(2013)04-0000-00

1 引言

水资源作为最重要的不可再生资源之一,与人类的生存和发展息息相关,也已然成为一个国家综合国力的重要组成部分。我国水资源的特点是总量大、人均少、分布不均,而且由于社会的经济发展,大量未经有效处理的工业废水、生活污水排入城市河道、湖泊等,造成城市水环境的污染,河湖富营养化和河道黑臭是我国城市水环境中存在的普遍现象[1, 2]。随着经济的快速发展和城市化进程的不断推进,我国紧缺的水资源还将面临着不断加重的水污染问题。受损水环境不仅能造成巨大的经济损失,还将严重破坏人类的生存环境,成为影响未来城市发展的关键因素。我国2011环境公报指出,全国地表水总体为轻度污染,湖泊(水库)富营养化问题仍突出:其中57.7%的湖泊、49%以上的十大水系河流和55%左右的地下水都受到不同程度的污染[3]。因此修复受损水环境的重要性不言而喻,各国对受损水环境的修复技术研究都十分重视。本文在综述了水环境修复技术进展的基础上,对水环境修复技术的研究重点和热点进行了初步的探讨和分析。

2 水环境修复技术进展

水环境修复的目标一般不可能达到完全恢复水环境的原始状态,而是在保证水环境结构健康的前提下,满足人类可持续发展对水环境功能的要求,其修复应遵循以下原则:(l)水体的地域性;(2)生态学原则;(3)最小风险和最大效益原则[4]。根际城市水环境的污染物的来源不同,从外源污染和内源污染两个方面总结水环境修复技术的技术进展。

2.1 外源污染的修复技术

城市水体水质恶化主要是由外界输入的大量污染物质在水体中富集造成的,切断外源性污染物质的输入,是城市水环境生态修复的重要前提[5]。水环境的修复和重建还应涉及到沿岸生态系统的修复,其目标是使水环境受纳污染物数量的减少。控制外源性负荷也是改善城市水环境的根本途径[4]。

2.1.1 点源污染控制

对于工业废水和生活污水这样的点源污染,应排入城市污水处理系统,严禁未经处理排入城市水系统内并且对城市污水处理系统进行升级改造。改进城市的排水体制,实现雨污水分流,提高水体的自净能力[6]。

2.1.2 面源污染控制

对于城市湖泊,农业面源污染造成的危害范围最大、程度最重,已成为湖泊富营养化的主要污染源[8]。农业面源污染控制的途径包括:建设生态农业工程,推进农业新技术研究和应用,改进施肥方式、灌溉制度,及合理种植、推广新型复合肥料等措施。

城市面源污染包括合流制排水系统中因暴雨期间污水溢流以及分流制排水系统中初雨径流造成的污染,2种排水体制造成的污染强度基本相当[10]。雨水径流中污染物的含量、形态,除受气候影响外,还和当地人口密度、社会生产活动等因素有关。控制措施包括:控制工业污染源,推行清洁生产,削减污染物排放,完善城市垃圾、污水处理工程一系列根据城市面源污染特点所采取的源头分散控制、中途控制和终端控制等措施[11]。

2.1.3 气载污染控制

气载污染物主要来源于工业废气、汽车尾气、烟尘排放后通过降雨或降尘途径进入水体的污染。此外,农业施肥造成的氨氮逸出也是气载污染物的一个重要来源。近年来由于各地雾霾笼罩,PM2.5指数持续上升,各地对气载污染物的治理也是迫在眉睫。气载污染物的控制要紧密结合大气污染防治的要求,在提高大气污染治理技术和产品开发的同时,推广以节能、降耗、减污为目标的清洁生产工艺,降低区域废气、尾气及烟尘排放量;通过农业生态系统工程建设,减少农业化肥的氨氮逸出;同时应加强雨水收集、净化技术研究[4]。

2.1.4 人工湿地修复技术

在城市水系沿岸构建人工湿地是城市水环境污染控制的主要技术手段。人工湿地是近年来兴起的生态处理技术,具有处理效果良好,建设和运行成本低,环境美学及其生态功能显著等优点,被认为是未来水处理技术中最具有发展前景的。人工湿地按照水流形态可以分为表流湿地,水平潜流湿地和垂直潜流湿地。被广泛应用于城市污水,工业废水以及城市道路雨水的净化过程中。因此人工湿地修复技术在城市水环境的治理中具有广阔的应用前景。

3. 结论与展望

水环境具有重要的资源意义和生态功能,对人类的生存和发展起着重要作用。随着社会的发展,由于自然干扰和人类破坏,造成了水环境的不断恶化并严重制约了社会发展。如何在维持水环境生态结构的前提下满足人类的可持续发展,是摆在我们面前的迫切课题。在未来的水环境修复中我们应尽量做到:(1)坚持水环境领域的基础研究,掌握水体污染物产生的原因及来源,采取有效措施阻止外源污染,进而为内源污染的治理提供保证。(2)进行政策引导和立法控制,加强环境保护,强化源头控制,提倡创新技术,依据成功经验,制定出符合当地实际情况的水环境修复技术。(3)强化水环境综合修复的技术理念,水环境修复已从单纯的水域治理,扩展到水域及其周边陆域的综合治理,并从单一的水体治理扩展到流域的综合治理。因此在水环境修复的具体实施中必须强调环境生态中各个部分的统一及协调。

参考文献:

[1]黄廷林,等.饮用水水源水质污染控制[M]. 北京:中国建筑工业出版社2009.

[2]张锡辉.水环境修复工程学原理与应用[M]. 北京:化学工业出版社,2001.

[3]中华人民共和国环境保护部, 2011. 中国环境状况公报.

/gzfw/xzzx/wdxz/201206/P020120613514213036579.pdf

[4]张维昊,张锡辉,肖邦定,刘剑彤,刘永定. 内陆水环境修复技术进展[J]. 上海环境科学,2003,11:811-816+849.

[5]李艳霞,王颖,张进伟,陈建峰. 城市河道水体生态修复技术的探讨[J]. 水利电力科技,2006,04:34-38.

[6]刘阳,等.城市水环境的营造与修复[J] .河北水利,2007年07期.

[7]董哲仁,等.受污染水体的生态修复技术[J] .水利水电技术,2002(2):35-43.

[8]李开明,等.城市水环境生物修复试验研究[J] .生态环境,2008,17(4):1381-1384.

[9] Comín, F.A., Romero, J.A. Astorga, V., García, C., Nitrogen removal and cycling in restored wetlands used as filters of nutrients for agricultural runoff [J]. Water Science and Technology, 1997, 35(5), 255-261.

第6篇:水体生态修复技术范文

关键词:生态;修复技术;水环境保护;治理措施

治理水环境污染比较常见的方法是通过有效控制污染源的方法达到的,但是这种方法有很多的弊端,受经济社会发展的影响比较大并且制约作用很明显。通常情况下是没有办法达到预期目的的,而且治理的效果也不是很好,很多时候还可能出现严重的反弹现象。很多研究和实践的事实表明,水环境的污染问题就是明显的生态环境问题,所以一定要利用生态学的手段和方法去处理这个问题,这样才能从根本上解决水环境污染的现状。

一、生态修复技术原理

生态修复是水环境污染治理比较高的阶段和层次,充分利用一些特有生物的特殊功能去吸收相关的污染物质,从而达到净化水污染,恢复生态平衡的目的。生态修复技术能够改善生态系统的结构,恢复受损的物种群体,使水生生态系统更加的完善,把原来失去的生态系统功能更加完善的进行修补,从而达到水生生态系统自我完善和修复的最终目的。

生态修复技术主要是使用生态学技术和手段,尽可能的去控制和调节水的流量和状态,改善水污染的现实。重视相关结构的重建或者改造工作,比如说河岸边坡的结构类型等,还要重视相关水域的生物多样性,使水体拥有完善的生态系统结构和功能,并且达到生态平衡。在上世纪80年代,作为一种投资小并且效益高的治理环境污染技术,生物修复技术开始流行起来,其主要是使用那些特殊的微生物在某些特别的情况下去消除那些污染环境的物质,这样一来环境的污染问题一定能够处理的妥当。

生态修复技术能够很自然的实施下去,而且投资比较少,一般花费仅为化学法或者物理法修复一半左右。生态修复技术有很多优点,包括安全性、经济性、实用性、系统性等,因此成为治理水污染最重要的技术手段和方法。生态修复技术充分把握和利用水生系统的自然规律,利用生态治水的理念,实现自然生态的修复和发展。

二、生态修复主要技术手段

(一)水生植物修复技术

有的水生植物能够和水中的污染物在微环境下达到共生,还可以利用生态系统的竞争关系控制一方的繁衍,比如说在营养物质和水能的利用上,一些水生植物和浮游藻类就是竞争关系,这样引进水生植物能够有效的控制藻类的疯狂生长。与此同时利用可以将水中营养物质吸附的能力,除去污染物质并且能够加速有机物的分解。

水生植物修复技术最为常见的就是人工湿地技术。人工湿地技术是生态治理技术,最近几年来发展迅速。在处理各类工业废水的污染问题上效果显著,尤其是在石油化工、重金属冶炼等方面,在雨水的处理等方面也得到了较大推广。利用这种方法能够有效的改善水体的水质,充分利用理化生的共同作用来进行污水的净化,是人工湿地的基本原理。利用湿地表面积大的功能除去水体中的悬浮物,从而达到过滤的目的,这种方法的显著优点是利用水生植物和微生物能够有效的降解有机物。

但是这种技术还是有一些弊端,因为水生植物本身的成长速度比较慢,处理的效果只有长期的时候才能显现出来,受客观条件影响比较大;面对那些水质相当差的生存环境来说,有时候连水生植物都没办法生长,这样也就成了另一种污染物,得不偿失。

(二)土地处理技术

土地处理技术是一种存在时间比较长效果很好的水处理技术。利用的最基本材料就是土地,充分发挥植物和土壤的净化作用,进而达到自我调控的目的,在某种程度上实现了水体的净化。土地处理的类型包括很多种,比如快速和慢速渗滤、地表漫流等。根据具体的经验表明,在去除有机物方面土地处理的效果比较好。

(三)生物膜法处理技术

生物膜法处理技术说的是利用天然材料巨大的表面积为载体,为微生物提供附着的空间,这样就能够更好的降解污染物。这种方法降解污染物的效率高,可以在短时间内高强度负荷的工作,所占用的有效空间比较小,作用周期短,可以有效的节约资金。除此之外,运行管理的成本可以更好降低,像那些治理污泥问题就可以有效的避免,而且受外界的影响也比较小。

(四)水生动物修复技术,

水生动物的食物种类比较多,像水里的藻类、有机物都可以当做水生动物的食物。在提升水体的透明度,减少水中悬浮物等方面作用显著,水生动物可以把水中的食物链进行延长,这样净化效果就比较好,再配合比例合理、防止过度的繁殖,除去水体中过度的有机物,调控水生生态系统,增加系统的安定性,改善物质循环,这样下来就一定能够达到净化水体的目标。

三、结束语

把环境生物学原理应用在生物修复上,利用微生物的生命周期活动,把水中的污染物进行有效的降解、消除,进而使水体净化;利用生态工学进行生态修复,创造生物多样化的生存环境,为生态修复打造良好的基础,促进生态系统良性循环,达到水环境保护的最终目的,形成和谐统一的治理体系。

参考文献:

第7篇:水体生态修复技术范文

关键词:城市水生态;修复技术水

随着全球科技的进步,人类活动的频繁和社会经济增长模式的转变,水资源的开发利用达到了前所未有的强度,水生态环境遭到了严重的破坏,但是城市水环境是城市生态环境的重要组成部分,也是市民休闲娱乐、维护城市生态平衡的重要手段。那么随着人们生活水平的提高,人们对水环境的质量也越来越高,在这种情况下采取生态修复的方法解决污染不是很严重格的水环境是今后城市环境治理的必然,修复受损的水生态环境是恢复水生态环境的有效途径。

1我国城市水体的水质状况及其污染成因

目前全国80%以上的城市河流受到污染,许多大江大河的城市段已达不到Ⅲ类水质的标准。据全国2 222个检测站的统计,在138个城市河道中,符合Ⅱ、Ⅲ类水质标准的仅占23%,超过Ⅴ类水质的占到38%,能饮用的地面水所剩无几。2003年度全国七大水系407个重点监测断面中,只有34%适于直接饮用(属Ⅰ类水质),24.8%适于渔业生产(属Ⅰ、Ⅱ类水质),38.1%适于游泳(属Ⅰ、Ⅱ、Ⅲ类水质),另有38.1%是没有任何用途的臭水(属Ⅴ类、劣Ⅴ类水质)。

1.1点源污染

随着改革开放的不断深入,大量的人口涌向城市,城市内的厂矿企业急速增加,大量生活污水、工业废水未经处理直接排入河道,河道生态环境遭到破坏。

据统计,长江流域劣于Ⅲ类水河长占总评价河长的22.5%。劣于Ⅲ类的水体主要集中在城市江河段和部分支流。主要超标项目为:氨氮、高锰酸钾指数、化学需氧量、5日生化需氧量、总磷、石油类等。长江流域的污废水排放量,2003年达到270×108 t以上(其中不含火电厂直流式冷却水和矿坑排水230.9×108 t),其中生活污水81.3×108 t,工业废水192.1×108 t,较5年前增长了35%。2003年黄河流域废污水排放量为41.46×108 t,其中城镇居民生活污水排放量为9.46×108t,第二产业为29.33×108 t,第三产业为2.67×108t,火电厂直流式冷却水排放量和矿坑排水量为2.18×108t。

大量的污废水排入城市河道,而这些污废水远远超出了河道的自净能力,河道内部生态系统产生“多米诺”效应,水质急剧恶化。

1.2面源污染

城市河道的面源污染主要是以降雨引起的雨水径流的形式产生,径流中的污染物主要来自于雨水对河道周边道路表面的沉积物、无植被覆盖的地面、垃圾等的冲刷。污染物的含量取决于城市河道的地形、地貌、植被的覆盖度和污染物的分布情况。因此,对面源污染的控制也可理解为对城市河道周边降雨径流污染的控制。

在诸多城市的市政建设中,雨水排水管道和污水管道是不分的,而且不具备雨水处理工艺。大量的雨水沿着排水管道未经处理直接进入城市河道,给河道带来了严重地污染。

1.3混凝土的“包装”

在城市河道治理工程中,片面追求河岸的硬化覆盖,只考虑河道的防洪功能。为保护城市的安全,河堤年年加高,并大量建设钢筋混凝土、块石等直立式护岸,河道完全被人工化、渠道化。失去自净能力的河道反过来又加剧了河道水体的污染。

2城市水生态修复技术

2.1城市水生态修复技术

2.1.1污染源处理技术

城市水体污染的主要来源是生活污水的直接排放,尤其是分散生活污染源的排放,已经成为部分地区城市水体污染的重要原因。因此,研究开发小型的具有脱氮除磷功能的生活污水处理装置尤为重要。生活污水就地处理净化槽、土地沟渠净化系统等成为城市污水处理系统的重要配套设施。固定微生物技术、微生物载体技术、电解技术、厌氧好氧技术、水解技术及磷资源的回收技术成为上述装置的重要组成部分。尤其是发展新型磷资源回收利用系统技术为恢复有限磷资源奠定了技术基础。

2.1.2水体生物修复技术

生物修复是利用特定的生物(包括微生物-土著或外源微生物以及植物等)在一定条件下进行消除或富集环境污染物,从而对污染环境进行恢复的生物过程。生物修复技术是新近发展起来的一项清洁环境的低投资、高效益、便于运用、发展潜力较大的新兴技术,已经成为一种新的可靠的环保技术,并得到各国环保部门的认可。植物的修复技术主要是使生态系统的退化得到遏止,生态系统的基本功能得到恢复。研究包括河流廊道、河网及岸坡的植物培育及生物群落的构建。

2.2城市水体的维护

2.2.1建立科学的水务管理体制

目前,我国的水资源管理涉及到水利、航运、渔业、矿产、城建、农业、林业和海洋,但没有一个真正的权力机构来统一管理水资源。长期以来在防洪减灾、城市供水、防止污染、保护水生态环境等具体工作上都存在许多矛盾,严重妨碍了水资源的统一规划、统一调配和统筹兼顾。新的城市水务管理应具有对城市防洪、除涝、需水、供水、节水、排水、水资源保护、污水处理及回用、地下水回灌等统一管理的职能。通过建立统一的水资源管理体制实现城市水体规划、调度和水量水质的统一管理,进一步确保地区社会经济和环境的可持续发展。

2.2.2加强水生态保护

城市水体是城市的重要组成部分,赋有供水、防洪排涝、旅游娱乐及维护环境生态平衡的重要作用。因此,在城市规划、区域流域规划及水利工程规划、设计、管理、调度中应充分考虑这一特殊水体的作用与功能。通过建设调节水库、污水库、引水冲污水道或通过湖泊河道清淤减少水体污染源等,以达到保护和改善城市水体的目的。

通过引水来增加河道流量,是改善城市水体质量的有效方法。目前国内基本上采用生物处理工艺为主,辅之以曝气氧化的方法。利用天然河道和水工建筑物,按照污水处理要求加以人工曝气、拦污沉渣等措施,达到处理要求;或通过人工投放生物菌种的方法对河道水体和底泥进行生物降解,以恢复水生态环境。此外,研究适合当地的城市二级污水处理厂尾水排放通道,是防止城市环境水体污染的重要方法。

2.2.3综合治理暴雨污水

城市雨水一方面是一种可贵的水资源,另一方面会对城市水体造成污染,尤其是初雨中含有大量的污染物。随着城市化进程的加快,城市雨洪控制与利用显得尤为重要,我国已开始研究收集利用雨水的技术和方法,上海和北京等城市均在着手研究雨洪水的控制与利用方法,通过对降雨强度、降雨径流和初雨水质变化规律的研究,建立后续雨水收集、传输、调蓄、处理及利用系统。在工程措施上,可以结合生态工程建设,通过管、塘、池配套设施建设,溢流技术的完善,河湖岸边水生植物合理利用,雨水净化回用以及减少侵蚀作用等措施减少污染强度,从而达到保护水体的目的。

总之,我国一定要结合我国水资源分布的特点,根据不同区域,不同水质环境,采取适宜的水生态环境修复措施,逐步探索适合我国水生态环境修复之路,逐步改善本区域内水生态环境,使受损的水体得以修复。树立遵循自然、利用自然、保护自然的理念,使人类与自然和谐相处。

参考文献:

[1]李艳霞,王颖,张进伟,陈建峰.城市河道水生态修复技术的探讨[J].水利科技与经济,2006,(11)

[2]胡静波.城市河道生态修复方法初探[J].南水北调与水利科技,2009,(02)

第8篇:水体生态修复技术范文

关键词:河道;水系;生态修复

1 北沙河概况

北沙河为太子河的支流,其为双源河流,两个源头发源于本溪市的朝仙岭和抚顺市的班猫岭。主河道全长为117km,流域面积为1534km2。20世纪80年代初的北沙河,河水清澈,鱼虾等水生物丰富,河岸植被繁茂,沿河没有污染排放的企业,河水没有污染。后来,由于认识到农田土地的重要性,农民开始开荒耕种,田间地头,5°~10°以上坡地遭受垦殖,破坏了原有生态,造成水土流失,使河水变色。再加上各种选矿厂的不规范生产,向河内排污,水生物已很少见,水质为Ⅴ类以下。

2 北沙河流域存在的问题

2.1 水质波动较大

由于近年来沈阳市加大了对沈阳市各河道流域的整治力度,各条河流的水质状况有了明显提高,城市段可达到Ⅲ类地表水体标准,其余水体达到或优于Ⅳ类水标准。但目前北沙河的水质随季节以及监测地点的不同变化较大,从水体监测指标变化规律来看,遇有雨雪天气,地面径流会将城市或支流水体中的垃圾、污染物带入水体,由于没有缓冲或稀释系统,导致河流水质瞬时波动较大。另外,当河流水体的理化条件、动力学条件、污染物浓度梯度发生变化时,沉积在河流底泥中的污染物可能在河流水体的冲刷下,随同悬浮物质的再悬浮而重新释放至河流水体中,并对河流水质造成一定影响,尤其是在影响河流水质的污染源得到有效控制的条件下,这种影响表现的尤为突出。

2.2 河道水生态系统脆弱

为了自身的防洪安全和经济发展需要,多年来人们对各河道流域进行了大量的人工改造,并进行了大规模的开发利用,兴建了防洪、除涝、引水、通航、灌溉、景观绿化、挖沙等多方面的工程措施,这些工程措施在产生巨大的社会效益、经济效益的同时,也对河流域的生态系统产生了不同程度的胁迫效应,造成淡水生态系统退化、生物群落多样性降低、自然河流非连续化、滩地和洪泛区生态功能退化等负面影响。

2.2.1 生物多样性丧失。河道流域的生物多样性丧失主要是受到人类活动和自然环境改变所致。主要表现为:

环境污染造成某些水域水生生物锐减,局部河段水生生物绝迹或水体富营养化。大量施用农药化肥,含磷洗涤剂,使某些水生生物种类灭绝。非法捕捞、挖沙,使水生物种类逐渐减少,使遗传资源大量消失。绿化及景观建设过程中大面积单一种植植物品种导致土著植物种群消失,引进植物品种适应性较差,生态系统脆弱,生物链断裂。

2.2.2 生境多样性破坏严重。由于工程措施大量在河道流域上进行应用,导致河道流域的生境多样性破坏严重,自然界的河流大多数都是蜿蜒曲折的,河道也是处在不断演变之中的,弯曲与自然裁弯取直交替发生。河流的这种蜿蜒性使得河流形成主流、支流、河湾、心滩等丰富多样的生境,由此形成了丰富的河滨植被、河流植被,可为鱼类、鸟类和两栖动物等提供繁衍栖息的场所,但由于拦河筑坝、削坡建渠、填河挖沙等工程措施导致生境多样性严重破坏,最终造成大量生物迁移或灭绝。

3 北沙河河道生态修复方案

河道水体修复技术是利用现有污水处理技术与生态技术相结合的方式,达到强化水体生态自净能力的目的。通过我们对北沙河苏家屯段的湿地调查,确定可在五处公路桥附近河道平缓、植被丰富、面积较大的区域开展河道修复技术的应用。

由于各地块位置、地形、面积、水深、土壤条件、植被覆盖等差别很大,所以在设计的过程中应因地制宜,根据不同地块的基础条件,尽量用最简单的工程措施,进行滨河湿地系统的建设,主要建设系统包括稳定塘系统、功能表流湿地系统、生态护岸系统、辅助设施。

3.1 稳定塘系统

稳定塘是一种利用天然净化能力对水体进行净化的构筑物的总称。其净化过程与自然水体的自净过程相似。通常是将土地进行适当的人工修整,建成池塘,依靠塘内生长的微生物、植物等来净化水体。由于浑河、北沙河、金沙河周边有许多挖沙后遗留的沙坑,有些已经改造成鱼塘或闲置,可利用这些沙坑进行适当休整建成稳定塘系统,根据沙坑水深的不同,可设置不同类型的稳定塘。

3.1.1 滞留塘湿地。为使湿地系统的河水水质均匀稳定,并给整个湿地系统的鱼类在冬季提供存活的空间,设计滞留塘湿地,平均水深为2.0m,采用自由表面流湿地形式。在滞留塘湿地周边水深小于1.0m处种植挺水湿地植物菖蒲、芦苇等。

3.1.2 生态稳定塘湿地。为使滨河湿地生态系统稳定,设计生态稳定塘,平均水深为1.2m,采用自由表面流湿地形式。在稳定塘湿地周边水深小于0.6m处种植挺水湿地植物菖蒲、芦苇等,在水深大于1.0m处种植浮水植物荷花、荇菜等。

3.2 功能表流人工湿地系统

对河道地块中面积比较大的滩地进行一定的工程措施干预,并合理配置种植多种水生植物,形成功能表流人工湿地。

3.2.1 湿地地形修整。功能表流湿地系统的营建其首要任务就是要通过工程措施平整局部地势、削低过陡地形、规整水面形状,改善和营造湿地植被和水鸟的生存环境,增加湿地生境的异质性和稳定性,完善河道流域的湿地生态系统结构,恢复湿地生态系统功能。具体包括陡坡整理、浅滩湿地营建、生境岛营建以及小型水面规整等方式。

3.2.2 湿地植物选择。湿地植物是湿地系统的核心,通过湿地植物的生长不但可以增加湿地植物种类和面积,同时还能绿化土地,改善区域气候,促进生态环境的良性循环,吸引、繁衍多种湿地动植物,增加湿地系统的生物多样性,本工程针对北方地区湿地的特点,从北方湿地植物的生长状况,环境适应性,抗病虫害能力以及群落配置、合理布局与景观美学等方面选择适宜的湿地植物种类。

3.2.3 湿地植物的配置。合理优化的物种选择与群落配置是增强湿地系统稳定性和提高景观效果的关键因素。

根据环境条件和群落特性对先锋物种与其它本土物种的分布进行调控,配置多种、多层、高效、稳定的植物群落,形成稳定可持续利用的生态系统的目的。

首先根据适应性、本土性、可操作性的原则,可选择选择芦苇、茭白、菖蒲、香蒲等作为先锋物种。搭配多种其它湿地植物与旱生植物,另外,湿地植物种植密度的确定也是十分重要的,种植密度过低植株易受到其它物种的竞争影响正常生长,而过密容易引起营养供应不足,植株矮小,抗病虫害能力下降。

第9篇:水体生态修复技术范文

【关键词】人工浮岛,主动式人工浮岛,治理,污染水体,水体修复

1 人工浮岛概述

人工浮岛又称人工浮床、生态浮床、生态浮岛,是一种由人工设计建造的漂浮在水面上供植物、动物和微生物生长、栖息、繁衍的生物生态设施[l]。通过植物根系的过滤、吸收、吸附作用和根系生态系统的物质转化途径,削减水体中的氮、磷、有机物等营养物质,并以收获植物体的形式将其搬离水体,从而达到净化水质的效果,同时又为生物(鸟类、鱼类)创造了生息空间从而增加物种多样性,又可以营造水上景观。

人工浮岛是一种具有净化污染、修复生境、恢复生态、改善景观等多种功能的原位生态修复技术,而且还具有施工简单、工期短、造价低、不耗能、运行管理容易等优势,在污染水体的综合治理中具有良好的推广应用前景。

2 人工浮岛技术原理

人工浮岛对水体的生态修复技术原理有以下几点:

(1) 对有机污染物的去除。主要有以下3个途径:Ⅰ.较大的不溶性有机颗粒团经植物根系截留,可部分被微生物降解;Ⅱ.污水中的可溶性有机物可被植物根系表面的生物膜吸附、吸收和代谢作用降解;Ⅲ.通过对植物收割将新的有机体从水体中去除。系统中有机物的去除主要是微生物的好氧降解作用,即浮岛系统的水生植物通过茎和根向其根区输送氧气,从而使根区附近变为好氧环境,有利于微生物对水体中有机物的好氧分解,以达到降低水体化学需氧量(COD),生化需氧量(BOD)的目的。

(2) 对氮、磷的去除。氮的去除主要是经过系统中微生物的硝化与反硝化作用后成为气态化合物进入大气;也有一部分无机氮作为植物生长过程中不可缺少的物质被植物吸收摄取,并同化为自身的结构组成物质(蛋白质和核酸等)。磷也是植物必需的营养元素,磷的去除主要是植物的吸收和微生物的同化以及聚磷菌的过量摄磷作用。

(3) 对重金属的去除。环境中的重金属和一些有机物并非是植物生长所需要的,达到一定程度后具有毒害作用,对于此类化合物,一些植物也演化出了特定的生理机制使其脱毒,并能对重金属进行吸收、富集,从而具有一定的去除水体重金属污染功能。通常是通过鳌合和区室化等作用[2]来耐受并吸收富集环境中的重金属,这种机制也存在于许多水生植物中,使许多水生植物可大量富集水中的重金属[3]。

(4) 抑制藻类的生长。高等水生植物和藻类在营养物质和光能的利用上是竞争者,前者个体大,生命周期长,吸收贮存营养物质的能力强,因此与藻类竞争吸收水体中的氮磷物质时处于优势地位,从而使藻类缺少营养而死亡。有些植物通过根部向水体中释放化感物质,通过化感作用或克藻效应抑制有害水藻的生长,从而净化水环境,可有效防止水华或者赤潮的发生。

3 主动式人工浮岛技术

微生物对有机物的降解主要是好氧降解,可见系统中溶解氧含量与有机物的去除密切相关。另外,系统中氧含量也是影响氮和磷净化效果的关键因素。由于系统中植物根系周围形成了许多好氧、缺氧、厌氧小区,使得硝化和反硝化作用同时进行。硝化作用是在好氧条件下进行的,反硝化作用则在厌氧条件下进行,而且硝化作用是反硝化作用进行的前提和基础,增加溶解氧有利于系统对氮的去除。增加植物根系附近介质中的溶解氧,可以有效地增强根系微生物的代谢作用,使嗜磷菌的呼吸代谢活动加强,对磷的降解吸收起到一定的促进作用。所以提高系统中溶解氧含量,能提高系统的净化效能。

水生植物的根系虽然很多,但在修复较深水体时却有些不足。水生植物根系仅能达到较浅区域,并对较浅区域进行较好的修复作用,而对深层水体中污染物的净化效果较慢,所以生态浮床在修复较深水体时可能会出现污染物分区现象。运用水体循环技术,使浅层水体和深层水体形成环流,有利于提高水体深层污染物的净化效果。

针对人工浮岛以上的问题,提出了一个解决方案--主动式人工浮岛技术,将人工浮岛与水体充氧和水体循环技术相结合,人工营造一个水生植物、水生动物、微生物良好的生长环境,大大提高人工浮岛的水质净化能力,将水质净化与水面的人工浮岛有机结合。

3.1主动式人工浮岛技术特点

采用人工曝气的方式向水体充氧,加速水体复氧过程,以提高水体中溶解氧含量,增强水体中好氧微生物的活力,使水体中的污染物质得到净化,以改善水质。另一方面直接利用曝气制造循环流,搅动水流,加快水体传质,提高水体液面更新速率,提供充氧效率,从而改善微生物生长环境,实现高效的原位生物降解;曝气形成环流,有利于净化后水体与污染水体的交换,有利于浅层水体与深层水体的交换,扩大系统有效的净化面积。

传统的机械曝气方法如固定的充氧站、水下设置曝气充氧机[4]等,能有效控制和延缓水体富营养化。但曝气设施存在能耗高、充氧效率低、运行费用高等问题。同时,近年太阳能等绿色能源的应用快速发展,大部分自然水体表面水域开阔,阳光照射条件良好,非常适合于利用太阳能光伏发电进行能源供给。通过悬浮载体将太阳能发电系统利用于人工浮岛中,直接将太阳能转化为电能为曝气系统供电,无需外界能源输入,无二次污染,节能降耗,提高能源利用效率,在能源自给的同时实现水体修复的目标。

3.2主动式人工浮岛的组成

主动式人工浮岛由人工浮岛降解系统,曝气充氧循环系统和太阳能发电系统三大部分组成。

3.2.1 人工浮岛降解系统

人工浮岛降解系统由浮岛单元拼接组合而成,浮岛单元内部种植水生植物,浮岛单元水下部分增加填料,整体环绕于曝气充氧循环系统,通过植物和微生物的共同作用,实现水体修复目的。

3.2.2 曝气充氧循环系统

曝气充氧循环系统由空气泵、曝气盘、导流装置等部分造成。浮岛系统为曝气充氧循环系统提供浮力。空气泵压缩的空气通过导气管进入曝气盘,然后以微小气泡的形式释放到深层水体中,与其混合,增加水体溶氧量,水气混合后的液体因密度减少而在导流筒内垂直上升到达浅层水体,同时深层水体因导流筒内的压力减少而被不断吸入到导流筒内,形成一个以压力差为动力的循环流,提高供氧效率和水体净化效果。

3.2.3 太阳能发电系统

太阳能发电系统由太阳能电池板、控制器、蓄电池、支架等部分组成,为曝气充氧循环系统提供电力支持。浮岛系统承载太阳能发电系统,电池板安装在浮岛面上。阳光充足的白天,太阳能电池板通过控制器向蓄电池供电并带动空气泵工作,夜间或阴雨天则蓄电池放电带动空气泵工作。另外还可以利用时间控制器控制曝气充氧循环系统的运行状态。有效维持水体溶解氧水平,促进微生物代谢,强化水体净化能力效果。

4 结语

主动式人工浮岛基于水体原位修复的概念,通过集约化组合的方式构建立体式的生物体系,使污染水体在植物、动物、微生物的协同作用下,实现水体快速修复,利用太阳能供能强化曝气和水体循环,大大提高人工浮岛的水质净化效率。该设备能直接安置于需要治理的水体上、结构简洁、安装简便、自动运行、造价低、无需外界能源供给,运行成本低、无二次污染,与水体景观和谐共处,技术经济优势明显。

参考文献:

[1] 谷勇峰,李梅,陈淑芬,刘连江,王翠彦.城市河道生态修复技术研究进展[J].环境科学与管理,2013,38(4):25-29.

[2] 王剑虹,麻密.植物修复的生物学机制[J].植物学通报,2000,17(6):504-512.